N
N

N

HAL

open science

Scheduling strategies for mixed data and task
parallelism on heterogeneous processor grids

Olivier Beaumont, Arnaud Legrand, Yves Robert

» To cite this version:

Olivier Beaumont, Arnaud Legrand, Yves Robert.
parallelism on heterogeneous processor grids.

Iinformatique du parallélisme. 2002, 2+13p. hal-02101992

HAL Id: hal-02101992
https://hal-lara.archives-ouvertes.fr /hal-02101992
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Scheduling strategies for mixed data and task
[Research Report] LIP RR-2002-20, Laboratoire de

https://hal-lara.archives-ouvertes.fr/hal-02101992
https://hal.archives-ouvertes.fr

Laboratoire de I’ I nformatique du Parallélisme

O
< s - CENTRE NATIONAL
%‘ Ecole Normale Supérieure de Lyon % DE LA RECHERCHE

Unité Mixte de Recherche CNRS-INRIA-ENS LYON rP 5668 SCIENTIFIQUE

Scheduling strategies for mixed data and
task parallelism on heterogeneous processor
grids

Olivier Beaumont,
Arnaud Legrand and May 2002
Yves Robert,

Research Report N° 2002-20

Ecole Normale Supérieure de Lyon

46 Allée d'Italie, 69364 Lyon Cedex 07, France
III Téléphone : +33(0)4.72.72.80.37 1 N R] A
Télécopieur : +33(0)4.72.72.80.80 .

Adresse électronique : 1ip@ens-1lyon.fr

Scheduling strategies for mixed data and task parallelism on
heterogeneous processor grids

Olivier Beaumont,
Arnaud Legrand and
Yves Robert,

May 2002

Abstract

In this paper, we consider the execution of a complex application on
a heterogeneous "grid" computing platform. The complex application
consists of a suite of identical, independent problems to be solved. In
turn, each problem consists of a set of tasks. There are dependences
(precedence constraints) between these tasks. A typical example is the
repeated execution of the same algorithm on several distinct data sam-
ples. We use a non-oriented graph to model the grid platform, where
resources have different speeds of computation and communication. We
show how to determine the optimal steady-state scheduling strategy for
each processor (the fraction of time spent computing and the fraction of
time spent communicating with each neighbor). This result holds for a
quite general framework, allowing for cycles and multiple paths in the
platform graph.

Keywords: Heterogeneous processors, scheduling, mixed data and task parallelism.

Résumé

Nous nous intéressons a ’ordonnancement d’une application complexe
sur une plateforme de calcul hétérogéne. L’application consiste en une
suite de problémes identiques et indépendants a résoudre. Chaque pro-
bléme correspond & un graphe de taches, avec contraintes de précédence.
Un exemple typique de cette situation est l'exécution répétée d’'un méme
algorithme sur des données différentes. La plateforme de calcul est mo-
délisée par un graphe non-orienté, ot les ressources ont des vitesses de
calcul et de communication différentes. Nous montrons comment déter-
miner le régime permanent optimal pour chaque processeur (c’est-a-dire
la fraction de temps passée & calculer et celles passées & communiquer
avec chacun de ses voisins).

Mots-clés: Processeurs hétérogénes, ordonnancement, parallélisme mixte.

T T T R e A O S T T T T T T T

1 Introduction

In this paper, we consider the execution of a complex application, on a heterogeneous "grid" com-
puting platform. The complex application consists of a suite of identical, independent problems to
be solved. In turn, each problem consists of a set of tasks. There are dependences (precedence con-
straints) between these tasks. A typical example is the repeated execution of the same algorithm on
several distinct data samples. Consider the simple fork graph depicted in Figure 1. This fork graph
models the algorithm. We borrow this example from Subhlok et al. [27|. There is a main loop which
is executed several times. Within each loop iteration, there are four tasks to be performed on some
matrices. Each loop iteration is what we call a problem instance. Each problem instances operates
on different data, but all instances share the same task graph, i.e. the fork graph of Figure 1. For
each node in the task graph, there are as many task copies as there are iterations in the main loop.

Figure 1: A simple fork graph example.

We use another graph, the platform graph, for the grid platform. We model a collection of
heterogeneous resources and the communication links between them as the nodes and edges of an
undirected graph. See the example in Figure 2 with four processors and five communication links.
Each node is a computing resource (a processor, or a cluster, or whatever) capable of computing
and/or communicating with its neighbors at (possibly) different rates. The underlying interconnec-
tion network may be very complex and, in particular, may include multiple paths and cycles (just

as the Ethernet does).

Figure 2: A simple platform example

We assume that one specific node, referred to as the master, initially holds (or generates the
data for) the input tasks of all problems. The question for the master is to decide which tasks to
execute itself, and how many tasks to forward to each of its neighbors. Due to heterogeneity, the

o A e P

neighbors may receive different amounts of work (maybe none for some of them). Each neighbor
faces in turn the same dilemma: determine how many tasks to execute, and how many to delegate
to other processors. Note that the master may well need to send tasks along multiple paths to
properly feed a very fast but remote computing resource.

Because the problems are independent, their execution can be pipelined. At a given time-step,
different processors may well compute different tasks belonging to different problem instances. In
the example, a given processor P; may well compute the tenth copy of task 77, that corresponding
to problem number 10, while another processor P; computes the eight copy of task 73, which
corresponds to problem number 8. However, because of the dependence constraints, note that
Pj could not begin the execution of the tenth copy of task T3 before that P; has terminated the
execution of the tenth copy of task 77 and sent the required data to P; (if i # j).

In this paper, our objective is to determine the optimal steady state scheduling policy for each
processor, i.e. the fraction of time spent computing, and the fraction of time spent sending or
receiving each type of tasks along each communication link, so that the (averaged) overall number
of problems processed at each time-step is maximum.

This scheduling problem is motivated by problems that are addressed by collaborative comput-
ing efforts such as SETI@home [21], factoring large numbers [9], the Mersenne prime search [19],
and those distributed computing problems organized by companies such as Entropia [10]. Several
papers [23, 22, 12, 11, 30, 4, 3] have recently revisited the master-slave paradigm for processor clus-
ters or grids, but all these papers only deal with independent tasks. To the best of our knowledge,
the algorithm presented in this paper is the first that allows precedence constraints in a heteroge-
neous framework. In other words, this paper represents a first step towards extending all the work
on mixed task and data parallelism [27, 7, 20, 1, 28| towards heterogeneous platforms.

The rest of the paper is organized as follows. In Section 2, we introduce our base model of
computation and communication, and we formally state the steady-state scheduling to be solved.
In Section 3, we provide the optimal solution to this problem, using a linear programming approach,
and we work out a full example. We briefly survey related work in Section 4. Finally, we give some
remarks and conclusions in Section 5.

2 The model

We start with a formal description of the application/architecture framework. Next we state all the
equations that hold during steady-state operation.
2.1 Application/architecture framework
The application
o Let P, P@ . P® he the n problems to solve, where n is large

e Each problem P("™ corresponds to a copy G(™ = (V™) E(™) of the same task graph (V, E).
The number |V| of nodes in V' is the number of task types. In the example of Figure 1, there
are four task types, denoted as T, Ty, T3 and Ty.

e Overall, there are n.|V| tasks to process, since there are n copies of each task type.

The architecture

The target heterogeneous platform is represented by a directed graph, the platform graph.

There are p nodes Pp, P»,..., P, that represent the processors. In the example of Figure 2
there are four processors, hence p = 4. See below for processor speeds and execution times.

Each edge represents a physical interconnection. Each edge e;; : P; — P; is labeled by a
value ¢;; which represents the time to transfer a message of unit length between P; and Pj, in
either direction: we assume that the link between P; and P; is bidirectional and symmetric.
A variant would be to assume two unidirectional links, one in each direction, with possibly
different label values. If there is no communication link between P; and P; we let ¢;; = +o00,
so that ¢;; < +00 means that P; and P; are neighbors in the communication graph. With this
convention, we can assume that the interconnection graph is (virtually) complete.

We assume a full overlap, single-port operation mode, where a processor node can simulta-
neously receive data from one of its neighbor, perform some (independent) computation, and
send data to one of its neighbor. At any given time-step, there are at most two communica-
tions involving a given processor, one in emission and the other in reception. Other models
can be dealt with, see [3, 6].

Execution times

Processor P; requires w; ; time units to process a task of type Tj.

Note that this framework is quite general, because each processor has a different speed for each
task type, and these speeds are not related: they are inconsistent with the terminology of [5].
Of course, we can always simplify the model. For instance we can assume that w; , = w; X dj,
where w; is the relative speed of processor P; and ¢ the weight of task T}.

Communication times

2.2

Each edge ey : Ty — T} in the task graph is weighted by a communication cost datay; that
depends on the tasks T} and T;. It corresponds to the amount of data output by 7}, and
required as input to 7.

Recall that the time needed to transfer a unit amount of data from processor P; to processor
Pjis ¢; ;. Thus, if a task T,Em) is processed on P; and task Tl(m) is processed on P, the time to
transfer the data from P; to P; is equal to datay; X ¢; j; this holds for any edge ey : T, — T;
in the task graph and for any processor pair P; and P;. Again, once a communication from
P; to Pj is initiated, P; (resp. Pj) cannot handle a new emission (resp. reception) during the
next datap; X c;; time units.

Steady-state equations

We begin with a few definitions:

For each edge ey : T, — Tj in the task graph and for each processor pair (P;, Pj), we denote
by s(P; = Pj,e;) the (average) fraction of time spent each time-unit by P; to send to P;
data involved by the edge ey ;. Of course s(P; — Pj,er;) is a nonnegative rational number.
Think of an edge ej; as requiring a new file to be transferred from the output of each task

Tk(m) processed on P; to the input of each task task Tl(m) processed on P;. Let the (fractional)
number of such files sent per time-unit be denoted as sent(P; — Pj,ey;). We have the relation:

S(PZ — Pjaek,l) = sent(PZ- — Pjaek,l) X (datak,l X Ci,j) (1)

which states that the fraction of time spent transferring such files is equal to the number of
files times the product of their size by the capacity of the communication link.

e For each task type T € V and for each processor P;, we denote by «(P;,T)) the (average)
fraction of time spent each time-unit by P; to process tasks of type Ty, and by consumed (P;, T},)
the (fractional) number of tasks of type T} processed per time unit by processor P;. We have
the relation

a(P;, Ty) = consumed (P;, T) X w; j, (2)

We search for rational values of all the variables s(P; — Pj, e), sent(P; — Pj,ey;), a(P;, Tj)
and consumed (P;, T),). We formally state the first constraints to be fulfilled.

Activities during one time-unit All fractions of time spent by a processor to do something
(either computing or communicating) must belong to the interval [0, 1], as they correspond to
the average activity during one time unit:

VP, Pj,Vegy € E,0 < s(P; = Pjyepy) <1 (4)

One-port model for outgoing communications Because send operations to the neighbors of
P; are assumed to be sequential, we have the equation:

VP, > Y s(Pi— Piepy) <1 (5)

Pj En(Pi) ek,IGE

where n(P;) denotes the neighbors of P;. Recall that we can assume a complete graph owing
to our convention with the ¢; ;.

One-port model for incoming communications Because receive operations from the neigh-
bors of P; are assumed to be sequential, we have the equation:

VP, > Y s(Pj o Pepy) <1 (6)

P en(p;) ep €FE

Note that s(P; — P;,ep,) is indeed equal to the fraction of time spent by P; to receive from
P files of type ey .

Full overlap because of the full overlap hypothesis, there is no further constraint on «(P;,T})
except that

VP, Y o(P,Ty) <1 (7)
TLeV

For technical reasons it is simpler to have a single input task (a task without any predecessor)
and a single output task (a task without any successor) in the task graph. To this purpose, we
introduce two fictitious tasks, Tpegin, Which is connected to every task with no predecessor in the
graph, and T,,; which is connected to every task with no successor in the graph. Because these
tasks are fictitious, we let w; Begin = w; pna = 0 for each processor P;. No task of type Tpegip is
consumed by any processor, and no file of type eg cnq is sent between any processor pair, for each
edge ek end : T — Tengq. This is ensured by the following equations:

VP;, consumed (P;, Thegin) = 0
sent(P; = Pj, eg,end) = 0 (8)

VP, YP;: € n(P,),Yer ona : Tr — Tonds
3 J (z) k,end k end {sent(Pj N Pi,ekyend) -0

Note that we can let datay, enqg = +o00 for each edge eg ena : Tk — Tena, but we need to add that
s(P; — Pj,ep,ena) = sent(P; — Pj,ep;) x (datap; x ¢; j) = 0 (in other words, 0 x +00 = 0 in this
equation).

2.3 Comnservation laws

The last constraints deal with conservation laws: we state them formally, then we work out an
example to help understand these constraints.

Consider a given processor P;, and a given edge ey in the task graph. During each time unit, P;
receives from its neighbors a given number of files of type ey, ;: P; receives exactly > | Pyen(P,) sent(P; —
P;, ey) such files. Processor P; itself executes some tasks T}, namely consumed(P;,T},) tasks T},
thereby generating as many new files of type ey .

What does happen to these files? Some are sent to the neighbors of F;, and some are consumed
by P; to execute tasks of type T;. We derive the equation:

VPi,Vek,l ek :T, > 1T,

Z sent(P; — P;, e) + consumed(P;, Ty,) = sent(P; — Pj, e ;) + consumed (P;, T;)
P; en(P;) P; en(P;)

(9)

It is important to understand that equation (9) really applies to the steady-state operation. At
the beginning of the operation of the platform, only input tasks are available to be forwarded. Then
some computations take place, and tasks of other types are generated. At the end of this initial-
ization phase, we enter the steady-state: during each time-period in steady-state, each processor
can simultaneously perform some computations, and send/receive some other tasks. This is why
equation (9) is sufficient, we do not have to detail which operation is performed at which time-step.

In fact, equation (9) does not hold for the master processor Ppaster, because we assume that it
holds an infinite number of tasks of type Tjegin. It must be replaced by the following equation:

Vep, € E : T, — T; with k # begin,
Z sent(Pj — Praster, €k,1) + consumed (Praster; Tk) =

Pj En(Pmaster)

Z sent(Pmaster — Pj, ex,1) + consumed (Pmaster, 77) (10)
Pjen(Pmaster)

Note that dealing with several masters would be straightforward, by writing equation 10 for each
of them.

Working out an example

We work out the conservation laws for the fork (task) graph of Figure 1, using the simple platform
shown in Figure 2. We start by extending the task graph with Tjg, and T, as illustrated in
Figure 3.

Figure 3: Extending the fork (task) graph with Thegin and Tepg.

8

We assume that P; is the master processor. The following conservation equations hold for P;:

sent(Py — Pi,e12) + sent(P3 — Py, e12) + consumed (P, Th) =
consumed (Py,Ty) + sent(P1 — Pa,e12) + sent(Py — Ps,e12)

sent(Py — Pi,e13) + sent(Py — Py, ey 3) + consumed (P, T)) =
consumed (Py, T3) + sent(Py — Pa,e13) + sent(P) — Ps,e13)

sent(Py — Pi,ez24) + sent(P3 — Py, ez4) + consumed (P, Th) =
consumed (Py,Ty) + sent(P1 — Pa,e24) + sent(Py — Ps,ez.4)

sent(Py — Pi,e34) + sent(P3 — Py, e34) + consumed (P, Ts) =
consumed (Py,Ty) + sent(P1 — Pa,e34) + sent(Py — Ps,e3.4)

sent(Py — Py, eq,end) + sent(Ps — Pi, e eng) + consumed (P, Ty) =
consumed (Py, Tepg) + sent(Py — Pa, e4,eng) + sent(Py — P, €4,¢nd)

The following conservation equations hold for Ps:

sent(Py — P, pegin,1) + sent(Ps — Pa, €pegin,1) + sent(Py — Pa, €pegin,1) + consumed (Py, Thegin) =
consumed (P, T1) + sent(Py — Pi, €pegin,1) + sent(Po — P3, epegin,1) + sent(Po — Py, €pegin,1)

sent(P — Py, e12) + sent(Ps — Py, e 2) + sent(Py — Pa,e12) + consumed (P2, Th) =
consumed Py, To) + sent(Py — Py, e;12) + sent(Py — Ps,e12) + sent(Po — Py, e12)

sent(P, — Py, e13) + sent(Py — Py, e 3) + sent(Py — Pa, ey 3) + consumed (P2, Th) =
consumed Py, T3) + sent(Py — Py, e 3) + sent(Py — Ps,e13) + sent(Po — Py, e13)

sent(Py — Py, e4) + sent(Ps — Py, e94) + sent(Py — Pa, ez4) + consumed (P2, T>) =
consumed (P, Ty) + sent(Py — Py, ep4) + sent(Py — Ps,e24) + sent(Po — Py, ez4)

sent(Py — Pa,e34) + sent(P3y — P, e34) + sent(Py — Py, e34) + consumed (Pa,Ts) =
consumed Py, Ty) + sent(Py — Py, e34) + sent(Py — Ps,e34) + sent(Po — Py, e3.4)

sent(Py — Pa,eq end) + sent(P3 — Py, €y cng) + sent(Py — Po, €4 ena) + consumed (P2, Ty) =
consumed (Pa, Teng) + sent(Py — Pi,eq eng) + sent(Po — Ps, €4 cna) + sent(Po — Py, ey ena)

3 Computing the optimal steady-state

We summarize the linear programming problem to be solved in order to compute the optimal
steady-state. Next we return to the example and fully work out a numerical instance of the appli-
cation/architecture platform.

3.1 Linear program

The equations listed in the previous section constitute a linear programming problem, whose objec-
tive function is the total throughput, i.e. the number of tasks T, consumed within one time-unit:

Z consumed (P;, Tepq) (11)

3

Here is a summary of the linear program:

STEADY-STATE SCHEDULING PROBLEM SSSP(G)
Maximize

TP =" %" consumed(P;,Tenq),
subject to
(

Vi, j,Vk, 0<a(B,T) <1

Vi, 7, Vekyl €k, 0< S(PZ — Pj,ek,l) <1

Vi, 7, Vek,l €k, S(Pl — Pjaek,l) = sent(Pi — Pjaek,l) X (datak,l X Ci,j)

Vi, Vk, a(P;, Ty) = consumed (P;, Tj) X w;

Vi, > pyen(p) 2aen cp S = Pjegy) <1

Vi, ZPjEn(Pi) Zek,lEE S(}DJ — B, ek,l) <1
< Vi ey P Ty) <1

Vi, consumed (P;, Thegin) = 0

Vi,j, Vekyend sent(Pi — Pj, ekyend) =0

VP;, Ve, € E Yopen(py) Sent(Pj — Py, ex) + consumed (P, Tj,) =

>_pen(p,) Sent(Pi = Py, ep) + consumed (P, T})

Ve, € E with k # begin, ZP]- n(Poaster) sent(Pj — Pmasters €k,1) + consumed (Prmaster, Tk) =

{ ZPJ_ n(Praster) sent(Pmaster = Pj, ex,) + consumed (Pmaster, T7)

We can state the main result of this paper:

Theorem 1. The solution to the previous linear programming problem provides the optimal solution

to SSSP(G)

Because we have a linear programming problem in rational numbers, we obtain rational values
for all variables in polynomial time (polynomial in the sum of the sizes of the task graph and of the
platform graph). When we have the optimal solution, we take the least common multiple of the
denominators, and thus we derive an integer period for the steady-state operation.

3.2 Back to the example

We return to our little example, adding numerical values for the w;y, the ¢; ; and the datay: see
Figure 4. The values of the dataj; are indicated along the edges of the task graph. The values
of the ¢;; are indicated along the edges of the platform graph. For the sake of simplicity, we let
wir = w; x 0 for all tasks T}, where the corresponding values for w; are indicated close to the
nodes of the platform graph and the corresponding values for §; are indicated close to the nodes of
the dependency graph. The master processor P is circled in bold.

We feed the values ¢; j, w; 1 and datay,; into the linear program, and compute the solution using
a tool like the Maple simplex package [8]. We obtain the optimal throughput TP = 7/64. This
means that the whole platform is equivalent to a single processor capable of processing 7 tasks every
64 seconds. The actual period is equal to 91840. The resulting values for a(P;, T}) are gathered in
Table 1, and those for consumed (P;,T}) are gathered in Table 2.

The resulting values for sent(P; — Pj,ep;) can be summarized in the following way:

e P, — P, : a fraction 299/1435 of the time is spent communicating (files for edge) e; 2 and a
fraction 531/1435 of the time is spent communicating (files for edge) e 3;

e P, — P3: 11/82 of the time is spent communicating e; 3 and 165/574 of the time is spent
communicating es4;

Figure 4: The application/architecture example with numerical values.
Ty Ty T3 Ty
Py | 7/64 | 13719/91840 | 7213/18368 | 4573/13120
P, 0] 1851/11480 531/1148 617/1640
Ps 0 33/82 0 49/82
Py 0 6/41 0 35/41

Table 1: Optimal solutions for «(P;, Tj)

Tbegm T Ty T3 Ty Tend
Py 0|7/64 ~0.11 | 4573/91840 ~ 0.05 | 7213/91840 =~ 0.08 | 4573/91840 ~ 0.05 | 4573/91840 = 0.05
P 0 0] 617/34440 = 0.02 177/5740 = 0.03 | 617/34440 ~ 0.02 | 617/34440 =~ 0.02
Py 0 0 11/328 = 0.03 0 7/328 =~ 0.02 7/328 =~ 0.02
Py 0 0 1/123 = 0.01 0 5/246 ~ 0.02 5/246 =~ 0.02
Total 0.11
Table 2: Optimal solutions for consumed(P;, T},)
e P — P, : 4/41 of the time is spent communicating e; o and 445/1148 of the time is spent
communicating es 4;
e P3 — P, : 12/41 of the time is spent communicating es 4 and 255/1148 of the time is spent

communicating es4;
e the link P, <+ P3 is not used.

The relatively weak throughput of our platform is to be compared to the efficiency of the master
processor Pp, which is the fastest one. If P; had been used alone, it would have been possible
to process 4 tasks every 64 units of time. Instead, we achieve 7 tasks every 64 units of time,

despite all the dependences, despite the communication overheads, and despite the fact that the
other processors are at least three times slower than P;. This clearly demonstrates the usefulness
of deploying the target problem suite on the heterogeneous platform.

Also, it is worth pointing out that the solution is not trivial, in that processors do not execute
tasks of all types. In the example, the processors are equally efficient on all task types: w; = w; Xy,
hence only relative speeds count. We could have expected each problem to be processed by a single
processor, that would execute all the tasks of the problem, in order to avoid extra communications;
in this scenario, the only communications would correspond to the input cost cpegin,1 = 2. However,
the intuition is misleading. In the optimal steady state solution, some processors do not process
some task types at all (see P3 and Py), and some task types are executed by one processor only (see
Ty). This example demonstrates that in the optimal solution, the processing of each problem may
well be distributed over the whole platform. This illustrates the full potential of the mixed data
and task parallelism approach.

4 Related problems

We classify several related papers along the following three main lines:

Scheduling task graphs on heterogeneous platforms Several heuristics have been introduced
to schedule (acyclic) task graphs on different-speed processors, see Maheswaran and Siegel [17],
Oh and Ha [18], Topcuoglu, Hariri and Wu [29], and Sih and Lee [24] among others. Unfortu-
nately, all these heuristics assume no restriction on the communication resources, which ren-
ders them somewhat unrealistic to model real-life applications. Recent papers by Hollermann,
Hsu, Lopez and Vertanen [13], Hsu, Lee, Lopez and Royce [14], and Sinnen and Sousa [26, 25|,
suggest to take communication contention into account. Among these extensions, scheduling
heuristics under the one-port model (see Johnsson and Ho [15] and Krumme, Cybenko and
Venkataraman [16]) are considered in [2]: just as in this paper, each processor can communi-
cate with at most another processor at a given time-step.

Master-slave on the computational grid Master-slave scheduling on the grid can be based on
a network-flow approach (see Shao, Berman and Wolski [23] and Shao [22]), or on an adaptive
strategy (see Heymann, Senar, Luque and Livny [12]). Note that the network-flow approach
of [23, 22| is possible only when using a full multiple-port model, where the number of simul-
taneous communications for a given node is not bounded. Enabling frameworks to facilitate
the implementation of master-slave tasking are described in Goux, Kulkarni, Linderoth and
Yoder [11], and in Weissman [30].

Mixed task and data parallelism There are a very large number of papers dealing with mixed
task and data parallelism. We quote the work of Subhlok, Stichnoth, O’Hallaron and Gross [27],
Chakrabarti, Demmel and Yelick [7], Ramaswamy, Sapatnekar and Banerjee [20], Bal and M.
Haines [1], and Subhlok and Vondran [28], but this list is by no means meant to be com-
prehensive. We point out, however, that (to the best of our knowledge) none of the papers
published in this area is dealing with heterogeneous platforms.

5 Conclusion

In this paper, we have dealt with the implementation of mixed task and data parallelism onto
heterogeneous platforms. We have shown how to determine the best steady-state scheduling strategy
for a general task graph and for a general platform graph, using a linear programming approach.

T T T F e e O B S T T T T T T T S

This work can be extended in the following two directions:

e On the theoretical side, we could try to solve the problem of maximizing the number of tasks
that can be executed within K time-steps, where K is a given time-bound. This scheduling
problem is more complicated than the search for the best steady-state. Taking the initialization
phase into account renders the problem quite challenging.

e On the practical side, we need to run actual experiments rather than simulations. Indeed,
it would be interesting to capture actual architecture and application parameters, and to
compare heuristics on a real-life problem suite.

References

[1] H. Bal and M. Haines. Approaches for integrating task and data parallelism. IEEE Concur-
rency, 6(3):74-84, 1998.

[2] O. Beaumont, V. Boudet, and Y. Robert. A realistic model and an efficient heuristic for
scheduling with heterogeneous processors. In HCW’2002, the 11th Heterogeneous Computing
Workshop. IEEE Computer Society Press, 2002.

[3] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-centric allocation
of independent tasks on heterogeneous platforms. In International Parallel and Distributed
Processing Symposium IPDPS’2002. IEEE Computer Society Press, 2002. Extended version
available as LIP Research Report 2001-25.

[4] O. Beaumont, A. Legrand, and Y. Robert. The master-slave paradigm with heterogeneous
processors. In D.S. Katz, T. Sterling, M. Baker, L. Bergman, M. Paprzycki, and R. Buyya,
editors, Cluster’2001, pages 419-426. IEEE. Computer Society Press, 2001. Extended version
available as LIP Research Report 2001-13.

[5] T.D. Braun, H.J. Siegel, and N. Beck. Optimal use of mixed task and data parallelism for
pipelined computations. J. Parallel and Distributed Computing, 61:810-837, 2001.

[6] C.Banino, O. Beaumont, A. Legrand, and Y. Robert. Scheduling strategies for master-slave
tasking on heterogeneous processor grids. In PARA’02: International Conference on Applied
Parallel Computing, LNCS. Springer Verlag, 2002.

[7] S. Chakrabarti, J. Demmel, and K. Yelick. Models and scheduling algorithms for mixed data
and task parallel programs. J. Parallel and Distributed Computing, 47:168-184, 1997.

[8] B.W. Char, K.O. Geddes, G.H. Gonnet, M.B. Monagan, and S.M. Watt. Maple Reference
Manual, 1988.

[9] James Cowie, Bruce Dodson, R.-Marije Elkenbracht-Huizing, Arjen K. Lenstra, Peter L. Mont-
gomery, and Joerg Zayer. A world wide number field sieve factoring record: on to 512 bits.
In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology - Asiacrypt 96,
volume 1163 of LNCS, pages 382-394. Springer Verlag, 1996.

[10] Entropia. URL: http://www.entropia.com.

[11] J.P Goux, S. Kulkarni, J. Linderoth, and M. Yoder. An enabling framework for master-worker
applications on the computational grid. In Ninth IEEE International Symposium on High
Performance Distributed Computing (HPDC’00). IEEE Computer Society Press, 2000.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

E. Heymann, M.A. Senar, E. Luque, and M. Livny. Adaptive scheduling for master-worker
applications on the computational grid. In R. Buyya and M. Baker, editors, Grid Computing
- GRID 2000, pages 214-227. Springer-Verlag LNCS 1971, 2000.

L. Hollermann, T.S. Hsu, D.R. Lopez, and K. Vertanen. Scheduling problems in a practial
allocation model. J. Combinatorial Optimization, 1(2):129-149, 1997.

T.S. Hsu, J. C. Lee, D.R. Lopez, and W.A. Royce. Task allocation on a network of processors.
IEEE Trans. Computers, 49(12):1339-1353, 2000.

S.L. Johnsson and C.-T. Ho. Spanning graphs for optimum broadcasting and personalized
communication in hypercubes. IEEE Trans. Computers, 38(9):1249-1268, 1989.

D.W. Krumme, G. Cybenko, and K.N. Venkataraman. Gossiping in minimal time. STAM J.
Computing, 21:111-139, 1992.

M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling algorithm for hetero-
geneous computing systems. In Seventh Heterogeneous Computing Workshop. IEEE Computer
Society Press, 1998.

Hyunok Oh and Soonhoi Ha. A static scheduling heuristic for heterogeneous processors. In
Proceedings of Europar’96, volume 1123 of LNCS, Lyon, France, August 1996. Springer Verlag.

Prime. URL: http://www.mersenne.org.

S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A framework for exploiting task and data par-
allelism on distributed memory multicomputers. IEEE Trans. Parallel and Distributed Systems,
8(11):1098-1116, 1997.

SETI. URL: http://setiathome.ssl.berkeley.edu.

G. Shao. Adaptive scheduling of master/worker applications on distributed computational re-
sources. PhD thesis, Dept. of Computer Science, University Of California at San Diego, 2001.

G. Shao, F. Berman, and R. Wolski. Master/slave computing on the grid. In Heterogeneous
Computing Workshop HCW’00. IEEE Computer Society Press, 2000.

G.C. Sih and E.A. Lee. A compile-time scheduling heuristic for interconnection-constrained
heterogeneous processor architectures. IEEE Transactions on Parallel and Distributed Systems,
4(2):175-187, 1993.

O. Sinnen and L. Sousa. Comparison of contention-aware list scheduling heuristics for cluster
computing. In T.M. Pinkston, editor, Workshop for Scheduling and Resource Management for
Cluster Computing (ICPP’01), pages 382-387. IEEE Computer Society Press, 2001.

O. Sinnen and L. Sousa. Exploiting unused time-slots in list scheduling considering communi-
cation contention. In R. Sakellariou, J. Keane, J. Gurd, and L. Freeman, editors, EuroPar’2001
Parallel Processing, pages 166-170. Springer-Verlag LNCS 2150, 2001.

J. Subhlok, J. Stichnoth, D. O’Hallaron, and T. Gross. Exploiting task and data parallelism on
a multicomputer. In Fourth ACM SIGPLAN Symposium on Priciples & Practices of Parallel
Programming. ACM Press, may 1993.

T T T F e e O B S T T T T T T T T

[28] J. Subhlok and G. Vondran. Optimal use of mixed task and data parallelism for pipelined
computations. J. Parallel and Distributed Computing, 60:297-319, 2000.

[29] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for heterogeneous proces-
sors. In Fighth Heterogeneous Computing Workshop. IEEE Computer Society Press, 1999.

[30] J.B. Weissman. Scheduling multi-component applications in heterogeneous wide-area networks.
In Heterogeneous Computing Workshop HCW’00. IEEE Computer Society Press, 2000.

