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Abstract

Quantifying the informative state of a dataset for a classification task
is an important question. In this paper, we try to circumscribe this notion
by introducing some new measures and enunciating some principles about
data preparation. We experiment the interest of these measures and the
validity of these principles by introducing several protocols designed for
comparing different ways to prepare the data. We conclude by relating
the efficiency of the data preparation and its theoretical diversity.
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1 Introduction

Affecting one in eight women in the world, breast cancer is one of the most com-
mon cancer type among women, with one of the highest mortality rate [14]. In
this context, convolutional neural networks (CNNs) have demonstrated remark-
able accuracy and competitive reliability over traditional methods. However,
according to [4], CNN approaches require that the network is trained on a huge
amount of data. A main issue is that this amount is not always available: public
datasets for a targeted task are not always available or does not have sufficient
data. Besides, obtaining real data may be very expensive. Data-augmentation
has been introduced to address this problem and has become one of the best-
practices which improves the CNN results.

We should notice that the contribution of the artificial generation of data on
the learning process is still poorly understood. Indeed, due to the CNN black-
box aspect, it is difficult to identify how the data structure is guiding learning.
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Is data augmentation successful just because it gives a redundancy which helps
the learning? Is it necessary to provide fresh data or is it sufficient to generate
data from old one? How can we quantify the information contained in a dataset
for a given classification task? How the augmentation technique impacts the
training process?

There has been an assumption that data augmentation is a mandatory
standard step of data preparation. Traditional data-augmentation is based
on basic image transformations that generate images extremely close to the
initial data distribution space [17]. Other transformations (such as cut-out,
Gaussian noising, Mix-up, overlapping) have been useful for some classification
tasks [2] [3], [9]. With the success of generative adversarial networks (GANs),
artificial fake images are generated [4]. However in critical fields such as health,
where the information label must be conserved, there is a lot of restrictions on
the possible transformations. Moreover, the lack of data which makes the learn-
ing process unsuccessful can be associated with an imbalanced dataset, in which
there is a glaring difference in the number of samples for a category compared to
another. Depending on the classification task, this imbalanced rate may create
a marginalised category during the training phase [13].

Through this article, we study how to quantify the amount of information in
a dataset by first proposing several new measures, second enunciating a set of
principles that should govern data-preparation (and help to answer some of the
questions introduced abode), third designing several experimental protocols in
order to check the validity of our set of principles, fourth experimenting them on
BreakHis dataset (histopathological breast cancer images classified into benign
and malignant).

2 Background

2.1 Classical information metrics

In this section, we first recall some metrics present in the literature. For this
purpose, we consider a dataset D composed of n items, D = {s1, . . . , sn}, each
item s being associated with a unique class c which is called the label of s and
denoted by s.label = c. The set of possible classes is denoted C. Classically, the
abundance aD(c) of a class c given a dataset D is the number of items of this
class according to D, and the proportional abundance of a class c, PD(c), is the
percentage of representation of a class among all the classes:

aD(c) = |{s ∈ D : s.label = c}|
pD(c) = aD(c)

n

According to [6], there are three indicators that have been defined in the liter-
ature for estimating the diversity of a dataset, namely, the variety, the balance
and the disparity. Here we expose some metrics aiming at capturing these indi-
cators:
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• Variety: The richness R is a metric related to the variety and represents
the number of classes effectively considered for the classification task [5,
15]:

R(D) = |{c ∈ C : pD(c) > 0}|

• Balance: The imbalance ratio IR is the ratio of a majority over the
minority classes in a binary classification [7]:

IR(D) =
aD(Majority class)

aD(minority class)

According to [8], the dataset is little imbalanced when 1.5 < IR < 3,
medium imbalanced for 3 < IR < 9 and very imbalanced when IR > 9.
Note that in the case of a binary classification, IR(D) = 1

pD(minority class)−
1. There are several other measures that capture the distribution of the
data. However since they are all based on the proportional abundance p
it means that they only take into account the number of items per class
without considering the different natures of these items1.

• Disparity: The Disparity D quantifies the variety of the data based on a
pairwise distance d between classes.

D =
∑
c∈C

∑
c′∈C

d(c, c′)

However providing the distance d between two classes requires additional
knowledge (e.g. coming from the context of the classification task).

Since Variety and Balance are only defined on the abundance of each class
with respect to each other, the associated metrics will not help us very much in
characterizing the quantity of information contained in the dataset. This is why
in Section 4, we propose to introduce several new metrics based on Disparity or
on the diameter of the dataset, that incorporates a distance d more appropriate
for images.

2.2 BreakHis Dataset

“BreakHis” (which stands for “Breast Cancer Histopathological Database”) is
a public dataset composed of 7909 histopathological biopsy images observed by
four microscopic magnifications: 40X, 100X, 200X and 400X, collected from 82
patients by P&D Laboratory in Brazil on 2014 [14]. Among the labels that

1Three other measures could be considered, namely, Shannon entropy [12] H, Herfindahl-
Hirschman [11] HHI and Berger-Parker indexes BPI, which capture respectively the uncer-
tainty in predicting the type of an item taken at random, the probability of two random items
to belong to the same class and the maximal proportional abundance:

H(D) = −
∑
c∈C pD(c)× log(pD(c)) HHI(D) =

∑
c∈C pD(c)2

BPI(D) = max(pD(c))
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characterize the images, we focus on the tumor type which is either benign or
malignant. This dataset is imbalanced with IR = 2.19 (see Table 1). Indeed,
there are 2480 benign samples representing the minority, versus 5428 malignant
ones, representing the majority category yielding a total amount of 7908 (only
5271 (i.e. 2/3) are used for the training phase, as explained in Section 7). In
order to deal with this imbalanced dataset, we are going to propose several data-
augmentation techniques and compare their impact on the learning process.

3 Formalisation and Protocols for BreakHis data
preparation

Data preparation consists in transforming the initial dataset in order to bet-
ter train the network. Among the classical transformation, the more used are
balancing and augmentation. Note that according to [13], there are three ways
to rebalance the dataset : 1) over-sampling the minor class which amounts to
augment the size of the minority class; 2) under-sampling the major class which
consists in removing items from the majority class; 3) bagging the training phase
which raises the probability to select an item in a marginalized category. The
latter way to balance the data is out of the scope of this paper which focuses
on data preparation techniques rather than training techniques.

This section first presents a list of principles that should hold when per-
forming any data preparation, then we introduce the formalism adopted and
the signature of the transformation functions that we are going to use for data
augmentation. In order to validate the principles that we are introducing here,
in Section 3.4 we have designed a discriminating set of experimental protocols
whose results allow to confirm or deny these hypotheses.

3.1 General Principles for efficient data preparation

During data preparation, it is often the case that researchers use balancing
techniques, or merely augment the data by doing some transformations on the
samples. The best practices are guided by the results obtained, some practices
are known to work better than others, however the hypothesis underlying the
practices are not always made explicit. Moreover it is not clear if some practice
are good or not, for instance sometimes augmentation creates duplicate of some
samples, is it efficient to do so? Below, we enunciate a list of hypothetical prin-
ciples that are inspired from the best practices in order to give more awareness
about what should be a “rational data preparation”. Note that some of these
principles are well known, and seem obvious and are still too fuzzy, however by
writing them we show that more experiments are required for precising them. It
also underlines the need for metrics that could characterize better the datasets,
hence, justifying the work done in section 4. We can enunciate six principles
that may improve the training:

• Balanced Dataset (BD)
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• Sufficient Dataset Size (SDS)

• No Duplication of Items (NDI)

• Well Chosen Transformation Operators (WCTO)

• Variety of Transformation Operators (VTO)

• Fresh External Data (FED)

Indeed, our experiments presented in Section 5 will confirm these rational
principles. More precisely, (BD) stipulates that a balanced dataset behaves
better than an unbalanced one for a classification task. (SDS) implies that
a too small dataset may have a high negative impact (inefficiency and slow
convergence) on the training process, even when the data is balanced. Moreover,
by (NDI), we assume that duplication does not compensate the smallness of the
dataset (it does not improve efficiency nor convergence). Furthermore, using
data augmentation with no “fresh” data but with transformed items has often
a positive impact on the training process, especially when the transformation
is “label conservative”, this is the meaning of (WCTO). (WCTO) is also useful
for balancing a dataset of sufficient size since by adding well transformed items
to the minority class we can obtain a positive impact on training. Indeed we
will see that some transformation perform better than others, obviously, label-
conservative ones are mandatory. (VTO) expresses that using several diversified
transformation operators has a positive impact. Finaly, adding fresh external
real data perform better than adding generated data but may require more
training time.

3.2 BreakHis transformation operators

In addition to the identity operator denoted Id, the data augmentation process
is based on two types of elementary operators that are label-conservative (see [1]
for the geometric operators and [16] for the color ones):

• Geometric operators Due to the fact that BreakHis images are rectangles
of 460x700, any non-mirror geometric operation would yield a different
shape which would need to be reshaped or cropped in order to feed the
CNN. To avoid this post-operation that may decrease the precision, we opt
for the only two operators that preserve the same shape: the horizontal
and vertical flips. These two operators are denoted respectively H and V.

• Color operators In order to increase the number of images, we consider
also the possibility to play on colors. We use two operators: a RGB color
inversion and a transformation of the RGB encoding of the image into the
HSV color encoding. They are denoted respectively c and C.

In order to perform more than four distinct data augmentation, it is neces-
sary to combine elementary operators by applying them successively. However,
some combinations could create duplicated instances of the same images (e.g.
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HV=VH, Hc=cH, ...). In summary, due to symmetries, only 15 distinct combi-
nations are possible, namely: H, V, c, C, HV, Hc, HC, Vc, VC, cC, HVc, HVC,
HcC, VcC, HVcC.

3.3 Signature of even split data-transformation

In this section, we introduce the signature of a particular kind of data transfor-
mations with even distribution, i.e., the data is split into equal parts of samples
where the same transformation is applied to all elements of the same part.

Definition 1 (Signature). The signature of a even-split dataset transformation
denoted tr(D, ops, ratio), is a function of the following parameters:

• D: the dataset to transform

• ops: the list of operators to apply to the different parts

• r: the division rate (in percentage) for splitting the dataset into parts (on
which the operator(s) will apply)

where tr(D, (op1, . . . opp), r) = (op1(D1), . . . , opp(Dp)) is a partition of the dataset
D into D1, . . . Dp (where p = 100/r) on which the operators (op1, . . . opp) are
applied respectively and op(D) is an abbreviation for: op(D) = {op(s)|s ∈ D}

For instance we can consider the augmentation done by applying one el-
ementary operation among (H,V, c, C) to each 25% of the dataset D: this
augmentation has the signature tr(D, (H,V, c, C), 25). It consists in parti-
tioning D into four parts (D1, D2, D3, D4) and apply H to D1, V to D2, c
to D3 and C to D4 yielding a new dataset D′ = tr(D, (H,V, c, C), 25) =
(H(D1), V (D2), c(D3), C(D4)).

Note that an augmentation that applies the same operator op to the whole
dataset D has the following signature tr(D, (op), 100).

3.4 Experimental Protocols

In this section, we propose 13 different data preparation protocols for BreakHis
dataset, designed with the purpose of enabling us to validate the General Prin-
ciples enunciated above. D denotes the part of BreakHis dataset items assigned
for training (we took 2/3 of the initial dataset) and Di denotes the new training
dataset after preparation with the protocol Pi. In the following, all the samples
s′ of Di are such that s′.label = s.label where s is the original sample in D
which yields s′ in Di (by a transformation in {Id,H, V, C, c,HC, V c, CV, cH}).
In other words the protocols are creating new samples that are labelled accord-
ingly to their initial label in the original dataset.

BreakHis training Dataset D is composed of two classes, the marginal class
called m, it is the benign category: m = {s ∈ D|s.label = benign}. The
majority class denoted M is the malignant category: M = {s ∈ D|s.label =
malignant}. Hence D = M ∪m. Note that m has a size equal to half the size of
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the majority class M , the protocols are using this characteristics for balancing
the data.

1. Protocols 1 (no data creation): P1a is a control protocol where no bal-
ancing nor augmentation are processed to the dataset. D1a = D; P1b

is a second control protocol where only an augmentation is done without
bringing “new” information: mere identical duplication of the items of the
already majority class D1b = D ∪ tr(M, (Id), 100); P1c is a third control
protocol which does not bring any “new” information but increases the
size by simple duplication of the items in order to balance and augment
the data D1c = D ∪m ∪ tr(D ∪m, (Id), 100).

2. Protocols 2 (balanced data) : double the size of the minority class with
only one operator. P2a uses a geometrical operator: D2a = D∪tr(m, (H), 100);
P2b uses a color operator : D2b = D ∪ tr(m, (C), 100); P2c: balance by
under-sampling. D2c = m ∪ Sample(M, |m|) where Sample(X,n) is a
function that randomly selects n elements among the set X;

3. Protocols P3 (augmented unbalanced data) uses a color operator to aug-
ment the size of the majority class : D3 = D ∪ tr(M/2, (C), 100).

4. Protocols 4 (balanced and augmented data): with two single successive
operators. P4a uses the geometrical operators H and V : m′ = m ∪
tr(m, (H), 100) (double the size of the minority), D4a = M ∪m′ ∪ tr(M ∪
m′, (V ), 100) (augment the whole dataset); P4b is similar to P4a but uses
the color operators C and c; P4c uses the operators H and C; P4d uses the
operators V and c. P4e uses the four operators applied on different parts of
the dataset: m′ = m∪ tr(m, (H,V,C, c), 25) (double the size of minority),
D4e = M ∪m′∪ tr(M ∪m′, (C, c, V,H), 25) (augment2 the whole dataset).
P4f supply the lack of data by adding samples from another dataset3:
D4f = M ∪m ∪m extra ∪M extra where m extra (resp. M extra) is
a set of 3|m| (resp.|M |) minority (resp. majority) category images of the
other dataset.

4 Diversity measures

According to the definitions recalled in Section 2, in order to compute the dispar-
ity D of a dataset, we should be able to provide a way to compute the distance
between the different classes. We propose to define the distance between two
classes by introducing first the distance between two images. Then we base the
distance between two classes on the distance between the means of each classes.
There are several ways to compute the distance between two images, for instance
the Euclidean distance is based on a point-to-point comparison of the pixels of

2More precisely, D4e = M ∪ m ∪ tr(m, (H,V,C, c), 25) ∪ tr(M, (C, c, V,H), 25) ∪
tr(m, (C, c, V,H), 25) ∪ tr(m, (HC, V c, CV, cH), 25)

3https://iciar2018-challenge.grand-challenge.org/Dataset/
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each image (it is the norm of the matrix difference). Another idea is to take into
account extra information in order to integrate into the distance the fact that
horizontal and vertical symmetries should not increase the distance between
images, because for a classification task these symmetries do not matter. This
is why we choose to use a standard measure called SSIM (structural similarity
index measure) [18] which estimates the similarity of two images based on a
kind of contraction of the images according to their luminance, contrast and
structure.

Definition 2 (SSI [18]). Let s1, s2 be two samples,

SSI(s1, s2) =
(2µ1µ2 + α1)(2σ12 + α2)

(µ2
1 + µ2

2 + α1)(σ2
1 + σ2

2 + α2)

where µ1, µ2, σ2
1, σ2

2, σ12, α1, α2 are the means and variance of s1.image and
s2.image, the co-variance of s1.image and s2.image, and two small constants
respectively.4.

Note that this similarity measure is invariant to the vertical and horizontal
flip, since an image and its flipped version have the same average and variance.
However this does not hold for color operation. We propose a SSI variant, called
SSIC that is label-conservative for all operations introduced in Section 2.2, i.e.,
which is invariant to color operations c and C.

Definition 3. Let s1, s2 be two samples,

SSIC(s1, s2) = min
op∈{Id,c,C}

SSI(s1, op
−1(s2))

Example 1. for instance if s is a sample to be compared to its transformed sam-
ple by RGB color inversion c(s), the distance SSIC(s, c(s)) is 0 since c−1(c(s))
= s

Proposition 1. For any combination cop of the elementary operators {Id, H,
V , C, c}, it holds that for all sample s, SSIC(s, cop(s)) = 0

Proof. The proof concerning the geometric operators is due to the definition of
SSI and is already explained in the Note below Definition 2. SSIC being built
on SSI to ignore color transformations hence the result.

We are now in position to define the best representative sample among a set
X, called µI(X). It is the sample which is the most similar to the other samples
of X:

µI(X) = argmaxx∈X
∑

y∈X\{x}

SSIC(x, y)

We propose to evaluate the diversity of a dataset D by its disparity and
diameter. The disparity has already been recalled above and is related to the

4These constants were introduced by [19] for avoiding unstability when the denominator
is close to 0 by setting α1 = 0.01×L and α2 = 0.03×L where L is the dynamic range of the
pixel values. For BreakHis dataset, with 8 bits/pixel images, L = 255.
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distinction between the different classes. The diameter is a general measure of
the scope of the whole dataset independently of the classes, it is the maximum
distance between any two images of the dataset. These two measures can be
defined either on the Euclidean distance d, or on the more informed similarity
measure SSIC yielding four measures diam, disp, diamI and dispI where I
stands for “informed measure”. We normalize the Euclidean distance by the
the greatest possible distance matrix denoted |im255|, i.e., the image composed
of 255 on the three channels RGB (since the images are 460×700 then |im255| =√

460× 700× 3× 2552 = 250627.5125).

Definition 4. Given a dataset D, with two classes D1 and D2 (D = D1 ∪D2),

• diam(D)=
maxs1,s2∈D d(s1.image,s2.image)

|im255|

• disp(D)= d(µ(D1),µ(D2))
|im255|

• diamI(D)= maxs1,s2∈D(1− SSIC(s1.image, s2.image))

• dispI(D) = (1− SSIC(µI(D1), µI(D2))

Note that concerning disparities, the definitions are given for a binary clas-
sification (|C| = 2) where D1 is the part of the set D containing the first class
and D2 is the part of the set containing the second class.5

The following proposition shows that all the protocols that we provide except
P4f does not bring any “new” information to the dataset.

Proposition 2. for all the datasets Dij obtained by the protocols except D4f

diamI(Dij) = diamI(D1a) and dispI(Dij) = dispI(D1a)

Proof. The proof is based on the invariance of SSIC wrt color and geometric
operators.

5 Results and discussion

In this part, we try to estimate the amount of information that is contained in
the different datasets obtained by the previous protocols. As said in Section
2, the variety and balance can be respectively estimated through the richness
measure R and the imbalance ratio IR. This section evaluates the different
protocols on two aspects, first the quantity of information present in the dataset
produced by the protocol, second the classification efficiency given by a CNN
trained on these datasets. Table 1 gives the different sizes Dij of the datasets
obtained by the different protocols Pij . Note that the richness of the dataset
obtained with any of the protocols remains the same since the number of classes
remains constant: R(Dij) = 2 for all the datasets. Concerning the balance, the

5If there were more than two classes, the disparity would be
2
∑

c∈C

∑
c′∈C\{c} d(µ(Dc),µ(Dc′ ))

|C|×(|C|−1)×|im255|

9



imbalance ratio IR of the datasets Dij obtained by the different protocols is
always 1 (due to the doubling of the size of the minority class that has a size
equal to half the one of the majority class), for any protocol Pij except P1a, P1b

and P3. Note that due to Proposition 2, the informed disparities and diameters
are the same for all the datasets except D4f .

P |Dij | R IR disp diam dispI diamI

1a 5271 2 2,19 0.0254 0.1299 0.0975 0.0157

1b 8785 2 4,38 0.0254 0.1299 0.0975 0.0157

1c 14056 2 1 0.0254 0.1299 0.0975 0.0157

2a 7028 2 1 0.0528 0.1299 0.0975 0.0157

2b 7028 2 1 0.0826 0.2453 0.0975 0.0157

2c 3514 2 1 0.0265 0.1045 0.0975 0.0157

3 7028 2 3,28 0.0654 0.4213 0.0975 0.0157

4a 14056 2 1 0.038 0.1465 0.0975 0.0157

4b 14056 2 1 0.1168 0.5812 0.0975 0.0157

4c 14056 2 1 0.2051 0.3489 0.0975 0.0157

4d 14056 2 1 0.1030 0.4731 0.0975 0.0157

4e 14056 2 1 0.4361 0.8312 0.0975 0.0157

4f 14056 2 1 0.4673 0.4369 0.1385 0.2413

Table 1: Metrics Results obtained on BreakHis

Table 2 describes the results obtained by the network trained on the datasets
produced by the different protocols. Acc represents the accuracy, Acc is the rate
of correctly classified samples among all the samples Acc = TM+TB

TM+TB+FM+FB
with TB (respectively TM , FB, FM) denotes the number of samples correctly
assigned to the benign (resp. correctly to the malignant, wrongly labeled benign,
wrongly labeled malignant) class. Prec is the precision, it indicates the portion
of correctly assigned elements among the ones that are predicted malignant
Prec = TM

TM+FM . Rec is the recall, it indicates the portion of samples correctly
affected to the malignant class among all the samples that are malignant in the
ground truth Rec = TM

TM+FB . We also give an indication of the training behavior
by mentioning the stabilization’s epoch StbE which is computed thanks to the
early-stopping regularization technique [10]. It is the epoch from which the
training loss is nearly steady. Table 3 shows the principles that seem to support
the protocol performance, for WCTO and VTO we precise respectively the list
of transformation operators and the number of distinct operators used.

In Table 2, the bad results of P1a and P2c underlines that a too small dataset
has a high negative impact on the training process, even when the data is balanced
confirming the principle (SDS). Also, these two datasets had the smallest dispar-
ity and diameters (absolute and informed). Having a small disparity translates
that the images of the two classes are near to each other making harder the
discrimination task.

Duplication does not compensate the smallness of the dataset. Also, com-
pensating the lack of data by duplicating identically the same images makes
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P StbE Acc (%) Prec (%) Rec (%)

1a inf 47.23 53.22 48.59

1b inf 49.08 46.59 49.03

1c inf 50.01 48.23 47.71

2a 1966 64.12 65.27 67.02

2b 2133 69.43 66.15 68.13

2c inf 50.03 46.02 49.93

3 inf 55.79 52.03 56.46

4a 2146 88.63 75.10 70.02

4b 2369 85.36 71.36 69.04

4c 1967 90.02 85.03 88.52

4d 2513 84.29 72.13 78.96

4e 2719 95.63 78.49 75.16

4f 2861 96.03 89.46 91.75

Table 2: Accuracy Results obtained on BreakHis

P BD SDS NDI WCTO (ops) VTO (nb ops) FED
1a no no yes no 0 no
1b no no no no 0 no
1c yes yes no no 0 no
2a yes no yes H 1 no
2b yes no yes C 1 no
2c yes no yes no 0 no
3 no no yes C 1 no
4a yes yes yes V + VH 2 no
4b yes yes yes c + cC 2 no
4c yes yes yes C + CH 2 no
4d yes yes yes c + cV 2 no
4e yes yes yes C + c + V + H

+ CH + cV +

VC + Hc

8 no

4f yes yes yes no 0 yes

Table 3: Principles satisfied by the protocols

the training even more difficult and yields the CNN into over-fitting (P1b and
P1c), because for these latter protocols the CNN is unstable and blocked in a
transitory regime with a bad accuracy under 50%, confirming the (NDI) princi-
ple. Using data augmentation with no “fresh” data but with transformed items
has a positive impact on the training process (since P4a gives better results
than P1c and P2b being better than P2c) this confirms both (WCTO) and (BD)
principles. Moreover, the reader can check that augmenting a balanced dataset
increases the performances, (see P4abcdef wrt P2abc) which supports again the
(SDS) and (BD) principles. Note that the color transformations have better
impact than the geometric ones (P2b being better than P2a and P4c than P4a),
consolidating the (WCTO) principle. In parallel, we observe that both the dis-
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parity and the diameter are augmented by adding transformed samples relating
these measure to the (WCTO) and (VTO) principles. In addition, we conclude
that varying the operators by using them on different parts of the dataset, in-
creases the accuracy : the best accuracy 95.63% is obtained in that case (P4e)
with the use of 8 different operators demonstrating the importance of (VTO)
principle which is again correlated with a high disparity and diameter. Lastly,
we see that P4f has the best performances with the addition of fresh external
data (FED) but this protocol needs more training time. Obviously having the
possibility to add fresh external data is ideal, however, it is not always possi-
ble to find more real data, this is why we can consider that P4e and P4c are
the best data preparations. Contrarily to what was expected, several dataset
that have equal values with dispI and diamI may have very different efficiency.
These measures are capturing a kind of brute richness similar to the one that
a human expert could have given by understanding the equivalences between
samples. It seems that the network is benefiting from the creation of equivalent
samples which do not increase what we call “informed” disparity and diameter
but increase the non informed disparity and diameter.

6 Conclusion

This article studies the data preparation process through the idea that there
is a need for evaluating the quantity of information present in a dataset in
terms of efficiency for a classification task. For this purpose, we define four new
metrics to evaluate the dataset diversity and we formalize six rational principles
for data preparation. Then, we experiment 13 data-preparation protocols and
identified among them the most suitable ones for BreakHis images classification.
As a perspective of this work we propose to use the saliency maps technique to
visualize what the CNN is considering from a transformed data and to define
another family of informativeness metrics.

7 Ethical Issues and Computational Details

This research study was conducted retrospectively using human subject data
made available in open access and ethically approved by (https://www.kaggle.
com/ambarish/breakhis).

We used the pre-trained ”VGG19” convolutional neural network model as
a classifier to compare the different dapa-preparation protocols. In order to
optimize the network training, we used the the several regularization techniques
such as the L2 regularization with α set to 0.01, the early stopping and the
dropout techniques are also used. We trained our model for 3000 epochs with a
batch size of 64. We opted for Adam-optimiser for a learning rate fixed initially
at 0.0001. The initial breakHis dataset was split into 2/3 for the training setD1a,
1/6 for validation and 1/6 for the test. |D1a| = 5271, p(M) = 2/3, p(B) = 1/3
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