Projective relative unification through duality - Intelligence Artificielle Access content directly
Journal Articles Journal of Logic and Computation Year : 2023

Projective relative unification through duality


Unification problems can be formulated and investigated in an algebraic setting, by identifying substitutions to modal algebra homomorphisms. This opens the door to applications of the notorious duality between Heyting or modal algebras and descriptive frames. Through substantial use of this correspondence, we give a necessary and sufficient condition for formulas to be projective. A close inspection of this characterization will motivate a generalization of standard unification, which we dub relative unification. Applying this result to a number of different logics, we then obtain new proofs of their projective-or non-projective-character. Aside from reproving known results, we show that the projective extensions of K5 are exactly the extensions of K45. This resolves the open question of whether K5 is projective.
Fichier principal
Vignette du fichier
main.pdf (670.62 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04307724 , version 1 (26-11-2023)



Quentin Gougeon, Philippe Balbiani. Projective relative unification through duality. Journal of Logic and Computation, 2023, pp.1--21. ⟨10.1093/logcom/exad058⟩. ⟨hal-04307724⟩
101 View
8 Download



Gmail Mastodon Facebook X LinkedIn More