R. Schmit, A signal subspace approach to multiple emitter location and spectral estimation, 1981.

G. Bienvenue and . Kopp, Principe de la goniométrie passive adaptative, Proc. Colloque GRETSI, pp.106-116, 1979.

B. Porat and . Friedlander, Analysis of the asymptotic relative efficiency of the MUSIC algorithm, IEEE Trans. Acous., Speech, and Signal Processing VASSP, vol.36, pp.532-543, 1988.

A. Ouamri, S. Tressens, and H. Clergeot, Comparison of high resolution spectral methods based on SVD, Proc of EUSIPCO-86, pp.337-340

A. Ouamri, Etude de performances des méthodes à haute résolution et application à l'identification des échos par une antenne linéaire, 1986.

P. Stoica and A. Nehoari, MUSIC.Maximum Likelihood and Cramer Rao Bounds

, Trans. Acous., Speech, and Signal Processing VASSP 37-N°, vol.5, pp.720-741, 1989.

T. J. Shan and T. Kailath, New adaptive processor for cohérent signal interférences, Proc of ICASP-84, pp.3351-3354, 1984.

H. Clergeot, A. Ouarnri, and S. Tressens, High resolution spectral methods for spatial discrimination of closely spaced correlated sources, Proc ICASSP-85, pp.560-563, 1985.

D. C. Rife and R. R. Boorstyn, Multiple tone parameters estimation from discrète time observations, Bell System Tech. Journal, vol.55, pp.1389-1410, 1976.

R. Kumaresan, .. L. Scharf, and A. Shaw, An algorithm for pole-zero Modeling and Spectral Analysis, IEEE Trans. Acous., Speech, and Signal Processing VASSP, vol.34, pp.637-640, 1986.

S. Tressens, H. Clergeot, A. Ouamri, and M. Buvet, More on the optimality of EVD methods for bearing estimation, Proc. ICASSP-88, pp.2881-2884

H. Clergeot, S. Tressens, and A. Ouamri, A new Maximum Likelihood Method for estimation of correlated sources. Comparison with existing methods, Proc of EUSIPCO-87, vol.87, pp.71-75

H. Clergeot, S. Tresssens, and A. Ouamri, Performances of high resolution spectral methods compared to the Cramer Rao Bounds, IEEE Trans. Acous., Speech. and Signal Processing, 1989.

D. R. Brillinger, Time Series-Data Analysis Theory, 1975.

S. Haykin, Adaptive filter theory, 1986.

B. Widrow, A comparison of adaptive algorithms based on the methods of steepest descent and random search, IEEE Trans

, AP-24, Antennas Propagat, pp.616-637, 1976.

. Macchi, Le filtrage adapatatif en Télécommunications, Annales des Télécommunications, vol.36, pp.11-12, 1981.

B. Widrow, Stationary and nonstationary learning characteristics of the LMS adaptive filter, Proc. IEEE, vol.64, pp.1151-1162, 1976.

M. G. Bellanger, Adaptive digital filters and signal analysis, 1987.

E. R. Ferrara, Fast implementation of LMS adaptive filters, IEEE Trans. Acoust. , speech, Signal, pp.474-475, 1980.

D. Mansour and A. H. Gray, Unconstrained frequency-domain adaptive filter, IEEE Trans. Acoust., Speech, Signal Processing, pp.726-734, 1982.

G. A. Clark, S. K. Mitra, and S. R. Parker, Block implementation of adaptive digital filters, IEEE Trans. on CAS, vol.28, pp.584-592, 1988.

Z. J. Mou and P. Duhamel, Fast FIR filtering : algorithms and implementation, Signal Processing, pp.377-384, 1987.

J. C. Lee and C. K. Un, Performance of transform-domain LMS adaptive digital filters, IEEE Trans. on ASSP, vol.34, pp.499-510, 1986.

Z. J. Mou, Fast FIR filtering : algorithms and architectures, 1989.

J. Benesty and P. Duhamel, A fast constant modulus adaptive algorithm

D. W. Tufts and R. , KUMARESAN Estimation of Frequencies of Multiple Sinusoids : Making Linear

, Prédiction Perform Like Maximum Likelihood, Proc. of the IEEE, vol.70, 1982.

R. Kumaresan and D. W. , TUFTS Estimating the Angles of Arrivai of Multiple Plane Waves

, Trans. on Aerospace, p.19, 1983.

R. Schmidt, Multiple Emitter Location and Signal Parameter Estimation, Proc. RADC Spectral Estimation Workshop, pp.243-256, 1979.

S. Y. Kung, K. S. Arun, D. V. Bhaskar, and . Rao, State-space and singular-value decomposition-based approximation methods for the harmonie retrieval problem, Journal Opt. Soc. Am, vol.73, issue.12, 1983.

S. Y. Kung, D. V. Bhaskar, K. S. Rao, and . Arun, New state space and SVD based approximate modeling methods for harmonie retrieval, IEEE 2nd ASSP Workshop on spectral Estimation, 1983.

B. L. Ho and R. E. Kalman, Effective Construction of Linear State-Variable Models from Input/Output Data, Proc. Third Allerton Conférence, pp.449-459, 1966.

J. Recursive, Linear Systems SIAM Journal CONTROL, vol.9

, Wavelets. TimeFrequency Methods and Phase Space, 1989.

P. Goupillaud, A. Grossmann, and J. Morlet, «Cycle-octave and related transforms in seismic signal analysis», Geoexploration, vol.23, pp.85-102, 1984.

A. Grossmann and J. Morlet, «Décomposition of Hardy functions into square integrable wavelets of constant shape», SIAM J. Math. Anal, vol.15, pp.723-736, 1984.

Y. Meyer, , pp.21-37

I. Daubechies, See also I. Daubechies, «The wavelet transform, time-frequency localization and signal analysis», pp.38-66, 1987.

S. G. Mallat, «A theory for multiresolution signal decomposition: the wavelet representation», IEEE Trans. Pattern Anal. Machine Intell, issue.11, pp.674-693, 1989.

A. Grossmann, R. Kronland-martinet, and J. Morlet, «Reading and understanding continuous wavelet transforms», pp.2-20

J. Bertrand and P. Bertrand, «Time-frequency représentations of broad-band signais», pp.164-171

A. Grossmann,

A. Unterberger, «The calculus of pseudo-differential operators of Fuchs type», Comm. Part. Diff. Eq, vol.9, pp.1179-1236, 1984.

L. Cohen, «Time-frequency distribution -A review», Proc. IEEE, vol.77, pp.941-981, 1989.

J. B. Allen and L. R. Rabiner, «A unified approach to short-time Fourier analysis and synthesis», Proc. IEEE, vol.65, pp.1558-1564, 1977.

P. Flandrin, «Time-frequency and time-scale», IEEE 4th ASSP Workshop on Spectrum Estimation andModeling, Minneapolis (MN), pp.77-80, 1988.

A. J. Janssen, «On the locus and spread of pseudo-density functions in the time-frequency plane», Philips J. Res, vol.37, pp.79-110, 1982.

, Flandrin and 0. Rioul, «Affine smoothing of the Wigner-Ville distribution», Speech and Signal Proc. ICASSP-90, 1990.

T. Posch, «Wavelet transform and time-frequency distributions», 1989.

H. I. Choï and W. J. Williams, «Improved time-frequency représentation of multicomponent signais using exponential kernels», IEEE trans. on Acoust., Speech and Signal Proc, issue.6, pp.862-871, 1989.

, Rioul, «Wigner-Ville représentations of signais adapted to shifts and dilatations», Tech. Mémo. AT?T Bell Labs, 1988.

P. Flandrin, Some features of time-frequency representations of multicomponent signais », IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-84, 1984.

J. G. Krüger and A. Poffyn, «Quantum mechanics in phase space, I. Unicity of the Wigner distribution function», Physica, vol.85, pp.84-100, 1976.

C. Nahum, «Etude de la transformation de Wigner», Mémoire ENST-SYC, 1984.

R. L. Hudson, «When is the Wigner quasi-probability density non-negative ?, Rep. Math. Phys, vol.6, issue.2, pp.249-252, 1974.

D. N. Godard, Self-recovering equalization and carrier tracking in two-dimensional data communication Systems, IEEE Trans. COM-28, pp.1867-1875, 1980.

J. R. Treichler and B. G. Agée, A new approach to multipath correction of constant modulus signais, IEEE Trans. ASSP-31, issue.2, pp.459-471, 1983.

J. R. Treichler and M. G. Larimore, The tone capture properties of CMA-based interférence suppresors, IEEE Trans. ASSP-33, vol.4, pp.946-958, 1985.

J. R. Treichler, S. L. Wood, and M. G. Larimore, Convergence rate limitations in certain frequency-domain adaptive filters, pp.960-963

Z. J. Mou and P. Duhamel, Short-length FIR filters and their use in fast FIR filtering

J. Benesty and P. Duhamel, A fast exact least mean square adaptive algorithm

J. Benesty and P. Duhamel, A fast exact least mean adaptive algorithm

R. E. Blahut, Fast Algorithms for Signal Processing, 1985.

Z. J. Mou and P. Duhamel, Fast FIR filtering : algorithms and implementation, Signal Processing, pp.377-384, 1987.

A. Benveniste, M. Goursat, and G. Ruget, Robust identification of a nonminimum phase System : Blind adjustment of a linear equalizer in data communications, IEEE Trans

. Ac-25, , vol.3, pp.385-399, 1980.

P. Duhamel, As seen in section 2, the ratio Pi(z)/bj(z) and pi(z)/ai(z), with pj(z) = pjg + Pij z +, IEEE Trans. ASSP-34, vol.2, pp.285-295, 1986.

=. Pjq-+-pij-z and +. , + pin zn, are respectively the Padé approximants of types (n-l, i) and (n, i) for C(z). Thus, for i from 0 to n, Pin.! zn-1, and pj(z)

, This variant computes only the polynomials ai(z) or bi(z), the forward or backward predictor, but not both of them, Based on a conventional three-term recursion for polynomials which are orthogonal on the unit circle, a variant of the Levinson algorithm has been proposed in, vol.26

, We note that ail thèse types of algorithms (Levinson, Schur, Levinson/Schur) require that ail the principal minors of matrix C be not singular, that is, the polynomial c(z) must be normal. The generalization of this algorithm to the case where the matrix C has any rank profile can be

, Euclidean Algorithm The Euclidean algorithm was originally developed for computing the greatest common divisor (GCD) of two entries or two polynomials [5,20]. solving a YW equation is related directly to its application for Padé approximation

, We first recall the original algorithm for the computation of the GCD of two polynomials, and its extension for solving YW equation. The relation between this algorithm and the Padé

, ? deg(t(z)), the Euclidian algorithm computes GCD(s, t) by a séquence of recursive divisions: let so(z) = s(z), s^(z) = t(z), we construct a séquence of remainder polynomials si(z) for 1 ? i ? n by Euclidean division: For i = 1, 2

. F'i,

. F'u, z) = Fi(z) FimlA(z

, Output F'n/2,l(z) .b^z)J (z)rb O(Z) Second half: Initialisation: _v"0(z), J

, Q1(z),-I For i = 1, 2

. F"i,

, VI, (z) v (z)

, 1(z)=F".(z)F"._u(z) Output: F'^jCz) Combination: "an(z)l (zï IX/?

, while the former computes the polynomial matrices F\ j(z) (or F"j j(z)), which are of dimensions 2x2 and contain 4 polynomials instead of 2. The computational complexity is therefore increased. However, this initial increase in the arithmetic complexity makes the application of the divide and conquer strategy feasible, If we compare each half of the splitted algorithm with the initial algorithm, we remark that the latter computes directly the polynomials ai(z) and bi(z)

G. S. Ammar and W. B. Gragg, Implementation and Use of the Generalized Schur Algorithm, Computational and Combinatirial Methods in Systems Theory, pp.265-280, 1986.

G. S. Ammar and W. B. Gragg, The Generalized Schur Algorithm for the Superfast Solution of Toeplitz Systems, Rational Approximation and its Applications in Mathematics and Physics, vol.1237, pp.315-330, 1987.

G. S. Ammar and W. B. Gragg, Superfast Solution of Real Positive Definite Toeplitz Systems, SIAM J. Matrix Anal. Appl, vol.9, issue.1, pp.61-76, 1988.

E. R. Berlekamp, Algebraic Coding Theory, 1968.

R. E. Blahut, Fast Algorithms for Digital Signal Processing, 1985.

R. P. Brent, F. G. Gustavson, and D. Y. Yun, Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximations, J.Algorithms, vol.l, pp.259-295, 1980.

A. Bultheel and P. Dewilde, On the Relation Between Pade Approximation Algorithms and Levinson/Schur Recursive Methods, Signal Processing: Théories and, 1980.

J. M. Delosme, Algorithms for Finite Schift-Rank Processes, 1982.

P. Delsarte, Y. Genin, and Y. G. Kamp, A Generalization of The Levinson Algorithm for

, Herrnitian Toeplitz Matrices with Any Rank Profile, IEEE Trans. on ASSP, vol.33, issue.4, 1985.

P. Duhamel, Split-Radix" FFT Algorithms for Complex, Real, and Real-Symmetric Data, IEEE Trans. Acoust. Speech Signal Processing, vol.34, pp.285-295, 1986.

P. Duhamel and M. Vetterli, Improved Fourier and Hartley Transform Algorithms: Application to Cyclic Convolution of Real Data, IEEE Trans. on Acoust., Speech, and Signal Processing, issue.6, 1987.

J. Durbin, The Fitting of Time Séries models, Rev. Inst. Int. de stat, vol.28, pp.233-244, 1960.

G. Frobenius, Uber Relationem Zwischen den Naherungsbruchen von Potenzreihen, J. fur Math, vol.90, pp.1-17, 1881.

W. B. Gragg, The Padé Table and Its Relation to Certain Algorithms of Numerical Analysis, SIAM Rev, vol.14, pp.1-62, 1972.

F. G. Gustavson and D. Y. Yun, Fast Algorithms for Rational Hermite Approximation and Solution of Toeplitz System, IEEE Trans. Circuits Syst, vol.26, pp.750-755, 1979.

F. D. Hoog, A New Algorithm for Solving Toeplitz Systems of Equations, Linear Algebra Appl, vol.88, pp.122-138, 1987.

L. Kronecker, Zur Théorie der Elimination einer Variabelen aus zwei algebraischen Gleichungen, Monastsb. Konigl. Preuss. Akad. Wiss. Berlin, pp.735-600, 1881.

N. Levinson, The Wiener (Root Mean Square) error criterion in filter design and Prédiction, J.Math. Phys, vol.25, pp.261-278, 1947.

J. L. Massey, Shift-Register Synthesis and BCH Decoding, IEEE Trans. Inform. Theory, pp.122-127, 1969.

R. T. Moenck, Fast Computation of GCDs, Proc. 5th Annu. ACM Symp. Theory of computing, pp.142-151, 1973.

H. Padé, Sur La Représentation Approchée d'une Fonction par des Fractions Rationnelles, Thesis, Ann. Ecole Nor, vol.9, issue.3, pp.1-93

Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, A Method for Solving Key Equation for Decoding Goppa Codes, Inform. Contr, vol.27, pp.87-99, 1975.

Y. Sugiyama, An Algorithm for Estimating AR Coefficients Based upon Euclid Algorithm, Proc. 1981 National. Conf. Information Science and Technology, vol.10, p.10, 1981.

R. P. Brent, Old and New Algorithms for Toeplitz Systems, NATO ASI 1988

I. Gohberg, Operator Theory and Signal Processing, 1986.

S. Pombra, H. Lev-ari, and T. Kailath, Levinson and Schur Algorithms for Toeplitz Matrices with Singular Minors, 1988.

H. M. Zhang and P. Duhamel, Doubling Levinson/Schur algorithm and its implementation, Proc. of the ICASSP, vol.89, pp.1115-1118