Information gain-based selection of sequential patterns extracted from partial unimodal probabilistic bases of sequences - LARA - Libre accès aux rapports scientifiques et techniques Accéder directement au contenu
Rapport (Rapport De Recherche) Année : 2024

Information gain-based selection of sequential patterns extracted from partial unimodal probabilistic bases of sequences

Résumé

The uncertainty of symbolic data can be represented by probability mass functions. Numerous work adopt this approach to characterize the uncertainty of the events forming a probabilistic base of sequences and extract sequential patterns under the possible worlds semantics. To our knowledge, there is no method for selecting sequential patterns from probabilistic bases of sequences whose probability mass functions are unimodal and for which only the probabilities of the modes are available. Since this situation arises for several kinds of data, a method for selecting sequential patterns extracted from partial unimodal probabilistic bases of sequences is thus proposed in this paper. Using an information gain approach, it outputs informative patterns whose occurrences tend to describe the dataset in a complementary way. Experiments on synthetic and real datasets show that the method is scalable and that selected patterns, beside being informative and complementary, help end-users to complete their knowledge.
Fichier principal
Vignette du fichier
Information_gain_based_selection_of_sequential_patterns_extracted_from_partial_unimodal_probabilistic_bases_of_sequences.pdf (4.14 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04472843 , version 1 (22-02-2024)

Licence

Paternité - Pas de modifications

Identifiants

  • HAL Id : hal-04472843 , version 1

Citer

Nicolas Méger, Tuan Nguyen, Christophe Rigotti, Catherine Pothier, Emmanuel Trouvé. Information gain-based selection of sequential patterns extracted from partial unimodal probabilistic bases of sequences. 2024-1, Laboratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance (LISTIC) - Polytech Annecy-Chambéry. 2024, pp.85. ⟨hal-04472843⟩
42 Consultations
13 Téléchargements

Partager

Gmail Facebook X LinkedIn More