Towards Gain Tuning for Numerical KKL Observers - Automatique et systèmes (CAS) Access content directly
Conference Papers Year : 2023

Towards Gain Tuning for Numerical KKL Observers

Abstract

This paper presents a first step towards tuning observers for general nonlinear systems. Relying on recent results around Kazantzis-Kravaris/Luenberger (KKL) observers, we propose an empirical criterion to guide the calibration of the observer, by trading off transient performance and sensitivity to measurement noise. We parametrize the gain matrix and evaluate this criterion over a family of observers for different parameter values. We then use neural networks to learn the mapping between the observer and the nonlinear system, and present a novel method to sample the state-space efficiently for nonlinear regression. We illustrate the merits of this approach in numerical simulations.
Fichier principal
Vignette du fichier
1-s2.0-S2405896323021390-main.pdf (729.53 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-04410807 , version 1 (22-01-2024)

Identifiers

Cite

Mona Buisson-Fenet, Lukas Bahr, Valery Morgenthaler, Florent Di Meglio. Towards Gain Tuning for Numerical KKL Observers. 22nd IFAC World Congress, Jul 2023, Yokohama, Japan. pp.4061 - 4067, ⟨10.1016/j.ifacol.2023.10.1730⟩. ⟨hal-04410807⟩
8 View
7 Download

Altmetric

Share

Gmail Facebook X LinkedIn More