Structures de déplacement pour les matrices p-Vandermonde confluentes et éliminations de Gauss avec pivotement partiel

Abstract : In this paper, we show that the useful displacement structures constructed for polynomial Vandermonde matrices (see KO1 in particular) can be naturally extended to confluent polynomial Vandermonde matrices. This result was made possible by virtue of the fact (recently established by the author in M) that confluent Vandermonde matrices belong favorably to the class of structured matrices. In the context of the displacement structure theory, it is well known that once an acceptable displacement structure is established for a matrix, one may naturally expect interesting applications regarding its numerical implementation.
Document type :
Reports
Complete list of metadatas

https://hal-lara.archives-ouvertes.fr/hal-02102058
Contributor : Colette Orange <>
Submitted on : Wednesday, April 17, 2019 - 9:13:08 AM
Last modification on : Sunday, April 28, 2019 - 1:22:59 AM

File

RR1998-23.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02102058, version 1

Collections

Citation

Lamine Melkemi. Structures de déplacement pour les matrices p-Vandermonde confluentes et éliminations de Gauss avec pivotement partiel. [Research Report] LIP RR-1998-23, Laboratoire de l'informatique du parallélisme. 1998, 2+7p. ⟨hal-02102058⟩

Share

Metrics

Record views

4

Files downloads

9