Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Background Error Covariance Iterative Updating with Invariant Observation Measures for Data Assimilation

Abstract : In order to leverage the information embedded in the background state and observations, covariance matrices modelling is a pivotal point in data assimilation algorithms. These matrices are often estimated from an ensemble of observations or forecast differences. Nevertheless, for many industrial applications the modelling still remains empirical based on some form of expertise and physical constraints enforcement in the absence of historical observations or predictions. We have developed two novel robust adaptive assimilation methods named CUTE (Covariance Updating iTerativE) and PUB (Partially Updating BLUE). These two non-parametric methods are based on different optimization objectives, both capable of sequentially adapting background error covariance matrices in order to improve assimilation results under the assumption of a good knowledge of the observation error covariances. We have compared these two methods with the standard approach using a misspecified background matrix in a shallow water twin experiments framework with a linear observation operator. Numerical experiments have shown that the proposed methods bear a real advantage both in terms of posterior error correlation identification and assimilation accuracy.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02307657
Contributeur : Sibo Cheng <>
Soumis le : vendredi 11 octobre 2019 - 11:56:58
Dernière modification le : mercredi 24 juin 2020 - 14:30:09

Fichiers

HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02307657, version 1
  • ARXIV : 1910.09408

Citation

Sibo Cheng, Jean-Philippe Argaud, Bertrand Iooss, Didier Lucor, Angélique Ponçot. Background Error Covariance Iterative Updating with Invariant Observation Measures for Data Assimilation. 2019. ⟨hal-02307657⟩

Partager

Métriques

Consultations de la notice

394

Téléchargements de fichiers

443