The antipode of of a Com-PreLie Hopf algebra - Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville
Pré-Publication, Document De Travail Année : 2024

The antipode of of a Com-PreLie Hopf algebra

Résumé

We study the compatibility between the antipode and the preLie product of a Com-PreLie Hopf algebra, that is to say a commutative Hopf algebra with a complementary preLie product, compatible with the product and the coproduct in a certain sense. An example of such a Hopf algebra is the Connes-Kreimer Hopf algebra, with the preLie product given by grafting of forests, extending the free preLie product of grafting of rooted trees. This compatibility is then used to study the antipode of the Connes-Moscovici subalgebra, which can be defined with the help of this preLie product. The antipode of the generators of this subalgebra gives a family of combinatorial coefficients indexed by partitions, which can be computed with the help of iterated harmonic sums.
Fichier principal
Vignette du fichier
antipode.pdf (297.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04595707 , version 1 (31-05-2024)

Identifiants

Citer

Loïc Foissy. The antipode of of a Com-PreLie Hopf algebra. 2024. ⟨hal-04595707⟩
68 Consultations
25 Téléchargements

Altmetric

Partager

More