Scheduling strategies for mixed data and task parallelism on heterogeneous processor grids - LARA - Libre accès aux rapports scientifiques et techniques Accéder directement au contenu
Rapport (Rapport De Recherche) Année : 2002

Scheduling strategies for mixed data and task parallelism on heterogeneous processor grids

Résumé

In this paper, we consider the execution of a complex application on a heterogeneous "grid" computing platform. The complex application consists of a suite of identical, independent problems to be solved. In turn, each problem consists of a set of tasks. There are dependences (precedence constraints) between these tasks. A typical example is the repeated execution of the same algorithm on several distinct data samples. We use a non-oriented graph to model the grid platform, where resources have different speeds of computation and communication. We show how to determine the optimal steady-state scheduling strategy for each processor (the fraction of time spent computing and the fraction of time spent communicating with each neighbor). This result holds for a quite general framework, allowing for cycles and multiple paths in the platform graph.
Fichier principal
Vignette du fichier
RR2002-20.pdf (264.21 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02101992 , version 1 (17-04-2019)

Identifiants

  • HAL Id : hal-02101992 , version 1

Citer

Olivier Beaumont, Arnaud Legrand, Yves Robert. Scheduling strategies for mixed data and task parallelism on heterogeneous processor grids. [Research Report] LIP RR-2002-20, Laboratoire de l'informatique du parallélisme. 2002, 2+13p. ⟨hal-02101992⟩
24 Consultations
129 Téléchargements

Partager

Gmail Facebook X LinkedIn More