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Abstract

The uncertainty of symbolic data can be represented by probability mass func-
tions. Numerous work adopt this approach to characterize the uncertainty of the
events forming a probabilistic base of sequences and extract sequential patterns
under the possible worlds semantics. To our knowledge, there is no method for se-
lecting sequential patterns from probabilistic bases of sequences whose probability
mass functions are unimodal and for which only the probabilities of the modes
are available. Since this situation arises for several kinds of data, a method for
selecting sequential patterns extracted from partial unimodal probabilistic bases
of sequences is thus proposed in this paper. Using an information gain approach,
it outputs informative patterns whose occurrences tend to describe the dataset
in a complementary way. Experiments on synthetic and real datasets show that

2



the method is scalable and that selected patterns, beside being informative and
complementary, help end-users to complete their knowledge.

Keywords: Uncertain data, Sequential pattern mining, Probabilistic databases,
Information gain

1 Introduction

Uncertain data are becoming increasingly available with the rise of new sensor

technologies (wireless sensors, MEMS1 sensors) and the development of forecast-

ing, imputation or privacy-preserving techniques (Aggarwal, 2009; Aggarwal and Yu,

2009). Such data need to be dealt with to deliver applications ranging from environ-

mental surveillance to mobile tracking (Zhao et al, 2014; Qian et al, 2020). In this

context, probabilistic databases (Suciu and Dalvi, 2005; Green and Tannen, 2006) can

be used to represent uncertain data. As recalled informally in Aggarwal and Yu (2009),

a probabilistic database is “a finite probability space whose outcomes are all possible

database instances consistent with a given schema”. This model has been adopted in

various data mining workflows, such as frequent itemset mining and frequent sequen-

tial pattern mining, by adapting existing deterministic concepts and methods to that

probabilistic case.

1.1 Frequent itemset mining in uncertain data

Frequent itemset mining, a pattern mining task originally proposed to analyze de-

terministic item transactions (Agrawal et al, 1993), can benefit from the concept of

probabilistic databases as illustrated by the numerous works referenced in Leung

(2011). Basically, these works take into account the uncertainty about the presence of

each one of the items contained within each transaction, each transaction containing

one or more items. More precisely, each item uncertainty is simply expressed by an

1Microelectromechanical systems.
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existential probability (Leung, 2011) quantifying to which extent the item is likely to

be present in the transaction. All item probabilities are further exploited under the

possible worlds semantics as defined in Abiteboul et al (1987) to mine frequent item-

sets over all possible worlds (Chui et al, 2007), i.e., all possible database instances

that might be generated by considering either the presence or the absence of each

item of each transaction. An itemset is said to be frequent if its expected support,

i.e., the expected number of transactions in which it occurs, is greater or equal to

a user-defined threshold. A drawback of this approach is that it does not bring any

information about the confidence with which an itemset is frequent within each one

of the possible worlds. It is thus proposed in Bernecker et al (2009) to assess the

confidence of an itemset to be frequent, which can be approximated as “the percent-

age of possible worlds in which [an itemset] is frequent” (Leung, 2011). It relies on

the probability mass function of the support of each itemset to extract the so-called

probabilistic frequent patterns, i.e. itemsets whose probabilities to be frequent are

greater or equal to a user-defined thresold.

Both frequent itemsets and probabilistic frequent itemsets can be extracted efficiently

by assuming that items are all independent from each other, and by mobilizing the

antimonotonicity properties of the expected support and frequentness probability

constraints (Chui et al, 2007; Bernecker et al, 2009; Leung, 2011). Big data extensions

based on the MapReduce programming model have also been proposed (Leung et al,

2014). Complementary strategies can be adopted to lower resource consumption such

as using light-weight data structures, e.g., trees in Leung et al (2008), designing

efficient algorithms, e.g., dynamic programming in Bernecker et al (2009) or Sun

et al (2010), sampling the dataset (Calders et al, 2010), or considering additional

user-specified constraints (Leung, 2011). In order to focus on the most interesting

frequent itemsets, top-k approaches have been designed (Zhang et al, 2008; Bernecker
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et al, 2009; Cormode et al, 2009), and it has been proposed by Bonchi et al (2011)

to select the ones that well compress the probabilistic database under a compression

scheme based on the Minimum Description Length (MDL) principle. The techniques

for mining frequent itemsets in probabilistic databases have been extended to mine

streams of uncertain data by taking into account the unbounded, continuous and

variable nature of these streams (Leung and Hao, 2009; Leung and Jiang, 2011).

1.2 Frequent sequential pattern mining in uncertain data

Nevertheless, itemsets do not express any temporal order. As explained by Agrawal

and Srikant (1995), if deterministic item transactions are time-stamped, i.e., each

itemset present in a transaction describes an event, then the database can be mod-

eled as a base of sequences from which frequent sequential patterns can be extracted.

Muzammal and Raman (2010) extended such a deterministic approach to the proba-

bilistic case to deal with uncertainties. In more detail, they first define a deterministic

base of sequences as a set of event sequences, each event being time-stamped and

described by an itemset, and each sequence being associated with a unique source,

i.e., a unique sequence identifier. Then, two exclusive uncertainty contexts have been

studied. They relate to either the source uncertainties or the event uncertainties.

The latter are modeled by associating each event with its existential probability and

its unique source, whilst, for source uncertainties, a probability mass function over

all the possible sources is given for each event. As for itemsets (Chui et al, 2007;

Bernecker et al, 2009), Muzammal and Raman (2010) defined the frequent sequential

patterns under the possible world semantics by relying on expected supports, and the

probabilistic frequent sequential patterns by considering frequentness probabilities.

The computation of the expected support measure was shown to be tractable what-

ever the type of uncertainties that is considered. Regarding frequentness probability,

the authors demonstrated that it can be computed for the event uncertainties case
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whilst it is reported to be intractable when considering source uncertainties. Indeed,

since a same event has to be reported for multiple sources, it has to be represented by

multiple events that are fully dependant from each other, which leads to a complexity

burden (Muzammal and Raman, 2010). Consequently, probabilistic frequent sequen-

tial patterns have been abandoned by Muzammal et Raman, and various efficient

algorithms have been proposed in Muzammal and Raman (2011) and Muzammal and

Raman (2015) to mine frequent itemsets in a source uncertainties context. They rely

on the pattern candidate generation (breadth or depth-first explorations in Agrawal

and Srikant (1995) and Zaki (2001) respectively) and the prefix growth (Pei et al,

2004) frameworks exploiting the antimonotonicity property of the expected support

constraint. As for deterministic sequential pattern mining, the prefix growth frame-

work is shown to be more scalable, which is not the case when mining frequent

itemsets from uncertain data (Tong et al, 2012).

A refinement of the event uncertainty context is proposed in Hooshsadat et al (2012)

by processing existential probabilities characterizing each of one the items forming an

event to extract frequent sequential pattern. An alternative to the event uncertainty

context is proposed in Zhao et al (2014). Each event is described with a single item

chosen in the set of all possible items where each item is associated with the proba-

bility of characterizing the event. The case where no item is chosen is also considered.

In other words, the information content of an event can be represented by a discrete

random variable whose probability mass function is defined over the set of all possi-

ble items and a special item indicating that nothing is observed. When resorting to

such probability mass functions, each possible world is envisaged by considering all

possible combinations of possible events. Such an element-level uncertain data model

can therefore be exploited under a probabilistic frequentness scheme (Zhao et al,
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2014) to extract probabilistic frequent sequential patterns using a prefix growth-

based algorithm. They also propose to extract such patterns under the sequence-level

uncertain data model where each sequence is described by a random variable whose

probability mass function is defined over the set of all possible sequences including

the empty one. The problem of mining frequent sequential patterns from a single

uncertain event sequence data using single item-based events coming along with their

respective existential probabilities has also been addressed in Wan et al (2013) under

the probabilistic frequentness scheme. Finally, the temporal uncertainties of the event

timestamps can also be taken into account under the possible world semantics as

done in Ge et al (2015) and Ge et al (2017) where each timestamp is uncertain and

is represented by a random variable defined using either a uniform distribution or

a probability mass function approximating the distribution of any arbitrary shaped

uncertainty. Using a prefix growth-based algorithm, such an uncertain probabilistic

base of sequences is mined to extract probabilistic frequent sequential patterns. It is

worth noting that the majority of the works about probabilistic base of sequences

reported in this section achieves good extraction performances because they assume

that events are independent from each other.

1.3 Contribution

Whatever the uncertainty data model that is employed to mine itemsets or sequential

patterns, it appears that the information characterizing uncertainty is complete and

thus sufficient to consider each one of the possible world. Indeed, each element (item,

event, source, sequence, timestamp, etc.) for which uncertainty is provided can be

associated with a probability mass function that is fully known. For instance, such

as source uncertainties in Muzammal and Raman (2015) or timestamp uncertainties

in Ge et al (2017) are explicitly modeled using probability mass functions. Though

not explicitly defined as such, the element-level and the sequence-level uncertain data
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model proposed in Zhao et al (2014) can also be expressed using probability mass

functions.

1.3.1 Partial unimodal probabilistic base of sequences

Nevertheless, in some cases, some probabilities are missing and the probability com-

plement rule can not be exploited to derive them. The case of partial unimodal

probabilistic base of sequences is exposed and addressed in this paper. In such a base,

each event is meant to exist, its time span is certain, but it is described by a single

item that is uncertain. This uncertainty is expressed through a unimodal probability

mass function taking into account all possible items that may describe an event and

for which the only available probability is the one of its mode. In other words, each

event is described by a random variable characterized by the item that is the more

likely to be reported (the mode) and its probability. As so long as the variable domain

contains more than two different items, missing probabilities can not be estimated

without assuming some type of distribution. In this work, distributional assumptions

are avoided for the sake of generality and to favour knowledge discovery. The base of

sequences that is dealt with is therefore not a probabilistic one, but a partial unimodal

probabilistic one.

Such a base can be encountered in various applications such as RFID or GPS tracking

where uncertain localizations (Chen et al, 2010; Pelekis et al, 2010; Teng et al, 2014;

Qian et al, 2020) can be reported using the most probable ones and their probabili-

ties. In that case, each time an event occurs, it is represented by a random variable

ranging over all possible locations, e.g., a set of points of interest. Its probability mass

function is only known for its mode, i.e., the most probable location of the event,

where the associated probability comes from the measurement process. One could also

think about a customer survey where each respondent is asked for the product or the

service he/she is the most likely to buy for each one of the years to come while giv-

ing associated probabilities. In this application, for each customer and for each year,
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the choice is represented by a random variable ranging over the set of all available

products/services, and its probability mass function is unknown except for its mode,

i.e., the most probable product/service. In Section 7, experiments on a real dataset

are reported, where the sequences represent a displacement field time series. In this

application, each event denotes a displacement with a corresponding random vari-

able ranging over the displacement magnitude levels. The probability associated to

the mode being then derived from a confidence measure provided by the displacement

detection process.

1.3.2 Information gain-based selection of sequential patterns

With the aim of exploiting such a database, we propose to extract sequential pat-

terns such as frequent ones from the only deterministic base of sequences that can

be instantiated from it, i.e. the most likely possible world. Such patterns can be

numerous. In order to select a reduced set of sequential patterns, while keeping its

ability to summarize the database, different techniques have been proposed for the

deterministic case such as considering maximal sequential patterns (Raissi et al, 2006;

Garćıa-Hernández et al, 2006; Luo and Chung, 2004), closed sequential patterns (Yan

et al, 2003b; Wang et al, 2007; Yu et al, 2012) or optimal compression patterns (Tatti

and Vreeken, 2012; Lam et al, 2014a; Ibrahim et al, 2016). Such a reduced set of

sequential patterns can also be obtained by assessing them with swap randomization

techniques (Méger et al, 2015, 2019). Of these approaches, the optimal compression

one, which selects a reduced set of patterns that best compresses the dataset, is a

promising direction. Indeed, selected patterns tend to be frequent and also comple-

ment each other very well in terms of data locations. The final set of selected patterns

is thus less redundant and also allows for easier interpretation. As previously men-

tioned (see Section 1.1), such an approach has been proposed in Bonchi et al (2011)

to select itemsets that well compress a probabilistic database. To our knowledge,

these compression-based approaches, though inspiring, can not be directly used to
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select sequential patterns by taking into account mode probabilities only.

A method for selecting sequential patterns extracted from partial unimodal

probabilistic bases of sequences is therefore proposed and detailed in this paper.

Preliminary evidences of the interest of such mining were reported early in a confer-

ence paper (Nguyen et al, 2018b). Using an information gain approach, the method

outputs informative patterns whose occurrences tend to describe the dataset in a

complementary way. More precisely, events are described by independent discrete

random variables whose probability mass functions, also termed distributions, are

initially supposed to be uniform. Once revealed to end-users, the pattern occurrences

and their corresponding mode probabilities allow to constrain and refine initial event

distributions. Finally, patterns are selected in greedy way by selecting, for each it-

eration, the pattern leading to the highest information gain knowing the patterns

selected during the previous iterations.

After having defined the partial unimodal probabilistic bases of sequences and

adapted the concept of frequent sequential patterns to this context in Section 2, the

principle of the proposed method is detailed in Section 3. The pattern occurrence con-

straints and their combinations are formalized in Section 4 and Section 5 presents the

pattern occurrence constraint-based minimization of the Kullback-Leibler divergence

that is employed to refine event distributions. Section 6 gives a toy example illustrating

the operation of the proposed method and Section 7 provides experiments on synthetic

and real datasets showing that the method is scalable and that selected pattern are

informative and complementary, thus allowing end-users to complete their knowledge.
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2 Partial unimodal probabilistic bases of sequences

and frequent sequential patterns

Inspired by the seminal works regarding the bases of sequences (Agrawal and Srikant,

1995) and the probabilistic bases of sequences (Muzammal and Raman, 2010), a par-

tial unimodal probabilistic event is defined as an event that exists, whose occurrence

date is certain and for which only the event type having the highest probability of

being observed is supplied along with this probability. In other words, the uncertainty

about the nature of the event is expressed through a unimodal probability mass func-

tion defined over all possible event types that may describe an event, and for which the

only available probability is the one of its unique mode. Such an event differs from the

ones defined in Agrawal and Srikant (1995) and Muzammal and Raman (2010) since

the latter are defined as sets of items. In addition, it also differs from the different

kind of probabilistic events that can be found in the sequential pattern mining litera-

ture (Muzammal and Raman, 2010, 2015; Hooshsadat et al, 2012; Zhao et al, 2014;

Wan et al, 2013), were corresponding probability mass functions are fully specified.

More formally, the event types, their probabilities and the partial unimodal

probabilistic events are defined as follows:

Definition 1 (event type and event) Let E = {e1, e2, . . . , en} be a set containing all

possible event types of the base. An occurrence of an event type at a date t is termed an

event. All events are mutually exclusive, i.e., two events cannot correspond to the same date.

Definition 2 (event probability) The event probability ρt,e, with t ∈ N, e ∈ E and

ρt,e ∈ [0, 1], is the probability of observing event type e at date t.

Notice that for any date t, by definition 1,
∑

e∈E ρ
t,e = 1.
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Definition 3 (partial unimodal probabilistic event) A partial unimodal probabilistic

event is a triple ⟨t, e, ρt,e⟩, with t ∈ N and e ∈ E such that ∀e′ ∈ E \ {e}, ρt,e > ρt,e
′
. For the

sake of clarity, when clear from the context, a partial event ⟨t, e, ρt,e⟩ will be written ⟨t, e, ρ⟩.

Such an event is partial since only the probability ρt,e of observing e at date t is

available in the base. The probabilities of the other event types, i.e. those belonging to

E \ {e}, are unknown when considering the same occurrence date t. These probability

are not given in the base, but it is assumed that they are strictly lesser than ρt,e:

such an event is said to be unimodal. Thus, since
∑

e∈E ρ
t,e = 1 and ∀e′ ∈ E \ {e},

ρt,e > ρt,e
′
we know that ρt,e ∈ ] 1

|E| , 1].

Once the partial unimodal probabilistic events defined, the concepts of partial uni-

modal probabilistic event sequence and partial unimodal probabilistic base of sequences

can be formalized as follows:

Definition 4 (partial unimodal probabilistic event sequence) For a source s, the

partial unimodal probabilistic sequence of s is a pair (sid, seq), where sid is the source (or

sequence) identifier and seq is a tuple of partial unimodal probabilistic events, of the form

seq = ⟨⟨t1, e1, ρ1⟩, ⟨t2, e2, ρ2⟩, ..., ⟨tn, en, ρn⟩⟩ containing the n partial unimodal probabilistic

events of s, where t1 < t2, . . . , < tn.

Definition 5 (partial unimodal probabilistic base of sequences) A Partial Unimodal

Probabilistic Base of Sequences (PUPBoS) is then a set of partial unimodal probabilistic

event sequences having different sid.

A toy PUPBoS is given as Example 1.

Example 1 Let E = {A,B,C} be a set of three symbols. A partial unimodal probabilistic

base of sequences B is given hereafter. It contains four partial unimodal probabilistic event
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sequences, each sequence containing four partial unimodal probabilistic events occurring at

dates t1, t2, t3 and t4.

B = {(1, ⟨⟨t1, B, 0.4⟩, ⟨t2, C, 0.9⟩, ⟨t3, A, 0.7⟩, ⟨t4, C, 0.5⟩⟩),

(2, ⟨⟨t1, B, 0.5⟩, ⟨t2, C, 0.5⟩, ⟨t3, C, 0.4⟩, ⟨t4, A, 0.5⟩⟩),

(3, ⟨⟨t1, B, 0.9⟩, ⟨t2, A, 0.9⟩, ⟨t3, A, 0.7⟩, ⟨t4, A, 0.8⟩⟩),

(4, ⟨⟨t1, C, 0.8⟩, ⟨t2, A, 0.7⟩, ⟨t3, B, 0.8⟩, ⟨t4, A, 0.7⟩⟩)}

This base could for instance give the most probable carbon dioxide levels, denoted by the

symbols available in E, supplied by four indoor air quality sensors (i.e., four sources) that

also provide level probabilities depending on the operating conditions (e.g., temperature,

humidity) and expressing to which extent supplied levels can be trusted2 Back to the examples

given in Section 1.3, for the GPS or RFID tracking application, Example 1 would give the

most probable locations of four mobile objects over time, expressed with symbols coming

from E and denoting points of interest. These symbols would be reported at dates t1, t2, t3

and t4 along with their probabilities that depend on the measurement conditions (number of

RFID/GPS signals, signal strength). Regarding, the customer application, the products that

are likely to be bought by four customers for years t1, t2, t3 and t4 would be denoted using

symbols in E, while probabilities would be directly estimated and supplied by customers

themselves.

In such a base, events are assumed to be independent from each other. This as-

sumption has been adopted by the very vast majority of the works about probabilistic

sequential pattern mining (see Section 1). As for bases of sequences or probabilistic

bases of sequences, we propose to mine partial unimodal probabilistic bases of se-

quences with the aim of extracting frequent sequential patterns as originally defined

in Agrawal and Srikant (1995). Formally, in our context where an event is described

by a single event type, a sequential pattern and its occurrence are defined as follows:

2Notice that the method presented in this paper can also handle more general cases, where sequences
have different lengths and events are not synchronous.
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Definition 6 (sequential pattern) A sequential pattern α is a tuple ⟨α1, α2, . . . , αm⟩

where α1, . . . , αm are event types in E and m is the length of α. Such a pattern is also denoted

as α1 → α2 → . . . → αm.

Definition 7 (occurrence) Let B be a PUPBoS and α = α1 → α2 → . . . → αm be

a sequential pattern. Then the pair (sid, ⟨⟨t1, α1, ρ1⟩, ⟨t2, α2, ρ2⟩, . . . , ⟨tm, αm, ρm⟩⟩), where

t1 < t2 < . . . < tm, is an occurrence of α in B if there exists (sid, seq) ∈ B such that

∀i ∈ {1, . . . ,m}, ⟨ti, αi, ρi⟩ ∈ seq.

In the proposed approach, patterns are selected according to the amount of infor-

mation that is conveyed by their occurrences. In order to derive as much information

as possible from the knowledge of pattern occurrences, we propose to rely on a more

informative type of occurrences, namely the earliest minimal occurrences. Inspired by

the minimal occurrences that were first proposed in Mannila et al (1997), minimal

occurrences are defined in the context of PUPBoS as follows:

Definition 8 (minimal occurrence) Let B be a PUPBoS and α = α1 → α2 →

. . . → αm be a sequential pattern. Then the occurrence (sid, ⟨⟨t1, α1, ρ1⟩, ⟨t2, α2, ρ2⟩, . . .

, ⟨tm, αm, ρm⟩⟩) of α in B is a minimal occurrence of α in B if there does not exist any

other occurrence (sid, ⟨⟨t′1, α1, ρ
′
1 ⟩, ⟨t′2, α2, ρ′2⟩, . . . , ⟨t′m, αm, ρ′m⟩⟩) of α in B such that

t′1 > t1 ∧ t′m < tm or t′1 > t1 ∧ t′m = tm or t′1 = t1 ∧ t′m < tm.

An occurrence of pattern α is therefore minimal if it does not spread fully over

another occurrence of α whose time span is shorter. In Example 1, the minimal

occurrences of sequential pattern A → A in sequence 3 are (3, ⟨⟨t2, A, 0.9⟩, ⟨t3, A,

0.7⟩⟩) and (3, ⟨⟨t3, A, 0.7⟩, ⟨t4, A, 0.8⟩⟩). Occurrence (3, ⟨⟨t2, A, 0.9⟩, ⟨t4, A, 0.8⟩⟩) is not

minimal since it contains them. The partial unimodal probabilistic events forming

a minimal occurrence do not need to be contiguous. For instance, in sequence 4,
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occurrence (4, ⟨⟨t2, A, 0.7⟩, ⟨t4, A, 0.7⟩⟩) is minimal.

An earliest minimal occurrence is then defined as follows:

Definition 9 (earliest minimal occurrence) Let B be a PUPBoS, α = α1 → α2 →

. . . → αm be a sequential pattern and (sid, seq) ∈ B. The triple (sid, ⟨⟨t1, α1, ρ1⟩, ⟨t2, α2, ρ2⟩,

. . . , ⟨tm, αm, ρm⟩ ⟩, ρmin) is an earliest minimal occurrence of α in B if (sid, ⟨⟨t1, α1, ρ1⟩,

⟨t2, α2, ρ2⟩, . . . , ⟨tm, αm, ρm⟩ ⟩) is a minimal occurrence of α in B and if there does not exist

any other minimal occurrence (sid, ⟨⟨t1, α1, ρ1⟩, ⟨t′2, α2, ρ
′
2⟩, . . . , ⟨tm, αm, ρm⟩ ⟩) of α in B for

which there exists i ∈ {2, . . . ,m−1} such that t′i < ti. The last element of the earliest minimal

occurrence, i.e., ρmin, reflects the lower bound of the quality of this part of the sequence. It

is defined as the minimum probability in seq between t1 and tm: ρmin = min{ρ | ⟨t, e, ρ⟩ ∈

seq ∧ t1 ≤ t ≤ tm}.

Consequently, if there exists several minimal occurrences of a pattern starting

and ending at the same times in the same sequence, then the one formed by the

earliest partial unimodal probabilistic events is selected. In addition, the minimum

probability, ρmin, of the partial unimodal probabilistic events occurring in the same

sequence and the same time interval is supplied. Back to Example 1, two mini-

mal occurrences of sequential pattern B → C → A can be found in sequence 2:

(2, ⟨⟨t1, B, 0.5⟩, ⟨t2, C, 0.5⟩, ⟨t4, A, 0.5⟩⟩) and (2, ⟨⟨t1, B, 0.5⟩, ⟨t3, C, 0.4⟩, ⟨t4, A, 0.5⟩⟩).

Only the former can be used to form the earliest minimal occurrence (2, ⟨⟨t1, B,

0.5⟩, ⟨t2, C, 0.5⟩, ⟨t4, A, 0.5⟩⟩, 0.4⟩) by adding the minimum probability observed be-

tween its starting date t1 and its ending date t4. It should be noticed that such an

occurrence can bring supplementary information. For instance, here, it implies that

sequence 2 cannot contain an event type A at date t3, otherwise the occurrence would

not be minimal.
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By counting the number of partial unimodal probabilistic event sequences in which

a pattern occurs at least once, it is possible to focus on frequent sequential patterns

by adapting this concept to PUPBoS:

Definition 10 (support) Let B be a PUPBoS and α = α1 → α2 → . . . → αm be a

sequential pattern. A partial unimodal probabilistic event sequence (sid, seq) of B supports α

if there exists an earliest minimal occurrence (sid, ⟨⟨t1, α1, ρ1⟩, ⟨t2, α2, ρ2⟩, . . . , ⟨tm, αm, ρm⟩

⟩, ρmin) of α in B. The set of the partial unimodal probabilistic event sequences supporting α

is noted S(α). The support of α in B, denoted by support(α), is simply the number of partial

unimodal probabilistic event sequences in B that support α, i.e. |S(α)|.

Definition 11 (frequent sequential pattern) Let σ ∈ [0, 1] be a relative support threshold.

A sequential pattern α is a frequent sequential pattern in the PUPBoS B if support(α)/|B| ≥ σ

Example 2 Let us consider B, the PUPBoS given by Example 2. If σ = 1
2 , then sequen-

tial patterns are required to occur in two partial unimodal probabilistic event sequences at

least. The frequent sequential patterns are given in Table 1 along with the sequence/source

identifiers of the sequences supporting them and their corresponding support measures.

Table 1: The frequent sequential patterns
in B
pattern sequence/source id support
A 1, 2, 3, 4 4
B 1, 2, 3, 4 4
C 1, 2, 4 3
A → A 3, 4 2
B → A 1, 2, 3, 4 4
B → C 1, 2 2
C → A 1, 2, 4 3
C → C 1, 2 2
B → C → A 1, 2 2
B → C → C 1, 2 2

Note that considering minimal occurrences (see Definition 8) or occurrences (see

Definition 7), instead of earliest minimal occurrences, leads to the same frequent
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sequential patterns (but not the same occurrences) since the support measure is

established by counting the number of partial unimodal probabilistic event sequences

in which they occur at least once. The standard deterministic approach (Agrawal

and Srikant, 1995) also considers that a sequential pattern is frequent as long as

it occurs in a sufficient number of event sequences, whatever the occurrence type

that is considered. Thus, the frequent patterns specified by Definition 11 can be

obtained using standard algorithms to search for frequent sequential patterns. So, in

this paper, we propose a two steps process: (1) Use any existing algorithm to find

the frequent sequential patterns; (2) Handle the probabilistic aspect in a following

step, by selecting informative and complementary patterns among the frequent ones.

It should be noted that the antimonotonicity property of the support constraint,

on which existing extraction methods rely, can be directly exploited within either

the pattern candidate generation, breadth or depth-first explorations (Agrawal and

Srikant, 1995; Zaki, 2001), or the prefix growth (Pei et al, 2004) framework.

In addition to the frequency constraint, other constraints such as those focusing

on maximal patterns (Luo and Chung, 2005; Raissi et al, 2006; Garćıa-Hernández

et al, 2006; Luo and Chung, 2004), or closed patterns (Yan et al, 2003a,b; Wang et al,

2007; Yu et al, 2012), can be used to focus on smaller output collections. Nevertheless,

even if such constraints are considered, end-users generally face large output collec-

tions of sequential patterns and automatic methods for guiding them towards the most

promising ones are needed. This is for example achieved by selecting the patterns

that best compress the dataset (Lam et al, 2014b), or by assessing the patterns with

swap randomization techniques (Méger et al, 2015, 2019). To our knowledge, no se-

lection method exploiting the probabilities available in partial unimodal probabilistic

bases of sequences is available. Such a method is therefore proposed and is the main

contribution of this paper. Its principle is presented in the following section.
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3 Information gain-based selection of sequential

patterns : principle of the method

In this section, we propose an original method for finding a set of informative and

complementary patterns that takes into account the mode probabilities available

in PUPBoS. Let us consider a partial base of sequences containing N partial uni-

modal probabilistic events that are assumed to be independent from each other (see

Section 2). Its information content can be expressed as the entropy of a set of N

independent random variables, noted V = {X1, X2, . . . , XN}, such that each random

variable is associated with a partial unimodal probabilistic event. Let us suppose that

our knowledge of the PUPBoS is partial. The key intuition of the method is that if

we are given the earliest minimal occurrences of a pattern α, then this knowledge

provides additional information about the probability mass functions3 of the vari-

ables in V and thus reduces the entropy of V. The larger this reduction is, the more

informative the pattern is. In the following, this information gain, provided by α,

with respect to the current partial information we have about the PUPBoS is noted

∆(α). Finding an optimal set of patterns with respect to an entropy criterion is in

general NP-hard (Lam et al, 2014b). Inspired by the SeqKrimp algorithm (Lam et al,

2014b) that was designed to find sets of sequential patterns that compress datasets,

we propose a greedy suboptimal algorithm for selecting the most informative and

complementary sequential patterns in an iterative way. It is given as Algorithm 1.

Algorithm 1 takes the following elements as inputs: k, the number of patterns to

be selected, V, the set of random variables representing the information content of the

PUPBoS and P , a set of sequential patterns extracted from the PUPBoS. Set P can

contain any kind of sequential patterns such as the frequent, the closed or the maxi-

mal ones. The algorithm starts, line 2, by initializing the distributions of all variables

3For the sake of simplicity, these functions are also referred to as distributions in the following.
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Algorithm 1 Selection of k informative and complementary sequential patterns

Input: k, the number of patterns to be selected, P , the set of sequential patterns
extracted from the PUPBoS, V, the set of random variables representing the
information content of the PUPBoS

Output: Φ a set of informative and complementary sequential patterns
1: Φ← ∅
2: ∀X ∈ V, set the distribution of X to the uniform distribution
3: while (|Φ| < k and |P | > 0) do
4: α∗ ← argmaxα∈P (∆(α)), i.e., the pattern maximizing the information gain

w.r.t. the current knowledge of the distributions of the variables in V
5: Φ← Φ ∪ {α∗}
6: P ← P \ {α∗}
7: For all X ∈ V, update the distribution of X according to the occurrences of α∗

8: end while
9: return Φ

in V to a uniform distribution defined over domain E. This setting is assumed to be-

gin with a state corresponding to a maximum of entropy, i.e., the user knows nothing

except domain E. As long as patterns are available in P , the algorithm iterates until

k informative and complementary sequential patterns have been found and added to

Φ which is finally returned. At each iteration, line 4, the sequential pattern α∗ whose

earliest minimal occurrences lead to the highest information gain obtained by refining

the distributions of the corresponding variables in V is selected. Then, the current

sets of patterns Φ and P are updated accordingly lines 5 and 6. Finally, line 7, the

distributions of the random variables are updated according to the occurrences of α∗.

Let ∆occ(o) denote the information gain obtained by revealing an earliest minimal

occurrence o. In a partial unimodal probabilistic event sequence (sid, s) supporting

α, we consider that only the best occurrence of α, i.e. the one leading to the highest

information gain, is revealed to the user. Thus, the gain coming from α in (sid, s) is

∆((sid, s), α) = maxo∈O{∆occ(o)}, where O is the set of occurrences of α in (sid, s).

Finally, the measure of the gain ∆(α), which assesses the interest of this pattern over

all sequences it covers, is defined as:
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∆(α) =

∑
(sid,s)∈S(α) ∆((sid, s), α)

|S(α)|

with S(α) the set of partial unimodal probabilistic event sequences supporting

α. The intuition for this normalization, i.e., dividing by |S(α)| = support(α), is that

a pattern supported by many partial unimodal probabilistic event sequences with

occurrences bringing few information is likely to be less desirable than a pattern

supported by less sequences but relying on very informative occurrences.

Computing ∆occ(o), the information gain associated to an earliest minimal occur-

rence o, is a crucial step. It can be achieved by exploiting the event types and the

mode probabilities provided by the partial unimodal probabilistic events forming o.

Unveiling a partial unimodal probabilistic event ⟨t, e, ρ⟩ indeed allows to refine the

current distribution p of its corresponding random variable X into a new distribution

q by imposing that Pr(X = e) = ρ. The kind of occurrence, i.e., the earliest min-

imal occurrences as defined in Section 2, also yields additional constraints that can

be used to refine the distributions of the random variables associated to the partial

unimodal probabilistic events occurring in-between the events forming pattern oc-

currences. The different possible constraints and their combinations are defined and

studied in Section 4.

More generally, let us consider one of the random variable X and its current known

distribution p. The information regarding X and conveyed by an occurrence o is ex-

pressed with a constraint ξ. In order to quantify the minimum information quantity

brought by o, we aim to find a distribution q for X that is the closest to p (i.e.,

adding the smallest amount of information) but satisfying ξ (that must hold for the

real distribution). We here rely on the Kullback-Leibler divergence which is defined as

follows:

D(q||p) =
∑
e∈E

q(e) log2

(
q(e)

p(e)

)
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where p(e) (resp. q(e)) is Pr(X = e) in distribution p (resp. q). The measure D(q||p)

quantifies the information gained if the distribution p is replaced by the real distri-

bution q (Rényi, 1961). The distribution q we are looking for is then a distribution

satisfying constraint ξ and minimizing D(q||p), so as to be as close as possible to p

(from an information content perspective). It is obtained by a constraint-based op-

timization scheme which is described in Section 5. The value of ∆occ(o) is then the

sum of the minimized Kullback-Leibler divergences, over all the pairs (p, q) for the

random variables in V that are involved in the constraints derived from occurrence o.

This minimization procedure is applied by Algorithm 1 at line 7 to update the dis-

tributions of the random variables affected by the constraints implied by the earliest

minimal occurrences of α∗.

4 Occurrence constraints

Revealing pattern earliest minimal occurrences formed by partial unimodal probabilis-

tic events allows to constrain the distributions of the random variables representing

the information content of a PUPBoS. Section 4.1 inventories the types of constraints

that can be imposed and Section 4.2 presents a study of their combinations.

4.1 Constraint types

Let us consider a partial base of sequences containing N partial unimodal probabilistic

events. Its information content can be expressed as the entropy of a set of N random

variables, noted V = {X1, X2, . . . , XN}, each random variable being associated to a

partial unimodal probabilistic event through a bijective mapping. Let ξ be a constraint

that is revealed and applied to a random variable X ∈ V representing the information

content of a partial unimodal probabilistic event ⟨t, e, ρ⟩. Constraint ξ is formalized as

follows:

• by giving EC , EC ⊂ E, the set of possible values for e, terms candidate event types;
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• and by specifying some restrictions on Pr(X = ec) for the ec in EC .

4.1.1 Constraint type #1: direct constraints

This type of constraint is the most stringent one. It occurs when a partial unimodal

probabilistic event ⟨t, e, ρ⟩ forming an pattern earliest minimal occurrence is revealed

and used to refine the distribution of its corresponding random variable X. In that

case, such a constraint is written:

ξ =


EC = {e}

Pr(X = e) = ρ

For example, upon finding an occurrence o = (sid, ⟨⟨ti1 , ei1 , ρi1⟩, ⟨ti2 , ei2 , ρi2⟩,

. . . , ⟨tim , eim , ρim⟩⟩), for each one of the events ⟨tik , eik , ρik⟩, with 1 ≤ k ≤ m, its

event type and its probability are disclosed. This knowledge is the most informative

one that can be obtained about these events. A constraint of type #1 is therefore the

strongest constraint.

4.1.2 Constraint type #2: strong propagation constraints

Beside using directly the partial unimodal probabilistic events forming revealed pat-

tern earliest minimal occurrences, it is possible to propagate their information to also

constrain the distributions of the random variables associated to the events occurring

in-between the events forming pattern earliest minimal occurrences. This is made

possible by taking into account the nature of the earliest minimal occurrences.

Let us consider a pattern α = α1 → α2 → . . . → αm and ⟨sid, ⟨⟨t1, α1, ρ1⟩),

⟨t2, α2, ρ2⟩, . . . , ⟨tm, αm, ρm⟩⟩, ρmin⟩, a minimal earliest occurrence of α. For all

j ∈ {2, . . . ,m} and for each event ⟨tu, eu, ρu⟩ of sid such that tj−1 < tu < tj , its

corresponding variable random variable X is such that EC = E \ αj since αj can not
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occur by definition of the earliest minimal occurrences (see Section 2, Definition 9).

In addition, by definition of the minimal occurrences (see Section 2, Definition 8),

event type α1 can not occur at tu such that t1 < tu < t2 and must also be removed

from the set EC of the corresponding random variable. And, finally, by definition of

the earliest minimal occurrences, for each one of the variables corresponding to an

event whose occurrence date is in [t1, tm], there exists one event type belonging to

EC such that its probability is greater or equal to ρmin. This reduction of EC and

the associated probability constraint thus allow to constrain the distributions of the

random variables corresponding to the events occurring in-between the events form-

ing a pattern occurrence. This technique is termed as propagation. In Example 1, the

earliest minimal occurrence (2, ⟨⟨t1, B, 0.5⟩, ⟨t2, C, 0.5⟩, ⟨t4, A, 0.5⟩⟩, 0.4⟩) of pattern

B → C → A imposes that the event type at date t3 can not be A and that its

probability is greater or equal to 0.4.

The propagation is strong if |E| = 2. Indeed, in that case, EC is always reduced

to a singleton, i.e., EC = {eremainder}. In addition, by definition of the earliest

minimal occurrences, Pr(X = eremainder) ≥ ρmin. The propagation can also be

strong if |E| = 3 and α1 ̸= α2. In that case, for each event ⟨tu, eu, ρu⟩ of sid such

that t1 < tu < t2, the constraint imposed on the associated variable distribution is

EC = E \ {α1, α2} = {eremainder} and Pr(X = eremainder) ≥ ρmin. The constraint

resulting from a strong propagation is a constraint of type #2. It is weaker than a

constraint of type #1 and it is formalized as follows:

ξ =


EC = {eremainder}

Pr(X = eremainder) ≥ ρmin
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For instance, in Example 1, in sequence 1, the earliest minimal occurrence

⟨1, ⟨⟨t1, B, 0.4⟩, ⟨t3, A, 0.7⟩⟩, 0.4⟩ of pattern B → A imposes that the event type of the

partial unimodal probabilistic event occurring at date t2 is C since B and A can not

occur. In addition, its minimum probability is 0.4.

4.1.3 Constraint type #3: soft propagation constraints

If propagation is performed without being able to reduce EC to a single candidate

event type, then the resulting constraint is of type #3, i.e. it is a soft propagation

constraint. Such a constraint is weaker than a constraint of type #1 or #2 and it is

written:

ξ =


EC ⊂ E,with |EC | ≥ 2

∃ec ∈ EC such that Pr(X = ec) ≥ ρmin

Note that EC is included into E strictly. Indeed, a soft propagation constraint

always originates from a pattern occurrence imposing that at least one event type

belonging to E can not be candidate.

An example can be found with the earliest minimal occurrence ⟨2, ⟨⟨t1, B, 0.5⟩,

⟨t2, C, 0.5⟩, ⟨t4, A, 0.5⟩⟩, 0.4⟩ imposes the following constraint on the event occurring

at date t3 in sequence 2:

ξ =


EC = {B,C}

∃e ∈ EC such that Pr(X = e) ≥ 0.4

4.2 Constraint combinations

Algorithm 1 starts by considering that all random variable distributions are uniform.

At each iteration, the selection of the most informative pattern α∗ (line 4) is performed
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by refining the random variable distributions using the constraints imposed by the

earliest minimal occurrences of the patterns left in P and by assessing the associated

information gain for each pattern separately.

Each distribution refinement of a variable X is simply obtained by computing a

constraint ξ that combines the constraint ξcurrent produced by an earliest minimal

occurrence on X with ξprevious, the constraint on X that was established during the

previous iterations.

Once the most informative pattern α∗ has been selected, then (line 7) the distribu-

tion of the variables X ∈ V are refined according to the earliest minimal occurrences

of α∗.

Since each random variable is supposed to be uniform, a constraint imposing the

uniform distribution is build for each random variable before the first iteration. Con-

trary to other constraint types, this kind of constraint is not imposed by a pattern

occurrence. It is termed as a uniform constraint and written:

ξU =


EC = E

Pr(X = ec) =
1
|E| ,∀ec ∈ EC

Therefore, as soon as the first occurrence constraint ξcurrent is discovered for a

variable X, it replaces the initial constraint ξuniform. Any constraint differing from

a uniform one is indeed preferred since it differs from the initial knowledge, thus

providing more information on the realization of X. If ξprevious is not a uniform

constraint then:

1. If one of the two constraints, ξprevious or ξcurrent, is a type #1 constraint, the

resulting constraint ξ is the same as the type #1 constraint since the latter is

always the strongest constraint that can be imposed on each event. Moreover, when

two type #1 constraints affect the same random variable, they are identical since
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they correspond to the discovery of the same partial probabilistic event forming an

earliest minimal occurrence.

2. For the constraints of type #2 or #3, ξprevious and ξcurrent are combined so as

to get the strongest possible constraint and gain as much information as possible.

To this aim, their respective sets of candidate event types are intersected and the

highest probability lower bound is retained.

More formally, since ξprevious can be of type #2 or #3, ξprevious is written:

ξprevious =


Eprevious
C ⊂ E

∃ec ∈ EC such that Pr(X = ec) ≥ ρpreviousmin

The same holds for ξcurrent:

ξcurrent =


Ecurrent
C ⊂ E

∃ec ∈ EC such that Pr(X = ec) ≥ ρcurrentmin

Finally, ξ is obtained by combining ξprevious and ξcurrent as follows:

ξ =


EC = Eprevious

C ∩ Ecurrent
C

∃ec ∈ EC | Pr(X = ec) ≥ ρmin with ρmin = max{ρpreviousmin , ρcurrentmin }

Table 2 summarizes the possible combinations and the resulting constraint types

that can be obtained. Note that:

1. Combining constraints of type #3 can produce constraints of type #2 thanks to the

intersection of the candidate sets.
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2. Combining a constraint of type #2 with a constraint of type #3 always leads to a

constraint of type #2.

Table 2: Constraint type combina-
tions and resulting constraint types

ξprevious type ξcurrent type ξ type
uniform 1 1
uniform 2 2
uniform 3 3
1 1, 2, 3 1
2 1 1
2 2, 3 2
3 1 1
3 2 2
3 3 2, 3

5 Kullback-Leibler divergence minimization under

occurrence constraints for distribution refinement

Once a new constraint ξ on a random variable is produced, it is exploited to refine

the distribution p of that variable into a new distribution q such that the Kullback-

Leibler divergence (KL divergence) (Kullback and Leibler, 1951) between p and q is

minimum. This allows us to quantify the guaranteed amount of information brought

by ξ. Let I be a set of symbols. The KL divergence, also termed relative entropy, is

defined as follows:

D(q||p) =
∑
λ∈I

q(λ) log2

(
q(λ)

p(λ)

)
By convention, 0 log2

0
0 = 0, 0 log2

0
p = 0 and p log2

q
0 =∞. This measure is always

positive and equals 0 if and only if distributions p and q are identical. It is not a

distance measure as it is not symmetric and it does not obey the triangle inequality.

According to Rényi (1961), D(q||p) quantifies the obtained information if distribution
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p is replaced by distribution q.

The distribution q replacing distribution p and minimizing the KL divergence under

constraint ξ is established with Theorem 1. The latter favors distributions such that the

candidate event types all have the same probability and such that the event types that

are not candidates all have the same probability as well. Minimizing the KL divergence

ensure that a maximum of entropy is preserve and thus that the distribution that will

be chosen is one corresponding to the minimum guarantied gain of information.

Theorem 1 Minimization of the Kullback-Leibler divergence under partial probability sum

constraints

Let I = {λ1, λ2, . . . , λn} be a set of n symbols. Let I ′ be a subset of I. Let X and Y be two

real numbers in ]0, 1[. Let p and q two distributions over I such that ∀i ∈ {1, . . . , n}, p(λi) >

0 ∧ q(λi) > 0. If p and q satisfy the constraints
∑

λ∈I′ p(λ) = X and
∑

λ∈I′ q(λ) = Y , then

the Kullback-Leibler divergence is minimum if and only if p and q obey the following equation:

p(λ)

q(λ)
=


X
Y , if λ ∈ I ′

1−X
1−Y , if λ ∈ I \ I ′

(1)

In that case, the Kullback-Leibler divergence value is:

D(q||p)min = log2

[(
Y

X

)Y

×
(
1− Y

1−X

)1−Y
]

(2)

Proof Let us suppose that p and q satisfy the two constraints
∑

λ∈I′ p(λ) = X and∑
λ∈I′ q(λ) = Y . The Kullback-Leibler divergence can be written as:

D(q||p) =
∑
λ∈I

q(λ) log2

(
q(λ)

p(λ)

)

=
∑
λ∈I′

q(λ) log2

(
q(λ)

p(λ)

)
+

∑
λ∈I\I′

q(λ) log2

(
q(λ)

p(λ)

) (3)
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If both sides are negated, it becomes:

−D(q||p) = −
∑
λ∈I′

q(λ) log2

(
q(λ)

p(λ)

)
−

∑
λ∈I\I′

q(λ) log2

(
q(λ)

p(λ)

)

=
∑
λ∈I′

q(λ) log2

(
p(λ)

q(λ)

)
+

∑
λ∈I\I′

q(λ) log2

(
p(λ)

q(λ)

) (4)

Then, if both sides are exponentiated using base 2:

2−D(q||p) =

∏
λ∈I′

(
p(λ)

q(λ)

)q(λ)
×

 ∏
λ∈I\I′

(
p(λ)

q(λ)

)q(λ)
 (5)

Since Y is in ]0, 1[, the last equation can be transformed into the following one:

2−D(q||p) =

 Y

√√√√√
∏

λ∈I′

(
p(λ)

q(λ)

)q(λ)



Y

×

 1−Y

√√√√√
 ∏

λ∈I\I′

(
p(λ)

q(λ)

)q(λ)



1−Y

(6)

According to the inequality of the weighted arithmetic and geometric means (Kazarinoff,

1961), if non-negative numbers x1, x2, · · · , xn and non-negative weights w1, w2, · · · , wn such

as w = w1 + w2 + · · ·+ wn > 0 are considered, then:

w

√
xw1
1 xw2

2 · · ·xwn
n ≤ w1x1 + w2x2 + · · ·+ wnxn

w
(7)

This inequality becomes equality if and only if x1 = x2 = ... = xn.

By using Inequation 7 and identifying the ratios
p(λ)
q(λ)

to the numbers xi and the

probabilites q(λ) to the weights wi, we obtain:

∑
λ∈I′ q(λ)

√√√√∏
λ∈I′

(
p(λ)

q(λ)

)q(λ)

≤

∑
λ∈I′ q(λ)

p(λ)
q(λ)∑

λ∈I′ q(λ)
(8)

and

∑
λ∈I\I′ q(λ)

√√√√ ∏
λ∈I\I′

(
p(λ)

q(λ)

)q(λ)

≤

∑
λ∈I\I′ q(λ)

p(λ)
q(λ)∑

λ∈I\I′ q(λ)
(9)

Since the constraint
∑

λ∈I′ q(λ) = Y is satisfied,
∑

λ∈I\I′ q(λ) = 1− Y is also satisfied.

Consequently, the following inequation can be produced:
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2−D(q||p) ≤

∑λ∈I′ q(λ)
p(λ)
q(λ)

Y

Y

×

∑λ∈I\I′ q(λ)
p(λ)
q(λ)

1− Y

1−Y

⇔ 2−D(q||p) ≤
(∑

λ∈I′ p(λ)

Y

)Y

×

(∑
λ∈I\I′ p(λ)

1− Y

)1−Y
(10)

Since the constraint
∑

λ∈I′ p(λ) = X is satisfied,
∑

λ∈I\I′ p(λ) = 1−X is also satisfied

and the last inequation finally becomes:

⇔ 2−D(q||p) ≤
(
X

Y

)Y

×
(
1−X

1− Y

)1−Y

(11)

According to the inequality of the weighted arithmetic and geometric means, equality is

reached if all the ratios
p(λ)
q(λ)

such that λ ∈ I ′ are equal and if all the ratios
p(λ)
q(λ)

such that

λ ∈ I \ I ′ are equal. Therefore:

p(λ)

q(λ)
=


X
Y , if λ ∈ I ′

1−X
1−Y , if λ ∈ I \ I ′

(12)

In addition, Inequality 10 can be re-written as follows:

D(q||p) ≥ log2

[(
Y

X

)Y

×
(
1− Y

1−X

)1−Y
]

(13)

Consequently, the minimum value of D(q||p) is:

D(q||p)min = log2

[(
Y

X

)Y

×
(
1− Y

1−X

)1−Y
]

(14)

This value is obtained if and only if distributions p and q obey Equation 12.

□

5.1 Refinement of p into q with a type #1 constraint

Let ξ be a constraint of type #1 imposed by a partial unimodal probabilistic event

⟨t, e, ρ⟩. In this case, EC = {e}, q(e) = Pr(e) = ρ. By setting I = E, I ′ = {e},

X = p(e) and Y = ρ, and by applying Equation 1, it is then possible to determine the

probabilities of the remaining event types that minimize the KL divergence between
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the previous distribution p and the new one q.

In the case where q(e) =1, Theorem 1 does not apply. The probability of the other

event types is then simply set to 0 and the KL divergence is directly calculated using

the definition of D(q||p) and the associated conventions.

5.2 Refinement of p into q with a type #2 constraint

Let ξ be a constraint of type #2 imposed by propagation such that EC = {eremainder}

and Pr(eremainder) ≥ ρmin. In order to obtain distribution q such that it minimizes

the KL divergence, we set q(eremainder) = ρmin. The probabilities of the other sym-

bols and the corresponding minimum KL divergence are then determined using the

strategy employed for type #1 constraints (see Section 5.1).

Setting q(eremainder) to ρmin can be justified as follows: let us consider I ′ =

{eremainder} such that I ′ ⊂ I with I = E. Then, let us consider X =
∑

λ∈I′ p(λ)) =

p(eremainder) and Y =
∑

λ∈I′ q(λ) = q(eremainder). Both quantities are in ]0, 1[4. Since

obtaining a constraint of type #2 by combining two constraints leads to a situation

such that the value of ρmin always increases or remains the same, then Y ≥ X. Let us

consider Θ(Y ), the minimum value of the KL divergence expressed as a function of Y :

Θ(Y ) = log2

[(
1− Y

1−X

)1−Y

×
(
Y

X

)Y
]

= (1− Y ) log2

(
1− Y

1−X

)
+ Y log2

Y

X

(15)

4The extreme values (0 and 1) can be treated separately in a similar way to the special case mentioned
in Section 5.1.
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Its derivative is:

dΘ(Y )

dY
= log2

(
1−X

1− Y

)
− (1− Y )

(
1

(1− Y )ln2

)
+ log2

Y

X
+ Y

1

Y ln 2

= log2

(
1−X

1− Y

)
− 1

ln2
+ log2

Y

X
+

1

ln 2

= log2

(
1−X

1− Y
× Y

X

)
(16)

Thus:

dΘ(Y )

dY


< 0, if Y ∈]0, X[

= 0, if Y = X

> 0, if Y ∈]X, 1[

Since Y ≥ X and Y =
∑

λ∈I′ q(λ) = q(eremainder), then the minimum value of

the KL divergence is obtained for the smallest possible value of Y = q(eremainder)

satisfying constraint ξ, i.e. q(eremainder) ≥ ρmin. In other words, we set q(eremainder)

to ρmin.

5.3 Refinement of p into q with a type #3 constraint

Let ξ be a type #3 constraint such that:

ξ =


EC ⊂ E with |EC | ≥ 2

∃e ∈ EC such that Pr(e) ≥ ρmin

Since the element e of EC such that Pr(e) ≥ ρmin is unknown, we cannot reuse the

strategies employed for constraint types #2 and #3 to obtain, in a deterministic way,

the distribution q that minimizes the KL divergence. Therefore, as we aim to establish

the minimum gain of information brought by the knowledge of the pattern occurrences,

a relaxed version of this constraint is considered. It is noted ξ′ and defined as follows:
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ξ′ =


EC ⊂ E with |EC | ≥ 2∑

e∈E\EC
Pr(e) ≤ 1− ρmin

Since the probability is non-negative, if a distribution obeys ξ, then it also obeys

ξ′. The converse is not true. Such a relaxed constraint is said to be of type #3’.

For example, let us s consider E = {A,B,C,D} and the following constraint of

type #3:

ξ =


EC = {A,B}

∃e ∈ EC such that Pr(e) ≥ 0.4

This constraint ξ specifies that the candidate set EC contains two symbols A and B,

and that the probability of occurrence of the symbol associated with the corresponding

partial unimodal probabilistic event5 is at least equal to 0.4. The relaxed constraint

corresponding to ξ will be:

ξ′ =


EC = {A,B}∑

e∈{C,D} Pr(e) ≤ 0.6

Any distribution that satisfies ξ, e.g., Pr(A) = 0.5,Pr(B) = 0.2,Pr(C) =

0.1,Pr(D) = 0.2, also satisfies ξ′. The reverse is not true. For example, the distribution

with the following probabilities Pr(A) = 0.2,Pr(B) = 0.3,Pr(C) = 0.2,Pr(D) = 0.3

satisfies ξ′ but does not satisfy ξ′.

Once ξ′ is defined, the new distribution that satisfies it and that minimizes the KL

divergence can be established along with the value of the minimal KL divergence. Let

us consider I = E, and I ′ = Erejected = E \EC , the set of the rejected event types, i.e.

5This symbol is among the two candidate symbols.
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the event types that can not be candidates. Let X =
∑

λ∈I′ p(λ) and Y =
∑

λ∈I′ q(λ)

be the probability sums of the rejected event types. The constraint of type #3′ then

implies Y ≤ 1 − ρmin. According to the derivative of the function Θ(Y ) expressing

the minimal value of the KL divergence (see Section 5.3), the minimum quantity of

information is obtained for a value of Y set as follows:

• If 1−ρmin ≥ X, we set Y = X to reach the minimum value of Θ(Y ) while satisfying

Y ≤ 1− ρmin.

• If 1− ρmin < X, the minimum value of Θ(Y ) that can be reached while satisfying

Y ≤ 1− ρmin is obtained for the highest possible value of Y , i.e. Y = 1− ρmin.

Once Y is set, the probability of each one of the event types for the new distribution

and the corresponding minimal KL divergence are computed by using Theorem 1.

6 Toy example

This Section is aimed at giving a simple example of the selection method.

It relies on Example 1. Let us suppose that we want to select the two

most informative patterns from the set of the closed sequential patterns, i.e.

{A → A,B → A,C → A,B → C → A,B → C → C} (cf. Section 2). Let us

consider the set of the random variables Xi
j such that i ∈ {1, 2, 3, 4} represents the

sequence identifier and such that j ∈ {1, 2, 3, 4} refers to the jth partial unimodal

probabilistic event type of that sequence. Initially all random variables are uniform.

The information gain of each pattern is established by refining these distributions,

which is done by minimizing the KL divergence under the constraints imposed by

the earliest minimal occurrences of the pattern. The computation of the information

gain is detailed hereafter for each pattern. For the first iteration, column constraint

contains the constraints due to pattern occurrences. They are directly applied since

the uniform constraints representing the initial knowledge are discarded as soon as

new constraints are discovered. For constraints of type #3, only the relaxed version
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is given. Columns p and q give the probabilities of each distribution in the following

order: p(A), p(B), p(C) and q(A), q(B), q(C).

The earliest minimal occurrences of A → A are: ⟨3, ⟨⟨t2, A, 0.9⟩, ⟨t3, A, 0.7⟩⟩, 0.7⟩,

⟨3, ⟨⟨t3, A, 0.7⟩, ⟨t4, A, 0.8⟩⟩, 0.7⟩, ⟨4, ⟨⟨t2, A, 0.7⟩, ⟨t4, A, 0.7⟩⟩, 0.7⟩. Thus:

∆(A→ A) = 2.230653311/2 = 1.1153266555

sid Xi
j constraint (type: details) p q D(q||p)

3

X3
2 #1: EC = {A}, P r(A) = 0.9 1

3 ,
1
3 ,

1
3 0.9, 0.05, 0.05 1.015966907

X3
3 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

∆occ =
∑

D(q||p) 1.419638508

X3
3 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

X3
4 #1: EC = {A}, P r(A) = 0.8 1

3 ,
1
3 ,

1
3 0.8, 0.1, 0.1 0.663034406

∆occ =
∑

D(q||p) 1.066706007

not counted not counted

4

X4
2 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

X4
3 #3’: EC = {B,C}, P r(A) ≤ 0.3 1

3 ,
1
3 ,

1
3 0.3, 0.35, 0.35 0.003671601

X4
4 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

∆occ =
∑

D(q||p) 0.811014803∑
∆occ 2.230653311

Since A → A occurs twice in sequence 3, the most informative is be chosen, i.e.

the one represented by X3
2 and X3

3 . The information brought by the other occurrence

is thus not counted and its constraints are not saved.

The earliest minimal occurrences of B → A are: ⟨1, ⟨⟨t1, B, 0.4⟩, ⟨t3, A, 0.7⟩⟩, 0.4⟩,

⟨2, ⟨⟨t1, B, 0.5⟩, ⟨t4, A, 0.5⟩⟩, 0.4⟩, ⟨3, ⟨⟨t1, B, 0.9⟩, ⟨t2, A, 0.9⟩⟩, 0.9⟩, ⟨4, ⟨⟨t3, B, 0.8⟩,

⟨t4, A, 0.7⟩⟩, 0.7⟩. Thus:

35



∆(B → A) = 3.728284049/4 = 0.93207101225

sid Xi
j constraint (type: details) p q D(q||p)

1

X1
1 #1: EC = {B}, P r(B) = 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.4, 0.3 0.014011906

X1
2 #2: EC = {C}, P r(C) ≥ 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.3, 0.4 0.014011906

X1
3 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

∆occ =
∑

D(q||p) 0.431695414

2

X2
1 #1: EC = {B}, P r(B) = 0.5 1

3 ,
1
3 ,

1
3 0.25, 0.5, 0.25 0.084962501

X2
2 #2 : EC = {C}, P r(C) ≥ 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.3, 0.4 0.014011906

X2
3 #2: EC = {C}, P r(C) ≥ 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.3, 0.4 0.014011906

X2
4 #1: EC = {A}, P r(A) = 0.5 1

3 ,
1
3 ,

1
3 0.5, 0.25, 0.25 0.084962501

∆occ =
∑

D(q||p) 0.197948814

3

X3
1 #1: EC = {B}, P r(B) = 0.9 1

3 ,
1
3 ,

1
3 0.05, 0.9, 0.05 1.015966907

X3
2 #1: EC = {A}, P r(A) = 0.9 1

3 ,
1
3 ,

1
3 0.9, 0.05, 0.05 1.015966907

∆occ =
∑

D(q||p) 2.031933814

4

X4
3 #1: EC = {B}, P r(B) = 0.8 1

3 ,
1
3 ,

1
3 0.1, 0.8, 0.2 0.663034406

X4
4 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

∆occ =
∑

D(q||p) 1.066706007∑
∆occ 3.728284049

The earliest minimal occurrences of C → A are: ⟨1, ⟨⟨t2, C, 0.9⟩, ⟨t3, A, 0.7⟩⟩, 0.7⟩,

⟨2, ⟨⟨t3, C, 0.4⟩, ⟨t4, A, 0.5⟩⟩, 0.4⟩, ⟨4, ⟨⟨t1, C, 0.8⟩, ⟨t2, A, 0.7⟩⟩, 0.7⟩. Thus:
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∆(C → A) = 2.585318922/3 = 0.861772974

sid Xi
j constraint (type: details) p q D(q||p)

1

X1
2 #1: EC = {C}, P r(C) = 0.9 1

3 ,
1
3 ,

1
3 0.05, 0.05, 0.9 1, 015966907

X1
3 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

∆occ =
∑

D(q||p) 1.419638508

2

X2
3 #1: EC = {C}, P r(C) = 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.3, 0.4 0.014011906

X2
4 #1: EC = {A}, P r(A) = 0.5 1

3 ,
1
3 ,

1
3 0.5, 0.25, 0.25 0.084962501

∆occ =
∑

D(q||p) 0.098974407

4

X4
1 #1: EC = {C}, P r(C) = 0.8 1

3 ,
1
3 ,

1
3 0.1, 0.1, 0.8 0.663034406

X4
2 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

∆occ =
∑

D(q||p) 1.066706007∑
∆occ 2.585318922

The earliest minimal occurrences of B → C → A are: ⟨1, ⟨⟨t1, B, 0.4⟩, ⟨t2, C, 0.9⟩,

⟨t3, A, 0.7⟩⟩, 0.4⟩, ⟨2, ⟨⟨t1, B, 0.5⟩, ⟨t2, C, 0.5⟩, ⟨t4, A, 0.5⟩ ⟩, 0.4⟩. Thus:
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∆(B → C → A) = 1.688537918/2 = 0.844268959

sid Xi
j constraint (type: details) p q D(q||p)

1

X1
1 #1: EC = {B}, P r(B) = 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.4, 0.3 0.014011906

X1
2 #1: EC = {C}, P r(C) = 0.9 1

3 ,
1
3 ,

1
3 0.05, 0.05, 0.9 1.015966907

X1
3 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

∆occ =
∑

D(q||p) 1.433650415

2

X2
1 #1: EC = {B}, P r(B) = 0.5 1

3 ,
1
3 ,

1
3 0.25, 0.5, 0.25 0.084962501

X2
2 #1 : EC = {C}, P r(C) = 0.5 1

3 ,
1
3 ,

1
3 0.25, 0.25, 0.5 0.084962501

X2
3 #3’: EC = {B,C}, P r(A) ≤ 0.6 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

1
3 0

X2
4 #1: EC = {A}, P r(A) = 0.5 1

3 ,
1
3 ,

1
3 0.5, 0.25, 0.25 0.084962501

∆occ =
∑

D(q||p) 0.254887503∑
∆occ 1.688537918

The earliest occurrences of pattern B → C → C are: ⟨1, ⟨⟨t1, B, 0.4⟩, ⟨t2, C, 0.9⟩,

⟨t4, C, 0.5⟩⟩, 0.4⟩, ⟨2, ⟨⟨t1, B, 0.5⟩, ⟨t2, C, 0.5⟩, ⟨t3, C, 0.4⟩ ⟩, 0.4⟩. Thus:
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∆(B → C → C) = 1.298878222/2 = 0.649439111

sid Xi
j constraint (type: details) p q D(q||p)

1

X1
1 #1: EC = {B}, P r(B) = 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.4, 0.3 0.014011906

X1
2 #1: EC = {C}, P r(C) = 0.9 1

3 ,
1
3 ,

1
3 0.05, 0.05, 0.9 1.015966907

X1
3 #3’: EC = {A,B}, P r(C) ≤ 0.6 1

3 ,
1
3 ,

1
3

1
3 ,

1
3 ,

1
3 0

X1
4 #1: EC = {C}, P r(C) = 0.5 1

3 ,
1
3 ,

1
3 0.25, 0.25, 0.5 0.084962501

∆occ =
∑

D(q||p) 1.114941314

2

X2
1 #1: EC = {B}, P r(B) = 0.5 1

3 ,
1
3 ,

1
3 0.25, 0.5, 0.25 0.084962501

X2
2 #1: EC = {C}, P r(C) = 0.5 1

3 ,
1
3 ,

1
3 0.25, 0.25, 0.5 0.084962501

X2
3 #1: EC = {C}, P r(C) = 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.3, 0.4 0.014011906

∆occ =
∑

D(q||p) 0.183936908∑
∆occ 1.298878222

Therefore, the first pattern to be selected is A→ A since its information gain over-

comes other pattern information gains. The distributions of the random variables that

are affected by the constraints imposed by its occurrences are replaced by the ones

computed and selected when estimating its information gain. Its occurrence constraints

are also saved to be combined with the occurrence constraints of the remaining pat-

terns during the next iteration. For the latter, column constraint contains the newly

discovered constraint as well as the constraint due to A → A (marked with ’*’). The

constraint combinations are performed according to their types (see Section 4.2). For

this toy example, they always imply a constraint of type #1. Produced constraints

are therefore not mentioned since they are the same as the type #1 constraints that

are combined. Results are as follows:
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∆(B → A) = 2.259639254/4 = 0.5649098135

sid Xi
j constraint (type: details) p q D(q||p)

1

X1
1 #1: EC = {B}, P r(B) = 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.4, 0.3 0.014011906

X1
2 #2: EC = {C}, P r(C) ≥ 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.3, 0.4 0.014011906

X1
3 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0, 403671601

∆occ =
∑

D(q||p) 0.431695414

2

X2
1 #1: EC = {B}, P r(B) = 0.5 1

3 ,
1
3 ,

1
3 0.25, 0.5, 0.25 0.084962501

X2
2 #2 : EC = {C}, P r(C) ≥ 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.3, 0.4 0.014011906

X2
3 #2: EC = {C}, P r(C) ≥ 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.3, 0.4 0.014011906

X2
4 #1: EC = {A}, P r(A) = 0.5 1

3 ,
1
3 ,

1
3 0.5, 0.25, 0.25 0.084962501

∆occ =
∑

D(q||p) 0.197948814

3

X3
1 #1: EC = {B}, P r(B) = 0.9 1

3 ,
1
3 ,

1
3 0.05, 0.9, 0.05 1.015966907

X3
2 #1: EC = {A}, P r(A) = 0.9 0.9, 0.05, 0.05 0.9, 0.05, 0.05 0

#1: EC = {A}, P r(A) = 0.9*

∆occ =
∑

D(q||p) 1.015966907

4

X4
3 #1: EC = {B}, P r(B) = 0.8 0.3, 0.35, 0.35 6

65 , 0.8,
7
65 0.614028119

#3’: EC = {B,C}, P r(A) ≤ 0.3*

X4
4 #1: EC = {A}, P r(A) = 0.7 0.7, 0.15, 0.15 0.7, 0.15, 0.15 0

#1: EC = {A}, P r(A) = 0.7*

∆occ =
∑

D(q||p) 0.614028119∑
∆occ 2.259639254
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∆(C → A) = 2.181647322/3 = 0.727215774

sid Xi
j constraint (type: details) p q D(q||p)

1

X1
2 #1: EC = {C}, P r(C) = 0.9 1

3 ,
1
3 ,

1
3 0.05, 0.05, 0.9 1, 015966907

X1
3 #1: EC = {A}, P r(A) = 0.7 1

3 ,
1
3 ,

1
3 0.7, 0.15, 0.15 0.403671601

∆occ =
∑

D(q||p) 1.419638508

2

X2
3 #1: EC = {C}, P r(C) = 0.4 1

3 ,
1
3 ,

1
3 0.3, 0.3, 0.4 0.014011906

X2
4 #1: EC = {A}, P r(A) = 0.5 1

3 ,
1
3 ,

1
3 0.5, 0.25, 0.25 0.084962501

∆occ =
∑

D(q||p) 0.098974407

4

X4
1 #1: EC = {C}, P r(C) = 0.8 1

3 ,
1
3 ,

1
3 0.1, 0.1, 0.8 0.663034406

X4
2 #1: EC = {A}, P r(A) = 0.7 0.7, 0.15, 0.15 0.7, 0.15, 0.15 0

#1: EC = {A}, P r(A) = 0.7*

∆occ =
∑

D(q||p) 0,663034406∑
∆occ 2.181647322

The information gain ofB → C → A is still ∆(B → C → A) = 0.844268959 since it

occurs in partial unimodal probabilistic event sequences where A→ A does not appear.

The same holds for pattern B → C → C, with ∆(B → C → C) = 0.649439111. Thus,

the second and last iteration selects B → C → A. At this stage, the set of selected

patterns is {A→ A,B → C → A}. Since it contains two patterns and since we asked

for the two most informative one, the selection algorithm ends. With this example, it

can be observed that the method selects patterns that are complementary since they

are supported by distinct partial unimodal probabilistic events.

7 Experiments

As stated in Section 3, we recall as a preamble that the method proposed in this

paper can select any type of sequential patterns, e.g., frequent or closed ones, as long
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as they are extracted from a PUPBoS. For the sake of clarity, all of our experiments

are focused on frequent sequential patterns.

After having described the datasets and the prototypes we rely on in Section 7.1,

the scalability of the method is studied in Section 7.2. The information gain and

the complementarity of selected patterns are further assessed in Section 7.3. Finally,

Section 7.4 provides qualitative results showing that relevant patterns are selected.

7.1 Datasets and prototypes

7.1.1 Synthetic datasets

Inspired by the work of Muzammal and Raman on probabilistic base of se-

quences (Muzammal and Raman, 2015), synthetic PUPBoS are generated by relying

on the IBM Quest synthetic data generator (Agrawal and Srikant, 1995). Its source

code can be downloaded from Fournier-Viger’s website (Agrawal and Srikant, 2024).

This prototype can generate, among other dataset types, base of sequences as defined

for the deterministic case. We modified this generator to output sequences of unimodal

probabilistic events together with probabilities for modes where these probabilities

were sample from beta distributions.

Such beta distributions are convenient for 1) they are continuous distributions

defined on bounded intervals, 2) convex and concave shapes can be considered and 3)

the expectation as well as the variance of a beta distribution can be simply expressed

using shape parameters (Cramer, 1999).

In the following, we stick to the naming conventions adopted by Agrawal and

Srikant in Agrawal and Srikant (1995) to mention the original parameters of the IBM

Quest generator that are used, i.e., N the number of possible event types, |C| the

average number of events per sequence, |D| the number of sequences (in thousands),
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NS the number of potential frequent sequential patterns, and |S| the average length of

potential frequent sequential patterns. The potential frequent sequential patterns and

their expected relative supports are built from equiprobable event types using constant

random seeds. As done in Muzammal and Raman (2015), NS and |S| are fixed and

set to 100 and 7 respectively. Consequently, the potential frequent patterns employed

to synthesize datasets are identical whatever the dataset generation settings that are

adopted. Remaining IBM Quest parameters are either irrelevant in a PUPBoS context

or resort to default values. They are thus not mentioned explicitly hereafter. Table 3

gives the values used to generate synthetic datasets for parameters |C|, |D| and N .

Table 3: Experimental settings for parameters
|C|, |D| and N .

parameter minimum maximum sampling step
|C| 10 90 20
|D| 50 250 50
N 3 43 10

Additional new parameters are the beta distribution shape parameters, namely α

and β. Whatever the value of N , five different shape configurations are adopted as

reference to sample probabilities of the modes from beta distributions with support

] 1N , 1]. As an example, Figure 1 represents these five configurations for N = 3. The

expectation and the variance of a random variable X generated by sampling these

distributions are supplied in Table 4. More details about this sampling from these

beta distributions can be found in Johnson et al (1994) and Walck (1996).

Following the naming convention of Zaki (2001), each synthetic PUPBoS is named

CiDjK where i is the average number of events per sequence and j gives the number

of sequences (in thousands). In addition, each synthetic dataset name is postfixed by

-AaBb-Nn with a the value of shape parameter α, b the value of shape parameter β,
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Fig. 1: The five shape configurations of the probability density functions of the ref-
erence beta distributions for N = 3

and n the number of possible event types. For example, the dataset C10D50K-A2B2-

N3 is built using 3 event types, has on average 10 events per sequence and contains

50K sequences. The mode probabilities of its partial unimodal probabilistic events

obey a beta distribution whose shape parameters α and β have the same value, i.e. 2.

These datasets can be freely accessed (Nguyen and Méger, 2024b).

Table 4: Expectation and variance of X
for the shape parameters of the five refer-
ence beta distributions and N = 3

α 2 5 1 3 2
β 5 2 3 1 2

E(X) 0.524 0.809 0.5 0.833 0.667
var(X) 0.011 0.011 0.017 0.017 0.022
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7.1.2 Greenland dataset

A symbolic Displacement Field Time Series (DFTS) used in Nguyen et al (2018a)

to explore the behavior of the Greenland Ice Sheet is transformed into a PPUBoS to

assess the method proposed in this paper6. This dataset covers a part of the western

Greenland Ice Sheet with a square grid of 458 × 500 cells. Each cell relates to a

240 × 240 m location and supplies a description of the displacement observed at the

Earth surface for that location and for each one of 20 contiguous time periods spanning

three decades, from 1985 to 2013. Each location is thus characterized by a sequence of

20 displacement descriptions. Each displacement description provides a period num-

ber which is interpreted as a date, a symbol denoting a displacement magnitude level

(’1’ = low, ’2’ = medium, ’3’ = high) and a confidence measure defined over ]0, 1] and

expressing to which extent the symbol that is supplied is the correct one. Symbols

’1’, ’2’ and ’3’ are equiprobable at the scale of the whole dataset. A special symbol,

’0’, is also used if no displacement magnitude level is available because of acquisition

conditions. In that case, the corresponding period number (date) remains reported

while the associated confidence measure is set to a dedicated negative value. For more

details about this symbolic DFTS, the reader is referred to Nguyen et al (2018a).

In this paper, the symbol given by a displacement description is assumed to be the

most likely one and the corresponding mode probability is obtained by mapping its

confidence measure x from ]0, 1] to ]13 , 1] with function m defined by Equation 17 and

setting N = 3.

m(x;N) = x (1− 1

N
) +

1

N
(17)

Displacement descriptions containing symbol ’0’, and thus negative confidence

values, are left unchanged since they represent missing data. In other words, after

6We thank the authors of Tedstone et al (2015) for making the original numerical data available to us.
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Fig. 2: Relative frequency histogram of the mode probabilities of the Greenland
dataset

having replaced the positive confidence measures of the original symbolic DFTS by

the probabilities of the modes, we obtain a PUPBoS containing 229,000 (458 × 500

locations) sequences such that each sequence contains 20 partial unimodal probabilis-

tic events. About 30% of the dataset contains missing data that are discarded when

extracting patterns. As for any event, the proposed pattern selection method initially

assumes that the probability mass functions of the missing data over symbols ’1’,

’2’ and ’3’ are uniform. The distribution of the mode probabilities of the Greenland

dataset is given by the relative frequency histogram depicted in Figure 2. The mean

and the variance of the mode probabilities are 0.879 and 0.170 respectively. This

dataset can be freely accessed (Nguyen and Méger, 2024b).
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7.1.3 Prototypes

Any extractor designed for deterministic bases of sequences can be exploited to mine

frequent sequential patterns from a PUPBoS. As explained in Section 2, mining the

deterministic base of sequences obtained by removing mode probabilities of a PUP-

BoS provides a set of deterministic frequent sequential patterns equal to the set of

frequent sequential patterns, as defined in Section 2, that can be extracted from the

original PUPBoS using the same minimum support threshold. We thus use DMT4SP

(Data Mining Tool 4 Sequential Patterns) (Rigotti, 2024), a prototype based on the

PrefixGrowth algorithm (Pei et al, 2007).

Once frequent sequential patterns are extracted using DMT4SP, their earliest min-

imal occurrences, as defined in Section 2, are identified. The patterns are further

selected according to their occurrences by applying the information gain-based method

proposed in this paper. These two steps are performed using our own implementation,

written in C/C++ and named Complementary and Informative Sequential Patterns

(CISP). It can be obtained from its URL (Nguyen and Méger, 2024a) and run on

Linux platforms. All experiments have been performed on an Intel Xeon 3.5 GHz

server running Linux (Ubuntu).

7.2 Scalability

The scalability study of Algorithm 1 is performed according to its worst-case

space and time complexities.

An upper bound of the worst-case time complexity is O(|P | × K × |D| × |C|2m),

with |P | the number of patterns extracted from a PUPBoS, K the number of patterns

to select, |D| the number of sequences forming the PUPBoS, and |C|m the maximum
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number of events forming a sequence. More details about this upper bound can be

found in Appendix I. Algorithm 1 can therefore be time-consuming, especially for

large datasets, containing long sequences, and large collections of patterns to analyse.

However, since for each iteration the information brought by the occurrences of a

pattern is evaluated independently of the occurrences of the other patterns, this

computation can be easily parallelized. For the sake of the evaluation, CISP is run

in a single thread that is bound to a single core. Regarding memory consumption,

the worst-case space complexity is O(|D| × (|P | + |C|m)). The reader is referred to

Appendix I for more details about it. All experiments are run by making sure that

no memory swaps are triggered.

7.2.1 Dataset impact

Resources consumption is first evaluated by varying two parameters of the IBM

Quest synthetic data generator: |D|, the number of sequences and |C|, the average

number of events forming sequences. Their values are given in Section 7.1.1 by

Table 3. Notice that |C|m is likely to increase with higher values of |C|. Since the

number of event types N and the distribution of mode probabilities have no impact

on performances, N is arbitrarily set to 3 symbols while the shape parameters of

mode probabilities, α and β (see Section 7.1.1), are both set to 2. Finally, processing

parameters are fixed: K is set to 20 and P , the set of sequential patterns extracted

from the dataset, is set to the collection of potential frequent sequential patterns

being used to synthesize datasets. This set is the same whatever the dataset that is

considered. Indeed, it always contains |P | = NS = 100 patterns of average length

|S| = 7 that are generated from N = 3 equiprobable event types using the same

random seeds (see Section 7.1.1). Such a choice allows to assess the impact of the

dataset parameters only and avoid wasting energy with the extraction of frequent
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sequential patterns from each one of the datasets.

According to Figure 3 and Figure 4, execution times linearly vary with respect to

|D|, if |C| is fixed, while they quadratically increase with |C|, if |D| is fixed. Figure 5

and Figure 6 show that memory consumption scales quite linearly with |D|, if |C| is

fixed, and vice versa. These results are in agreement with the worst-case time and

space complexities of Algorithm 1.

7.2.2 Processing parameters impact

The assessment of the processing parameters impact is first performed using

dataset C10D50K-A2B2-N3 as reference (see Section 7.1.1 for naming conventions).

Since this evaluation is carried out independently of dataset properties, one of the

smallest dataset is chosen to spare useless computations and thus resources. Frequent

sequential patterns are extracted from it by varying the support threshold σ to obtain

sets whose sizes differ. Each one of these sets is alternately used to initialize P , the

set of sequential patterns extracted from the dataset. Table 5 gives the size of these

collections w.r.t. σ, the minimum support threshold. Finally, K values range from

20 to 2020 with a sampling step of 500. All configurations such that K > |P | are

obviously discarded.

Table 5: |P | vs. σ for C10D50K-A2B2-N3

|P | 125 1218 2233 3269 4238 5215
σ 16% 2% 1.1% 0.8% 0.5% 0.4%

As it can be observed with Figure 7 and Figure 8, execution times are inline with

the worst-case time complexity upper bound: they vary less than linearly with respect

to K, if |P | is fixed, and vice versa. Regarding memory consumption, as expected and
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shown by Figure 9 and Figure 10, K has no impact while the consumption increases

less than linearly with |P |, which is consistent with the worst-case space complexity.

As shown by Figures 11, 12, 13, and 14, all of these observations are also valid for the

Greenland dataset for which Table 6 and the same values of K are considered.

Table 6: |P | vs. σ for the Greenland dataset

|P | 120 1298 2308 3202 4255 5223
σ 30.6% 13.1% 9.6% 7.9% 6.5% 5.7%

7.3 Information gain and complementarity

The information gain of selected patterns is assessed with respect to datasets and

processing parameters by simply averaging the information gain obtained for each one

of the selected patterns. It is thus expressed as follows:

∆(Φ) =

∑
α∈Φ ∆(α)

|Φ|
(18)

Set Φ contains the patterns selected by Algorithm 1, and ∆(α) denotes the in-

formation gain of a sequential pattern α as defined in Section 3. Such an average is

chosen to allow comparisons between experiments for which the number of selected

patterns differ.

A measure of complementary is also employed to indicate to which extent partial

unimodal probabilistic events unveiled by selected patterns are affected by occurrence

constraints of a single selected pattern or several selected patterns. Since the overlap

of pattern occurrences is not controlled by the Quest generator, this measure is used

to assess the impact of processing parameters only. It is denoted τ(Φ) and expressed

as follows:
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τ(Φ) =
eventsΦ∑

α∈Φ eventsα
(19)

Numerator eventsΦ indicates the number of partial unimodal probabilistic events

affected by at least one constraint introduced by the occurrences of the patterns be-

longing to Φ, and eventsα corresponds to the number of events affected by constraints

introduced by the occurrences of a pattern α. The value of τ(Φ) is in the range [ 1
|Φ| , 1].

It equals 1
|Φ| if each affected event must satisfy constraints imposed by occurrences of

each one of the selected patterns. In that case, no complementarity between the occur-

rences of the selected pattern is observed. Conversely, it equals 1 if each affected event

is refined by constraints originating from a single pattern occurrence. In other words,

selected patterns are fully complementary. In order to compare results obtained when

varying the number of patterns to select, a rescaled version of τ(Φ) is preferred and

defined on [0, 1] as follows:

T (Φ) =
τ(Φ)− 1

|Φ|

1− 1
|Φ|

(20)

7.3.1 Dataset impact

As for Section 7.2.1, the dataset impact on the information gain is assessed using

synthetic datasets and fixed processing parameters. For the latter, once again, K, the

number of pattern to select, is set to 20 while P , the set of patterns extracted from

a PUPBoS, is initialized with the 100 potential frequent sequential patterns used to

synthesize datasets. Firstly the effect of the mode probabilities is studied by sampling

alternately the five beta distributions of reference listed in Table 4. This allows us to

control the expectation of the mode probabilities. Since the support of these distri-

butions is ] 1N , 1] (see Section 2 and Section 7.1), N , the number of event types is also

varied according to Table 3. Parameters C and D are set to 10 and 50 respectively to
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focus on the smallest possible datasets and avoid useless computations.

Figure 15 shows that ∆(Φ) increases with the expectation of the mode proba-

bilities and the number of event types. As a matter of fact, the information gain

associated with a pattern quantifies the refinement, imposed by its occurrences, of

the distributions of the events it affects. As this gain is established by relying on the

Kullbach-Leibler divergence (see Section 3), the more refined distributions differ from

original ones, the higher is the gain. Consequently, since event distributions are all

assumed to be uniform ones before any refinement, the information gain of a pattern

is generally expected to increase with the mode probabilities of the events forming its

occurrences. At a larger scale, the information gain of selected patterns, ∆(Φ), is thus

likely to increase with the mode probabilities of the events forming the occurrences

of the patterns belonging to Φ. In addition, the higher N , the higher is the number of

event types whose probabilities are refined. The Kullbach-Leibler divergence between

initial and refined distribution thus tends to increase with N , and so does ∆(Φ).

The impact of the dataset size is evaluated by varying |C|, the average number of

events per sequence, and |D|, the number of sequences. This is performed according

to Table 3. For each dataset, the number of event types N is arbitrarily set to 3, and

the beta distribution whose shape parameters are α = 2 and β = 2 is considered.

According to Figure 16, ∆(Φ) is independent of |D|, whatever the value of |C|. The

average information gain, ∆(Φ), indeed remains stable since 1) it is normalized by the

pattern support (see Section 3) and 2) the expected relative supports of the patterns

used to synthesize datasets are identical whatever the dataset size (see Section 7.1).

Finally, the impact of |C| is not assessed on its own since the spread and the overlap

of the pattern occurrences is not controlled by the Quest generator while synthesising

them.
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7.3.2 Processing parameters impact

As for Section 7.2.2, the assessment of the processing parameters impact is per-

formed using dataset C10D50K-A2B2-N3 and the Greenland dataset. The higher the

number of ranked patterns K, the more it is difficult to find informative, and thus

complementary patterns. Algorithm 1 indeed selects the most informative pattern at

each iteration by taking account the information already brought by the patterns

selected during the previous iterations, i.e. by making sure that selected patterns

are complementary from an informational perspective. This behavior is clearly illus-

trated for both datasets by Figure 17, Figure 18, Figure 19, and Figure 20, where

the average information gain and the complementarity are plotted against K. These

figures are obtained for all possible K values up to 2020 to detail this behavior at the

largest possible scale. Computing these results for each value of K can be performed

efficiently by collecting the measures observed for each one the patterns that are

ranked during a single experiment for which K = 2020. This is performed for the

largest set P , to maximize the chance of finding informative patterns. The latter

assumption holds for both datasets as shown by Figure 21, Figure 22, Figure 23 and

Figure 24 where ∆(Φ) and τ(Φ) increase with P whatever K. This behavior is best

observed for K = 20 since the average information gain and the complementarity

measure sharply drop towards 0 when increasing K.

Finally, all of the quantitative results advocate for selecting few patterns among

the largest possible set of patterns since 1) the most informative and complementary

ones are the first ones, 2) the space and time resources needed for selecting patterns

increase withK, and 3) the chance of finding the most informative and complementary

patterns grows with the size of P .
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7.4 Qualitative results

7.4.1 Synthetic datasets

Since synthetic datasets are all generated using the same set of 100 potential frequent

sequential patterns and the same expected relative supports (see Section 7.1), the

same amount of patterns can be extracted from any synthetic dataset by consid-

ering the same relative support. In order to avoid useless computations, only the

C10D50 − AaBb − N3 datasets are retained in this section. For these datasets, if

the relative support is set to 2%, i.e. 1000 event sequences, the same 1218 frequent

sequential patterns are extracted. Among them, 44 patterns belong to the set of 100

potential frequent sequential patterns generated by Quest to synthesize datatsets,

and are the same whatever the dataset. Their median relative support is 8.4% and

higher than that of the 1218 patterns whose median relative support is 3.8%.

All 1218 patterns are then supplied to Algorithm 1 to select K = 100 patterns.

Finally, for each dataset, the number of patterns belonging to both the set of se-

lected patterns and the set of the 44 Quest frequent sequential patterns that were

extracted is computed. Table 7 reports this number, termed n∩, for each beta mode

distribution. As it can be observed, this number is about a fourth of the 44 Quest

patterns. The selection of patterns by Algorithm 1 is thus relevant with respect to

the generation of synthetic datasets and avoids concentrating on the most frequent

patterns. The latter is confirmed by the median relative support of the 100 patterns

selected by Algorithm 1, mrsSeqKL, also reported in Table 7, that is always lower

than the one of the 44 Quest patterns.
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Table 7: Number of the selected
Quest patterns and median relative
support of the 100 selected pat-
terns for each one of the C10D50−
AaBb−N3 datasets

α 2 5 1 3 2
β 5 2 3 1 2
n∩ 11 10 11 10 13

mrsSeqKL 4.5 4.5 4.8 4.4 4.8

As explained in Section 3, the information gain of a pattern is normalized by

its support to avoid selecting frequent but not so informative patterns and focus on

patterns whose occurrences, even if not numerous, are very informative. Figure 25

and Figure 26 confirms that this behavior is actually adopted by showing that the

rank of selected patterns and the rank of the selected Quest patterns is not correlated

with their support whatever the dataset that is considered.

7.4.2 Greenland dataset

Regarding the Greenland dataset (see Section 7.1), after having extracted 1298 fre-

quent sequential patterns by setting the relative support threshold to 13.1%, K = 100

patterns were selected using Algorithm 1. These patterns are built with 3 symbols

denoting displacement magnitude levels (’1’ = low, ’2’ = medium, ’3’ = high). Among

them, pattern p1 : 3 → 3 → 3 → 3 → 2 → 2 → 2 → 1 → 1 → 1 and pattern

p2 : 3 → 1 → 1 → 3 are for example considered of interest. Pattern p1 is ranked #1

and exhibits a progressive slowdown of the Greenland Ice Sheet that was reported

in Tedstone et al (2015). Pattern p2 is ranked #99 and unveils an unknown and more

sudden temporary slowdown. As for synthetic datasets, Figure 27 confirms that the

information gain of selected patterns is not driven by their supports simply.
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These patterns are further located both in space and in time. For each pattern, a

map is built by considering the square grid covering the part of the western Greenland

Ice Sheet that is analyzed (see Section 7.1). According to the color scale depicted

in Figure 30, each affected sequence, and thus each affected grid cell, is associated

with a color indicating the ending date of the pattern occurrence. By relying on a

Landsat 7 image acquired during the time period for which the dataset has been

built, unaffected cells are filled with gray-levels representing the radiometric response

of the corresponding locations.

Figure 28 and Figure 29 depict the maps of pattern p1 and p2 respectively. As

it can be observed, they are quite complementary, both spatially and temporally

(T (Φ) = 0.037 for the 100 selected patterns). Figure 28 highlights the Nordenskjöld

glacier (1) for which a slowdown along one longitudinal transect was exhibited

in Tedstone et al (2015). Additionally, it shows that this deceleration pattern can be

observed for the Polonia (2) and the Alangordliup Sermia (3) glaciers where, as for

the Nordenskjöld glacier, it terminates at the end of series, between 2010 and 2013

(violet and magenta areas). Regarding Figure 29, it shows that pattern p2 especially

affects the Sarqardliup Sermia glacier (4) where it ends either between 1997 and

1999 (green area) or 2008 and 2009 (blue area). These different timings might be

associated with the subglacial relief that is reported in Thorning and Hansen (1987).

Figure 29 also points out that p2 affects most of the coastal parts of the Greenland Ice

Sheet where the glaciers drop down into the ocean. Consequently, beside extracting

new knowledge with pattern p2, pattern p1 allows to complete the knowledge about

the already known gradual slowdown by giving its full spatial extent. These selected

patterns are thus relevant when analyzing such a real dataset.
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8 Conclusion

This work considers the concept of partial unimodal probabilistic bases of se-

quences. In such a base, each event is certain and its most probable description, i.e. its

event type, is provided along with its probability. The probability of all other possible

event types are unavailable. This implies that a single possible world is reachable,

the most probable one. It is here proposed to mine it to extract frequent sequential

patterns from which a subset is selected using an original information gain-based

algorithm that outputs complementary and informative patterns. More precisely,

events are described by independent discrete random variables whose probability mass

functions are initially supposed to be uniform. Once extracted, pattern occurrences

and their corresponding mode probabilities are used to constrain and refine initial

event distributions. This refinement is performed by minimizing the Kullback-Leibler

divergence, between the initial and new distributions, under the revealed constraints,

which allows us to quantify and guaranteed the minimum information gain due to the

pattern occurrences. This process is achieved in a greedy way by selecting, at each

iteration, the pattern leading to the highest information gain knowing the patterns

selected during the previous iterations.

Extensive experiments have been run to assess the behavior of the proposed algo-

rithm against the datasets and parameters settings, by using both synthetic and real

datasets. They shown that the algorithm scales well while providing informative com-

plementary patterns whose selection is not simply driven by their support. The most

informative and complementary patterns being discovered at the very beginning of

the process, end-users can ask for a limited set of patterns, say 100 as a maximum for

the datasets we used so far, which facilitates their interpretation. Regarding synthetic

datasets, a subset of the generative patterns used to form them are selected, which
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indicates the interest of the approach. This is corroborated with the real dataset for

which a gradual slowdown of the Greenland Ice Sheet is selected as number one. This

behavior was known by the experts for a limited set of positions while we here pro-

vided its full spatiotemporal extent. In addition to confirming and enriching the user’s

knowledge with that pattern, an example of an unknown complementary pattern was

provided and associated with the subglacial relief through its spatiotemporal behav-

ior. The prototype for selecting patterns and all datasets used in this paper can be

downloaded from Nguyen and Méger (2024a,b).

Future works includes generalizing this approach to itemsets and other pattern

types, taking into account the spatial and/or temporal autocorrelation, handling sev-

eral mode probabilities for a single event, avoiding any post-processing by extracting

informative and complementary patterns directly, and targeting other applications.

I Worst-case complexity analysis of Algorithm 1

Following the naming conventions adopted by Agrawal and Srikant (1995), a PUPBoS

is described by:

• |C|m, the maximum number of events forming an event sequence,

• |D|, the number of sequences forming the PUPBoS.

Appendix I.A Time complexity

The information gain brought by the knowledge of an earliest minimal occurrence is

computed by processing all the events occurring within its time window. For each

event, this gain is measured by combining its current constraint with the new con-

straint imposed by the occurrence. If this calculation is considered as elementary

operation, then there are as many operations as the number of events forming the oc-

currence for which the information gain is established. For each sequence covered by
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a pattern β, an upper bound on the number of earliest minimal occurrence can be

obtained by considering that 1) there are as many occurrences as there are events, 2)

each occurrence starts with a different event, and 3) each occurrence ends at the end

of the sequence. There will therefore be a maximum of |C|m occurrences containing

|C|m, |C|m − 1, |C|m − 2, . . . , and finally 1 events. The number of events to browse is

thus:

|C|m + |C|m − 1 + |C|m − 2 + · · ·+ 1 =
|C|m × (|C|m + 1)

2
(21)

For each pattern β, the maximum support is |D|. Let |P | be the number of patterns

in P , the set of patterns extracted from a PUPBoS. To select the best pattern at the

first iteration, in the worst case, the number of operations that are performed is:

|P | × |D| × |C|m × (|C|m + 1)

2
(22)

For the second iteration, since the most informative pattern is excluded from P ,

the maximum number of operations will be :

(|P | − 1)× |D| × |C|m × (|C|m + 1)

2
(23)

For the ith iteration:

(|P | − i+ 1)× |D| × |C|m × (|C|m + 1)

2
(24)

In total, to select K patterns, in the worst case, the number of operations that are

performed is:
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∑
i=1...K

(|P | − i+ 1)× |D| × |C|m × (|C|m + 1)

2

=
(2|P | −K + 1)×K

2
× |D| × |C|m × (|C|m + 1)

2

(25)

Since K > 0, then 2|P | −K > 2|P | and thus7 an upper bound of the worst-case

time complexity of the algorithm is:

O(|P | ×K × |D| × |C|2m) (26)

Appendix I.B Space complexity

Each partial unimodal probabilistic event of the considered PUPBoS must be stored

along with its current constraint. If such a record is considered as an elementary

memory unit, then the maximum amount of memory needed is |D| × |C|m.

In addition, the occurrences of each pattern in P can be stored during the first it-

eration to avoid the cost of finding these occurrences again during the next iterations.

By assuming that an elementary memory unit can also store such an information,

then the maximum amount of memory is obtained by considering that each pattern

occurs in each sequence and equals |D| × |P |.

Consequently, the worst-case space complexity is simply:

O(|D| × (|P |+ |C|m)) (27)

7Moreover, it can be noticed that in most settings we should have K ≪ P and so 2|P | − K ≈ 2|P |.
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Garćıa-Hernández RA, Mart́ınez-Trinidad JF, Carrasco-Ochoa JA (2006) A New Algo-

rithm for Fast Discovery of Maximal Sequential Patterns in a Document Collection.

In: Computational Linguistics and Intelligent Text Processing. Springer, Berlin,

62

https://doi.org/10.1137/1.9781611972818.46
https://doi.org/10.1137/1.9781611972818.46
https://doi.org/10.1007/978-3-642-13657-3_51
https://doi.org/10.1145/1807167.1807176
https://doi.org/10.1007/978-3-540-71701-0_8
https://doi.org/10.1109/ICDE.2009.75


Heidelberg, pp 514–523, https://doi.org/10.1007/11671299 53

Ge J, Xia Y, Wang J (2015) Towards efficient sequential pattern mining in tempo-

ral uncertain databases. In: Cao T, Lim EP, Zhou ZH, et al (eds) Advances in

Knowledge Discovery and Data Mining. Springer International Publishing, Cham,

pp 268–279, https://doi.org/10.1007/978-3-319-18032-8 21

Ge J, Xia Y, Wang J, et al (2017) Sequential pattern mining in databases with

temporal uncertainty. Knowl Inf Syst 51(3):821–850. https://doi.org/10.1007/

s10115-016-0977-1

Green TJ, Tannen V (2006) Models for incomplete and probabilistic information.
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Fig. 3: Execution times vs. |D|

Fig. 4: Execution times vs. |C|
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Fig. 5: Maximum memory used vs. |D|

Fig. 6: Maximum memory used vs. |C|
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Fig. 7: Execution times vs. K for C10D50K-A2B2-N3

Fig. 8: Execution times vs. |P | for C10D50K-A2B2-N3
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Fig. 9: Maximum memory used vs. K for C10D50K-A2B2-N3

Fig. 10: Maximum memory used vs. |P | for C10D50K-A2B2-N3
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Fig. 11: Execution times vs. K for the Greenland dataset

Fig. 12: Execution times vs. |P | for the Greenland dataset
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Fig. 13: Maximum memory used vs. K for the Greenland dataset

Fig. 14: Maximum memory used vs. |P |. Greenland dataset
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Fig. 15: ∆(Φ) vs. N

Fig. 16: ∆(Φ) vs. |D|
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Fig. 17: ∆(Φ) vs. K for C10D50K-A2B2-N3 and |P | = 5215

Fig. 18: ∆(Φ) vs. K for the Greenland dataset and |P | = 5223
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Fig. 19: T (Φ) vs. K for C10D50K-A2B2-N3 and |P | = 5215

Fig. 20: T (Φ) vs. K for the Greenland dataset and |P | = 5223
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Fig. 21: ∆(Φ) vs. |P | for C10D50K-A2B2-N3

Fig. 22: ∆(Φ) vs. |P | for the Greenland dataset
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Fig. 23: T (Φ) vs. |P | for C10D50K-A2B2-N3

Fig. 24: T (Φ) vs. |P | for the Greenland dataset
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Fig. 25: Rank of the selected patterns against their support for synthetic datasets

Fig. 26: Rank of the selected Quest patterns against their support for synthetic
datasets
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Fig. 27: Rank of the selected patterns against their support for the Greenland dataset
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Fig. 28: Map of pattern p1 : 3 → 3 → 3 → 3 → 2 → 2 → 2 → 1 → 1 → 1. (1):
Nordenskjöld glacier, (2): Polonia glacier, (3): Alangordliup Sermia glacier

Fig. 29: Map of pattern p2 : 3→ 1→ 1→ 3. (4): Sarqardliup Sermia glacier

84



Fig. 30: color scale: from 1985 in red to 2013 in magenta decomposed in 20 timestamps
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