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Abstract 

This paper provides the basic tools required for an efficient use of the recently 

proposed fast FIR algorithms. Thèse algorithms allow not only to reduce the arithmetic 

complexity but also maintain partially the multiply-accumulate structure, thus resulting in 

efficient implementadons. 

A set of basic algorithms is dèrived, together with some rules for combining them. 

Their efficiency is compared with that of classical schemes in the case of three différent 

criteria, corresponding to various types of implementation. It is shown that this class of 

algorithms (which includes classical ones as spécial cases) allows to find the best tradeoff 

corresponding to any criterion. 

1. Introduction 

2. General description of the algorithm 

3. Short-length FIR filtering algorithms 

4. Composite length algorithms 

5. Conclusion 

AppendixA 

Appendix B 

6 figures 

4 tables 

Manuscript received 

The authors are with Centre National d'Etudes des Télécommunications, 

CNET/PAB/RPE, 92131 Issy-Les-Moulineaux, France. 



4 

1. Introduction 

A lot of algorithms are known to reduce the arithmetic complexity of FIR filtering. 

The widely used ones are indirect algorithms, based either on the cyclic convolution or on 

the aperiodic convolution using fast transforms as an intermediate step. Direct methods 

without transforms were also proposed by Winograd [1]. 

Both direct and indirect methods require large block processing: they make use of 

the redundancy between at least L successive output computations (L is the length of the 

filter) to reduce the number of operations to be performed per output point. 

Furthermore, the structure of the resulting algorithm has completely changed : the 

initial computation is mainly based on a multiply-accumulate (MAC) structure, while the 

fast algorithms always involve global exchange of data inside a large vector of size at least 

2L. 

Thèse are the main reasons why the above fast algorithms are not of wide interest 

for real-time filtering : Hardware implementations require pipelining the whole System 

with many intermediate memories, which results in a large amount of hardware. On 

another side, software implementations on Digital Signal Processors (DSFs) are not very 

efficient, except for very large L, since those fast algorithms bave lost the 

multiply-accumulate structure for which ail DSP's are optimized. 

In other words, the usefulness of such algorithms was diminished because the 

reduction in arithmetic requirements per output point was obtained at the expense of a loss 

of structural regularity. 

But structural regularity is difficult to quantify : Hardware implementations do not 

require the same kind of regularity as VLSI implementations do and "structural regularity" 

is still another matter when thinking of DSP implementations. 

Anyway, one fact remains: MAC structure is very efficient on any type of 

implementation, including those on gênerai purpose computer. 

Recently, a new class of fast FIR filtering algorithms taking thèse considerations 

into account was proposed [2,3,4]: Thèse algorithms retain partially the FIR filter 

structure, while reducing the arithmetic complexity. They allow various tradeoffs between 
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structural regularity and arithmetic efficiency, including all classical schemes as spécial 

cases [10]. This flexibility in the derivation of the algorithms allows to find the best 

possible solution in any type of implementation. 

The purpose of this paper is to provide the basic tools required for the dérivation of 

algorithms meeting various tradeoffs in différent implementations. 

A brief description of thèse new algorithms is provided in Section 2. This 

description allows to understand the structure of the new algorithms: Short-length FIR 

filters with reduced arithmetic complexity where ail multiplications are replaced by 

decimated subfilters. Since the process can be reiterated on the subfilters, the short-length 

filters are recognized to be the basic building tools of thèse fast algorithms. 

Hence, Section 3 is concemed with the derivation of a set of algorithms. This 

section is mostly based on Winograd's work. We bring some improvements in the 

number of additions by recognizing that the FIR filtering, seen as a running process, 

involves a pseudocirculant matrix [5] instead of a general Toeplitz one. Another advantage 

of this presentation is the easy understanding of the transposition principle in the context 

of multi-input multi-output Systems, overlapping between blocks being naturally taken 

into account. Using this pseudocirculant presentation, we can dérive the transposed 

version of ail fast FIR filtering algorithms in a very easy manner. 

Section 4 addresses the case of multifactor algorithms. Iterating the basic process 

raises the question of the best ordering of the short modules and of the length where the 

decomposition has to be stopped. We provide the rules for obtaining the ordering of 

factors which results in the lowest arithmetic complexity. A comparison with classical 

algorithms (FFT-based ones) is also provided in the case ofreal valued signais. 

Section 5 concludes and explains some open problems. 

2. General description of the algorithm 

Let us consider the filtering of a séquence {xj} by a length-L FIR filter with fixed 

coefficients ( hi) 

(1) 
L-l 

yn= £ ^n_i h j n = 0, 1, 2,....". 
i=O 
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In z-domain formulation, this convolution becomes a polynomial product : 

. (2) 

Y(z) = H(z) X(z) 

Where X and Y are of infinité degree while H(z) has degree L-l: In z domain, the filtering 

équation, seen as a running process, is described by the product of an infinité degree 

polynomial and a finite degree one. 

Let us now decimate each of the three terms in eq.(2) into N interleaved séquences: 

(3) 
L/N- 

Hj (z) I hmN+jz-m ;j = 0,l N-l 
m = 0 

Xk(z)= SxmN + kzm ;k =0,1,..., N-l 
m=O 0 

vi(z)=lymS+izm i 0, N-1 
m=O 0 

Eq.(2) then becomes : 

(4) 
N-l N-l N-l 

1 Yi (zN) z-i = IE (zN) z"j 1 Xk (zN) z-k 
1=0 j=0 k=0 

Eq.(4) is in the form of a polynomial product or an aperiodic convolution. The two 

polynomials to be multiplied hâve finite degree N-l, and their coefficients are themselves 

polynomials, either of finite degree, such as {H,;}, or of infinité degree, such as {Xi} or 

{Yi}. 

Let us now forget for a while that the coefficients of the (N-l)tn degree 

polynomials are also polynomials, and apply a fast polynomial product algorithm to 

compute the polynomial product in eq.(4). It is well known, since the work of Winograd 

[1] that the product of two polynomials with N coefficients can be obtained with a 

minimum of 2N-1 gênerai multiplications. This minimum can be reached for small N, 

while for larger N the optimal algorithm involves too many additions to be of practical 

interest. In that case, suboptimal ones are often prefered. Hence, application of thèse 

polynomial product algorithms to eq.(4) will result in a scheme requiring 2N-1 

"products", each one being in fact the product of a finite degree polynomial by an infinité 
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degree séquence, that is an FIR filtering of length-IVN. 

Compared to the initial situation, the arithmetic complexity is now as follows : 

Eq.(4) requires N2 filterings of length L/N, which is about L multiply-accumulates 

(Macs) per output (it is only a rearrangement of the initial équation), while the fast 

polynomial product based scheme requires (2N-1) filterings of length L/N, which is about 

L(2N-1)/N2 Macs per output. Thus the improvement in arithmetic complexity is 

proportional to the length of the filter, and this is obtained at a fixed cost, depending on N. 

This means that, for large L, this approach will always be of interest. Précise comparisons 

are provided in Section 3 for each algorithm. 

Slight additional improvements can be obtained by further considering eq.(4): In 

fact, eq.(4) contains not only the polynomial product, which allows the arithmetic 

complexity to be reduced, but also the so-called "overlap" in classical FFT-based 

schemes. By equating both sides of eq.(4), we hâve : 

(5) 
N-l 

YN-1 1 = Y- XN-l-iHi 
i=O 

N-l k 

Yk = zN X XN+k.iHi+ X X^Hj OSkSN-2 
i=k+l i=0 

or in matrix form: 

(6) 

"YN.ii ^ hi � � HN-I X N-I 
YN-2 Z- HN-1 1-10 

.. 
XN-2 

Y 0 
Z-NH ... Z-N HN-1 HO 

Xo 

The right side of eq.(6) is the product of a pseudocirculant matrix [5] and a vector. Note 

that (Xi) and (Hi) play a symmetric rôle, hence can be exchanged in eq.(6). The équation 

is clearly in the form of a length-N FIR filter whose coefficients are ihil, of which N 

outputs (Yi) are computed. Following the notations of Winograd [1], we shall dénote in 

the following an algorithm computing M outputs of a length-N FIR filter by an F(M, N) 
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algorithm. Considering the FIR filter as a whole, and the fast FIR algorithm as the 

"diagonalization" of the pseudocirculant matrix of eq.(6) results in some circumstances in 

a réduction of the number of addidons involved, compared with the usual approach which 

séparâtes the polynomial product and the overlap. This will be seen in Section 3. 

With the explanation above, the proposed algorithms can be understood as a 

multidimensional formulation of the FIR filtering, where computations along one 

dimension are performed through an efficient F(N,N) algorithm, resulting in a reduced 

arithmetic complexity, while the other dimension uses a direct computation, thus allowing 

the process to be a running one. 

Let us also point out that, if the FIR filter of eq.(5) or eq.(6) is computed through 

an FFT-based scheme, and with the appropriate choice of N versus L, the usual 

FFT-based implementation of FIR filters can be seen to be a member of that class of 

algorithms. This is explained in [10], where it is shown that ail fast FIR schemes 

including FFT-based ones can be expressed as : 

- decimation of the involved séquences (N on input and output, M on the filter) 
- evaluation of the obtained polynomials at N+M-1 "interpolation points" {Oj}; 
- "dot product" (or filtering); 
- reconstruction of the resulting polynomials and overlap. 

Ail the algorithms differ only by the choice of N, M, and {cq}. 

Section 3 provides various short-Iength FIR filtering algorithms in the case of real 

valued séquences. 

3. Short-length FIR filtering algorithms 

Let us first explain in some détail the simplest case : an F(2,2) algorithm, as given 

in [2,3,4]: considering N = 2, {OL;} = {0,1,«�}, we obtain : 

(al) ao = xo bo = ho 

at = Xo + xl bt = ho + hl 

a2 = xx b2 = hi 

mi = � bi ; i = 0,1,2 



9 

yo = mo + z-2 m2 

yt = ml - mo - m2 

When used in eq.(5) above, this algorithm results in the filtering scheme of Fig.1 where 

the problem of computing 2 outputs of a length N filter is turned into that of computing 

one output of three length-N/2 filters, at the cost of 4 adds per block of 2 outputs. 

Comparison of arithmetic complexities are now as follows : the initial scheme has a 

cost of L mults and (L-l) adds per output point, to be compared with 

3/4 L mults per output 

2 + 3/2 (L/2 -1) = 3/4 L + 1/2 adds per output. 

It is seen that, excepted for very small L, both numbers of multiplications and 

additions hâve been reduced. 

Successive decompositions are feasible, up to the point where the desired tradeoff 

has been obtained. Of course, this tradeoff dépends on the implementation. On general 

purpose computers where a multiplication and an addition require about the same amount 

of time, the tradeoff allowing the fastest implementation will certainly correspond to a 

decomposition near the one minimizing the total number of arithmetic operations. On 

Digital Signal Processors, a multiply-accumulate operation will in general cost one clock 

cycle, and an appropriate criterion is certainly to count a Mac as a single operadon. A third 

criterion of interest is the minimum number of multiplications. In the following, tables 

giving the minimum numbers for thèse three criteria will be provided. 

Nevertheless, in nearly ail type of implementations, the situation is much alike: the 

decomposition provided in Fig.l reduces the arithmetic load in a manner proportional to 

L, the length of the filter, at a fixed cost (initialization of one Mac loop, or one Mac loop 

plus two adds). Hence the balance between the performances of algorithms dépends on 

the dming spent in the initializations. The précise N by which the splitting becomes of 

interest therefore dépends on the spécifie machine or circuit. Anyway, this type of splitting 

will always be of interest for large length filters, or even medium-size ones. 

The remaining part of this section provides the simplest F(M,N) algorithms that 

can be used to reduce the arithmetic complexity of a length-L filtering. Différent versions 

are provided, resulting in various operation counts, and various sensitivities to roundoff 

noise, a point which will not be dealt with in this paper. 
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The following algorithm is an F(2,2) algorithm with interpolation points {ocj} = 

{0, -1,°°). It has exactly the same complexity as the previous one : 

(a2) ao = Xq bo = ho 

a, = xo - x, bj = ho - hj 

a2 = Xj b2 = hl 

mi = ai bl; i = 0,1,2 

y0 = mo + r2 m2 

YI = II10 + m2 - ml 

For the sake of completeness, two algorithms computing F(2,2) with {ctj} (0, 1, 

11 and (CI¡) = (1. -1, oo) are provided in Appendix B. They may be of interest as long 

as roundoff noise is concemed, but they require 3 multiplications and 6 additions, that is 

one more addition per output. Note that on some implementations (and essentially on 

DSP's), this is not a real drawback, since thèse additions are now of the type a±b, which 

can be efficiently implemented in many cases. 

It is well known in the case of the usual implementation of a digital filter that the 

transposition of a graph provides a digital filter with the same transfer function. Winograd 

has proposed an approach allowing to obtain short-length FIR filtering algorithms by 

transposing polynomial product algorithms. We hâve shown that simple overlapping of 

polynomial products in eq.(5) is sufficient to construct FIR filtering algorithms. The 

transposition of polynomial products is not necessary. It only provides alternative 

versions of the algorithms. In the context of pseudocirculant matrix, we can transpose the 

algorithms in a much easier way, and we can prove that the total arithmetic complexity of 

ail thèse algorithms is not changed by the transposition opération (both number of 

multiplications and additions). More détails are given in Appendix A. 

The following algorithms are the transposed versions of algorithms (al) and (a2). 

(a3) ao = xo - x, bo = ho 

ai = xo bl = ho + hl 

a2 = z-2 XI - Xo h:2 = hl 

mi = aibi; i = 0,1,2 
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y0 = m, + m2 

Yi Mi - % 

(a4) 80 = "0 + Xl bo = ho 

aj = Xq bl = ho - hl 

a2 Z-2 Xy +Xq b2 = hl 

mi = aibj; i = 0,1,2 

yo = mi + m2 

yj = mo - mj 

The use of (a3) in a large FIR filter is provided in Fig.2. 

Iterating the above algorithms results in radix-2 FIR algorithms, with a tree-like 

structure, as proposed in [4]. 

Higher radix algorithms can also be derived, and should be more efficient, as seen 

at the end of Section 2, since the ratio (2N-1)/N2 decreases. However, an optimal F(3,3) 

algorithm would require 5 différent interpolation points, that is one more than the simplest 

ones: {a¡} = {0,1,-1, ?,-], and the next simplest choices of the last interpolation point 

{::!:2,:t112} resuit in an increased number of additions, and an increased sensitivity to 

roundoff noise. This is the reason why it is advisable to use a suboptimal F(3,3) algorithm 

which provides a better tradeoff between the number of multiplications and the number of 

additions. 

Such an algorithm can be obtained by applying twice the algorithm (al) as follows. 

Let us remark that (al) is based on the following équation : 

(8) 

("0 + x, z- 1) (ho + hl z- 1) 
= xo ho + x, hl z-2 + [(xo + xl) (ho + hl) - Xq ho - Xj hj z-1 

Inspired by eq.(8) we rewrite the radix-3 aperiodic convolution equation as follows : 

(9) 

[xq + (xj + X2 Z-1) Z-1 ] [ho + (hl + h2 Z-1) Z-11 
= ("0 + Fz-1) (ho + Gr 1) 
= xo ho + [(xq + F) (ho + G) - xo ho - FG]z-1 + FGz-2 
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Then, the algorithm in eq.(8) is once more applied to the computation of 

(xo+F)(ho+G) and FG which are still radix-2 aperiodic convolutions. This results in an 

aperiodic convolution algorithm requiring 6 mults and 9 adds (an optimal one would 

require 5 mults and 20 adds [11, pp.86]). Overlap has then to be performed by merging 

the terms z° and z-3, and the term z-1 and z-4, with the appropriate delay. Hence, the 

F(3,3) algorithm scems to require 2 more adds than the corresponding radix-3 aperiodic 

convolution algorithm. Nevertheless, considering the redundancy during the overlap in 

F(3,3) algorithm allows a further reducdon of the number of additions to 10 adds, the 

lowest number of opérations to our knowledge. 

(a5) ao = xo bo = ho 

a, = x, bl = hl 

a2 = X2 b2 = ho 

a3 = xq + XI b:3 = ho + hl 

a4 = Xj + x2 b4 = hl + h2 

a5 = Xq + a4 b5 = ho + hy + h2 

mj = ajbi; i =0,1,2,3,4,5 

to = mo - m2 z-3 

tl = m3 - mj 

t2 = m4 - ml 

y0 = to + t2 z-3 

yi = ti - to 
y2 = m5 - tl - t2 

The use of this F(3,3) algorithm to reduce the arithmetic complexity of a larger FER. 

filter is provided in Fig.3, showing that the overall structure is that of a multirate filter 

bank, where [Hl + H2, Hlf Ho + Hj, H2, Ho, Ho + Hl + H2 } are decimated FIR filters. 

Transposition of algorithm (a5) results in the following one, which is depicted in 

Fig.4. 

(a6) aO = X2 - XI bo=ho 

a1 = (x0-x2z-3)-(x1-x0) bi = hl 

a2 = - ao z-3 b2 = h2 

a3 = (XI - XO) b3 = ho + hl 
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a4 = (Xo -X2 z-3) b4 = hl + h2 

as = Xo bs = ho + hl + h2 

mj = aibi ; i =0,1,2,3,4,5 

y0 = m2 + (m4 + m5) 

YI = ml + m3 + (m4 +m5) 

Y2 = voq + m3 + m5 

When used in a length-L FIR filter, both schemes (a5) and (a6) require 2L/3 

multiplications and (2L+4)/3 additions per output point, to bc compared with L and L-l 

opérations respectively in the direct computation. This means that the computational load 

has been reduced by nearly 1/3. 

Careful examination of Fig. 1 - 2 and 3-4 shows that the distribution of the 

additions between the input samples and the subfilters' outputs is not the same in the initial 

algorithms and their transposed versions: In ail cases, transposed algorithms hâve more 

input additions and less output additions. This fact should give them more robustness 

towards quantization noise. 

Another case, which looks interesting at fmt glance is as follows: why not 

decimating the filter by a factor of 2, and X and Y by a factor of 3? This would be solved 

by an F(3,2) algorithm, which requires 3 + 2 - 1=4 interpolating points, that is the very 

number of the simplest interpolating points {0,1,-1.°°}- This means that F(3,2) or F(2,3) 

are the largest filtering modules that can be computed efficiently with an optimum number 

of multiplications : 

(a7) ao = x3 - xl bo = ho 

sl1 = x, + X2 bl = (ha + hl )/2 

a2 = xl - X2 b2 = (lio - hl )/2 

a3 = X2 " xo b3 = ni 

mj = aibi ; i = 0,1,2,3 

y0 = (ml + m2 ) - m3 

YI = ml - m2 

Y2 = mo + (mj + m2) 
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This algorithm looks promising, since the same performance as an F(3,3) 

algorithm is obtained with a simpler one: F(3,2) requires 4 multiplications and 8 additions, 

which means that it reduces of the number of Macs by 1/3, at the cost of 8 additions. 

Nevertheless, problems arise when using this algorithm for speeding up the computation 

of a large length-L filter. The overall structure is depicted in Fig.5, where the main 

computing modules are a kind of 1/3 FIR decimators. Obtaining 3 successive outputs of 

the filter requires the computation of 4 length-L/2 inner products plus 13 adds, to be 

compared with algorithm (a5) which requires 6 length-L/3 inner products, plus 10 adds. 

Therefore, (a7) and (a5) hâve nearly the same arithmetic complexity. But (a7) requires 3L 

memory registers, instead of 2L registers in (a5), and a more complex control System, 

since the inner products are not true FIR filters any more. 

Ail aperiodic convolution algorithms can be tumed into FIR filtering algorithms by 

appropriate overlap. Suboptimal higher-radix(^5) aperiodic convolution algorithms can be 

derived using the approach in [12]. An F(5,5) algorithm based on this approach is given 

in Appendix B. This algorithm, requiring 12 mults and 40 adds is not optimum as far as 

the number of multiplications is concemed, but reaches the best tradeoff we could obtain. 

Ail thèse F(N,N) algorithms are clearly similar to the ones proposed by Winograd 

[1]. They differ essentially on several points : 

First, the récognition that, by using decimated séquences, the arithmetic 

complexity of an FIR filter can be reduced as soon as two ouputs of the filter are 

computed regardless of the filter's length. Winograd's algorithms always require the 

computation of at least as many outputs as the filter's order. 

Second, a straightforward derivation through eq.(4) of the F(N,N) algorithms by 

polynomial product algorithms which were extensively studied in the littérature. 

Third, a reduction in the number of additions, which is made feasible by naturally 

taking into account the "overlap" between two consecutive blocks of outputs (Hence the 

use of the pseudocirculant matrix). 

Fourth, a new interpretation, in the context of pseudocirculant matrix, of algorithm 

transposition and a systematic method of obtaining transposed versions.(See appendix A) 

4. Composite length algorithms 
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We hâve explained in Section 2 that the application of an F(N,N) algorithm could 

break the computation of a length-L FIR filter into that of several length-L/N filters, in 

such a manner that the arithmetic complexity is decreased. Nevertheless, the same process 

can iteratively be applied to the subfilters of length L/N as well, leading to composite 

length algorithms. 

This section is concemed with the problem of finding the best way of combining 

the small-length filters, depending on various criteria. 

We first evaluate the arithmetic complexity of a length L = r^^I^ filter, when 

using two successive decompositions by FÇN^Nj ) first , and then by F(N2,N2 ). Let us 

assume that, with the notations of Section 3, the length-Ni filter requires Mi 

multiplications and Aj additions. 

The first decomposition by FCNj.Nj) turns the initial problem into that of 

computing Ml filters of length N2 L2 at the cost of At additions. Further decompositions 

of the length-N2 L2 subfilters using F(N2,N2 ) require the consideration of a block of N2 

outputs of thèse subfilters (hence a block of NI N2 outputs of the whole filter). Each of 

thèse subfilters is then transformed into M2 filters of length "2 at the cost of A2 additions. 

The global decomposition thus has the following arithmetic complexity: 

N2 Al additions + Ml [ M2 length-L2 subfilters + A2 additions]. 

That is : 

(10) M Ml M2 L-2 

(11 ) A = N2 Ax + Ml A2 + Ml M2 (L2 - 1) 

Let mj = M/Nj and % = Aj/Njwhere i=l,2. mi and a, are the numbers of 

operations (mults and adds respectively) per output required by F(Nj,Nj). Since eq.(10) 

and (11) are the arithmetic load for computing (NI N2) outputs, the numbers of operations 

per output for the whole algorithm are: 

(12) m = m-i m^L^ 

(13) a = ai + ml a2 + mj m2 (L2 - 1) 

An application of F(N2,N:z) first, followed by F^j.Nj) would result in the same 
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number of multiplications , and a number of additions which will bc higher than eq.(13) 

as long as : 

(14) aj + ml a2 � a2 + M2 a, or (ml-l)/al � (M2 -1)/a2 

or, equivalently: 

(15) (M, -NjyAj � (M2 -N2)/A2 

Let us define 

(16) Q[F(Ni,Ni )] = (mi - îyaj = (Mi -Ni )/Ai 

Q is a parameter spécifie of an algorithm. Its use has already been proposed in [8] for the 

cyclic convolution. Eq.(15) means that the lowest number of additions is obtained by first 

applying the short length FIR filter with the smallest Q, and then the one with the second 

smallest Q and so on. Table. 1 provides Q[F(N,N)] for the most useful short-length filters. 

Two useful properties of Q[F(N,N)] are as follows : 

- A straightforward FIR filtering "algorithm" has Q[F(1,N)] =1, whatever N is. 

This means that, in order to minimize the number of additions, they must be located at the 

"center" of the overall algorithm, as was implicitely assumed up to that point. 

- Iteratively applying an algorithm F(p,p) to obtain F(pk,pk) results in an algorithm 

with the same coefficient Q: 

(17) Q[F(pk,pk)] = Q[F(p, p)] 

The demonstration is easily obtained by simply recognizing that applying first 

F(pk,pk) and second F(p,p) or applying them in the reverse order results in the same 

F(pk+i,pk+i) . 

Hence, as an example, an optimal ordering for L = 120 4 =23x3x5 4 would be : 

F (5,5), F (2,2), F (2,2), F (2,2), F (3,3), F (1 J^) 

Of course, when it is desired to implement a length-L filter, it is very unlikely that 

F(L^L) is the most suitable algorithm for a spécifie type of implementation, even in the 
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case where L is composite. The best thing to do, is to scarch for the tradeoff minimizing 

some criteria depending on the implementation. 

It is not our propose hère to perform such an optimization in a spécial case, but we 

shall try to show, in the following, that improvements are feasible whatever the criterion 

is. 

Assuming that L =N1...N¡...N¡Lr' and that a fast algorithm F(Ni,Ni ) is used for 

ail Nj, a straightforward one being used for Lr, the general formulae for evaluating the 

arithmetic complexity per output of a length-L filter are as follows : 

(18) 
r 

m = Lrnmi 
i=l 

(19) 
r i-l r 

a = Lai rlm,+ (L. - 1) rimi 
i=l j=l i=l 

A first criterion of interest would be the minimization of the number of 

multiplications. Examination of eq.(18) shows that such a minimization is performed by 

fully decomposing L into Ni...Ni...NrLT, and this results in the number of operations 

given in Table.2. 

AU the operation counts are provided assuming that the signal and the filter are 

real-valued, and the comparison is made with the real-valued FFT-based schemes [6,9] of 

twice the filter's length. Table.2 shows that the proposed approach is more efficient than 

FFT-based schemes up to L = 36, and very competitive up to L = 64 which covers most 

useful lengths. 

However, with today's technology, multiplication timings are not the dominant 

part of the computations any more when a parallel multiplier is built in the computer, and a 

very useful criterion is the sum of the number of additions and multiplications, i.e., M+A. 

Table 3 provides a description of the algorithms requiring the minimum value for 

such a criterion. It is seen that, although the basic F(N,N) algorithms do not improve the 

criterion, ail the composite ones can be improved, and are even more efficient than 

FFT-based schemes up to N = 64. Consider N = 16, for example: FFT-based schemes 

hardly improve the direct computation £ 29.5 operations per point versus 31), while 
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F(2,2)-based algorithm rcquires only 19.6 opérations per point. 

The previous criterion is well suited for gênerai purpose computer implementation, 

where ail operations are performed sequentially, but Digital Signal Processors still state 

another problem. In fact, DSP's perform generally a whole multiply-accumulate(Mac) 

operation in a single clock cycle, so that a Mac should be considered as a single operation, 

which is not more cosdy than an addition alone. 

Table.4 provides a description of the algorithm minimizing the corresponding 

criterion: the sum of the number of Macs and I/O additions. Of course, this criterion is a 

rough measure of efficiency, since initialization time of Mac loops is not taken into 

account. Nevertheless, what Table.4 shows in that even this kind of criterion, taking 

partially into account the structure of DSP's, can be improved using our approach : a 

length - 64 filter can be implemented using this type of algorithms with nearly half the total 

number of operations (Macs+ I/O adds) per output point, compared to the trivial 

algorithm. And this is obtained with a block size of only 8 points. This shows that 

moderate up to large length filters can be efficiently implemented on DSP's using thèse 

techniques. 

Two points should be emphasized hère : 

A lot of Systems requiring digital filtering hâve constraints on the input/output 

delay, which prevents the use of FFT-based implementation of digital filter. Our approach 

allows to obtain a reduction of the arithmetic complexity whatever the block size is. This 

means that our approach allows to reduce the arithmetic complexity by taking into account 

such requirements as a constraint on the I/O delay. 

Another remark, which is not apparent in the tables, is that for a given filter length 

L, there are often several algorithms providing comparable performance, for a given 

criterion. It allows us to choose among them the one which is the most suited for the 

spécifie implementation. 

5. Conclusion 

We hâve presented a new class of algorithms for FIR filtering, showing that the 

basic building tools are short-length FIR modules in which the "multiplications" are 

replaced by decimated subfilters. 
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We hâve provided also the basic tools required for implementing thèse algorithms: 

First, we propose short-length FIR filter modules of the Winograd-type with a 

small number of multiplications and the smallest number of additions. Their transposed 

versions are also provided. 

Second, we give some rules concerning the best way of cascading thèse 

short-length FIR modules to obtain composite-length algorithms. 

Finally, we show that, for three différent criteria, this class of algorithms allows to 

obtain better tradeoffs than the previously known algorithms, which should make them 

useful in any kind of implementation. 

It is concluded that the presented algorithms allow not only to compute from 

moderate to long length FIR filtering on DSP's in a more efficient manner, but also to 

compute short-length (�64) FIR filtering more efficiently than FFT-based algorithms 

when considering the total number of opérations. 

Thèse algorithms also suggest efficient multiprocessor implementations due to their 

inhérent parallelism, and efficient realization in VLSI, since their implementations require 

only local communication, instead of a global exchange of data, as is the case for 

FFT-based algorithms. 

Appendix A 

A.l Transposition of an F(N.N) algorithm 

Let us consider an F(N,N) algorithm as an (N-input, N-output) System shown in 

Fig.6(a). Its transmission matrix is pseudocirculant: 

Hq H, ... HN-1 

�HN-1 Ho 

P(z)= 
..... 

... H, 

The transposed System (shown in Fig.6(b» will hâve pt(z), which is the transpose 
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of P(z), as its transmission matrix according to Tellegen's Theorem for digital networks 

[13]. 

Unlike (1-input, 1-output) Systems, an (N-input, N-output) system's transpose 

will not perform the same function as the initial one unless P(z) is symmetric, i.e., P(z)= 

PKz). Owing to P's Toeplitz structure, we can manage to get the tranposed System 

performing the same function as the initial one. 

The transposed System is as follows: 

'Y'n.iI ["o Z-NHN-1 Z 1 lrx'N.f 

YN-2 Hl Ho .. 
xt N-2 

.... Z Hn-i 

Yi0 J 
LHn.! ... Hi Ho xi 0 

Ifwe permute the input éléments {X'j} and the output éléments {Y\) in such a way that 

their order is reversed, we will get the transposed System to perform the appropriate 

function: 

Yt0 
^) 1 * * � "N-llrY1 0 

Y\ z'X-i Ho .. 
-X'j 

Yi N-i- 
[z-NRi ... Z -N HN-1 HO X'N-1 

The above démonstration is gênerai, so that ail (N-input,N-output) Systems whose 

transmission matrix is Toeplitz can be transposed to perform the same function as the 

initial System after permuting the inputs and outputs in a reversed order. Thus, it can be 

applied to ail kinds of convolution Systems. Winograd has already proposed to transpose 

circular convolution algorithms in the same manner [7]. We summarize this principle as 

the following theorem. 

Theorem: Having Toeplitz transmission matrix is sufficient for an (N-input,N-output) 

System to be transposed and to perform the same function after permuting the inputs and 
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outputs in a reversed order. 

Hence, we can transpose an F(N,N) algorithm in a rather easy way. In fact, a fast 

F(N,N) algorithm diagonalizes a pseudocirculant matrix: 

(23) P(z) = ANxM HMxM BMxN 

where HMxM is a diagonal matrix. Then the transposition of P(z) is 

(24) Pt(z) = Bt H At 

Permuting the inputs and outputs in a reversed order is équivalent to permute the 

columns of At and the rows of Bl in a reversed order. If we dénote a matrix V after such 

permutation ofrows by V~, the following équation holds: 

(25) P(z) = (Bt)-H(A~)t 

Therefore, we get the transposed version of (23). 

Let us consider as an example an F(2,2) algorithm , as given in (al). It is 

expressed in matrix form as: 

[y 1] J h hoJLxo. 

= 
0 z- 

0 1 

l l x 

therefore 

L i o -1] -2 [j 0 

Following (25), we obtain the transposed version of (al): 
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C:H: '. f -«. J-, x 0 

which is the matrix expression of (a3). 

A.2 Identical arithmedc complexity in initial and transposed FfN.N) algorithms 

It is clear, following the above explanadons, that the multiplicative complexity is 
not changed by transposition. Let us consider the additive complexity in an 
(N-input,N-output) System. 

A digital network is composed of only branches and nodes. There are two kinds of 
nodes: a (M,l) summing node that adds M inputs into 1 output, and a (1,M) branching 
node that branches 1 input into M outputs. A (M,l) summing node can be splited into M-l 
(2,1) summing nodes. A (1,M) branching node can be also splited into M-l (1,2) 
branching nodes. Then it is easy to transform the network to an équivalent one having 
only (2,1) summing nodes and (1,2) branching nodes. After transposition, the summing 
nodes become branching nodes and vice versa. 

The number of additions in the initial network is equal to that of (2,1) summing 
nodes, denoted by Ns. The number of additions in the transposed network is equal to that 
of (2,1) branching nodes in the initial network, denoted by Nb. The additive complexity in 
initial and transposed algorithms is identical if and only if Ns=Nb, and we show in the 
following that this property holds for (N-input, N-output) Systems. 

Proof: For an (N-input ,N-output) network, if we connect the N inputs to the N outputs 
graphically, we get a closed network where every branch coming out from a node should 
enter into another node. Then the number of outputs of ail nodes is equal to that of inputs 
of ail nodes. A (2,1) summing node has two inputs and one output while a (1,2) 
branching node bas one input and two outputs. We get: 

Nb+2Ns=2Nb+Ns 
Ns=Nb 

end of proof. 
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Appendix B Several short length FIR algorithms. 

F(2,2) algorithm with (3 multiplications, 6 additions), {a¡} = [0,1, -1 }. 

(a8) ag = xo b0 = h0 
aj = Xq +x} bi = (ho +hl )/2 
a2 = Xq - xt �= (Iiq - hl )/2 

m. = a. bi ; i = 0,1,2 

y0 = mo +z-2(m! +m2 -mo ) 
yi = mi "m2 

F(2,2) algorithm with (3 multiplications, 6 additions), {04} = [1, -1, oo}. 

(a9) ao = xo +xl bo = (hn +hl )/2 
a, = xo - x, bi = (N) hl )/2 
a2 = Xj b2 = hl 

in, = a, bi; i = 0,1,2 

Yo = toq + ml -m2 +Z-2 M2 
yi = mo -ml 

F(5,5) algorithm with (12 multiplications, 40 addidons). This algorithm is based on the 
approach in [12]. 

(alO) Co = Xo + x3 go 
= 

(ho + h3)/2 

Cj = xj + x4 gl 
= 

(hl + h4 )/2 

C2 = x2 g2 = h2 12 

C3 = xq - x3 g3 
= 

(h3 - ho )/2 

ç4 = xl - xA g4 
= 

(h4 - hl )/2 

C5 = x2 g5 = - h2 /2 

ao = co + q + � bo = (go + gi + g2 V3 

a, = co - c2 bj = go - g2 

a2 = cI - c2 t2 = 91 - 92 

a3 = a, + a2 b3 = (bi + b2 ) /3 



24 

a4 = cj - c4 + C5 b4 = (g3 - g4 + 95 )/3 

as = c3 - C5 b5 =(-2g3 - * g4 + 85 )/3 

a* = c3 + c4 b6 = (g3 + 2g4 + g5 )/3 

a7 = c4 + c5 b7 = (g3 - g4 - 2g5 )/3 

H = Xq b8 = h0 

a9 = Xo bg = hl 

a10 = xj b10 = ho 

an = x4 bl, = h4 

mi = aibi; i 0, 11 

Uq = mj - m3 

Uj = m2 - m3 

do = mo + uo 

dl mo - uo - ul 

d2 = mo + Uj 

d3 = m4 - mj + TDrj 

d^ = -m^ + mg + va-j 

d5 = m4 + m5 + mg 

à�=m�i + m10 

fo = d2 - d5 

f, = dl - d4 

f2 = do - d3 

f 3 = d2 + ds 

f4 = dl + d4 

f 5 = do + d3 

Yo = mg + z-s fs 

y, = d6 + z-1 (fo - in8 

Y2 = f2 - Mll + z-1 (f, - d6 

Y3 = f3 + z-s mll 
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Table. 1 Quality factors for several short-length algorithms. 

Algorithms Q 

F(1,N) 1 

F(2,2) 0.25 

F(3,3) 0.3 

F(5,5) 0.175 
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Table.2 Arithmetic complexity of an F(N,N) algorithm by short-length FIR and by FFT-based 

cyclic convolution. 

Short-length FIR FFT-based FIR Direct FIR 

N M m A a Mppj m Appj a ma 

2 3 1.5 4 2 2 1 

3 6 2 10 3.3 3 2 

4 9 2.25 20 5 15 3.75 43 10.75 4 3 

5 12 2.4 40 8 5 4 

6 18 3 42 7 33 5.5 83 13.83 6 5 

8 27 3.38 76 9.5 43 5.38 131 16.38 8 7 

9 36 4 90 10 9 8 

10 36 3.6 128 12.8 10 9 

12 54 4.5 150 12.5 12 11 

15 72 4.8 240 16 112 7.47 353 23.53 15 14 

16 81 5.06 260 16.25 115 7.19 355 22.19 16 15 

18 108 6 306 17 18 17 

20 108 5.4 400 20 20 19 

24 162 6.75 498 20.75 24 23 

25 144 5.76 680 27.2 25 24 

27 216 8 630 23.33 27 26 

30 216 7.2 744 24.8 225 7.50 829 27.63 30 29 

32 243 7.59 844 26.38 291 9.09 899 28.09 32 31 

36 324 9 990 27.5 271 7.53 1084 30.11 36 35 

60 648 10.8 2280 38 455 7.58 1955 32.58 60 59 

64 729 11.39 2660 41.56 701 10.95 2179 34.05 64 63 

128 2187 17.09 8236 64.34 1667 13.02 5123 40.02 128 127 

256 6561 25.63 25220 98.52 3483 13.61 11779 46.01 256 255 

512 19683 38.44 76684 149.77 8707 17.01 26627 52.01 512 511 

1024 59049 57.67 232100 226.66 19459 19.00 59395 58.00 1024 1023 
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Table.3 Minimum sum of opérations (Mults + Adds). (mxn) means the décomposition by a fast 

F(m,m) algorithm using optimal ordering followed by direct length-n FIR filters. (FFT) means 

using FFT-based schemes. 

N Decomposidon M+A /N Block size 

2 direct 6 3 1 

3 direct 15 5 1 

4 (2x2) 26 6.5 2 

5 direct 45 9 1 

6 (3x2) 56 9.33 3 

8 (2x2x2) 94 11.75 4 

9 (3x3) 120 13.33 3 

10 (5x2) 152 15.2 5 

12 (2x3x2) 192 16 6 

15 (5x3) 300 20 5 

16 (2x2x2x2) 314 19.63 8 

18 (2x3x3) 396 22 6 

20 (5x2x2) 472 23.6 10 

24 (2x2x3x2) 624 26 12 

25 (5x5) 740 29.6 5 

27 (3x3x3) 810 30 9 

30 (5x3x2) 912 30.4 10 

32 (2x2x2x2x2) 1006 31.44 16 

36 (2x2x3x3) 1260 35 12 

60 (5x2x3x2) 2784 46.4 30 

64 (FFT) 2880 45.00 64 

128 (FFT) 6790 53.05 128 

256 (FFT) 15262 59.62 256 

512 (FFT) 35334 69.01 512 

1024 (FFT) 78854 77.01 1024 
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Table.4 Minimum number of Macs (Length of scalar products + I/O adds). (mxn) means 

the décomposition by a fast F(m,m) algorithm using optimal ordering followed by direct 

length-n FIR filters. (FFT) means using FFT-based schemes. 

N Decomposidon MAC /N Block size 

2 direct 4 2 1 

3 direct 9 3 1 

4 direct 16 4 1 

5 direct 25 5 1 

6 direct 36 6 1 

8 direct 64 8 1 

9 direct 81 9 1 

10 (2x5) 95 9.5 2 

12 (2x6) 132 11 2 

15 (3x5) 200 13.33 3 

16 (2x8) 224 14 2 

18 (2x9) 279 15.5 2 

20 (2x2x5) 325 16.25 4 

24 (2x2x6) 444 18.5 4 

25 (5x5) 500 20 5 

27 (3x9) 576 21.33 3 

32 (2x2x8) 736 23 4 

36 (2x2x9) 909 25.25 4 

60 (5x2x6) 2064 34.4 10 

64 (2x2x2x8) 2336 36.5 8 

128 (24xS) 7264 56.75 16 

256 (25xS) 22304 87.13 32 

512 (26x8) 67936 132.69 64 

1024 (27x8) 205856 201.03 128 
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Table captions: 

Table. 1 Quality factors for several shon-Iength algorithms. 

Table.2 Arithmetic complexity of an F(N,N) algorithm by short-length FIR and by 

FFT-based cyclic convoludon. 

Table.3 Minimum sum of opérations (Mults + Adds). (mxn) means the décomposition by 

a fast F(m,m) algorithm using optimal ordering followed by direct length-n FIR filters. 

(FFT) means using FFT-based schemes. 

Table.4 Minimum number of Macs (Length of scalar products + I/O adds). (mxn) means 

the décomposition by a fast F(m,m) algorithm using optimal ordering followed by direct 

length-n FIR filters. (FFT) means using FFT-based schemes. 

Figure captions 

Fig.l FIR filtering based on algorithm (al). 

Fig.2 FER filtering based on algorithm (a2). 

Fig.3 FIR filtering based on algorithm (a3). 

Fig.4 FIR filtering based on algorithm (a4). 

Fig.5 FIR filtering based on algorithm (a5). 

Fig.6 (a) initial System; (b) transposed System. 
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Fig. 3 
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Fig L 
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Fig.6 (a) initial System; (b) transposed System. 
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APPROXIMATE MAXIMUM LIKELIHOOD EXTENSION OF MUSIC FOR 

CORRELATED SOURCES 

H. Clergeot 
* S. Tressens 

Edics 5.1.4 Permisson to publisy this abstract separatly is granted. 

ABSTRACT 

A new algorithm is introduced as an Approximate Maximum Likelihood Method 

(AMLM). It also takes advantage of the EigenValue Decomposidon (EVD) of the covariance 

matrix and can been seen as an improvement of MUSIC in présence of correlated sources. Using 

previous results on the statistical perturbation of the covariance matrix the theoretical statistical 

performances of both estimators are derived and compared to the Cramer Rao Bounds (CRB) . In 

présence of correlated sources MUSIC is no longer efficient while our algorithm achieve the CRB, 

down to a lower threshold that is carefully quantified. 

We then dérive a fast computation efficient Newton algorithm to find the solution of 

thl" AMLM and we perform an extensive analysis of the convergence behaviour and of the practical 

performance by Monte Carlo simulation. 

The theoretical analysis is confirmed by the simulation results. At low SNR our 

algorithm proves to achieve far better resolution properties than MUSIC . We introduce a 

significant SNR "cross over level", for which the theoretical standard déviation is equal to the 

source séparation. We demonstrate that the AMLM provides unbiased estimates and fits the 

theoretical variance down the cross over, while MUSIC loosses resolution at a significantly greater 

SNR ( by up to 20 dB or more). 

Another attractive feature of the algorithm is its ability to operate in présence of rank 

defficient sample covariance matrix for the sources. In particular it is effective with a small number 

of snapshots, even a single one. 

* LESIR/ENSC ,61 Avenue Pt Wilson, 94230 Cachan, FRANCE 

** CRPE/CNET ,38 rue du Général Leclerc , 92131 Issy-Les-Moulineaux,FRANCE 
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APPROXIMATE MAXIMUM LIKELIHOOD EXTENSION OF MUSIC FOR 

CORRELATED SOURCES 

1 INTRODUCTION 

High resolution spectral methods are widely used in array processing for source 

localization. One of the most popular is the MUSIC method for its ability to locate sources with 

an arbitrary array configuration. The MUSIC method is based on the EigenValue Décomposition 

(EVD) of the covariance matrix [1],[2],[3] . But it is known that its performances are severely 

degraded in the présence of correlated sources, and that in the particular situation of unitary 

source corrélation the localization fails [4] [5] [6]. In the case of localizadon with a linear array of 

equispaced éléments, the problem can be solved by the use of spatial smoothing [7] [8], but this 

method cannot be applied to an arbitrary array geometry . 

Another interesting approach can be obtained by the Maximum Likelihood 

Criterion . Under very gênerai conditions, above some Signal-to-Noise Ratio (SNR) threshold, 

this method achieves the Cramer Rao Bounds (CRB) for the estimatiun variance. Several 

maximization algorithms hâve been proposed, but they involve complex non linear itération, and 

are very sensitive to inidalizadon [9] [10] . 

The aims of this article are first to présent an algorithm [5] [11] [12]derived as an 

Approximate Maximum Likelihood Method (AMLM), and then to give its comparison with the 

MUSIC method. For this purppose the analytical expressions of the variance are calculated for 

both methods and related to the CRB. Note that since our first publication [11 , 12] a similar 

form has been suggested in [6], appendix . 

The proposed method achieves the CRB, at high SNR, even in the case of 

unitary correlation between sources. It tums out that this AMLM method reduces to MUSIC in 

the case of decorrelated sources . This is cohérent with the fact that MUSIC is optimal in this 

particular situation [3] [4][6][11][12][13] . 

To dérive the AMLM method , a reduction of the Log-likelihood function is 

introduced . The same approach was used by the authors to dérive a simple form of the CRB 
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[13]. 

In the case of M sources, the solution for the AMLM requires the minimization of 

an M variables function . But compared to the exact Maximum Likelihood method, our algortihm 

takes advantage of a very simple form of the gradient and Hessian.which enables fast 

convergence with a Newton-like method . In its initial formulation , the method relies on an 

estimate of the covariance matrix of the source powers. A variant taking account of a recursive 

update of this matrix is proposed, and proves to hâve superior convergence properties and better 

statistical behaviour at low SNR . Assuming proper initialization, it remains effective if the 

signal matrix is rank déficient or for a small number of snapshots (even a single one). 

In section II the signal model, the basis of EVD methods and MUSIC are 

recalled. In section m, the reduced log-likelihood and the AMLM method are presented . 

Section IV is a recall of the dérivation of the CRB and of the statistical perturbation on the 

covariance matrix . Thèse results are used in section V for the theoretical variance calculation, 

for MUSIC and AMLM . The minimization algorithm is presented in section VI,together with a 

démonstration of its fast convergence in simulation . Statistical performances are checked on 

Monte Carlo simulation (section VII). 
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II SIGNAL MODEL 

n A- SIGNAL MODEL 

For an arbitrary propagation model and array geometry in the présence of additive 

noise, the signal on an N élément array resulting from M sources may be represented by an N 

vector X(q). We assume that we hâve Q observations (snapshots). For the snapshot q, the 

observation vector can be written as: 

X(q)=[Xj(q) XN(q)]' M � N 

M 

X(q )=Z gm(q) S� +JB (q) 

m=l 

2 

where gm is an amplitude parameter associated to source m, and £ m is the corresponding "source 

vector" which may be interpreted as the transfer function between source m and each array élément. 

For a given propagation model and array geometry, Sm = S. (9) is a known vector function of a 

position parameter 9 . R (q) is an additive complex gaussian noise . We assume that the covariance 

matrix of fi is : 

RB=E[aEt]=a2I (2) 

E[fiÊt]=0 

The noise vectors are assumed independent from one snapshot to the other. The amplitudes gm are 

considered as urJoiown deterministic parameters. Calculation will be made for an arbitrary source 

model S. (9) . The spécial case of a linear array will be considered in the last section, for 

simulations .For generality, it will be assumed that the source vectors and the vector function S (9) 

are normalized to one : I I S_ (9) I 1 2=1 . 
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From(l) the vector _X(q) may be written as: 

JÇ(q)=Y(q)+B(q) (3) 

and the vector noiseless observation Y(q) as : 

M 

Y(q)=S gm(q) �= S G_(q) (4) 
m=l 

where S and Q(q) are defined as : 

s=[s_i s.2..._aMi ; M�N 

(5) 

G_(q)=[gi(q) .....gM(q)]t 

A classical identifiability condition is that matrix S is rank M . This is assumed in what follows. 

From (4) , Y(q) lies in the M-dimensional subspace çM, spanned by the source vectors SI 

S_2---.iS_m, called source subspace . Conversely, if there is no deterministic relation between the 

amplitudes gm(q) and if Q�M, the vector Y(q) will span ail the manifold The complementary 

subspace will be named "noise subspace" ,^B. 

The projectors on �s and �B will be noted Fis and Fie with Fis + rÏB=I� the 

identity matrix. The projector Ils may be written in terms of the source matrix according to : 

ns=i IIB = S (s t s)-ist (6) 
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which is a known function of the position parameters ( 9 m). Invertibility 
of ( S t S ) is 

guaranteed by the fact that S is rank 
M. 

The sample covariance matrices of X(q) and_Y(q) 
are respectively : 

fex = il ^q^(q) 

(7) 

R = ¿ Ú(q) Y(q)t 

The additive noise only is considered as random . The expectation 
of matrix Rx is, according to 

(2): 

Rx=E[Rx]=Ry+RB=Ry+a2I 
(8) 

Using (3) and (4) , the sample covariance matrix Ry 
of the signal may be written: 

Ry 
=S P St 

(9) 

Q 
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The structure of matrix P plays an important part in the discussion of optimality . 

The diagonal éléments are the average power pm of the sources.while the off-diagonal éléments are 

the sample cross corrélations . They may be normalized by the powers pm to introduce the 

cohérence coefficients between sources pmn Let : 

Pmm = Pm 
= ô"Z|gm(q)| 

Vq=l 
(10) 

Pmn= qZX gmgn)(PmPn) 
i=l 

Matrix P can be factorized in terms of the source powers, and the cohérence matrix p which 

reflects the intercorreladon between sources only: 

P=Pd1/2 p Pdl/2 

Pd=diag(Pl....pM) 

It is important to note that we hâve used only ensemble average on q for ail 

définitions conceming the second order properties of the amplitudes. The results is that our further 

derivadons will be valid in the small sample case,even for Q=l. This is not so in the most 

commonly used approach, in which the amplitudes are considered as random with given 

covariance. The results concerning the CRB on the variance would then be valid only in the 

asymptotic case Q --� oo . 

Another very common hypothesis is that P is diagonal. According to the previous 

remarks,in the random case ,this will be true not only if the amplitudes are decorrelated, but also if 

Q is large enough ( so that the sample average is close to the expectation) . In such an asymptotic 

case matrix p becomes equal to the idendty matrix. 

On the other hand, in (11) matrix p would be singular whenever there exists some 

determinisdc relation between the source amplitudes. 
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n B- BASIS OF EVD METHODS 

Thèse methods consits in first estimating the signal subspace £$by EVD and then 

estimating the positions from �or ÇB. according to the source vector model S.(8) . 

The estimation of Ç$1S related to the fact that in general , for Q�M, the manifold 

( Y(q) } spans the whole subspace ÇS [ 7,8 1. Then matrix Ry is rank M, i.e., it has M non 

zéro eigenvalues, and the corresponding eigenvectors constirute an orthonormal basis for ̂§ . The 

N-M other eigenvectors, corresponding to the degenerate zéro eigenvalue, constitute an 

orthonormal basis for Ç3. 

In the présence of white noise, according to (8), Rx and Ry 
hâve the same 

eigenvectors. The eigenvalues of Rx are raised by G2 - ne signal eigenvectors are identified as 

those corresponding to the M greatest eigenvalues. 

The eigenvalues will be denoted by Ii for Rx and Xj for Ry , and are assumed to 

be in order of non increasing values.The eigenvectors are denoted by U_j and the projectors on Ç$ 

and Çb by TIS and TIB. We obtain the following relations: 

N 
t 

N 

R* = £ 1:11.11. ;Ry = 2Xu.U. ; i:=X.+a2 

(12) 

M t N t 

i=l » 
� 

i=M+l « 
» 

The position estimation is based on the orthogonality of any vector A of Ç3 to the 

signal subspace , and in particular to all source vectors: 

Vme[LM], V AeÇB, i^.A =s\$m).A =0 (13) 

We may now introduce the following discriminating function: 
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fA(e)=IS_(6)tAI2 (14) 

Relation (13) states that the source locations 0. are zéros of the discriminating function fA (a). 

II C- MUSIC ALGORITHM 

Any eigenvector Hi of Rx for i �M belongs to the noise subspace and may be used 

as the vector A. in(14) . Robustness with respect to the noise and spurious zéros in fA (6) is 

obtained by the use of an average on ail thèse vectors[l,2].The corresponding function is: 

f (0) = X \ £$m (15) 
i=i+Mr 

According to (12) this function may be written in terms of the projector Uq on the noise 

eigenspace: 

f(9)= 5.(8) t nB SJa) (16) 

A A 

For actual data Fis is replaced by its estimate Ils given by EVD of Rx according to relations (12). 

The "MUSIC spectrum" is the plot of f (9)"lwhere the positions of the sources, 

due to inversion, appear as sharp peaks corresponding to the minima of f (9). 
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II D - SOURCE AMPLITUDE ESTIMATION 

The sample covariance P of the source amplitude, is easily calculated by the 

inversion of relation (9): 

p=(sfs) s^ySVs^) 

or 

P-1 = sVyS (17) 

The second shorter expression is valid only if Ry is 
rank M . Matrix R#y , pseudo inverse of Ry , 

is obtained from the EVD of Rx or Ry using : 

R M -L-u ut M î-rllil. (18) 

For the évaluation of P from actual data, S, Xj , Uj, a2 are replaced by proper 
A 

estimâtes . The estimâtes of lli and � are obtained by EVD of Rx The estimate of S is 

deduced, according to the sources model S_(9) , from the position estimation given by MUSIC (or 

any other position estimation method) . The noise variance estimate is obtained by an average over 

the noise subspace eigenvalues : 

i=M+l 
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III THE MAXIMUM LIKELIHOOD APPROACH 

m A - THE LOG-LIKELIHOOD AND ITS REDUCTION 

For given unknown values of ( gm(q)«°2»9m 1, assuming a gaussian additive 

complex white noise, the probability density of the observation is easily found to be given by: 

Log[p(X(q)] NLog (2 ira 2 |X(q) - SG(q)( (20) 
O q=l 

where S and_G_(q) are defined in (5) as a function of ( gm(q),9m 

A AA 

Given an observation X(q),candidates G (q).Q.a. are tried for the exact unknown 

values of the parameters G (q). f!, a by substitution in the expression (20). We obtain the 

likelihood function: 

A A A A 1 
Q A A 2 

v -G (q), 0, a NQI-,og (2 ir a 1-2 Y, (q) - S G(q) 
A q=l 
a 

(21) 

0 ,9M]t 

A A 
where the candidate values of parameters appear in S and Q(q). The Maximum Likelihood 

estimatesjQML (q)JÎML�aML� are selected by maximization of this function. 

A first reducdon of the likelihood is provided by a separate maximization with 
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A 

respect to the amplitudes [12]. For a given value ofmatrix S it is easily found that the 
A 

corresponding signal estimate XML(q)= S G^njq) is the projection of X(q) on Çs: 

A A 

Ils is the projector on the subspace Ç$� function of the source position parameter.e.. Then : 

pq) -Sû^ (q)|= [a - ns )X(q)||= JnB X(q)| 
(23) 

Substitution of thèse values in (21) gives the reduced expression of the Log-likelihood, function of 

A A 
S and a orjly : 

A a 2 Q �a 

2 a) NQIog (21r a )--^Tr(n Rx) 

a 

(24) 
a 1 Q t 
Rx = 77 Y- X(q)X(q) 

q=1 

A A 

whereFlB is parametrized in function of Q. 

The exact ML solution 9_ml for the source position would then be obtained by the 

maximization of (24). 

Note that (24) has a direct interpretation in terms of an alternative model,which is of 

some interest for later discussion. Obviously no separadon can be made between the signal and the 

projection of the noise on the signal subspace, so that we may consider the sum Y_+IT.sfi as the 

unknown signal to be estimated, with an additive noise risfi The corresponding Log-likelihood is 

similar to (24) ( N being replaced by N-M in the first term). Strictly speaking the CRB, as derived 

in section IV A, is valid for this model . 
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fflB-THEAML 

A A 

Let us consider the expectadon of the Log-likelihood function V2( fto) : 

G 

- NQLog (jc 6 -%Tr(n b (R ? 
+ 
1) (25) 

A 
o 

According to (9) 

E[V2(9,â)] = -NQLog(TC0 )-r^2Q(N-M)-^(TrnBSPSf) 

(26) 

It is easily verified that for close to fi the différence between StTIBS and StTIBS is the order 

A 
of Il Qrû 113 [13] . We then obtain the approximation: 

2 2 
�A 

E[V2(S,â)] = -NQLog(*è )-(f|Q(N-M)-%rr(S+n S P) 

(27) 

+ 

This suggests the expression of an approximate MLM, by making the same transformation in the 

likelihood (24) as was made in the expectadon in order to dérive (27). 

According to (24) the exact ML solution for !Lis obtained by the 
minimizadon of 
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A A 

TrtneRxl- Then, by induction from (27) the proposed criterion [10,11] is to minimize the 

expression: 

a a\ A 

f(fi)=Tr(S nBSP) 

sTr(nBR,J-(N-M)fr2 (28) 

A A 
where 

n 
is the projector estimated from the EVD of Rx. 

The statistical properties of this estimator will be derived in section V , in which we 

demonstrate that it achieves the CR bounds at high SNR, even in the présence of correlated 

sources.Compared to the exact MLM, the advantage is that expression (28) is quadratic with 

respect to the source vectors: 

f(fi)= L 
P nmS ( e m ) Íis S ( en) 

(29) 

m,n=l 

This allows the easy implementation of the Newton Gauss algorithm in order to find the minimum, 

assuming a correct starting value Qq. In practice, matrix P will be replaced by an estimate of the 

amplitude covariance matrix updated recursively according to (17) (see section VI for a discussion 

of convergence). 

Relation (29) appears similar to a generalization of MUSIC . In fact in the spécial 

case when P is diagonal it can be easily seen that the minimization gives the solution of MUSIC. 
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A 

IV CRAMER RAO BOUNDS AND STATISTICAL PERTURBATION ON RX 

With référence to a previous study [13], we recall some theoretical results 

conceming the CRB and the stadstical perturbation of Rx which will be used in the next paragraph 

to discuss the optimality of our new method, and its connection with MUSIC. 

IV A - CRAMER RAO BOUNDS 

The same reduced likelihood expectation (27) was used in [5,13] to dérive an 

expression for the CRB. 

The matrix bound [CRB] is given by the inverse of the Fisher information matrix 

[9] 

(CRfiJ ~L = ~ ae m ae n Si (30) 

It was demonstrated in [13] and it may be easily verified from (27) that : 

where �m dénotes the derivadve of the vector function S(0) for 0=6 : 

sm="^T m 

The CRB can be written in terms of a "modified cohérence matrix". For this 

purpose the diagonal éléments in (31) will be normalized to one, by the use of two diagonal 

matrices, the matrix Pd of the source power (11) and the following sensitivity matrix: 
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w = diag t il B m Bâm 
(33) 

Using this définition in (31) the matrix [CRB-1] may then be 
written : 

[OUa-.^P/rç'V, 
(PéW)W 

(34) 

the normalized matrix Pcr being defined by : 

[PCR] mn 
=|Pmn|c°S(~mn)COs(Pmn) 

(35) 

where : 

which may be interpreted as the angle cosine between vectors nB S_m and n^ . 
The angle a^ 

in (35) is defined by : 

-mn=arg(itmnBinPnm) = arg(SmnBin) 
+ arg(Prim) (37) 

It is then directly connected to the average phase différence 
between sources m and n, given by the 

argument of Pmn. 

By inversion of (34) , on the diagonal, 
we obtain the expression of the bound on the 

frequency variance: 
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Note that the diagonal éléments of p and PCR are equal to one. For decorrelated sources, p and PCR 

are the identity matrices. Matrix PCR is always "closer" than p to the identity, due to the 

weighting in (35) by factors less than one, which provide a "pseudo-decorrelation" . In particular, 

PCR may be invertible even if p is singular. 

IV B - STATISTICAL PERTURBATION ON THE SOURCE SPACE ESTIMATE 

Expressions for the eigenvalue and eigenvectors variances in the présence of 

additive noise are classical [14] . To characterize the perturbation of the signal subspace.our 

method is to consider only the component ÔU_ij_ of the perturbation of the signal eigenvector 

orthogonal to �s [5, 13]. 

Using a first order perturbation we found that if Ui is eigenvector of Rx U_j + 5LIjj_ 

A 

is eigenvector of R with : 

SU., =Pli. 

(39) 

P = nB(BxVy 

(axl) Q t 
q=l 

in which Ry# dénotes the pseudo inverse of Ry. 
Relation (39)being valid foranyvector of the basisU_i...U^of ^s to any vector S_g %s we may 

associate the vector £ + ô £ j_ of Çs with : 

Ô £ ± = PS (40) 
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This expression will arise in the dérivation of the variance of the usual esdmators. 

The covariance for the random vectors 8 Smi has been calculated in [13] in a more general 

context . The dérivation in the simple case when vectors B(q) are decorrelated is recalled in the 

appendix A . From (A.9) : 

E(Ô5rnX5stJS^[Sn{Ry(SPSt + a2l)Ry}Sm]nB (41) 

or according to (9) : 

E[SinvlÔS+JS^n(R'+a2Rï2)^JnB 
(42) 

Assuming that matrix P is regular, according to ( 17): 

StR- S - p-1 

(43) 

sVyS=(PS+SP)~l 

Then (42) can bc written as : 

EK�] - #Cp"']� + ^��-(s»s)"'p-'] J nB (44) 

In this relation P may be replaced by (11) in terms of the cohérence matrix p.The second term of 

(44) can be normalized by the diagonal matrix Pd and written as : 

p-1(sts)"1p-l=sp;l{p,d/2p-1p-d1/3Csts]"1p-d1/V1PÏ2}p'd1 
(45) 
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with: 

MU MU MU MU 

8 
-sfs 

Matrices CMU and S^flj are dimensionless normalized matrices, with diagonal éléments equal to 

one . CMU reduces to the identity matrix for decorrelated sources; it is influenced only by the 

corrélation and power ratios between sources . The source vectors being assumed normalized to 

one Smtj =S"f"S is the matrix of the cosine between sources vectors and reduces to the identity 

matrix for well separated sources; it reflects the geometry of the antenna and source pattem. 

Using (44) and ( 46), we may write: 

e[ô £ 8Sf 1= ~ ? (p"1) + ,Q (d'',) nR (47) 
L nd. oj QVPmPnL 

mn VPmPn V D MU mn 
B 

This expression highlights the effect of a bad conditioning of p or S^S, corresponding 

respectively to strong correladon or to sources with small angular séparations : the déterminants 

become very small and the variance increases drastically (due to the inversions p-1 and D^"1) . 
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IV C- PERTURBATION OF THE SIGNAL PROJECTOR 

A 

From the previous results, in the first order approximation, vectors Ui=U_i+ôUij_ 

form an othonormal basis for Çs . Under this approximation 
and according to relation (39) the 

estimated projector is given by : 

frs = ns + ôns= £ iL.ii.=ns+pns + n,y 
i=l 1 

' 

(48) 

ôns=-ônB = pns + nsPt 

The corresponding perturbed noise projector 
will be noted: 

î».-n.*«nB 
(49) 

The previous results will now be applied 
to the dérivation of MUSIC and AMLM 

theoretical variances. 
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V VARIANCE OF MUSIC AND AMLM COMPARED TO THE CRB 

VA- MUSIC ALGORITHM 

A 

When the exact projector n B is replaced by 
the estimate 

n B in (16), 
the function 

f(a) is non longer equal to zéro for am but has a minimum close to 0m . This minimun 

corresponds to a zéro of the derivative f (0) =df/d0 . Using a first order Taylor expansion of 

f (0), near 0. we get : 

f(0m)=f(em) + (0-0m)nem) (50) 

using notation (32) and (49) we obtain for the first and second derivatives of (16) : 

B + ârl El) S m + CC 

(51) 

f,(em) = 2m(nB + ônB)5m + cc+2im(nB+6nB)im 

where ce dénotes complex conjugate . 

From the fact that nB Sm=0, we deduce from (51) that : 

f (0 m) = 2Real( 5 m 3il B-5 M) 

(52) 

f'(am) ::E[f'(am») = 2 -Sm Fi B-S m 



60 

By substitution of (48) and (40) in the expression of f(8), from the fact that P ' Sm=0 we obtain : 

on nS = - PS =-BS 

(53) 

f (8 m) == - 2 Re al (A: s.s m.L) 

From (50) and the derivatives expressions(52),(53) it results that a zéro of f (0) is obtained for the 

A 

value 8. of the variable 0 given by : 

Real 8 S 

smnBsm 

According to (39),(40), 55m is a linear combination of random circular variables, 

and so is st m 8S_m . We may then apply the results of appendix B to calculate the covariance of 

(54), and we obtain : 

5 n.i | n�i 
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By substitution in this relation of the perturbation 8Sm_L covariance (47), we obtain, for m=n : 

E[(êm-em)lu3 ^ [(P"')^ + Kr(%)j (56) 
2QPm £ mnBs.m 

where p is the cohérence matrix and DMU is defined in (46).This form is very similar to the CRB 

(38) .A detailed comparison will be made in section V.C. 

V B VARIANCE OF THE AMLM 

Using the vector variable 0 0 M)t a dérivation similar to the case of 

MUSIC is used to obtain the variance of the AMLM. 

The function (28),(29) to minimize is: 

(57) 

For the local minima of this function the gradient V f is zéro. Such a minimum must occur for a 

A 

value of 0. close to the exact value of the parameter vector. We may then use the first order 

A 

Taylor expansion of the gradient V_f( 9 ) near 0_ ,given by : 
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f £ f(fl) + Af9)Sfl 

(58) 

In this expression M(S) is the Hessian . The gradient and Hessian components are defined by : 

= # m 
m 

(59) 

For the minima , V f must be equal to zéro . The corresponding solution of (58) for 80. is the 
solution of : 

M(fi)Ô.e = - £ f(fi) (60) 

In this relation , from (57) the components of YJ and Af are : 

Vf(0)m = 2Real[xPimïmAnBSi] 

where 5rnn is the Kronecker symbol. 

From (48) (40), using the fact that riBS.i=0 and P^S_j=Q_ we obtain in the expression of the 

gradient : 
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fin5 =snRs spn,s. = 5s., 

Vf(0)m = 2RealIPimim8Si 
(62) 

A 

In the first order approximation the Hessian may be approximated by its expectation, i.e ne is 

replaced by its exact value Iïb. Then we obtain: 

AfCfl)mns^Af(fl)mj=s2Rcal( £ nnBiiiPliniJ 
(63) 

By comparison with (31) we can see that the Hessian is proportional to the Fisher matrix .It will 

then be assumed regular.From (60) using the reduced notation V f and Af for the gradient and 

Hessian: 

Af E 5 fi'] Af = E[mf+] 
or: (64) 

E[Ô!i 8 = Af-1 ElVfvfl M-1 

This covariance calculation is made in appendix C and gives the following results 

(C.14): 

�fe- et [p #� r[fcu_+ £ kU 
2Qp m àÎ m ri B à5 

Where pçR is the modified cohérence matrix introduced in (35) and DML is defined by a relation 
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similar to (46) : 

Dml-^Cml^ml-^ml1 
(66) 

Matrices CMLand SML are 
related to the corresponding matrices introduced in (46) by: 

[CMLlmn=[CMU]mnCOsPrrm 

(67) 

[SML"1ln1n=[SMU'1 ImnCOsPmnCosYmn 

Y«.-«x(ilnBill[sts]J 

u/h^re cosB�,� is the cosine of the angle between TIBSm and nBSjî , defined in (36). 
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VC COMPARISON OF THE THEORETIC ST A TISTICAL PERFORMANCE 

VC 1 - Preliminary discussion 

The analytical expression of the variance for the two methods and the CRB are 

summarized in Table I . 

Remember that statistical perturbations are only first order approximations, in the 

order of Em=cr2f(Qpm) according to (47) . Ail higher order terms in this variable should be 

meaningless . In particular the correcting terms proportional to a2/pm are valid only asymptotically 

for Q » 1 so that the corresponding terms in ̂ can be ignored. 

To clarify the discussion we will first consider two limiting cases: the case of 

decorrelated sources, and the high SNR limit . 

VC 2 -Decorrelated sources 

In this particular situation (P diagonal ), both MUSIC and AMLM give the same 

A 

estimate Om It is easily verified that the expressions of the variance in table 1 are identical . 

Matrices p and PCR reduce to the identity matrix, so that the variances reduce to: 

E[502�J =e[S02J CRB 1 + p s sirm 

(68) 

�S na.sm 

The two estimators then achieve the CRB at high SNR ( o2/pm-» 0). The threshold 

under which they lose efficiency is equal to the value of [S^Sln^**, connected to the séparation 

between sources . For well separated sources the source vectors are orthogonal , sts reduces to 
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the idendty matrix and the tnreshold is" equal to one ( SNR = 0 db ) . 

The effect of smaller séparation is best illustrated in the case of two sources; then 

the SNR threshold is : 

For sources with small séparation, 1s'1 ts'2 becomes close to one and the threshold may occur for 

SNR values well over 0 db ) . The variation of SI S.2 as a function of source séparation is 

represented figure 1 (dashed line) in the case of a linear array. This curve represents as well the 

ambiguity function for the convendonal beamforming. 

VC 3 -High SNR limit 

In this case ( C2/pm-* 0) the correcting terms in the expression of the variance 

vanish . It is readily seen that the AMLM achieves the CRB; for MUSIC, the only différence is that 

PCR-1 is replaced by p"1 Gencrally speaking PCR is better conditioned tor inversion, due to the 

weighting of the off diagonal éléments by factors tess than one, according to (35) . In particular 

PCR will bc invertible even in the case of full corrélation, when p is singular. This may be seen in 

the simple case of two sources: 

while : 

�l-|PlJcos2«12cos2p12 
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In the présence of strong corrélation ( Ipj2 1= 1), the first expression may be very 

large. The second will remain close to one either for well separated sources (cos Pj 2=0), or 

according to the average phase relationship between sources (see (37)) if cc 12 
= U/2 .The effect of 

source séparation on cos (3 12 is represented figure 1 (solid line), compared to the ambiguity 

function in conventional beamforming (dashed line) for a linear array. The variable is the reduced 

frequency.normalized to hâve the first zéro of the ambiguity function at f=l . The curve for 

cos Pi2=1 is wider, with a first zéro at f=2 . The maximum at f=0 is very flat . 

VC 4 -Comparison at lower SNR 

Under an SNR threshold given by the ratio of [DMU-l]mm to [p'Mmm the 

variance is dominated by the second term between brackets, and becomes proportional to 

0/Q)(PmA*2)2- 

In the factorization (46) of DMU it can be noted that SMU dépends only on the 

sources/ antenna pattern, while Cj^nj is a function of the power ratios and corrélations. 

For the AMLM, due to the fact that again p*1 is replaced by pCR-1, the variance will in general be 

smaller than for MUSIC. 

Ail the previous discussion will be now ilustrated in the case of a linear array. 
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VC 5 -Theoretical variance for two sources and a linear array 

The theoretical variances hâve been calculated for a linear array of N=10 equispaced 

éléments. We hâve used the position parameter 

8=2n(dIÀ)cosq� 

where 1 is the wavelenght, d the spacing between éléments and (p the bearing of the source. 

The séparation between sources is best characterized in terms of the corresponding 

reduced frequency: 

f=e/anN) 

the Fourier resolution in conventional beamforming corresponding to f2-fj =1 (see figure 1) . 

Two cases have been considered,the first one corresponding to the Fourier limit 

f2-f =1, and the ornpr one to sources with small séparation (i-f\ =0.064 . 

According to (1) , the source vectors S_j, S2 are normalized to one. 

We suppose that Pi=P2 The SNR is defined as 101og(pi/a2); due to the 

normalization of the source vectors this corresponds to the SNR for one channel (and not for one 

element).The number of snapshots is Q=100 . 

The thecretical variances as a function of SNR are represented in figures 2,3,4. 

together with the results of Monte Carlo simulations concerning the total estimation error and the 

bias. The Monte Carlo simulations will be discussed in section VII . On the variance plots, the 

horizontal dashed line corresponds to the level where the standard déviation (std) becomes equal to 

the source séparation, which will play an important part in this discussion . 

The case of decorrelated sources is represented figure 2. As expected both 

estimators give the same results and achieve the CRB at high SNR . In the first case ( f2-fj =1 ) the 

SNR threshola is just a little higher than 0 dB. For small source séparation the SNR threshold is 

much higher, in the order of 30 dB (fig 2c). 

For correlated sources (p=0.9, figure 3 and 4 ) the AMLM achieves the CRB at 
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high SNR . It can be scen that for a=90° the variance is the same as when p=0. For other values of 

the phase différence, the threshold is a complex function of a, but the variance is always greater. 

For comparison with MUSIC two factors play a major pan: the values of cosa , 

cosp and their "decorrelating effect", which appears in (70b) for instance. 

For I cosa = 1 ( sources in phase, or in opposition),only remains the value of 

cosp. If we refer to figure 4. for ( f2-fi )=0.064 ,cos2p12 is much doser to one than p2=0.81(in 

fact cos2P12 =0.995) : the decorrelating effect is negligible. Indeed in figure 4a and 4e the results 

of MUSIC and AMLM are identical. 

When the séparation between sources increases, cos2p becomes smaller. For 

f2-f =1 it is in the same order as p2, and this explains the relative degradadon of MUSIC in figure 

3a and 3e . The dégradation could be much greater, either if the corrélation p is closer to one or if 

the separation between sources increases a little more ( see figuial the variation of cosp ). 

For I cosa I * 1 an additional decorrelarion appears which culminâtes for a=n/2 

(fig. 3c and 4c) . 

Note that this decorrelation connected to a can be introduced in MUSIC by the use 

of Forward Backward averaging [13] . But this is possible only for a symmetric array and it has 

not been introduced here.since the paper deals in general with an arbitrary array geometry . 
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VI THE MINIMIZATION ALGORITHM 

Two formulations are given for the algorithm. In the basic fonm, matrix P in 

expression (28) to be minimized is considered as constant . Usually the algorithm is not very 

sensitive to small déviations in P, so that any reasonable estimate may be substiruted for it . 

This is no longer true when P is singular, i.e. when sources are fully correlated . 

Matrix P may then be updated at each itération according to (17), but the basic algorithm 

convergence rate is slow . In the improved algorithm the dependence of the estimate of P with 

respect to the parameters is taken into account. The modification is quite straightforward and a fast 

convergence is restored. This modified version will be retained as the "AMLM" algorithm in the 

following . 

VI A- BASIC ALGORITHM 

VI A.l Gradient and Hessian 

The gradient and Hessian hâve been already calculated and they are given in (61). 

An altemate compact form is obtained if we define matrices S and S by : 

H*, sj -11, aJ 

and if we dénote by 0 the élément by élément product of matrices. Then (61) may be written: 

Vf = 2 Re 
alpaga 

(5) 
P)1 

(72) 

Af=2Realli (fl) (fl)eP* + (fl) flB P el 

where, for any matrix M , diag(M) dénotes the column vector formed with the diagonal éléments 

ofMand M* dénotes the complex conjugate of M. 

Note that for the exact values of the projector and the source matrix, riBS=0, so 

that in the expression of the Hessian the second term will be deleted. This guarantees that Af is 

non négative. Furthermore, by comparison with (31) we can sec that it is proportional to the 

Fisher information matrix and is invertible,unless the parameters are not identifiable. 
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VI A.2 Algorithm 

The basic Newton Gauss recursion is then given by : 

B 
k + l =fi k 

-[Aff'sf (73) 

The recursion is in two steps : update of the power estimate from 8k using relation 

(17), and the calculation of 0^+j 1 by (73) 

siep l:Pk=[y(Sk)S(Sk)] S^RyS^fs^Sl^)] 
(74) 

steP2: k 1 k 

Vfk 
= 
2Real[diag(S(0k)hBS(0k)Pk)] 

(75) 

Afk = 2Re al[s (81e)nBS(ek)8pJ 

VI B -Improved pracrical algorithm 

According to the update équation (74), Pk is now considered a function of Ê 

Then by the substitution of (74) in (57) : 

fCe) = Tr[flB ns ( £ )Ry y il (fi)] (76) 

ns (11) 
= s9) [s+9)s9)] S t Hn 
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It is proved in annex D that near the convergence point the gradient and Hessian 

can be approximated by the following expressions (D.5),(D.10), very similar to (72) : 

If = 2Re al[diag (s (QJ rî B (Bk)nBS(flk»Pk)] 

(77) 

Af k = 2 Re al [s (flfc) nBCflfc)flB TI B (â,) S (A^P,] 

nB(fi)=I-S(fi)[s+s] s t (e) 

The recursion is the same as in (74),(75), the expressions of the gradient and 

Hessian being replaced by (77). 

VI C -Convergence study 

Three main points are of interest: the speed of convergence, the existence of 

secondary extrema and the resolution of close sources in présence of noise. 

On thèse points the comparison has been made in simulation between three 

algorithms. The first one is the pracdcal algorithm defined by (73) an (77) which will be refered as 

"AMLM"; the second, introduced only as a theoretical référence, is obtained by substituttion in the 

basic équation (75) of the exact power P instead of Pk- In practice it could not be implemented 

since P is unknown. But it is interesting for comparison by simulation because.strictly speaking. it 

is in this case that the theoretical variance analysis apply. It will be named "RAML" . The third 

algorithm is again a straighforward variant of the basic algorithm, used to find the solution of 

MUSIC: as already noted we just hâve to substitute for Pk in (75) any diagonal matrix. We hâve 

used diag( p\ , P2.. Pm ). The algorithm is refered as "MUSIC" . 

The simulation hâve been made as previously in the case of a linear array of 10 

éléments, with two sources of equal powers Pl = P2 =1 . We will analyse only the case of two 
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close sources 01 =-0.02 , 62 =+0.02 (Af=0.063) for which the convergence problems are most 

cridcal. 

VI CI -Contour plots without noise 

For the RAMLM and MUSIC algorithms the function minimized are given by 

(57), P being replaced by the identity matrix for MUSIC (pi=P2=l)- For the AMLM the function 

is (76). The contour plots of thèse functions gives a good insight of the occasional problems of 

convergence. They are displayed figure 5 for p=0.9, ct^O, IT/2, n .For al2 =11/2 the contours 

are independent of p so that figures 5c and 5d are valid for p =0 . For MUSIC the contour plot is 

independent of a and p and it is identical to figure 5d. 

Obviously if (-00,00 ) 's solution (^0'"^0 ) *s also solution, which explains the 

symmetry of the plots with respect to the axis 81=82 . 

A first important remark is that the AMLM.but for this symmetry, has a unique 

minimum, while the other ones hâve a spurious minimum on the axis 8 1=82 ne conséquence is 

that whatever the initialization, the AMLM will always give the right solution (-0.02, 0.02 ) while 

the others ones may converge to the spurious minima (-0.02, -0.02 ) or (0.02 ,0.02 ) . 

Three initialization points, far from the "well behaved" central part of the contours, 

hâve been tried to test the speed of convergence. The convergence path are represented figure 5a 

and 5b . The corresponding variation of 81 and 82 as a function of the itération index are plotted 

figure 6a and 6b . It can be observed that convergence is obtained in at most 5 itérations. But for 

RAMLM and MUSIC it goes to the wrong mininum if the initialization is outside the quadrant 

81.82 �0. 
A surprising feature is that, in the noiseless case, the convergence path are 

independent p of and a : the contours are very much distorted, but this is exactly compensated by 

corresponding modificadons of the Hessian . 



74 

VI C2 -Typical contour plots with noise 

Typical contour plots corresponding to an SNR of 50 dB and an average on 100 

snapshots are represented figure 7. For the current small source séparation and p=0.9 , this 

correspond more or less to the resolution limit of MUSIC. 

For the AMLM the gênerai shape remains the same as in figure 5, with only a 

small random déviation of the extrema. 

For MUSIC, compared to figure 5d, figure 7c, 7f, 7i are typical occurrences of the 

contours that can be obtained at the limit of resolution, with either one single minimum (7c) or four 

ones, but usually closer (7f) than without noise. 

Concerning RAMLM, for ct=0 the "good" minima hâve been enhanced (7b 

compared to 5f) while only the "bad" ones remains for a = n (7h compared to 5f), in which case 

the sources are non longer resolved. For a=n/2 , the symmetry is lost: this is because the 

algorithm "knows" P and expect the source at 01 to be in quadrature before 82 which is true in the 

half plane 61 �82 and wrong on the other side. 

The main conclusion is that the AMLM convergence properties are far less 

affected by the noise than that of the two other methods. This is confirmed by a more extensive 

Monte Carlo analysis given in figure 8, which represents the convergence points obtained for 100 

independents trials, at the same SNR, the algorithms being initialized at the exact position 

(-0.02,0.02) . 

The AMLM exhibits good performance with répartitions of the dots centered on the 

exact position, with shapes reproducing the corresponding contours in figure 7 a, 7d, 7g . 

The RAMLM has a good results for a=0 and a=I"I/2 but is very bad for a=n ,with 

a numbers of points along the axis 01 =e2 corresponding to unresolved sources. 

For MUSIC, in accord with figure 7c, 7f the results are bad for a =0 or =n/2 with 

a lot of estimâtes biased or unresolved, while for a =n the estimation remains correct. 

As a conclusion the fact that the AMLM algorithm rely on a weighting matrix 

Pe( û ) reestimated at each point ( Bj, 82 ) seams to improve significativly the resolution . The 

secondary minima are "rubbed out" in the same way as spurious solutions may be eliminated 

afterwards in other methods on the basis of the c Drresponding power estimates amplitude. 
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VII STATISTICAL PERFORMANCE ANALYSIS BY MONTE CARLO 

SIMULATION 

The three algorithms, AMLM, RAMLM, and MUSIC hâve been compared in the 

two situations considered for the calculation of the theoretical variances in subsection VC3 : linear 

array ofN=10 éléments, Q=100 snapshots, reduced frequency separadons Af=l and Af=0.063 ,for 

corrélation p=0 or p=0.9 with a=0, n/2, n . 

For each set of parameters we hâve computed, by an average on 100 independent 

trials, the total mean square deviation of the estimates of 81 and 82 and the average values of the 

estimâtes. 

Thèse estimâtes are the values obtained by the 3 algorithms, initialized at the exact 

value, after 10 itérations . No sorting has been done to eliminate the large estimâtes or the cases of 

non-resolution . 

We may expect substandal déviation from the first order theoretical analysis at least 

when the theoretical standard déviation becomes equal to the séparation between sources . The 

corresponding level is represented by horizontal dashed line in figures 2, 3 ,4 of the theoretical 

variance, where the results of the Monte Carlo simulations hâve been represented for comparison . 

VII A COMPARISION FOR p=0 

In the case of Af=l (fig.2a,2b) the cross over point (between theoretical variance 

and source séparation) is for an SNR of -10 dB , at the lower limit of the figure. 

For the AMLM the déviation from the theoretical error is small . For MUSIC and 

RAMLM a déviation appears under 5 dB . The bias remains small for the three methods. 

In the case of Af=0.063 (figure 2c,2d) the cross over point is for an SNR of 

30 dB. At this point the AMLM sharply départs from the theoretical curve and an important 

positive bias appears . For MUSIC and RAMLM (identical for p=0) a deviadon from the theory 

appears 20 dB higher, for an SNR of about 50 dB .This corresponds to an important negative bias, 

resulting from a loss of resolution : very soon the sources are non longer resolved in about 100% 

of the cases under 35 dB of SNR . 
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VII A -COMPARISON FOR p=0.9 ,Af=l 

For a=n/2 (figure3) the variance for the MLM and RAMLM is the same than for 

p=0 with the cross over point at SNR=-10 dB . The theoretical results remains in good agreement 

with a small bias . For MUSIC the cross over point is 0 dB and this is the point where appears a 

bias and a déviation of the varaiance. 

For a=0 and a= n the AMLM is good up to the cross Over of -5 dB , where a 

positive bias appears. 

There is a loss of resolution for MUSIC, a=0 and RAMLM,a=n about 10 dB 

over the corresponding cross over points. 

VII C-COMPARISION FOR p=0,9 Af=0.063 

Again, for the RAMLM a strong positive bias and a deviation from the theoretical 

curve appear at the cross over point. 

For MUSIC and AMLM a loss of resolution appears very early, for values of SNR 

10 to more than 20 dB over the cross over point, the source being very soon unresolved (average 

values égal to zero) . 

For a=0 the dégradation affects MUSIC before the RAMLM while for a=n the 

RAMLM gives the worst results . 

It may be noted that the RAMLM makes significant incursions under the CRB . 

Do not forget that this is a quite unrealisdc algorithm, since it relies on the exact value of the power 

matrix P . In fact the CRB corresponding to the case of a known matrix P is well under the value 

represented figure 4 . When the first order approximation used to establish the theoretical curve is 

non longer valid, do no be surprised if the deviadon is under instead of over the corresponding 

value! . 
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VII D-PERFORMANCE OF AMLM FOR ONE SINGLE SNAPSHOT 

A significant advantage of AMLM is its ability to résolve fully correlated sources, 

and to operate on a single snapshot. 

Monte Carlo simulation hâve been made in this last case, for Af=l, using two 

exponentials of unit amplitude and a phase différence of a=0, n, n/2 in additive noise. The 

results for a=0 are represented figure 9, compared to the CRB. 

The performance are similar to the previous cases: the variance fits the theory 

down to the cross over point. The same observations hâve been verified for a=n/2 and a=n . 

VII E -CONCLUSION ON STATISTICAL PERFORMANCES 

The analysis of the previous cases confirms that the cross over SNR 

corresponding to the point when the theoretical standard déviation equals the séparation between 

sources is an important élément in the interprétation . 

For the AMLM no loss of resolution appears when the noise increases. On the 

contrary there is a tendency to over-estimate the source séparation for SNR under the cross over . 

The theoretical results for the variance hold approximatly down to the cross over . 

For MUSIC and RAMLM a loss of resolution appears for the values of the SNR 

that may be more than 20 dB over the cross over point, with a corresponding increase in the mean 

square estimation error. Over this value of SNR, the variance is also in perfect agreement with the 

theory . 

For a linear array it is well known that root MUSIC achieves a better resolution 

than conventional MUSIC at low SNR. It has not been considered hère since the paper deals in 

general with an arbitrary array geometry in which case root MUSIC cannot be applied. 
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VIII GENERAL CONCLUSION 

Starting from a modified form of the log-likelihood we hâve suggested an 

approximate maximum likelihood estimator of the source bearings [12], which may be considered 

as a generalization of MUSIC to the case of correlated sources. 

Making use of previous statistical analysis [13] we could dérive the theorical 

performance compared to MUSIC and to the CRB, and quantify the improvement that could be 

expected from our method . 

A Newton-Gauss algorithm has been derived for a computation-efficient 

implementation of the basic algorithm an a practical variant of it, relying on an estimate of the 

power matrix instead of the exact theoretical one. 

An extensive simulation analysis has, on the one hand, confirmed the theoretical 

improvement of the variance at high SNR with respect to MUSIC, and has on the other hand 

demonstrated superior convergence and resolution performances, down to some significant "cross 

over SNR" . In the case of two sources this cross over corresponds to the SNR for which the 

theoretical variance becomes equal to the séparation between sources. Down to this value of the 

SNR, for AMLM, the bias is negligible and the total mean squares error fits the theoretical 

prévision, while for MUSIC a significant loss of resolution and a variance increase appear for 

values of SNR that may be more than 20 dB larger . 

Another advantage of the AMLM algorithm is its ability to provida efficient 

estimation even for one single snapshot. This opens a way for efficient recursive estimation 

schemes . 
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APPENDIX A : PERTURBATION S S.± COVARIANCE 

To any vector � of Çs may be associated the vector � +5 Sj_ of the perturbed subspace 

Çs with, according to (39) and (40) : 

85 Hn^xVjs (A.l) 

For two vectors S_m and £ n using (3) and (39), we obtain with simplified notation ( Y and_B are 

implicitly indexed by q , and Y' andJB' by q') : 

Eb~s 1 n BBCY + B)tym^n(^+a')B! In. 

(A.2) 

In the expectation only the noise is considered as random , with zéro mean gaussian distribution . 

The components of the noise vector B are assumed complex circular, i.e., the real and the 

imaginary parts are decorrelated with the same variance .Then : 

eLbB.'J CY2iâ CR 

(A.3) 

ELB E = 0 

As a conséquence the odd order moments are zéro and there remain only two terms in the 

development of (A2) : 

[t, (X + a)B.' J = [t, X. E J 

+ E[BBtYV B_'B'J = 2ndorder + 4thorder (A. 4) 
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Thèse two terms will be referred as "2nd order 
" 
and "4th order". For the second order we easily 

obtain : 

2ndorder = W XXx* t 0 ECat il 

(A.5) 

m y y n �B 

For the fourth order let us introduce the zéro mean random circular gaussian variables: 

v = V+ B , V = Vf B' (A.6) 

Using the usual properties of Gaussian complex variables, we then obtain : 

4lhorder = ELfivV �= E[Bv*]e[v/ BJ+ e[b BJE[vV] 

= (o2l)xyn(o2l) + 68.(a2l)^tn(a2lkm 

(A.7) 

= o4 R*S il R ! + aV R *2S 5 . 

Note that the first term has no contribution when substituted in (A.2), due to the fact that 

FIbR^v =0- The remaining terms in (A.4), resulting from (A.5) and (A.7) are then zéro for q^', 

so that the double sum on q and q' reduces to a single sum on q, with q=q'.With explicit indexes, 

in the summation on the second order term (A.5), from (7) and (9) : 

iZï(q)i+(q)=SP^ 
= R (a. 8) 

By substitution of (A.5),(A.7) in (A.2) according to (A.4) and (A.5), we then obtain : 

£ [85naôstJ=^nBsîn{Ry[SPst+G2JRy}smnB 
(A.9) 
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APPENDIX B: REAL COMPONENT COVARIANCE FOR COMPLEX RANDOM 

VECTORS 

We want to demonstrate two propositions: 

proposition 1: if Z is a complex zéro mean random vector such that: 

Erz 0 (B. 1) 

then the following property holds: 

E[Real(Z)Real(Z^)] y Re alfe Cz.iJJ (B.2) 

proposition 2: if the components of a vector Z are linear deterministic combinations of the 

components of a vector fi. which are random circular decorrelated variables, then the propeny 

(B.l) holds . 

In the paper, vector B will be the concaténation of the noise vectors for the 

différent snapshots: 

Z =[b1(1 ),..., Bl(q)] (B.3) 

The démonstration of thèse propositions is quite straigthforward : 

Real[Z] = -j[z 
+ Z.] (B.4) 

so that : 

Re al [Z] Re al [Z] ttz + Czzï) +ZZ! + (zz') J 

= y{Real[zz!]+Real[zzJ} (B.5) 
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Taking expectation on both sides, 
relation (B.2) results if the condition (B.l) is satisfied . 

For proposition 2, if there exists a 
linear relationship it may be written in matrix form: 

Z = QI 
(B6) 

with Q a deterministic matrix .Then : 

EtzZ^QEtfiBlQ 
(B.7) 

and the property (B.l) holds for Z if it 
is verified for B-: indeed it is true for random decorrelated 

circular complex variables,which demonstrates proposition 2. 
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APPENDIX C 

In (64), let 

�(C. 1) 

We verify that Vf is the real part of 
a vector which satisfies the conditions of 

appendix B : in (62), according 
to (39) (40) ÔS_± is a linear combination of 

the components of B . 

By application of relation (B.2) the éléments of matrix H are 
then given by : 

mn = 2Re allep 
- it f{5S 8sM| 

By substitution of (44) in (C.2) we obtain : 

V �P.p., 
(C. 3) 

The summadon on i and j may be interpreted in terms of matrix product, so that : 

Hmn= CL2 t al(pmni+m nB S J + c^Real^'L K U, S J 
(C.4) 

From (63) the first term in the brackets is equal 
to Afrnn so that (C.4) may be written : 



84 

H=° y 
M + 202H1 

H'mn=Re4(sts)_1L^nBi } 

The variance expression using (64),(C.5), 
is then: 

EUûôû^^Af-^^Af-H'Af"1] 
(C.6) 

In function of the cohérence matrix, using the definitons (36),(1 1) 
of diagonal 

matrices W and Pd, the Hessian (63) may 
be written : 

M=2(WPd)"îpCR(WP,)"î 
(C.7) 

where PCR is the modified 
cohérence matrix (35). 

By substitution of (C.7) in (C.6) the second terms may be 
written: 
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Af-,H'Af-'=i{(WPd)""TPcR(WPj""ÎH'(WP-)""2p�](WP^)""^ 

=iw-"2p-;{(prPc,Kp;"2)(w-"2H-w-'«)(p-;'2p-c'Rp^)}w-"2p-' 

(C.8) 

Let us define the two matrices: 

CML-^Pd^PCR-1^-1 

(C.9) 

s^-^cwr^H^w)-1/2 

Then from définition in (C.8) of H' and (34) of cosp., the éléments ofSML-l 
are : 

et 9 
-i -i 

s 
Re al -- [sts]mn=[sts]mn.coSpmncosYmn 

(CIO) 

Ymn=arg{itmnBSn[s+s]J 

Using thèse définitions in (C.8) we find : 

Af-H'Af-' = �-"îP�-iP�-"2 (C. 11) 

with: 
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DML-l=Real 1 Cml-IS^cV-M 
�C12) 

By substitution of (C.7) and (C. 11) in (C.6) we then 
obtain: 

E[ôW]= ^(P.W)-1 Vck + 
a Pd D ML P d J. P dW) 

(C.13) 

or, on the diagonal : 
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APPENDIX D 

Using a derivadon very similar to that of the basic algorithm, we find: 

Yf,=2Real Tr[h,( �ls)^R y rl s (9) 
(D. 1) 

Afmn = 2RealJTr[flB|^Ry^7 + i3-^-Ryns(B)}] 
(D.2) 

A 

or, according to the fact that, at convergence, nsflBsO 

Let us compute the derivative of ns( 9)- After reordering the terms, it can be written in the 

following form (variable 6 is omitted for clarity) : 

-^=s(sts) sB(i-ns) + (i-ns)Sm(sts) sf 

ns=s(s+s) S (D.4) 

c as 

By substitution in (D.3) and considering that, at convergence S ' IIb-O only one of the two terms 

of each derivative remains in the expression of Afn^, so that : 
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Afmns2Real{Tr[hB(I-ni)SIB(sts) s'RySCs's) Sn(I-ns)J 

4fmn 2Re allTr[^ri,,(i - ri.) *s m ^p S* n (1 - ri,)]l 
(D.5) 

p= (sfs) s^ysCs^) 

Introducing an approximation in the gradient is more questionable since it may modify the 

convergence point. Neverthless let us substitute (D.4) in (D. 1) . We find ( after conjugation of the 

2nd term): 

Efm = 
2RealJTr flB(I-ns\ Sm (stS) s'fcySCs^) lstl 

(D.6) 

+ 
2RealJTr Ry(I-ns) Sm(sfs) StflBs(sts) S* j 

In order to save computation time, we hâve considered that the second term could be neglected 

without loss of performance . The justification is that for a small perturbation of riB. the first term 

tum out to be of the lst order in the perturbation, while the other one is of the 3rd order. Let us 

demonstrate this point shortly . 

We dénote by U the N.M matrix of the M first source eigenvectors, and D the 

diagonal matrix of the first M eigenvalues: 

(D.7) 

D-diagfl^lJ 

According to the analysis of section IV. B, in the first order approximation, the matrix U of the M 

perturbed source vectors may be written: 

U - U + 8u 

(D.8) 

ns8u± = o 
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The small perturbation SU may always be written in terms of a normalized matrix A defined by: 

ÔUx=eA 

Tr[A2] =M 

(D.9) 

nsA = o 

e � � 1 

where e gives a measure in radian of the average random rotation of the eigenvectors . 

Using thèse notations we etablish that: 

flB = I-UU srig-eKuA^ AU*)] 
(D.10) 

Ry=ÛDU =UDU + e[uDA++ ADU+] 

We will calculate the gradient at the exact sources position so that nS(e)=ns . Note that: 

stn aS = StflBflBSt=e2(stu)AtA(uts) (0.11) 

By substitution in (D.6) after all réduction and reordering we find for the two terms the 

expressions: 

Efm = 2Real{Tr -eflBSm(s+s) (sfu) IMDAf} 

(D.12) 

+ 2Real{Tr e3flBSm 
(sfs) (sfu) AfA 

DAf 

The two matrices are almost identical, the MM identity matrix lM being replaced by the MM matrix 

AtA ,with the same norm equal to M according to (b.9). The différence is in the coefficient, -E for 
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the first, e3 for the second . This justify our approximation 
of the gradient by the first term 

of (D.6) 

which may be written: 

ïf.B2R.-Hs,hB(i-nI)s.fr]} (Dn) 

P=(s,s)"'stRys(s,s) 
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FIGURE CAPTION 

Table I- Theoretical variances. 

Fig.l -Variation of cos J312 as a function of source séparation compared to the Fourier 

resolution. 

Fig. 2 -Theoretical variances for p=0 . Comparison with Monte Carlo results. 

Fig.3 - Theoretical variances for p=0.9 , A f =1. Comparison with Monte Carlo results. 

Fig.4 - Theoretical variances for p=0.9 , A f =0.063. Comparison with Monte Carlo results 

Fig.5 - Contour plots without noise for AMLM, RAMLM, p=0.9 . For p=0: the same as in 

c and d (a =IT/2) . For MUSIC, any p for a: the same as d . 

Fig.6 - Convergence of MUSIC, RAMLM.AMLM for three initialization points. 

Fig.7 - Typical contours plots in présence of noise (Af=0.063 , SNR = 50 dB , p=0.9) 

Fig.8 - Distribution of (Gj, 92 ) estimâtes for 100 Monte Carlo trials ( p=0.9, SNR= 50 

dB, Af=0.063) 

Fig.9 -Performance of AMLM for one snapshot (Q=l). 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 7 
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Figure 8 
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Sylvie Mayrargue 
CNET/PAB/RPE 
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France 

Abstract A récent correspondence compares several methods aiming to decrease the bias in the 
Kumaresan-Tufts (KT) algorithm for estimating the parameters of rational transfer functions in 
additive white noise [1] . By means of Monte-Carlo simulations, it was shown that the best method 
in most cases was the so-called "Bias Compensated KT method" (BCKT) . 

We show that another variant of KT, the Improved Pisarenko (IP) method [2] is 

theoretically asymptotically unbiased. We also show that the différence between KT and IP is that a 
linear System is solved in the least square (LS) sensé for KT, and in the total least square (TLS) 
[3],[4] sensé for IP.This last resuit was already partially shown in [5].We show that BCKT and IP 
are asymptotically identical.We présent simulation results for the three methods. 

1-INTRODUCTION 

This paper deals with estimating the parameters of damped exponentials, or equivalendy 

the pôles of rational transfer functions, when the signal is buried in white noise. 

Several methods performing this estimation exist, among which the KT method [2], [6]. 

However, it has been acknowledged that this method is biased. Several attempts hâve been made to 

decrease the bias, giving rise to a number of variants. A récent correspondence compares thèse 

variants [1]. By means of Monte-Carlo simulations, the best method in most cases was shown to 

be the "Bias Compensated Kumaresan and Tufts method" (BCKT) [7].. 

In this correspondence, we first prove theoretically the existence of the bias of the KT 

method. We show that it is due to the use of LS method for solving a linear system both sides of 

which are corrupted by noise. We then recall the IP method [2], which is a variant of KT and was 

not included in the comparisons of [1]. We show that it is asymptotically unbiased due to the fact 

that IP solves the same linear system as KT, using TLS instead of LS.That TLS could be applied to 

solve the linear system in KT was already noticed by [5]. However, the authors did not realize that 

the resulting method was the IP method of [2]. Then we use properties of TLS [4] to show that IP 

is asymptotically identical to BCKT. 

We compare KT, BCKT and IP by Monte-Carlo simulations, using the example given in 

[1]. As expected, KT is biased, while BCKT and IP are both almost unbiased. 

11-PROBLEM POSITION 

Let us assume that N data points of the following form are given : 

Yk = hk + Ek 1 :gk�N 

where F-k is a zero-mean Gaussian noise with variance a2, and hk is the impulse response 

of the rational transfer function 
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M dl zM-l + ... + dM d(z) 

i=l 

(note that the poles gi are assumed to be simple). 

Since the degree of the numerator is smaller than the degree of the denominator, we can 

write, with the residue of H(z) at m . 
M ���H(z) 

= 2 i 

We hâve : 
M 

H(z) = L kiz-1 L (^iz_1)n 
i=l n=0 

M 

Hence, h = I L n 

Thus we can see that the initial problem of retrieving the pôles of a rational transfer function from a 

finite sample of its impulse response embedded into white noise is identical to the identification of 

damped exponentials embedded into white noise. Since H(z) is assumed to be a stable filter, the fi^ 

will lie inside the unit circle so that the hk are samples of damped exponentials. 

III-TUFTS AND KUMARESAN'S (KT) METHOD 

ni-1 Description of the Method 

KT method applied to damped exponentials has been presented [2] , [6]. We briefly recall 

this method. 

Consider the following linear system ( backward direction), with M �L �N-M : 

y y YL+l PI YI 

, =~ , 
(2a) 

.yN-L+l yN JLPJ LyN-L. 

or : Ab = - a (2b) 

(The reason for the normalization factor 1/�N-L will appear later ). 

Without noise, this system would be : 

h h h L+ 1 o- f1"1 

1 

h h 4 hL+2 

- - 1 (3a) 

.hN-L+l hN pO 
LVl. 



107 

or : Ao bO = - ao (3b) 

It is well-known that Ao has rank M. Hence Ao is singular. Therefore (3) has an infinité 

number of solutions, from which the one with minimum Euclidean norm is selected by the KT 

method: 

bKT = - Ao# (Xo ( # : pseudo-inverse). 

inf(L,N-L) ?, 
k=l 

( + means conjugate transpose) 

be the singular value décomposition (SVD) of Ao . crko are the singular values, vko and ukl) the 

right and left singular vectors, respectively. Since O"m+i0 = = 
ainf(L,N-L)o 

= 0, we can 

write 

ao = M E aO uO vO + 
k=l 

k 

and bKT 
= - 

I a 0 k -1 ( u k 0 + ao) v 

k=l 

Let bKT = PLKT , Pl1^ ] , and consider the polynomial B(z) given by 

B(z) = zL + PIKT zL-l+ .... + 5L KT. 

B(z) has exactly M roots outside the unit circle ( i.e. { mf1 }). The remaining L-M roots 

lie within the unit circle. 

In the case of noisy data, A is generally full-rank. In order to take into account the 

underlying rank M structure of Ao , A is replaced by the nearest (in the Frobenius sensé) rank M 

matrix, which is (Eckart-Young theorem) : 

A = 

L 
akukvk 

where ak are the M largest singular values of A, vk (resp. uk )the associated right (resp. left ) 

singular vectors. 
A 

(2b) thus becomes Ab = - a (4) 

The minimum-norm solution of (4) is given by 
M 

bKT 1 ak (uk + a0) vk (5) 
k=l 

A polynomial B(z) is built as above using the coefficients of bKT. The M largest roots are 

selected . They are taken as estimates of { p^"1 } and denoted by {^V1 1 

III-2 bKT is an asymptotically biased estimator of bKT 

Let us first provide another expression for From the definition of SVD, we know that 

Uk= Avk/ok 

Thus: ho- 1 2 v £ (A+a) (6) 
k=l ak 

( Note that SKT = - (Â+Â)#A+a = - (Â+Â)#Â+a ) 

We prove in Appendix A that, when the amount of data N tends to infinity : 

A+a � Ao+ % 

vk -+ Vko k=l, M almost surely (a.s.) 
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but Cyk2 �(crkO)2 + g 2 

so that bKT 74 bKT 

bKT is thus an asymptotically biased estimator of bKT , and the roots of B(z), the associated 

polynomial, are biased estimâtes of ji^"1 . Note that here "asymptotically" means that the number of 

samples N tends to infinity , while L (the length of b) remains a constant.. This may seem 

contradictory to the assertion of Kumaresan [8] and other authors , who prescribe to choose L 

proportional to N in order to optimize the variance of the |ik. However, this contradiction is only 

apparent, since L is anyway limited by the computational load that would become quickly 

untractable for large L. 

The existence of a bias in the solution of (2) is to be related to a known resuit for linear régression , 

namely that the LS solution to a linear system with "errors-in-variables" (i.e. with noisy 

measurements on both sides) is asymptotically biased [4],[9]. 

IV-IMPROVED PISARENKO (IP) METHOD 

The IP method was first presented by Kumaresan [2], [10]. Let us give an outline of the method. 

The range of L is again chosen between M and N-M. 

Consider the following homogeneous linear system : 

Y y 2 yL+iip 
y 2 Y 3 yL+2 ���= [0] 

(7a) 

YN-L YM L- 

or A'b' = 0 (7b) 

where A' dénotes the augmented matrix [ a 1 A] with a and A the variables of Section El . 

Throughout this paper, a vertical bar will be used to separate submatrices or vectors components. 

Without noise, this system is : 

h h2 hL+llP 

h 2 h3 h L+ 2 

= [0] (8a) 

h N-L hM ���or 

A'ob'=O, (8b) 

withA'0 = [Oo| 1 Ao 

A'o has rank M , hence is singular. Its nullspace is (L+l-M) dimensional. The solution b'rp is 

taken as the minimum-norm vector having first component equal to 1, lying in this subspace. 
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Let v'°k be the right singular vectors of A'o, with indices k such that { v'°k , k=M+l, .... , L+l 

span the nullspace of A'o. 

It is easy to see that the solution provided by the IP method is given by [2] , [10] 

Iv'2d)V0k ^-Iv'SdK0, 

u- _ k=M+l - k=l 

1 IV k (I)1 l-Iv'î(l) 
k=M+l k=l 

where 

v'°k (1) is the first component of v'°k , the horizontal bar dénotes complex conjugation and 

e i = [ 1, 0, ... , 0 ] 
T where T means transpose. 

Letb'rPT = [l I brpT]. 

The définition of b'rp as the minimum-norm solution of (8), leads to 

bEP= bKT- 

In the case of noisy data, A' is full-rank. A' is replaced, as was A in Section III, by its nearest 

rank-M approximation 

X' = ï G'k u'k v'k+ 

where G'k are the M largest singular values of A', v'k ( resp.u'k) are the associated right (resp. 

left) singular vectors.With this modification, (7b) becomes 

ÂV = 0 (9) 

ne minimum-norm solution of (9) is given by 
L+l M 

1 Vk(l)vk ^-Sv'kdKk 
û. - k=M+l - k=l ( 1 D) 

1 1 k l-XVk(l) 
k=M+l k=l 

(Remark : Let brp be defined by b'rp1 = [1 I brp l] . brp is not equal to b^T ) 

Reasoning as in Appendix A, we can show that v'k ---� � v'°k a.s. when N tends to infinity. 

bjp is thus an asymptotically unbiased estimate of bjp. 

Solving the homogeneous linear system (7) as performed above, is by définition solving 

the linear system (2) in the Total Least Square (TLS) sensé ( see [3],[4] for définitions and 

properties of TLS, [5] for application of TLS to this présent problem.) 

V-RELATIONSHIP BETWEEN BCKT AND IP 

Let us describe BCKT. 

BCKT is derived from KT and uses the fact ( Appendix A) that 

Crk2 _» CTk02 +0"2 a.s. , in order to reduce the bias. 

Firstly, an estimate of a 2 is computed by 

k=M+l 

(This is a consistent estimate of a 2 [4],[9]) 
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Then, bKT of Eq.5 is replaced by 

bBCKT = " ^ 2 ^2 (Uka)Vk 
k=l 

G2 - G 

Let us show why bgcicr can be expected to be a less biased estimator of b than b^ 

Indeed, letting uk = A vk / Gk , we obtain 
M (r 1 M v 

bBCKT = - 1 -I^tt 
� 

v £ (A+a)vk = - I -j-*^- v £ (A+a) (11) 
k=l Gk-a ak k=l Cfk_a 

We can compare (U) to (6). 

Since A+a � A0 + ao 

(yè - (y 2 Gk02 a.s. 

Vk �vk0 

°BCKT *s asymptotically unbiased. 

Note that bBCKT = - (Â+ A - g2It_)# A+a = - (A+ A - g2ItJ# A+a , (where IL means the 

L-dimensional identity matrix). 

We are going to establish that bp can also be approximated by - (A+ A - �52\{f A+a . 

It has been proven that (A+ A - g2ItJ bIP = - A+a under the assumption that the L+l -M 

smaller eigenvalues of A'+ A' be approximately equal to C12 [5]. In this case, we can consider 

that A+ A - G2IL has rank M, and is thus equal to Â+ A - g2Il .We show in Appendix B that bjp is 

indeed the minimum-norm solution of (A+ A - G2IjJ bjp = - A+a . 

VI-SIMULATIONS RESULTS 

We use the example given in [1]. 

H(z) 0.5 + 0.5 with = 0.72 + j 0.54 

H(z) n 
z-0.72 

(12) 
= -, z2-1.44z + 0.81 

Thus, with the notations of Section I, a: = -1.44 a2 = 0.81 

In the following, we will be interested in the bias and standard deviation of a, (resp. a2), 

which are the estimates of a: (resp. a2) obtained by the différent methods. 

The number of data points is assumed to be N = 40. 

The order L of the polynomial B(z) is assumed to be 8. 

The noise root mean square ( r.m.s.) value ci is given the différent values 0.05, 0.1, 0.2 

a"d 0.3. For each value of G , we ran 500 Monte-Carlo simulations, first with the original KT 

method, then with BCKT, and eventually with IP. 

The biases and standard déviations of the estimates of a: and a2 are shown in Table I. 
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TABLEI 

Performance Comparison of KT, BCKT and IP methods for example (11) 

We can see that BCKT and IP exhibit very small bias, even for small size of the data set ,which is 

not the case of KT. The variances of the three methods are similar for G = 0.05 and g = 0.1, and 

BCKT and IP improve upon KT when a = 0.2. 

APPENDIX A 

Let E=A-Aq be the noise matrix 

e = a -Oq be the noise vector corrupting Oq . 

1) Let us first prove that A+ a -------- � Ao+ ao a.s. 

Wehave A+ a = A0+ a0 + E+ Oq + A0+ e +E+ e 

Consider any élément of E+ It is of the following form : 

1 
N-L 

N-L . , i+k 

To prove the convergence to zéro of the above expression,we use a Large Numbers Law, 

described in the following theorem [11]: 
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Let Xn be independent variables, with E(Xn ) = 0 (where E means expectation) . 

If y E(X £ ) � 00 then Xl± � tls. � Oa.s. 

Let Xn = hn En+jf. Recall that the noise was assumed to be zero-mean and white, so that the En 

( and thus the Xn ) are independent variables. Obviously, E(Xn) = 0 , and 

since I hn2 1 � 11 14. 1 12 the above séries is convergent, and the theorem is applicable. 

We thus hâve 

1 N-L 

N-L j±i 
l+k a.s. 

(Note the importance hère of the normalizing factor iWN-L ). 

A similar démonstration results in 

A0+ e -» 0 a.s. 

As to H+ e, any of its éléments has the form 

NIL Le. k e. 
forkïl (A1) 

Let Xi = Ei ei+k. We hâve E( Xi ) = 0 . We cannot use the Strong Law of Large Numbers [11] 

straightforwardly since the Xi are not independent. However, let us partition the (Xi } into k 

subsequences {XjO)} as follows : 

Xi w = xj+(i-l)*j j =1, .... , k . 

For a given j, the Xi U) are independent and equidistributed, hence the Strong Law of Large 

Numbers holds , so that 

X, , 0 �(A2) 
N 

Since this is true for all j from 1 to k , summing (A2) over the k possible values of j gives 

..}. ?. H � 0 a.s. 
N 

which complètes the proof. 

2) Let us now prove that 

Gk2 �Gk02 +G2 a.s. 

vk �vk 

Wehave A+ A - cr 21 - A0+A0 = E+A0 + A0+H + E+E - g2I. 

As we saw above , E+ A0 and A0+ E tend to zéro a.s. when N tends to infinity. 

As to E+ E - G 2I, the off-diagonal éléments are of the form of Eq. (1) hence they tend to zero.The 

diagonal éléments hâve the followingform: 1/(N-L) E( £ i2-G2). The Strong Law of Large 

Numbers ensures that thèse quantities tend to zéro a.s. when N tends to infinity. Hence, 

A+ A - g 21 - Ao+ Ao tends to zéro a.s. when N tends to infinity. Let K(N) be an upper bound 

for its éléments. K(N) � 0 when N ---- �-. 

Using a theorem of [12] about symmetric perturbations of symmetric matrices, we can assert that 

1 (Sk 2- CY2 --ak 0 2 1 :9 L ic(N). Thus crk2 �crko 2 + cr a.s. 
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A theorem of [8] about perturbations of eigenvectors associated to simple eigenvalues, ensures that 

vk -» vk° a-s- for k= 1, .. , M . In fact, in the case when some of the ako would not be distinct, 

the démonstration of [8] can be generalized. This complètes the proof. 

APPENDIX B 

A'+ A' - o2IL+1 has approximatively rank M, and can be written as V's (Xs2 - CY2 IM) V's+ 

where V's = [ v'x ... 1 v'M ] and Es = diag ( Ci,..., cM ). Remembering that 

[a+] A+ cc 
+ + 

2 

we can write A+ A - c2IL = V'sî (Ls2 - a2 IM) V'sî+ (where V'ST means V's deprived from its 

firstrow) and - A+a = - V'ST ( Ss2 - 02 IM) w 
+ ( where w = [v'¡(l),... ,v'M(l)] 

Note that w is a row vector. 

Since A+ A - c2IL = A+ A - a2IL , we hâve 

- (Â+ Â - a2lL)# A+a = - ( Vsî+ )# (Xs2 - a2 IM)-l ( Vst )# V'si ( Zs2 - a2 IM) w + 

= - Vsî ( V8Î+ V'sT)-i (Es2 - a2 IM)-l ( V,î+ Vgî)-i Vgî+ VST ( Es2 - a2 IM ) w + 
= - Vsî ( V*sî+ V'st)-1 w += V'sî (IM-w + w)"lw+=- V'sî ( IM + w + w / (1 - 1 1 w| I 2))w + 

( inversion lemma) 

= - V'sî w+/(l- llwH2) = bjp (see Eq. (10)) , which complètes the proof. 
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ABSTRACT 

We présent a gênerai block-formulation of the LMS algorithm 
for adaptive filtering. This formulation has an exact equivalence with 

the initial LMS, hence retaining the same convergence properties, 
while allowing a réduction in the arithmetic complexity, even for 

very small block lengths. Working with small block lengths is very 

interesting from an implementation point of view (large blocks 

means large memory and large System delay) and allows nevertheless 

a signifiant réduction in the number of opérations. Furthermore, 
tradeoffs between number of opérations and convergence rate are 

obtainable, by applying certain approximations to a matrix involved in 

the algorithm. The usual block-LMS (BLMS) hence appears as a special 
case, which explains its convergence behaviour according to the type 
of input signal (correlated or uncorrelated). 
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1. INTRODUCTION 

Adaptive filters are widely used in many applications, 

including System modeling, adaptive antennas, interférence 

cancelling and so on [1,2,3]. Some of thèse applications require large 
FIR adaptive filters (straightforward adaptive acoustic écho 

cancellation would require filters of about 4000 taps), and it is 

therefore important to reduce the computational load of thèse tasks. 

Usually, this has been performed by block processing, in 

which the filter's coefficents remain unchanged during a chosen 

number of samples N which is the block size. Réduction of the 

arithmetic complexity is obtained by making use of the redundancy 
between the successive computations, using the same techniques as 

the ones used in the fixed coefficient filtering. 

Several techniques are known to reduce the arithmetic 

�complexity of fixed coefficient FIR filtering. The usual ones are 

based on FFT's (most of them) or on aperiodic convolution (possibly) 
as an intermediate step. The main drawback of thèse methods is that 

they require large block processing : N is usually twice as large as 

the filter's length, which becomes very large for the very 

applications where a réduction in the arithmetic complexity is 

required.' Furthermore, thèse classical fast algorithms involve a 

global exchange of data inside this large vector, a situation always 
difficult to manage with in actual implementations. On the contrary, 
the initial computation is a multiply-accumulate opération, which is 

very efficiently implemented, either in software or in hardware. In 

some sensé, the fast algorithms hâve lost the structural regularity of 

the filtering process. Nevertheless, a new class of fast FIR filtering 

algorithms taking thèse considérations into account was recently 

proposed [9,12,13] : for a given block length, which may possibly be 

small, thèse algorithms allow a réduction of the arithmetic 

complexity (of course, the larger the block size is, the smaller the 

computational complexity per output point is), while retaining 

partially the usual FIR filtering structure : The multiply-accumulate 

opération is still a basic building block of thèse algorithms [19]. 
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And indeed, ail the above techniques were already used in the 

adaptive case, from the classical ones [7,8] to the most récent ones 

[15] or, even, more exotic ones [18]. The implementations in the time 

or frequency domain [6], aithough proposed independently were early 

recognized to be equivalent [14]. 

Nevertheless, the requirement for thèse techniques to be 

applied in an adaptive filtering scheme (i.e. the "blocking" of the 

coefficients during N samples) results in a différent behaviour of 

block adaptive algorithms compared to the sample-by-sample LMS, 

excepted in the very special case of uncorrelated inputs. Indeed, we 

illustrate on an example in this paper that the block-LMS (BLMS) 

algorithm has a smaller convergence domain than the LMS algorithm 
in the case of a correlated input, resulting in a slower overall 

convergence to ensure stability (this is the reason of the well-known 

divided by N adaptation step). 

In this paper, we show that this drawback is removable, and 

that the availability of small-block processing techniques allows the 

dérivation of computationally efficient block-adaptive algorithms 
which behave exactly ime their scalar version. Some additional 

degrees of freedom exist that can even make the block algorithms 

converge faster than the non-block version. 

This paper concentrâtes on the LMS algorithm, in the FIR case. 

First, by working on a simple example, we prove that we can 

reduce the arithmetic complexity of the LMS algorithm without 

modifying its behaviour : the algorithm obtained is mathematically 

équivalent to LMS. 

This is generalized in section III where it is shown that the 

LMS algorithm on a block of data of size N can be turned into a "fixed" 

filtering with some corrections, plus an "updating" part which 

générâtes the next taps. This algorithm is only a rearrangement of 

the initial équations of the LMS. Using the method "fast FIR filtering" 
for the fixed FIR part results in a so-called "Fast Exact Least Mean 

Square" (FELMS) algorithm, in which the total number of opérations 
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(multiplications plus additions) is reduced whatever the block size 

(N) may be. For example, with N = 2, the number of multiplications 

can be reduced by about 25 % with a little increase of the number of 

additions, and this without any approximation. Furthermore, 

considering larger blocks results in a "mixed radix" LMS adaptive 

filter with increased arithmetic efficiency, the réduction in the 

number of both multiplications and additions being commanded by the 

block size. 

On the other hand, we prove that the usual BLMS algorithm [8] 

is a special case of the FELMS algorithm, with an approximation on a 

matrix involved in the updating of the coefficients, which is the 

origin of the différence between the convergence rates of BLMS and 

LMS for correlated inputs. 

Other approximations on that matrix lead to new algorithms 

(Fast Approximate Least Mean Square - FALMS) where the 

convergence rate is almost that of LMS with a number of opérations 
still reduced compared to FELMS. 

A table comparing the number of opérations of the various 

algorithms is provided. 

Finally, we show that this technique can be applied to several 

variations of the LMS algorithm (such as normalized LMS, sign 

algorithm). 

Ail thèse points are illustrated by simulations of an acoustic 

impulse response identification. 

Il. AN EXAMPLE OF AN LMS ALGORITHM WITH REDUCED NUMBER 

OF OPERATIONS 

An LMS adaptive structure has the overall organization 

depicted in fig.1, where : 

(1) 
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L -1 t t 
y(n)= L x(n-i)h.(n) = Xt(n)H(n) = Ht(n)X(n) 

i=0 

L being the length of the filter, X(n) the observed data vector at time 

n : 

X(n) = [x(n),x(n - 1), ....... x(n - L + 1) ]t 

and H(n) the filter weight vector at time n : 

H(n)=[h0(n),h1(n) .h^n)]1 

The algorithm for changing the weights of the LMS adaptive 
filter is given by : 

(2) 

a) 

e(n)=y(n)-Xt(n)H(n) 

b) 
H(n + 1)=H(n) + ne(n)X(n) 

where p. is a parameter that controls stability and rate of 

convergence, and e(n) is the system error at time n. 

It is weil known [4] that if the adaptation constant u. is 

chosen such that : 

0 2 

where E[ . ] dénotes statistical expectation, then the mean of the 

weight vector H(n) will converge to the optimal solution of Wiener - 

Hopf. 

Our aim in this section is to provide, for a simple example, an 

exact equivalent of the algorithm of eq. (2) requiring a lower number 

of opérations per output point. It is hoped that this will be obtained 

by working on small data blocks, in such a way that the overall 

organization of the algorithm is simple. Let us consider the simplest 
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case : a block size N=2. 

Let us write équations (2) at time n - 1 : 

(3) 

e(n-1)=y(n-1)-Xt(n -1)H(n -1) 

(4) 
H(n)=H(n-1)+|ie(n -1)X(n -1) 

substituting (4) into (2) a), we obtain : 

(5) 

e(n)=y(n)-Xt(n)H(n -1)-^e(n -1)Xl(n)X(n -1) 

= y(n)-Xl(n)H(n - 1) -e{n - 1 )s(n) 

with : 

s(n)=nXl(n)X(n-1) 

Combining eq. (3) and (5) in matrix form results in : 

(6) 

or 

Ls(n) 1 e(n) y(n) Xt(n) 

hence : 

(7) 

e(n) J-L-s(n) 1 y (n Xt(n) 1 

The second term of this équation appears to be the 

computation of two successive outputs of a fixed coefficient filter. 

Thus, we can apply the same technique as explained in réf. [9] : 

(8) 
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�ho 

X^n-I)] rx(n-1)x(n-2) x(n - L) 1 hi (n 
Xt(n) x(n) 

x(n-1) x(n-L + 1)Jj 

rho 1 
h2 

[x(n -1)x(n -3)...x(n-L +1) x(n- 2) x(n - 4) ... x(n - L)+ 
h L-2 

_ 
x(n) x(n -2) ... x(n - L) x(n - 1) x(n -3) ...x(n - L + 1)J . 

' 

h3 

h L-1 

in which the even and odd numbered terms of the involved vectors 

hâve been grouped. Furthermore, in order to obtain a more compact 

notation, let us suppose L to be even, and define : 

A0=[x(n) x(n-2) x(n-L+2)] 

A1 =[x(n - 1) x(n -3) x(n -L +1)] 

A2=[x(n-2)x(n -4) x(n-L) ] 

Ho (n - 1) = [h 0 h2 ...... h L -2] t (n - 1 ) 

H1(n-1)=[h1 h3 h^ftn-l) 

Equation (8) can now be rewritten as : 

(9) 

t 1 1A 0 Ai H1 

The same kind of work can be performed for the updating of 

the filter taps. First substitute (4) into (2) b) : 

(10) 
H(n + 1) = H(n -1) + jie(n)X(n) + pe(n - l)X(n - 1) 

or, with the above notations : 
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. H 1 J (n + 1)=H L 1 J (n-1)+ue(n) A^ t 

+ ^e(n - 1 ) 

Ag t 

The following set of two équations is now seen to be the 

exact equivalent of the initial définition of LMS given in (2), for a 

block of 2 outputs : 

(12) 

a) 
fe(n-l)l = f 

1 

Offy(n-l)] 

A, A2 Ho (n 
eCn) J -s(n) 1 y (n) J LAo AiJLHiJ 

b) 
[Ho] 

(n + 1) 
[Ho] 

(n-l) + M. 
[Aj 

Ato e(n - 1) 
Hl Hl LA2 Al e(n) 

Now, the réduction in arithmetic complexity can take place, 

by rewriting (12) as : 

(13) 

e(n) J L-s(n) 1 y (n) A, (Ho + Hl) - CAl - Ao) Ho 

.HiJ LHiJ [At (e(n - 1) + e(n» + (A2 - Al)'e(n - 1)] 

Considérations similar to the ones in [9] will allow to 

evaluate precisely the number of arithmetic opérations involved in 

(13) : 

The filtering opération Ai(H0 + H1) is common between the 

two terms of (13) a), and the overall arithmetic computation is now 

that of 3 length N/2 filters, instead of 4, like in eq. (12). Two of them 

are applied on combinations of the input samples, namely : 

(14) 

A2- A1 = [x(n -2)-x(n -1) ,x(n -L)-x(n - L + 1 )] 

Ai- Ao = [x(n - 1 )- x(n), ....... x(n -L +1)-x(n -L +2)] 

The apparent number of additions involved in (14) can be 

reduced by noticing that the previous set of scalar products 

(Xt(n-2)H(n-3), Xt(n-3)H(n-3)) already required nearly the same 
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opérations, which were stored in the filtering process and that only 

two new additions are to be computed : (x(n-2)-x(n-1)) and 

(x(n-1)-x(n)). 

This results in the overall organization of the algorithm as 

depicted in fig. (2). 

Note also that s(n), aithough being defined as a scalar 

product of length L, can be computed recursively from s(n-2) as : 

(15) 
s(n)=s(n -2)+ n[x(n -1)(x(n) +x(n -2)) 

-x(n -L -1)(x(n -L)+x(n-L -2))] 

The second expression in the brackets was already calculated 

at time n-L, thus (15) requires only one multiplication and three 

additions. Furthermore, if the adaptation step u. is chosen as a 

négative power of 2, multiplication by u. will be considered as a 

shift, instead of a gênerai multiplication. 

The comparison of the arithmetic complexities is now as 

follows : 

Computation of the LMS algorithm, as expressed by (2) and (3) 
for two successive outputs requires : 

4 L multiplications 
4 L additions, 

the proposed algorithm, as expressed by (13) requires : 
3 L + 2 multiplications 
4 L + 8 additions 

for the same computation. This means that the number of 

multiplications has been reduced (about 25 % improvement) with only 
4 additions per output more, and without any approximation in the 

initial équations describing the LMS algorithm. 

The above approach is différent from the one that has been 

used previously for describing block adaptive algorithms [8,15]. In the 

usual approach, the initial équations are rewritten in vector instead 

of scalar form without changing anything else. We shall see in the 
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following that this fact has a number of conséquences on the 

behaviour of the resulting algorithms. On the contrary, in our 

approach, the réduction in the number of opérations is obtained only 

by a rearrangement of the initial équations, and there is an exact 

mathematical equivalence between the initial algorithm and our block 

version of it. 

III. GENERALISATION TO ARBITRARY N 

The algorithm explained above for two successive outputs can 

easily be generalized to an arbitrary block size N. We shall proceed in 

the same way as in section Il : we first establish an exact block 

formulation of the LMS, on which a réduction of the arithmetic 

complexity is performed. 

111.1. Exact block formulation of the LMS algorithm 

Let us assume that the block length N is a factor of the length 
of the filter : L = NM (for a filter length that is not divisible by N, it 

is zéro extended to the smallest multiple of N to satisfy the 

assumption), and let us write the LMS error équations at time n-N+1, 

n-N+2, n-1, n : 

(16) 

-e(n-N + 1)1 Y (n - N + 1) 
X (n-N + 1) re(n-N + 1)- 

e(n-N+2) y(n-N+2) Xl(n-N+2) e(n-N+2) 

! = ! - ! H(n-N + 1)-S(n)! 

e(n-1) y (n - 1) x t(n - 1) e(n - 1) 
e(n) y(n) 

X t (n) 
e(n) 

Nx1 Nx1 NxL Lx1 NxN Nx1 

with matrix S defined as follows : 

(17) 
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"0 0 0" 

S1 (n - N + 2) 0 ....................................0 

_sN1(n) sN -2 (n) ........................... S, (n)0 

where : 

sj(n)=^Xt(n)X(n-i) , i=1,2, ....... N-1. 

The filter weight will then be updated once per data block 

(instead of once per data sample) in such a way that thèse weights 
are equal to those that would be found in the initial LMS algorithm at 

the same time. This will be performed by the following équation : 

e (n - N + 1 ) 
e (n - N + 2) 

H(n +1)=H(n -N + 1) +n[X(n - N + 1) X(n -N+2) X(n)] 

e(n) 
Lx1 Lx1 LxN Nx1 

Both équations are stated in a more convenient form as 

follows : 

(19) 
a) e(n)=y(n)-X(n)H(n -N + 1 )-S(n)e(n) 

b) H(n+1)=H(n-N+1) + *i.Xt(n)fi(n) 

eq (19) a) can be rewritten as : 

(20) 
[S(n) + 1 je(n) = y(n)-X(n)H(n -N + 1) 

ê(n) = [S(n) + ir1[y(n)-X(n)H(n-N + 1)] 

=G(n)[y(n)-X(n)H(n -N+1)] 

Obtaining G (n) may seem intricate to compute, but, recalling 
that G (n) is lower triangular, it is easily seen to be obtained by : 
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G(n) G N -1 (n) G N -2 (n) ...... G, (n) 

with : 

(21) 
1 0...................................................0 0 
01 i 

i ; 0 

G¡ (n)= -s 0 .(n -N+i +1) -si_, (n -N +!+1 ...... - s, (n -N +i+1 ) 1 linei+l 

0 0 

: : 0 
.0 0 0 1. 

And, as a result, eq. (22) is now seen to be an exact block 

représentation of the LMS : 

(22) 
a) ê(n) = G(n)[y(n)-X(n)H(n-N +1)] 

b) H(n +1)=H(n-N + 1) + ^iXt(n)e(n) 

Eq.(22) a) is easily seen to contain a fixed coefficient 

filtering, during the period N. 

Using the techniques described in [11], we can therefore apply 
a réduction of the arithmetic complexity of this filtering during the 

time its coefficients remain unchanged. This is obtained by first 

performing a proper reordering of X and H : 

Let us define : 

(23) 
A.=[x(n -j) x(n -N-j) x(n -Ni -j) x(n -L + N-j)] 

a row vector (1 x UN), for j = 0,1 ,2N-2; i=0,1, ,(L/N)-1 and 

(24) 

Hk(n-N + 1)=[hk,hk+N, ihk+N. hk+L_N]t(n_N + 1) 

for k=0,1, N-1. 
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Then, X(n) expressed in terms of thèse polyphase components 
turns out to be a block Toeplitz matrix. 

AN-1 
A 

A 
A irH 0 

rtN-2 AN-1 A2 N-3 n1 

X(n)H(n-N+1)= ! ��(n-N+1) 

A1 
l 

AN HN-2 

Ao A1 AN-2 AN-1 JLHN-1. 

This block-Toeplitz matrix can be seen as the représentation 
of length-N FIR filtering where ail the coefficients involved (x and h) 
are replaced by blocks. Hence, fast FIR filtering, as explained in [9] 
can apply. Note that, in the context of block-adaptive filtering, ail 

the fast FIR algorithms should be used in their overlap-save version, 
rather than overlap-add (in other terms, following [9] they should be 

used in the version based on the transposition of polynomial 

products). This is due to the fact that any reuse of partial 

computations that has been performed in the previous blocks is to be 

avoided if it involves a filtering. 

Let us now consider more precisely the computation of each 

term of eq. (22) : 

As explained for the example N = 2, the computation of 

S(n)= {sj (n)} can be performed recursively as follows : 

A first équation (26) provides the expression of the first 

column of matrix S (si (n - N+i+1)) in terms of the last row of this 

matrix (sj(n-N)) during the previous block : 

(26) 

j=o 
i 

- I x(n -L-N+i-j + 1)x(n -L-N-J+ 1)] 
J=0 

for i=0,1, N-1 



132 

and eq. (27) provides the computations to be performed along the 

sub-diagonals : 

(27) 

s.(n +1 1 ) = s. 1 (n) + u.[x(n + 1)x(n -i +1 ) 

-x(n-L +1)x(n-i - L + 1 )] 

Taken altogether, there are N(N - 1)/2 such équations, 

requiring a total of N (N - 2) multiplications and (3/2 )N (N - 1) 

additions. 

Note that one multiplication can be saved in eq. (26) because 

x (n - N +1) appears twice. This fact has been taken into account in 

our opération counts. 

It is also possible to show in eq. (22) that the combinations 

of the input samples required by the fast FIR filtering process in eq. 

(22) a) can be reused for the updating of the filter coefficients 

(22)b): 

In fact, ail fast FIR algorithms can be seen as a 

"diagonalization" of the filtering matrix as follows : If M is the 

number of multiplications required by the length N (short) length FIR 

filter, eq. (22) turns to : 

(28) 
a) 

e_(n)=G(n)[y(n)-AX(n)(BH (n-N + 1))] 

b) H(n +1)=H(n -N + IJ + ^bV d (n)Ale(n) 

where A is an N x M block - matrix, and B an (ML/N) x N matrix, both 

of them involving only additions. Xd(n) is block - diagonal, each 

"block-coefficient" involving linear combinations of the 

sub-sequences defined by (23). Eq. (28) clearly shows that the update 
of H(n+1) involves the same input combination X td (n) as the 

computation of the error vector. 

Let us illustrate thèse points on the special case N = 3 : 
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The error vector is provided by : 

(29) 

-e(n-2)i 1 0 0 0 
°fry(n-2)i [ X t (n - 2) ] 

e(n-1)=0 1 0 -s1(n-1) 1 0 y(n -1) - Xt (n - 1) H (n - 2) 

e(n) J [-s2(n) -s^n) 1 lo 0 
^(n) Xt(n) 

and the computation of the second term of (29) is performed by a 

length-3 fast FIR filter, as given in [19] : 

(30) 

Xt(n-1)H(n-2)= A1 A A3 H1 (n -2) 

Xl(n) LAo A1 A2 H 2 

�A2(H0+H1+H2) + (A3-A2)(H1+H2) + (A4-A3)H2 

= A2(H0+H1+H2)-(A2-A1)(H0+H1)+(A3-A2)(H1+H2)-[(A3-A2)-(A2-A1)]H1 
. 

A2(H0+H1+H2)-(A2-A1)(H0+H1)-(A1-A0)H0 

The equivalence with eq. (28) is as follows : 

A= 1 1 0 110 
10 0 10 1. 

X d ( n ) diag[ A2, A3 - A2, A 4 - A A2 - A1 , (Ag - A2) - (A2 - A^, A1 - AQ ] 

(resulting in an 6 x (6L/3)) 
1 1 1 
O I 1 

B" 
1-1 0 
0-1 0 

1 0 0 

((6L/3) x L) 
1 and 0 being identity and null matrices of size (L/3) x (L/3). 

The elements Sj(n) are computed recursively, as explained in 

the general case by eq. (26) and (27) : 

(31) 



134 

s^n -1)= sl(n -3) + n[x(n -2)(x(n -1)+x(n-3)) 

-x(n - L -2)(x(n - L - 1) + x(n -L -3))] 

s1(n)=s1(n-1)+n[x(n)x(n-1) 
-x(n-L)x(n -L-1)] 

S2 (n) = S2 (n - 3) + li[ x(n - 2)(x(n) + x(n - 4» + x(n - 1)x (n - 3) 
-x(n -L-2)(x(n-L)+x(n -L-4))-x(n -L - 1)x(n -L -3)] 

Now, we adjust the weight vector as : 

(32) 

H1 (n +1)= H1 (n - 2) + A 3 AJ, aJ e(n-1) 

N H 2 
A A3 3 At 2- e(n) 

J 

= H1 t t t e(n-1) 

H 2 Le(n) . 

"At2(e(n)+e(n-1) + e(n-2))-(A2-A1)t(e(n) + e(n-1)) 

�At(e(n)+e(n-1) + e(n-2))-(A -A^elnJ + eln-l)) 

= H H1 2 +(A3-A2)t(e(n-1)+e(n-2))-((A3-A2)t-(A2-A1)t)e(n-1) t t 

At2(e(n)+e(n-1) + e(n-2)) + (A3-A2)t(e(n-1) + e(n-2)) 

+ (A4-A3)le(n-2) 

This algorithm requires, for three successive itérations 4 L+7 

multiplications and 5 L + 23 additions instead of 6 L multiplications 
and 6 L additions for the LMS algorithm. 

Note that, compared to the case N = 2, working with 3 outputs 
at a time is now seen to be more efficient : the total number of 

opérations (multiplications plus additions) has been reduced by 25 %. 

The main result of this section is that, provided that some 

caution is taken (the S matrix of eq. (17)), nearly any fast FIR 
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filtering algorithm can be used in an LMS algorithm to reduce the 

arithmetic complexity, without modifying its convergence properties, 
since there is an exact equivalence between both versions of the 

algorithm. 

111.2. Two special cases of interest 

111.2.1. N = 2" 

This is an important case, since simple and efficient 

fixed-coefficient fast FIR filtering algorithms are known for this 

type of length. A significant réduction of the arithmetic complexity 
is thus feasible, even with small to moderate block lengths. 

Straightforward application of the results of section 111.1. results in 

the following opération counts for a block of N = 2" outputs of a 

filter of length L=NM. 

Total number of opérations : 

(33) 
2 (3/2)" L + 2" (3 2" - 5)/2 +1 multiplications 

(34) 
2 (2 (3/2)" - 1) L + 2"+1 (2" - 3) + 4 3" additions, 

or, if we consider the number of opérations per output : 

(35) 
2 (3/2)" M + (3 2" - 5)/2 + 1/2" multiplications 

(36) 
2 (2 (3/2)" - 1) M + 4 (3/2)" + 2 (2" - 3) additions, 

to be compared with 2 L multiplications and 2 L additions per output 

required by the LMS algorithm. 

It is easily verified that, as long as M � 2, FELMS will require 
fewer opérations than LMS. Note also that the second term of (35) and 

(36) involves N=2", instead of NM in the LMS. This term (2") is due to 

the computation of matrix S(n). This is the point where the 
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availability of small block-processing made this approach feasible : 

In fact, if N was of the same order of magnitude as L, FELMS would 

require even more opérations than LMS. The important point now is 

that arithmetic complexities involve a term growing with N (updating 

of S), and another one diminishing with N (fast FIR). Hence, eq. (35) 

has a minimum : the zéro of the derivative of (35) results in the 

following "optimum" which provides the least number of 

multiplications : 

(37) 

nopt=-0.6+0.7log2L 

Table 1 provides the number of opérations required by both 

LMS and FELMS for various filter lengths, and a blocksize of the order 

of the one given by (37). It is seen that an adaptive filter of length 

128 can be implemented with half as many opérations per point than 

the LMS algorithm, with a block length of only 16. A réduction by a 

factor near 4 is obtained for a filter of length 1024, and a block 

length equal to 64. Compared with classical fast algorithms [14] our 

approach offers an easier implementation, and compared with other 

récent approaches [15], it allows a faster convergence in the case of 

correlated inputs, at the cost of a sliyht increase of the 

computational complexity (see table 1). 

Note that the most interesting case in our approach is found 

when the block size is smaller than the filter's length. This is clearly 
seen from eq.(37). 

The same kind of approach can be applied to différent criteria 

(e.g. total number of opérations...) as was performed in the fixed 

coefficient case [19]. 

111.2.2. FFT- based implementations 

One of the possible fixed-coefficient FIR schemes uses the 

FFT as an intermediate step [12, 10], in which case matrices A and B 

in eq. (28) turn out to be parts of Fourier matrices. Note that, in this 

case, the Fourier transform is used only for "block - diagonalizing" 
the block Toeplitz matrix of eq. (25), and that the usual constraint of 
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the size of the FFT being twice the filter's length does not hold. With 

the notations of this paper, the length of the FFT is twice the block 

size. 

The important point is that some of the properties of FFT are 

known to be useful in the context of block - processing [15,16,17]. In 

particular, the possibility of increased speed of convergence by using 
différent adaptation steps on the Fourier coefficients of the impulse 

response of the filter is usually thought to be linked with the 

orthogonality property of the DFT [21]. Hence, thèse possibilities of 

increased rate of convergence should be kept in the implementation 

proposed in this section, by using différent adaption steps for each 

subfilter (there are several possibilities for this task and a paper is 

in préparation). 

111.3. Simulations 

The above algorithms hâve been programmed for an acoustic 

impulse response identification, in a scheme as depicted in fig. (3). 

The System to be identified is described by an impulse 

response measured in a real room (500 ms duration, sampled to 

16000 Hz) with a slow movement of a reflector during the 

expérience. The model is an FIR filter of length 1024. 

Fig. (4) provides the error curves of severai algorithms in the 

case of white noise input, and fig. (5), (6), (7) in the case of USASI 

noise input (USASI noise is a correlated noise with the same 

spectrum as speech). For the purpose of drawing, error samples are 

averaged over 128 points to smooth the curves and normalized by the 

corresponding input energy. 

111.3.1. FELMS versus LMS 

Curves of fig. (5) a) and (7) a) refer to both LMS and FELMS : In 

both cases of simulations, they exactly superimpose. Since they hâve 

an exact mathematical équivalence, this is not astonishing. 

Nevertheless, this gives an indication on the accuracy issue of FELMS: 
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the updating of coefficients Sj(n) being performed recursively, one 

may wonder if this computation could introduce any major drawback. 

Curves of fig. (5) a) and 7) a) show that, after 9000 itérations, for a 

simple précision (32 bits) floating point implementation, the two 

curves could not be distinguished. It is further shown in Appendix A 

that, in the case of fixed point implementations, this way of 

computing only result in a slight increase of the residual error. It is 

also shown that, in any realistic case, thèse errors cannot resuit in 

an instability of the algorithm. 

111.3.2. FELMS versus BLMS 

FELMS and BLMS are both block adaptive algorithms. The 

number of opérations of the first one is hardly greater than the 

second one (see table 1). The question now is about their relative 

convergence : 

Simulations were first performed with the same adaptation 

step fi for both algorithms (the same u. as used in the LMS). Note that, 

compared to the adaptation step recommended in the classical paper 
on BL:vi5, this � is N times larger. 

In the uncorrelated case, the convergence curves were almost 

identioal for any block lengths from' N = 2 to N = 128, exhibiting only 

tiny différences : fig. (4) b) depicts the first BLMS curve that can 

visually be distinguished from the LMS - FELMS case (curves for 

FELMS are of course always identical to the one of fig. (4) a) 
whatever the block size N may be). 

In the case of USASI noise input, the situation is much 

différent : fig. (6) provides the error curve of BLMS with the same 

step ji as LMS and FELMS algorithm (fig. (5) a)) : Divergence is seen to 

occur quickly. The solution to this problem is well-known : the 

adaptation step in BLMS should be N times smaller than in LMS in 

order to ensure stability. In this case, the algorithm converges, as 

shown in fig. (5) b). Nevertheless, it is seen that the convergence is 

now slower than in the LMS case, this drawback being stronger for 

increasing N (see the N = 16 curve of fig. (5) c)). 
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From thèse simulations, it is clearly seen that BLMS performs 
best for uncorrelated inputs, in which case it is equivalent to LMS 

provided that the adaptation step is chosen N times larger than 

usually. Correlated inputs result in a reduced convergence région. The 

"better" convergence of BLMS reported elsewhere [7] in the case of 

frequency domain implementation seems to be due only to the use of a 

différent adaptation step on each coefficient, which is also feasible 

for the proposed algorithm (see section 111.2.2.). 

This has to be compared with FELMS which always has the 

same error curve as LMS, whatever the input signal and block size 

may be. Eq. (22) is used in the next section to explain precisely why 
this behaviour of BLMS occurs. 

IV. TRADING CONVERGENCE SPEED FOR ARITHMETIC 

COMPLEXITY 

In fact, (22) can be seen to be the same set of équations as 

the définition of BLMS [8,15], but for the term G (n) : Taking G(n)=I, 
the identity matrix, turns FELMS to BLMS, together with an eventual 

change of Jl. The rôle of this matrix (or matrix S(n) in eq.(19)) is thus 

seen to be crucial in thèse algorithms. 

IV.1. Interprétation of matrix S 

A straightforward calculation shows that, under the 

following conditions : 

- the input signal is ergodic 
- the filter's length L is large enough to provide acceptable 

average of the statistics of the signal. 

We hâve as a resuit : 

(38) 
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L-1 

s.(n)= \i x(n - i )x(n - 1 - i )---�gL E[x(n)x(n -1 )]=gL r(1) 

L-1 

SN -1 (n 
1 X (n - i ) X (n - N + -i)-�jiLE[x(n)x(n - N + 1)]=jiLr(N -1) 

where r is the autocorrelation function of the input signal. 

Hence, S converges to : 

(39) 
0 0 .............................. 0 

r(1) 0 

r(2) r(1) 

SA=uL! r(2) 

.r(N-1) r(N-2) ......... r (2) r (1) 0 

Note that since : 

0 � u. � 2 / L r (0) 

and : 

r (0) ) 1 r (i ) V i # 0 

we obtain : 

^L|r(i)|�2 V i #0 

which gives an indication on the range of the si. 

IV.2. Various approximations on S : 

IV.2.1. BLMS 

We hâve already seen that BLMS can be seen as an FELMS 

where the S - matrix has been taken equal to zéro. The results of 

section IV.1. explain why this does make sensé whenever the input is 
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uncorrelated, since in this case the autocorrélation coefficients are 

equal to zero. 

Nevertheless, when the input is correlated, this may be a 

drastic approximation : fig. (6) shows that, when used with the same 

adaptation step as the initial LMS, BLMS diverges soon, even for such 

small blocks as N = 4. 

IV.2.2. FALMS 

Hence, the différence between FELMS and BLMS is seen to 

dépend only on the statistics of the input signal. In many cases, if N 

is large enough, it will not be necessary to take into account the high 
order correlations of the input signal. It is therefore reasonable to 

keep only a few sub-diagonals in matrix S, up to the point where the 

correlation coefficients are known to be small enough. This will 

result in a Fast Approximate Least Mean Square (FALMS) algorithm 
which will hâve a faster convergence compared to BLMS, and an 

arithmetic complexity still reduced compared to FELMS. Table 1 

provides the corresponding number of opérations, in the case where 

log2N subdiagonals are kept. Note that this number of sub-diagonals 
should not be used as such : The number to be kept clearly dépends on 

the correlation of the input signal. This ruie-of-thumb was used in 

our example to provide a précise évaluation of the number of 

opérations. 

We hâve simulated this so-called FALMS algorithm under the 

same conditions as previously. Using USASI noise input, 1092N 

subdiagonals were enough to make FALMS behave much like LMS : fig. 

(7) a) gives the adaptation curve of FELMS for N = 64, which is 

exactly the same one as would hâve been provided the LMS algorithm. 

Fig. (7) b) provides the error curve of FALMS for the same 

blocklength, and the same adaptation step ji, but using only six 

subdiagonals. Both curves are seen to be quite similar. The error 

curve of BLMS, with an adaptation step ensuring stability would be 

completely out of scale, and has not been plotted. 

Let us point out that the main motivation for using an 
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approximate S-matrix is not so much with arithmetic complexity, 

since it is seen in table 1 that FELMS, FALMS, and BLMS require 

comparable number of opérations. Main advantages should be lower 

memory requirements and easier organization of the resulting 

program. 

Table 1, together with fig.7 shows that FALMS is a good 
tradeoff between algorithm complexity and speed of convergence. 

Let us also point out that in the simulations of fig.7 BLMS 

saved 60 % computation time compared with LMS, but with a slower 

convergence, while FELMS saved 50 %, with exactly the same 

behaviour as LMS - Thèse timings should not be taken as définitive 

ratios, the best implementation of FELMS is a subject of further 

study. 
Another remark is that FELMS keeps another advantage of 

BLMS: the filter weights are updated once per data block, which 

reduces the amount of data flow. This is useful in DSP or VLSI 

implementations. 

IV.2.3. Blocking the S matrix 

An important practical situation is the case when one knows 

that the input is stationary, but one does not know its statistics. 

FELMS can be used to obtain the signal autocorrelation, and 

when the values of S are stabilized, the recursions on the éléments si 
can be stopped, and the remainder of the algorithm will use the 

obtained values. 

Fig.7-c provides such a simulation where the si were 

estimated during 2048 samples (twice the filter's length) using the 

FELMS équation (19) and then blocked to the obtained values. The 

resulting error curve is seen to behave much like the initial LMS. 

V. VARIATIONS OF THE LMS ALGORITHM 

Our purpose in this section is to show that, although derived 
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for the straightforward LMS algorithm, the technique described above 

is of more gênerai application. As examples, we hâve chosen the 

normalized LMS and the sign algorithms. Of course, we do not fully 
dérive the algorithms, but only provide their block formulation, on 

which the fast FIR algorithms can easily be applied. 

V.1. The normalized LMS algorithm 

ln this algorithm, the adaptation step is normalized by the 

input energy, and this results in a better convergence rate compared 
with the initial LMS. The normalized LMS équations are : 

(40) 
H(n+1)=H(n) + n(n)X(n)e(n) 

e(n)=y(n)-Xt(n)H(n) 

li(n)= t a with 0(a�2 
X (n)X(n) 

And, using the techniques described above, it is possible to 
obtain an exact block formulation of the normalized LMS : 

"e(n-N + 1)1 Y (n - N + 1) X t (n - N + 1) e (n - N + 1 ) 
e(n-N+2) y(n-N + 2) X t (n - N + 2 ) ë (n - N + 2 ) 

; = ; - ! H(n-N+ 1)-S(n) ! 

e(n-1) y(n-1) xl(n-1) ê(n-1) 
e(n) J Ly(n) J 

[xt(n) 
Lê(n) 

S(n) being defined as in eq.(17), but with a différent 

définition of Sj (n) : 

s.(n) = Xt(n)X(n-i) 

ê(n)and ji(n) aredefined asfollows: 

(42) 

ë(n)=ji(n)e(n) 

Xl(n)X(n) so�n) 
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The block - adaptation is as follows : 

(43) 

H(n + 1)=H(n-N+1) + [X(n-N + 1) ............ X(n)] : 

ë(n) 

Note that a slight change of notation has been necessary, compared to 

the LMS, (u, is no more included in the S matrix) , in order to allow 

the same techniques to be applied : recursive computation of si (n) 
and fast FIR computation, that can be partially reused in the updating 
of H. 

V.2. The sign algorithm 

The purpose of this algorithm is not to increase convergence 

rate, but to reduce the number of opérations to be performed for 

updating the coefficients : 

(44) 
H(n + 1)=H(n)+nsgn(e(n))X(n) 

e(n)=y(n)-Xt(n)H(n) 
where: 

sgn (0) + i f 6�0 

=-1 i 9(0 

The block formulation of the algorithm is performed exactly 
in the same manner as for the LMS, with e(n) replaced by sgn(e(n)) in 

eq. (22). 

Note that the resulting fast algorithm involves some terms of 

the form : 

Isgn(e(n)) 

which are no more equal to ±1. A multiplication by such a quantity is 

nevertheless much simpler for small N than a general multiplication. 

Other variations of the LMS, such as delayed LMS, can be 

treated by the same techniques 
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In fact, ail thèse techniques are of much more general 

application than even the variations of LMS, since we were able to 

dérive an exact block formulation of the Constant Modulus Algorithm 

(CMA),[17] which was thought to be impossible by the usual 

techniques. This work will be reported elsewhere [23]. 

VI. CONCLUSION 

In this paper, we provided an algorithm allowing a réduction 

of the number of opérations required by the LMS adaptive filter, 

without modifying any of its convergence properties. This réduction 

is significant whatever the block size may be, the usual relationship 
between the length of the filter and the block size not being 

compulsory any more. However, we showed that for a given filter 

length L, there is an optimum block size which is always smaller than 

L. This is an important point that makes the implementation of this 

algorithm efficient. 

Furthermore, we showed that différent approximations on 

some matrix led to a whole family of algorithms, the BLMS being one 

of its members. This fact has been used to explain precisely the 

convergence behaviour of BLMS. In the case of correlated input signal, 
our algorithm was shown to converge faster than the BLMS, with only 
a slight increase of the computational complexity. 

Although explained in the special case of the LMS algorithm, 
thèse techniques can be applied to many différent algorithms in the 

LMS family. We provided an outline of their application to two 

variations of the LMS. 

We also applied thèse tools to the Constant Modulus 

Algorithm [23]. 

Work is continuing to implement this new algorithm in 

frequency-domain and to improve its convergence rate. 
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APPENDIX A Errors due to finite précision arithmetic 

The theoretical analysis of the errors due to finite précision 

arithmetic in an adaptive algorithm is usually based on the 

assumption that the input samples are zéro mean uncorrelated white 

Gaussian random variables. Nevertheless, in this case, the. 

"autocorrélation" matrix S is zéro, and there is no différence between 

FELMS and BLMS algorithms. So, a detailed analysis of FELMS is very 

difficult, and we shall only provide in the following some indications 

on the behaviour of FELMS under fixed point arithmetic. 

Throughout this appendix, we use unprimed and primed 

symbols to represent quantities of infinité and finite précision, 

respectively. Another assumption is that a scalar product is 

computed with full précision, and quantized afterwards. This 

corresponds to the kind of implementation that is found in many 

digital signal processors. 

We address separately the problem of computing the updating 
of the filter taps and that of the recursive computation of si. Another 

limitation of our analysis is that we consider only the influence of 

finite précision on the adaptive aspects, and assume that the fast FIR 

technique is applied in such a way that the resulting accuracy is 

comparable with that obtained in usual implementations. Preliminary 
results show that this is obtained by using (1/2)log2N additional bits 

in the fast FIR computation [22]. 

Let 

be the input signal power, and 
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°�� 

the error power at time n. Based on [20], thé condition for the itn 

component of the weight vector not to be updated in the LMS 

algorithm is : 

(A1) 

|u.x(n I / -i)e'(n)1 (2 -8 LMS-1 

where BLMS is the number of bits used for representing the 

coefficients. Squaring both sides of (A1) , and with the assumption 
that n is large enough, so that the filter is near convergence, [20] 
shows that a reasonable approximation of (A1) is : 

(A2) 
-2B 

202 x G2 CLMS (n) ( 2 4 
Hence : 

(A3) 

BLMS�-2"[|o92^2c2x) + 'og2(4LMS(n)) + 2] 

Concerning the FELMS algorithm, the same kind of calculation 

holds : (A4) is the condition for the ith component of the weight 
vector not to be updated in the FELMS algorithm : 

(A4) 

N-1 E (2 -8 FELMS -1 
j=o 

which gives : 

(A5) 

2 Ncy2 x FELèviS 
(n)�^ 4 

Hence: 

B FELMS �-^[log2(n2o2x) + log2(a2 FELMS ( n ) ) + log 2 (N ) + 2 
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A scaling by 1/N in (A4) has not been taken into account, the 

multiplication by u. (which is very small usually ) playing more than 

necessary this role. 

And, if both algorithms converge, we hâve as a resuit : 

(A7) 

B FELMS -4|092(N^BLMS 

It is seen that, from the strict point of view of adaptation, 
FELMS would require (1/2) log2 N bits less than LMS. 

Nevertheless, the main problem in FELMS is certainly the 

recursive computation of Sj (n), and a necessary condition for 

stability of FELMS is the stability of Sj , because their computation 
is independent of the remainder of the algorithm. 

Let 

d,.(n) = s'.(n)-si(n) 

where d'j is the error between the fixed-point estimate s'j and the 

true (infinité précision) Sj. 

A straightforward computation shows that : 

(A8) 
2 

( 
n (N - i) 2 

°d;(n) N 

2 2"2b 
where 

5 12 

b being the number of bits used for the computation of si. 

The worst case is seen to occur for Si , in which case : 

(A9) 

02 d; (n) = n �����We 

hâve seen in section IV.1. that 

S, (n) = li L r (1) 

for large n (r being the autocorrelation function). 
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Furthermore, it is weil known that 

(A10) 
|r(i)|�r(0) V �0 

So, we can write the condition such that, at time t, the time 

of convergence of the algorithm, the recursive computation of sj(n) 

will meet inequality (A10) : 

(A11) 

s'^I^Lo2 

which can be rewritten as : 

(A12) 

|s"(1)-s1(t)|�2^Lo2 

And, taking the expectation of the square of (A12) : 

(A13) 

to2�4(uLa2 
)2 

Hence : 

(14) 

b � j log2 ( t) - log2 (n L o2 ) - 3 

This number of bits, required for eq. (A11) to be met, is to be 

compared to the number of bits required for a usual implementation 
of LMS, as given in [5] : 

(A15) 

b LMS " 2 + 2 log2(a2 y 
+ 1092 (GS� + 2"'°92 � ^ 

with the assumption that 

02 x y 

where 

02 y 
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is the référence signal power, GS2 the System gain : 

(A16) 

G 2 
E[ y2(n)] 

S 
E[e2(n)] 

t being the time of convergence of LMS, which is the same one as 

that of FELMS, if the System is well designed. 

Comparison of (A14) and (A15) shows that the use in FELMS of 

a number of bits equal to that of LMS, as provided in (A15) never 

results in errors greater than the différence between the 

corrélations coefficients. 

In summary, the (few) results we hâve obtained for the 

analysis of FELMS under finite précision arithmetic are : 

- from the strict point of view of the updating of the 

coefficients, FELMS should require (1/2) 1092 N bits less than LMS for 

representing the coefficients, 

- from the point of view of the quantization noise at the 

output of the filter, FELMS should require (1/2) 1092 N bits more than 

LMS for representing the data. 

- updating the si with the same number of bits as that used in 

the LMS never results in unrealistic values of the correlation 

coefficients, even if the recursive computation is performed up to 

the time of convergence. Furthermore, we hâve seen (fig. 6.e) that 

this recursive computation could be stopped much earlier in the case 

of stationary inputs without modifying the convergence of the 

algorithm. 

Note that, as usual, ail thèse results are asymptotic. 

As a conclusion, we think that FELMS can be implemented 
with same number of bits as LMS, FELMS exhibiting possibly an 

increased residual error. 
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Note also that thèse finite précision problems should always 
remain manageable, since our approach requires the use of very small 

block lengths : Implementing efficiently a filter length 210=1024 by 
our algorithm requires only a block size equal to 26=64. 
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Figure captions 

Figure 1 : LMS adaptive structure 

Figure 2 : An FELMS structure for block length N=2 

Figure 3 : Adaptive structure used for System identification 

Figure 4 : The error curves of LMS and BLMS algorithms when the 

input signal is a white noise and with the same adaptation step : 

a) LMS algorithm 

b) BLMS algorithm with a block size N=128 

Figure 5 : The error curves of LMS and BLMS algorithms in the case 

of USASI noise input, p. being chosen to insure convergence : 

a) LMS algorithm 

b) BLMS algorithm with N=4. u, is divided by N 

c) BLMS algorithm when N=16 and with u. divided by 16 

Figure 6 : Error curve of BLMS, N=4, in the case of USASI noise input, 
the adaptation step is the same one as in the LMS case 

Figure 7 : Error curves of the proposed algorithms in the case of 

USASI noise and with the same u. than LMS. The block size N is equal 
to 64 : 

a) FELMS algorithm 

b) First approximation (computation of matrix S only with 6 

subdiagonals instead of 63 ) 

c) Second approximation (blocking of the S matrix after 2048 

samples) 

Table caption 

Table 1 : Comparison of the number of opérations per output point 

required by the various algorithms 
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RgJ: LMS adaptive structure 
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Fig. 3: Adaptive structure used for System identification 



Fig. (4) a) 





Fig.5 





Fig.7 



Table 1 : comparison of the number of operations per output point 
required by thevarious algorithms 
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A Description of The Central Resuit of TAM (Toeplitz Approximation 
Method), Leading to an Improved TAM 

S. MAYRARGUE and J.P. JOUVEAU 

CNET/PAB/RPE 
38-40, rue du Général Leclerc 

92131 Issy-les-Moulineaux (France) 

ABSTRACT : TAM is a recently developed high-resolution methodfor harmonie 
retrieval. TAM was inspired by the state-space representation in system theory. A 
demonstration of the central resuit of TAM is given, without resorting to control 

theory, thus relating TAM to other high-resolution methods.This demonstration leads 
to a modification of TAM resulting in the disappearance of spurious peaks when 
estimating two very close frequencies. 

1. INTRODUCTION 

Time séries harmonie analysis is a crucial problem in a number of practical situations. 

Very often, data lengths are short, so that the séparation between the frequencies to be 

retrieved may happen to be less than the Fourier resolution limit. "High-resolution" methods 

are thus needed. Various such methods hâve been devised ( for instance [1], [2] , [3]). One 

of the most récent is S.Y.Kung's TAM ( [4], [5] ). 

TAM was inspired by the state-space identification problem in System theory : if a linear 

rational model (i.e. an ARMA (auto-regressive, moving-average) model ) is assumed for a 

System, how to identify the model from the impulse response samples ? Classical 

algorithms ([6],[7]) exist to solve this problem. They make use of a Hankel matrix (H) built 

from the impulse response samples and compute the state-space parameters from this matrix. 

Indeed, the rank of this matrix is equal to p, the number of pôles of the model. It can thus be 

decomposed into a product of two factors ( the observability ( O ) and controllability (C) 

matrices), each factor having one dimension equal to p. The pôles are then determined from 

any of thèse two matrices, for instance 0 : it has been be shown in ([6],[7] ) that they are the 

eigenvalues of a matrix F, itself solution of a multidimensional linear System, both sides of 

which are obtained from 0 by deleting resp. the first and the last row. 

In the case of noisy data, H becomes full rank. In TAM, the détermination of the 

number of pôles, and of the observalibility and controllability factors is obtained by a 

Principal Component approach, i.e. by a Singular Value Décomposition (SVD) ([8]) of H 
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giving a low-rank approximation of H. The principle of the method remains unchanged. Note 

that the idea of combining SVD with algorithms such as ([6],[7]) dates back to ([9]). 

Another application of the above method is the retrieval of damped sinusoids from noisy 

data, since such a signal can be viewed as the impulse response of a System with pôles inside 

the unit circle. 

As to the harmonie (i.e. undamped sinusoids) retrieval problem, TAM uses the fact that 

a sum of sine waves can be viewed as the impulse response of a spécial ARMA model whose 

pôles lie on the unit circle . Moreover the pôles are directly related to the pulsations : if the 

pulsations are {cùi , Û)2,.........Û)p}, the pôles are { eiCOI ,........, eJ^p}. It is also possible 

to use a Toeplitz matrix R built from the covariance séquences instead of the Hankel matrix of 

the data samples. In this case, and for noisy data, a (non-Toeplitz) low-rank approximation 

of R will be obtained, hence the name TAM (Toeplitz Approximation Method). 

Note that TAM can also be applied in the context of antenna arrays ([10]). 

In this paper, we first give a slightly différent présentation of TAM, without calling for 

any référence to System theory, thus relating TAM to other high-resolution methods : we note 

that the low-rank approximation of H (or of R) obtained by SVD leads to the computation of 

the so-called "signal subspace" of high-resolution methods. 

In the second part of the paper, we modify TAM in order to improve the miss ratio when 

retrieving very close frequencies. The idea is to artificially increase the frequencies spacing 

by multiplying each frequency by n, n being a prescribed constant. 

In this aim, we modify the multidimensional linear System whose solution was F : 

instead of deleting resp. the first and last row of 0, we delete resp. the first and last n rows. 

We show that F is thus replaced by Fn, and the eigenvalues of F, i.e. the { eM } by those 

of F11 : { ein(ûi 1. Of course, this method works only if the data are oversampled, which is a 

realistic hypothesis in this kind of problems. 

Tufts-Kumaresan's, TAM and improved TAM methods are compared on 

simulated data, as well as on expérimental data. In both cases, improved TAM gives the 

smallest number of outliers. 
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2. KUNG's TOEPLITZ APPROXIMATION METHOD 

We présent the method, following the lines of the démonstration given in [11]. 

2.1 The Noiseless Case : 

Let y be a signal composed of a sum of m complex exponentials , observed on N 

samples : 
VIA 

y(k) = Y- ci exp [j M. k+ �p¡)], for k = 0,..., N-1 (1) 

where c; , coi and �j)j are the amplitudes, pulsations and phases of the i-th complex 

exponential. The ci and fy 's are real-valued , while the C0j 's are either real-valued in the 

case of undamped sinusoids, or complex with a négative imaginary part for damped 

sinusoids. The cùj 's are assumed to be distinct. 

Let Y be a LxN-L+1 Hankel matrix built from the samples , both dimensions of Y being 

required to be greater than m, the number of complex exponentials . L is moreover required 

to be strictly greater than m : 

m+l�L, and m�N-L+l, i.e. m+l�L�N+l-m 

( the reasons for the additional constraint on L will become apparent below ): 

Yo Yl YN-L 

71 Y2 yN-L+i 

Y = 

YL-1 yN-i. 

Let SK be the Kxm Van der Monde matrix : 

1 .... 1 

e jffi e jffi m 

SK = 

e j(K-l)co e j(K-l)9m 
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It can be shown that Y = SL D SN.L+1T (2) 

where the superscript T means transpose 

and D = diag( ci exp(j Oi) 

The conditions on L compared to the number of exponentials and the fact that the cùj are 

distinct ensure that SL and SN.L+i both hâve rank m. Hence, Y being the product of three 

rank-m matrices has also rank m, and its columns span the same subspace as those of SL. 

On another hand, we can write the SVD of Y ( see ([8]) for définition and properties of 

the SVD): 

Y=UIV+=S CjUiV^ 

where the superscript + means conjugate transpose, U (resp.V) is the unitary matrix 

containing the left (resp. right) singular vectors u; (resp.V;) , E a LxN-L+1 "diagonal" 

matrix containing the singular values ci in decreasing order. 

Since Y has rank m , only m singular values are non-zero, which enables us to rewrite 

the décomposition of Y as follows : 

Y = .|aiuivi + = UsLsVs+ (3) 

where Us is the Lxm ( Vs the N-L+lxm )matrix containing the m left (resp.right) singular 

vectors associated to the m non-zero singular values , and Zs is the diagonal matrix of size m 

containing thèse singular values.The columns of Us span the so-called "signal, subspace" 

well-known in high-resolution methods. 

The columns of Y thus span the same subspace as the columns of Us .Since (as was 

seen above), thèse columns span the same subspace as those of SL, we can therefore write : 

SL = USP (4) 

with P a non-singular mxm matrix. 

Let us now write the fundamental relationship : 

eM 

eJrol eJCÛ° 

Le jCL-axo, ej(L-2)úJ.. J 
Le 
j(L-l)û), e »j(L-l)mm 

(5) 

Si D si 
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Let us note that SI (resp. SÎ ) is obtained from SL by deleting the last (resp. first ) 

row of SL. 

Deleting the first (resp. the last ) row of Eq.(4) gives rise to two new équations : 

Si = Usi P (6) 

and St = UsT P (7) 

Expressing (5) in terms of Usi- and UsT with the aid of (6) and (7) gives : 

Usl (PDP- 1) = Usi (8) 

This last équation is the crux of TAM. Indeed, TAM can be summed up as follows : 

in the noiseless experiment, a linear relationship exists between Us-i and UsT : 

Usi F = Usi (9) 

and the eigenvalues of F are the { eM }. 

Since Us can be computed by Eq. (3), F and therefore the { eM } will be known 

provided that the linear System (9) is not under-determined. The m columns of Usi being 

independent, a sufficient condition for (9) not to be under-determined is to hâve at least m 

rows : this is the case, because L was assumed to be at least equal to m+1. The unique 

solution F of (9) is then given by : F = Usi#Usî . ( # means pseudo-inverse) . 

2.2 The Case of a Noisv Signal 

If noise is added to the signal y , we obtain a noisy signal x : 

x(k) = y(k) + n(k) k = 0, ... , N-l 

n(k) being a complex, zero-mean, circular gaussian white noise of variance a2. 

We define X analogously to Y : 

Xo Xl XN-L 

Xl X2 XN-L+1 

x = 

XL-1 XN-1 

Because of noise on the data, X is now full rank. 

However, X being a perturbed version of Y, m of its singular values will be far larger 

than the other ones, and the left singular vectors associated to thèse singular values will 

provide an estimate Us of Us. (It can be shown that thece properties are asymptotically 

true, even for low signal-to-noise ratios, and moreover that Us is an asymptotically unbiased 

estimate of Us when N tends to infinity (see [12])). 
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An estimate of F will then be given by the 1ms solution of the équation UsiF = UsT i.e. 

F=Us4-ffUsT .The eigenvalues ofF will be approximations of {eJ^i, ..., eJ^m}. 

2.3 Remarks : 

1) The above reasoning can be applied as well to the retrieval of damped or undamped 

sinusoids, as explained in the introduction. 

2) In the case of undamped sinusoids, the same approach works with the data reversed and 

conjugated. Hence, more accurate results will be obtained by considering simultaneously 

both sets of data. This means using the matrix X' defined by : 

X0 Xj XN-L XL-1 XN-l 

X, X2 XN-L+1 XL-2 XN-2 

X' = 

XL-1 XN_! Xi XN-L 

instead of X. 

This is the well-known Forward-Backward approach.([13]). 

3) In the case of stochastic data ( for instance if the$; are random variables), and if the 

autocorrélation function of the signal is perfectly known, (hypothesis Hl), it is possible to 

replace the y(k) by the corrélation coefficients ry(k) . Indeed, it is easily shown that in this 

case : 

rY(k)=.Eci2eXp[j(cûik)] (10) 

A Toeplitz matrix is then built : 

ry (0) rY(-l) ry(L - 1) 

ry(l) ry (0) ry(L-2) 

Ry = 

ry (L - 1) ry (L - 2) ry (0) 

Since it clearly results from (10) that : 

Ry = SL diag ( c;2 ) SL+ 

it is easily seen that the same reasoning as was held with Y still holds with Ry. 
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If the data are noisy, the noise n(k) being defined as above, we will hâve : 

rx(k) = ry(k) for k:# 0 

rx(0) = rY(0) + a2. 

Let Rx be a Toeplitz matrix defined similarly to Ry . Rx is full rank. Its eigenvalues are 

equal to those of Ry, translated by 0-2, The eigensubspaces of Rx and Ry are equal. The 

above reasoning still holds, provided that the Us are now taken to be the eigenvectors of Rx 

associated to its m largest eigenvalues. 

If the covariance has to be estimated, i.e. if only an approximation Rx of Rx is known, 

then the eigenvectors of Rx associated to its m largest eigenvalues will be taken as estimâtes 

Us of Us (as was done above when dealing with X instead of Y). 

It is to be noted hère that estimating the autocorrélation of a signal obeying hypothesis 

(Hl) is untractable, since it implies the knowledge of différent realizations of the signal 

(corresponding to différent realizations of fo, which is clearly impossible. This hypothesis 

is nonetheless classically made, in order to give a sensé to the computation of the 

autocorrélation of the signal given by Eq. (1), since such a signal is not stationary. However, 

the autocorrélation of y can be given a différent meaning, involving the "second-order 

ergodicity" of y : indeed, define ry(k) as 

,. N-L+k y(n)y((n-k) lim � 
/v '*" 

(11) 

We prove in Appendix A that the two définitions of ry (k) are identical. This 

results from the fact that : lim Y N Y N + = Ry . 
N-*- N-L + 1 

Thus, in practice, only an approximation of Ry ( and thus of Rx ) will be available. 

Rx = XNXN /(N-L+l) is such an approximation (the so-called "covariance" approximation). 

Since the left singular vectors of XN are identical to the eigenvectors of XNXN + /(N-L+l) , 

applying TAM to Rx or to XN will yield the same estimâtes, except when numerical stability is 

at stake : it is well-known that the condition number of Rx is the square of the condition 

number of XN, so that working with XN will give better numerical results than working with 

Rx. 
A better estimate is obtained using the above mentioned forward-backward approach : 

R = 1W/ (N-L+l) 

Another approximation of Rx is Rx, the so-called "corrélation" approximation, which is 

Toeplitz. 

Simulation results of [6] show that Rx is more robust than Rx for low signal to 

noise ratio, but Rx brings in more bias than Rx. 
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4) The property of X of being Hankel or of R of being Toeplitz is NEVER used in the 

method. 

3.MODEFICATION OF TAM 

We now show that a modification of TAM, arising from the structure of the 

démonstration in §2, results in an improvement of the miss ratio when retrieving very close 

frequencies. The idea is to increase artficially the frequencies spacing by multiplying each of 

them by n, with n a prescribed constant. Of course the data are assumed to be at least n times 

oversampled.For the estimation of thèse increased frequencies, we use a relationship similar 

to(5): 

reJnco! eJncom 

6 e e 
^(n+l)©! e2j(n+l)9m 

^(L-n-D9, ej(L-n-l)comJL 

e jnrom 

^jCI-lXo, eJ(L-l)com 

S (i n Dn 3 u n ) 

(12) 

As in §2 , we can write : 

S (In ) = Us (In ) p (13) 

and S (Tn ) = Us (în ) P (14) 

Expressing (11) in terms of Us (In and Us(în ) with the aid of (13) and (14) gives : 

U�(�)(PDnp-l)=Us(în) 

Let P Dn P-1 be denoted by Fn ( Fn = Fn The eigenvalues of Fn are the { dncoi } . 

In a noiseless experiment Fn , being the solution of Us (-1 n ) Fn = U sei n ) , is given by : 

Fn = Us (i " ) # Us (t " ) . 

If the data are noisy, then we will use estimâtes of Us as in §2, and we will take for Fn the 

Ims solution of the équation s (in ) Fn = Us(in) i.e. Fn = Us(in)# Us(în) The 

eigenvalues will be approximations of {einCDi, ..., eJn9m}. 

Hère onwards, n will be referred to as the "shift", and the présent modification of TAM as 

shifted-TAM. 
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Taking for n a value greater than 1 amounts to spacing the frequencies wider apart in a n 

ratio, ( which should improve the resolution power) , but at the expense of a loss in the 

number of équations involved in the linear System to be solved in the 1ms. 

We can précise thèse notions. 

Let f(z) be the characteristical polynomial of F. 

Wehave : f(zi) = 0 with zi = eM fori=l, ... m (15) 

Now, if F is corrupted by noise, so is f and so are its roots. Let F be the estimate of F, f its 

characteristical polynomial and zx its roots.We hâve f(zj) = 0, which can be written as a 

first-order approximation. (f+df)(zi +dzi) = 0 , or f '(zi) dz, = - df(zj) 

Therefore df(z.) df (zi) 

= -U(-Zi - 
Let fn ( z) be the characteristical polynomial of Fn . We hâve fn (zin) = 0, and as in Eq. (15) 

we can write : 

d(zt" ) = n zp'dz, 
dfB(2i") 

n(zin-zJB) 
Let us take for instance m = 2 and assume zj and Z2 very close. Then : 

zin - z2 = n (zl - z2) zj""1 , so that : 

dz.,JL 
aw� 

(17) 
n (Zl - Z2) Zl 

Since the modulus of z, is 1 , a comparison between (16) and (17) shows that the modulus 

of dzj is reduced by a factor n2 as long as both numerators : df( zl) and df. ( zln 

keep the same order of magnitude, which can only be conjectured. 

Generally speaking, increasing the value of the shift n has a drastic effect on the quality of 

the estimation as it increases the spacing between frequencies, though at the cost of a lesser 

précision in the coeficients of Fn compared to those of F, due to the loss of n rows in the 

linear system determining it. A trade-off is then to be expected between thèse two effects, 

leading to an optimal choice for the shift. 

5. SIMULATIONS 

We performed simulations using two undamped sine waves with very closely spaced 

frequencies embedded into additive gaussian white noise . 

x(k) = exp ( 2 7t j k Tj ) + 0.8 exp ( 2 7t j k x2 ) + w ( k ) 

k= 1, ,64 

11 = O. 

x2 = 0.01 
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The real and imaginary parts of the noise hâve a variance equal to 1. 

L was taken to be 48. 

TAM and modified -TAM were applied for n = 1 , 2 .... , 12. (The case n =1 corresponds 

obviously to the original TAM ) .Tufts and Kumaresan's method ([2]) was also applied. 

Let t; ( resp. be the obtained estimation of 1:1 (resp.T2). 

In order to hâve a meaningful estimate of the bias and variances for the différent methods, we 

defined two failure cases : the "outliers" and the "single frequency" cases. 

We defined an outlier by 11i - x2 I � 5 I X\ - x2 I 

We decided that a single frequency was found if : 1 �l - 12 1 � .5 1 X\ - x2 I 

For 100 différent pseudo-random choices of the noise samples , we obtained : 

( mean and variance are computed taking into account the single frequencies, but not the 

outliers ) 

We can see that for n � 9, there are no more oudiers. 

For n � 10 , the number of single frequency cases has a tendency to rise. 

The optimum value of n can be 11 or 12 according to the criterion chosen: less many single 

frequency cases or : best variance and bias. 

The spacing of the frequencies was under the methods resolution limit : in some cases, the 

program would retrieve one single frequency, in other cases, outliers. We noticed that thèse 

cases very often corresponded to eigenvalues of F very far from the unit circle. ( The reason 

for this is clear for the single frequency cases : the characteristical polynomial of F without 

noise has its roots on :he unit circle, therefore its coefficients hâve a hermitian symmetry. 

This symmetry is more or less conserved when noise is added. However, the roots of a 

symmetrical polynomial are not necessarily on the unit circle. They are inverse conjugated 

z=l/ z , which means that one of them may hâve a large modulus, both having the same 

argument). 
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6.EXPERIMENTAL DATA 

We used 1GHz bandwidth atmospheric complex transfer functions obtained from the 

PACEM experiment ([14]), aimed at studying the characteristics of multiple paths affecting 

microwave links. Since we model thèse functions as superpositions of rays, the problem can 

be stated as follows : 

x(k) a i e 2 n j kci + w(k) k = 1, 63 

where : m is the (unknown) number of rays 

(ai, Tj ) the (unknown) amplitudes and delays of the rays. 

w is a complex noise which will be supposed to be white and gaussian ( though the 

true noise, due to the tape - recorder, is in fact additive in dB ) . 

Physical considérations hinted that the delays were less than 1ns (Fourier resolution ) . 

We built a forward-backward X' matrix with L rows. 

We used Tufts-Kumaresan's method with m from 8 to 16 and L = 25,32,48. The best least- 

mean-square fit was obtained with L = 32 , m = 15 (Fig.l ). 

We used TAM with m from 11 to 13 and L = 32,48. The best 1ms. fit was obtained with L = 

48 , m = 11 (Fig. 2 ). 

We used TAM-modified with m from 11 to 13, L = 32 , and the shift n from 1 to 8 . The best 

lms. fit was obtained with m = 11 , n = 6 (Fig. 3 ). 

We can conjecture that the improvement obtained with TAM-modified and n = 6 , cornes 

from the disappearance of outliers , as was noted in the simulations. 

7. CONCLUSION 

We first give a présentation of TAM , not calling for notions of System theory. This 

demonstration, slighdy modified, gave rise to a modified TAM, thus improving the miss ratio 

of TAM when retrieving very close frequencies. This was illustrated by application of thèse 

methods to both simulated and real data. 



179 

APPENDIX A 

We are going to prove that ry(k) defined by Eq.(l 1) is identical to ry(k) of matrix Ry. 

To start with, note that lim L y y is the élément of the k-th row, first 
N-�~ n=k N-L + 

Y Y + 
column of N N , where the index N stresses the dependency of Y on N. 

Therefore, we must show that : lim N N = RY 
N^~ N-L + 1 

Consider Eq(2), which we rewrite : YN = SL D SN.L+1T . 

We thus hâve ^K^L. = sL D conjg(SN-L+_* Sn~l+1 ) conjg(D) S+ 

Well-known properties of infinité length VanderMonde vectors imply : 

lim N~L+1 SN-L+l 
m ( Im Identity matrix of dimension m) 

N^~ N-L + 

wherefrom : lim YnYn = S, 
D2 SÎ 

= Ry 
N^~ N-L + 1 

L Y 

This complètes the proof since the élément of the k-th row, lst column of 

lim _î±LiN__ is precisely ry(k) according to (11). 
N-».» N-L + 
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FIGURES CAPTIONS 

Fig. 1 Amplitude of an Atmospheric Transfer Function 

Bold line : expérimental data . 

Dotted line : reconstruction by a high-resolution method. 

la .Tufts and Kumaresan's method, 15 sources, model order = 32 

lb.TAM, 11 sources, model order = 48 

lc.shifted-TAM, shift = 6, 11 sources , model order = 32 

TABLE CAPTION 

Comparison of methods on data simulations of two very close frequencies. 

Number of outliers, single frequency case. Bias and root mean square of the estimate of one 

of the two frequencies by each method. 
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WAVELETS AND TIME-SCALE 

ENERGY DISTRIBUTIONS 

Olivier Rioul (1) and Patrick Flandrin (2) 

(1) CNET/PAB/RPE, 38-40 Rue du Général Leclerc 92131 Issy-les-Moulineaux France 

(2) LTS-ICPI (URA 346 CNRS), 31 Place Bellecour 69288 Lyon Cedex 02 France 

ABSTRACT 

This paper presents a new general class of energetic representations of signais depending 

on both rime and scale. Time-scale analysis has been introduced recendy as a powerful 

tool through linear representations called (continuous) Wavelet Transforms (WTs), a 

concept of which we give an exhaustive bilinear generalization. Although time-scale is 

presented as an alternative method to rime- frequency, strong links relating the two are 

emphasized, thus combining both descriptions into a unified perspective. We provide a 

full characterization of the new class: the resuit is expressed as an affine smoothing of the 

Wigner-Ville distribution, on which interesting properdes may be further imposed 

through proper choices of the smoothing function parameters. Not only spécifie choices 

allow to recover known definitions (such as the Bertrands'), but also provide, via 

separable smoothing, a continuous transition between spectrograms and scalograms 

(squared modulus of the WT) via Wigner-Ville. This «do it yourself» propeny makes of 

time-scale representations a very flexible tool for nonstationary signal analysis. 

EDICS number: 5.1.3 (Time-varying spectral analysis) 

Permission to publish this abstract separately is granted 
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INTRODUCTION 

A new method for time-varying signal analysis, called the Wavelet Transfonn (WT), has 

corne under investigation during the past five years, which gives a new description of 

spectral décompositions via the scale concept [1]. The fondamental paper by Goupillaud, 

Grossmann and Morlet [2] was the first which clearly described linear time-scale 

decomposition of signais by means of wavelets of constant shape. This concept is 

attractive in that it is not another formulation of time-frequency ideas (where the Fourier 

duality is used to introduce the time-varying local frequency parameter), but a new 

formalism where the basic operator acting on the signal is of time-scaling nature rather 

than making use of the Fourier variable. 

Although the first applications one could then think of were high resolution 

seismic analysis and cohérent states représentations in Quantum Mechanics, 

représentations of signais' characteristics spread over the time-scale plane seem to be 

useful in a variety of fields: analysis of speech and sound signais, turbulence flows, to 

name but a few [1]. Because of its constant-Q type, the WT selectively matches, by 

means of a scalar product, rransient features characterized by unknown locations and time 

extents. It is this propeny that makes it relevant for many nonstationary Signal 

Processing tasks, and especially for time-varying analysis. Section I briefly covers a few 

of thèse concepts. 

The mathematics of the WT has been developed by Grossrnann and Morlet, 

mostly in the language of Quantum Mechanics [3], which certainly didn't look attractive 

at first for the Signal Processing scientific community. Various degrees of discretization 

were formalized by several mathematicians such as Meyer [4], giving rise to new ideas 

relating discrète WTs to QMF filter bank structures, relevant for applications such as 

image coding. In this context, papers by Daubechies [5] and Mallat [6] are among the 

first that widely caught the attention to the Signal Processing people, although there had 

been sustantial prior work on this approach. 

Even in the early stages of the theory, emphasis has been put on the fact that a 

relevant graphical time-scale representation of signais should include the squared 

modulus (or energetic) representation [7]. Although sole information on the modulus of 

the transform is not enough to reconstruct the general signal (phase information is also 

needed), the interest in the squared modulus representation (referred throughout this 

paper to as scalogram) is to provide a graphical picture of the energy of the signal spread 

over the time-scale plane, in a similar way as a spectrogram spreads the energy over the 

time-frequency plane. Ail such energetic représentations hâve of course a bilinear 

dependence on the signal. 
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Other time-scale energy distributions, viz. bilinear forms covariant with time and 

scale shifts hâve been investigated by the Bertrands [8]. The resulting définitions are very 

specialized and somewhat complicated. Similar definitions occur in Grossmann's [9] and 

Unterberger's [10] work. 

The purpose of this paper is to provide a full generalization of time-scale energy 

representations that gives new insights into the work of the Bertrands and better explains 

the relationship between scalograms and spectrograms. The gênerai framework we 

présent for this new approach of time-scale analysis is also expected to serve as a basis 

for future extensions. 

Our approach follows the same lines as the dérivations of the most general 

formulation of time-frequency energy representations, referred to as the Cohen's class 

[11]. We first describe the scalogram by means of members of this class and insist on 

similar properties handled by spectrograms. This is done in Section n.B. We then give in 

Section IH a complète characterization of time-scale energy distributions involving affine 

smoothing of the Wigner-Ville Distribution (WVD). Several équivalent formulations of 

this may be considered, more or less compatible with additional requirements one may 

impose on the représentation. The flexibility of this approach is finally illustrated in 

Section m.C by recovering several known definitions as spécial cases, and by deriving a 

new subclass of (separable) affine smoothed WVDs. This new class offers a great 

versatility to balance time-frequency resolution and cross-terms reduction from the WVD. 

A good illustration of the possibilities of our approach is the following: using Gau3sian 

Windows, we construct a sole class of time-frequency and time-scale representations in 

which the three well-known distributions: the WVD, the scalogram and the spectrogram 

are members. It is then possible, as shown in Section III-D, to pass from one well- 

known representation to the other via a continuum of this class. 

I - THE SHORT-TIME FOURIER TRANSFORM AND THE WAVELET 

TRANSFORM 

Given a finite energy signal x(t) and a sliding window h(t), a classical linear time- 

frequency representation can be obtained by computing the short-time Fourier transform 

(STFT) [12] 

Fx(t,v) = J x(u) h*(u- t) e-l2nvu du . (1) 
- 00 

This can be interpreted as a séquence of spectral decompositions applied to 

successive short-time segments of the signal, as seen through the sliding window h(t). 

Provided that this window is of finite energy and normalized such that 
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+00 +00 

Eh ^ f 1 h (t) 12 
dr 

\ \H(v)\2 
dv = 

-00 -00 

the squared modulus of the STFT may be interpreted as a density of energy since 

+00+00 

J f 
\Fx(t, v)|2 dt dv = Ex . 

-00-00 

Also, there is a one-to-one correspondence with the original signal and the exact 

inversion formula reads 

+00+00 

xCt) = 
f f 

Fx(u, n) h(t - u) ei2rt"� du dn . (2) 

-00-00 

In récent years, an alternative représentation, called the wavelet transform (WT), 

has been widely addressed in the literature [1]. The fundamental idea hère is to replace the 

frequency shifting opération which occurs in the STFT by a time (or frequency) scaling 

opération. The resulting définition is 
+00 

Tx(t,a)^-j= f * u-t (3) 

where the function h(t) (called the analyzing wavelet) is supposed to hâve some 

localization properties in time. The explicit dependence of this définition on the 

dilation/compression (or scale) parameter a makes the WT a time-scale representation 

rather than a time-frequency one [13]. It is to be noted that, in the most general case, 

négative scale parameters are allowed. Their rôle is therefore similar to the one played by 

negative frequencies in Fourier analysis. 

Again, \Tx(t, ai ma y be interpreted as a density of energy since 

+00+00 

f f 
2 

dr da 

but provided that the Fourier transform H(v) of the basic analyzing waveform h(t) 

satisfies the so- called «admissibility condition» [3] 

+00 

This basically means that h(t) is necessarily the impulse response of some band- 

pass filter. In the time domain, its mean value must be zéro, which implies that h(t) will 
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oscillate, whence the name wavelet. Although a large number of wavelets can be 

considered, a typical choice is a modulated Gaussian [2]. 

As for the STFT, the WT satisfies then an inversion formula which reads [3] 

f fIt - u du da 

Note that, in a similar way to the STFT, the signal is reconstructed �om the 

(possibly complex) values of the transform, i.e. both information on the modulus and the 

phase of the transform is needed. 

Both the STFT and the WT analyze signais by means of an inner product with 

analyzing waveforms depending on two parameters. In the WT case, the waveforms onto 

which the signal is decomposed are of the form l/\ lai h((u- t)/a) and are generated from 

the analyzing wavelet h(t) by time-shift (t) and dilation (a) opérations. It is thèse 

waveforms that are referred to as wavelets. 

The main différence between the STFT and the WT is related to the structure of 

their respective analyzing waveforms. The STFT uses modulated versions of a low-pass 

filter to explore the spectral content of the analyzed signal (uniform filterbank). This is 

clearly evidenced when rewriting (1) as 
+00 

Fit, v) = 
f 
[X(n) ei2*"'] H*(n - v) dn . 

-00 

This amounts, in the time-domain, to using an analyzing waveform of constant 

envelope with an increasing number of oscillations as higher frequencies are analyzed. 

The WT uses dilated or compressed versions of a band-pass filter, whose relative 

bandwidths are constant (constant-Q filterbank). This structure is evidenced when 

rewriting (3) as 
+00 

Tit, a) = J [X(n) ei27l"�] V \a\ H*{an) dn . 
-00 

Therefore, time évolutions of signais are analyzed by means of a waveform whose 

envelope is narrowed as higher frequencies are analyzed, whereas its number of 

oscillations, hence its shape, remains constant. As a conséquence, the WT is a particular 

implemention of a constant-Q short-time spectral analysis. 

In order to get a better understanding of the mathematical relationships between 

those two linear transforms, one can imagine to deduce STFTs from WTs, and vice- 

versa, using inversion formulas (2) and (5). Precisely, inserting (2) (resp. (5)) in (3) 

(resp. (1)), we get the following transform pair [13] 
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+00+00 

Tx(t, a) = f [fx(u, n) Gh(u, n; t, a) du dn 

-00.00 

+00+00 

Fx(t, v) = 
f f * du da 

- 00 - 00 

with 

+00 

Gh(u,n;t,a) = 
f h(w - u) ei2�~ [-= h( ^1 )]* dw . 

The above transform kernel Gh is the inner product between the modulated 

Windows of the STFT and the wavelets of the WT. In other words, it corresponds to the 

WT of the analyzing wavelet itself, when shifted in time and frequency, or, conversely, 

to the (complex conjugate of) the STFT of the corresponding analyzing window, when 

shifted in time and dilated or compressed. 

n - SPECTROGRAMS AND SCALOGRAMS 

A. Definitions and comparison 

Owing to their définition, STFTs and WTs are complex-valued functions and they 

convey both modulus and phase informations. For some applications [7], thèse latter can 

be of interest but a description based only on the squared modulus, providing an energy 

density distribution, is often preferred. Indeed, the spectrogram IFit, v)12, defined as the 

energy distribution associated to the STFT, has been widely used for many signal 

processing tasks. A similar quantity, \Tx(t, a)12, can be defined in the case of the WT: we 

propose to refer to it as a scalogram. 

A classical time and frequency resolution trade-off underlies the structure of the 

STFT: the choice of an analyzing window of short duration ensures a good time 

localization, but at the expense of a poor frequency resolution (by Fourier duality), and 

vice-versa. Moreover, once an analyzing window has been chosen, the resolution 

capabilities of the spectrogram remain fixed ail over the time-frequency plane. The 

situation is différent for scalograms: owing to the constant-Q structure described above, 

resolution capabilities are frequency-dependent. This follows from the fact that, for a 

band-pass filter H(v) of central frequency va and bandwidth 3vh, changing the scale 

parameter corresponds to explore the frequency axis with a relative bandwidth Avhiv0 
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kept constant and equal to a quantity referred to as the inverse l/Q of the quality factor of 

the filter. 

A symbolic comparison of spectrograms and scalograms resolutions is provided in 

Figure 1. 

- Figure 1 - 

In the narrowband limit for which, at a given scale, only the vicinity of the 

corresponding central frequency is analyzed, scale and frequency are inversely 

proportional 

v/V = a'la =» va = constant = vo 

In such a case, a scalogram behaves, in a first approximation, as a spectrogram 

whose local frequency resolution would be fitted to the analyzed frequency: 

\Tx(t, a)12 \a=vdv= IFit, v)12 | AVh = vlQ 

B. Smoothing interpretation within the Cohen's class 

Both spectrograms and scalograms hâve a bilinear dependence on the analyzed signal. It 

is the purpose of this subsection to give a simple interpretation for spectrograms and 

scalograms within the general class of bilinear time-frequency (shift-covariant) energy 

distributions. Recall that this class, referred to as Cohen's [11], is given by 

+ 00+00 

Cx{t, v,IT)= J J Wx(u, n) n{u - t, n - v) 
du dn , 

' 
(6) 

-00-00 

where JI(t, v) is some arbitrary time-frequency function and where 

+00 

Wx(t, v) = J x(t 
+ 

\) x* Cr - |) 
e-i27lvT^T 

- 00 

is the so-called Wigner-Ville distribution (WVD). If TJ(t, v) behaves like a low-pass 

function in the time-frequency plane, the general class (6) may be considered as 

composed of smoothed versions of the WVD (we hâve chosen the smoothing operation 

to be a correlation one). 

It is convenient to introduce 2D Fourier transformations in (6). Changing variables 

accordingly yields a dual characterization 



196 
0. Rioul and P. Flandrin : Wavelets and time-scale energy distributions 

+00+00 

Cx(t, v, II) = f J/(», 
t) Ax(n, -r) e-i21t(nt 

+ TV) dn d-r (7) 
-00-00 

where the weighting function is defined as the 2D Fourier transform of Il(t, v) 

+00+00 

f(n, T) = f f 
n(t, V) Q-Wnt + rv) dt dv 

-00-00 

and where the (narrowband) ambiguity function is defined as the inverse 2D Fourier 

transform of the WVD 
+00 

-00 

The interest of the Cohen's class is threefold: 1) it allows to recover most of the 

known time-frequency energy distributions as spécial cases, through proper choices of 

characterization functions (for II); 2) properties of distributions within the class can be 

handled directly via properties of their associated characterization functions; 3) spécifie 

definitions can be derived by imposing constraints and translating them into requirements 

to be fulfilled by characterization functions. 

Structure constraints of spectrograms and v^Iograms can be made explicit using 

members of the Cohen's class. The following propositions illustrate this fact. Proposition 

1 is a well-known resuit applying to spectrograms [14] whereas Proposition 2 gives a 

similar specification for scalograms [15, 16]. The proofs are given in Appendices A and 

B, respectively. 

Proposition 1. For time-frequency energy distributions characterized by a weighting 

function of modulus unity, a spectrogram results from the smoothing of the signal 

distribution by the window distribution: 

+00+00 

if Vin, r)1 = 1, then \Fx{t, v)1 C x (u, n; 17) C * h (u - t, n - v; 17) du dn. 

- 00 - 00 

Proposition 2. For time-frequency energy distributions characterized by a weighting 

function of modulus unity which depends on its variables only through their product, a 

scalogram results from the affine smoothing of the signal distribution by the wavelet 

distribution: 



197 
O. Rioui and P. Flandrin : Wavelets and time-scale energy distributions 

iff(n, x) is oftheform (p(nx) and lqi.,n-r)1 
= 1, then 

+00+00 

\Tx(t, a)1 = f C,, (u, n; 77) C h ( u t an; II) du dn . (8) 
- 00 - 00 

Several distributions satisfy the two conditions of Proposition 2. A fairly general 

class is that of generalized' Wigner distributions [14] which depends on a free scalar 

parameter a, associated to the choicefa(n, x) = tl2nanr 
+00 

Cx{t, v, n^ = W^fit, v) 
= 

f 
x(t - (a-\)x) x*(t - (a+^)r) e-i2*^ d-r. (9) 

-00 

This class generalizes the WVD which is associated to the particular value a = 0 

and it includes as a spécial case the Rihaczek's distribution 

Rx(t, v) = Wxm\t, v) = x(t) X*(v) e-i2jtvf 

Other distributions associated to complex exponentials depending on n\x\ (such as 

Page's distribution [11]) or Inl-r, also satisfy the unit modulus condition and the product 

condition in the case of positive a's, although they do not enter directly the class (9). 

m - TIME-SCALE ENERGY DISTRIBUTIONS 

A. A gênerai class and its interpretation 

In order to dérive the general formulation of time-scale energy distributions, it is 

appropriate, at this point, to interpret Proposition 2 in the restrictive case where WVDs 

are used: a scalogram results from the affine smoothing of the WVD of the analyzed 

signal by the WVD of the analyzing wavelet. However, scalograms are only a spécial 

case of time-scale energy distributions: it is this affine smoothing concept that enables us 

to generalize scalograms to general time-scale energy distributions, in a similar way as 

spectrograms are generalized to the Cohen's class. More precisely, consider the affine 

transformation: 

[LA(t, a) hl (u) h ( u a t (10) 

where the factor l/\ \a\ is introduced for normalization purposes. The main resuit of this 

paper is the following. 
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Proposition 3. If a bilinear time-scale distribution �x(t, a) is covariant to affine 

transformations, i.e. if 

^LA(d,a)x(L a) = Qxt^~ a 

then, it is necessarily parameterized as: 

+00+00 

ax(t, a; Il) 
f f u-t 

(11) 
-00-00 

where Il(t, v) is some arbitrary time-frequency function. Eq.(ll) characterizes the 

general class of time-scale energy distributions. 

The proof is given in Appendix C. 

A similar approach has been investigated by the Bertrands [8]. Précise links 

between our formulation and theirs will be given in subsection ffl-C. It can be noted for 

the moment that (11) better reveals the affine smoothing concept underlying time-scale 

distributions and certainly is more suited for combining time-scale and time-frequency 

into a unified perspective. 

Alternative characterizations of the class (11) may be given, depending on the 

-domain in which the arbitrary function characterizing the distribution is expressed. For 

instance, if we define a bi-frequency characterization function k as 
+00 

;r:(n, m) = j n(t, m) e-i21tnt dt , (12) 
00 

the équivalent formulation is 

+00+00 

1 
ff 1 n 1 n, 

(13) 
= -OO -OO 

If instead we want to characterize the class (11) with the help of the (frequency- 

time) weighting functionf, the équivalent formulation (to be compared to (7)) reads 

+00+00 

nit, a; H) = J jf(an, ^ Ax(n, x) f^� dn dx , 
-00-00 
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B. Properties 

The general formulation (11) enables us to find distributions satisfying various spécifie 

requirements. This approach, which closely parallels the one used for the Cohen's class, 

is illustrated on some examples in the following. 

1) Energy. The terminology «energy distribution» is justified by the following equality 

+00+00 +00 

f f dt da f dm (14) 
-00-00 -00 

with it as in (12). This means that energy is properly spread over the time-scale plane if 

the quantity into brackets in the r.h.s. of (14) is unity. 

2) Marginal in frequency. The spectral energy density of x is recovered from the marginal 

in frequency, i.e. 
+00 

J Qx(t, a; IT) dt = U(^)|2 (15) 
-00 

as long as f(0, x) = e_i2,tv'oT 

3) Marginal in time. Similarly, the instantaneous power of x is obtained as time marginal, 

Le. 
+00 

ax (t, a; a2 
= \x(t)\2 

-00 

+00 

as long as J f(an, -) -^ 
= b\x), for any n . 

-00 

4) Moyal-type formula. Finally, a Moyal-type formula relating inner products of signais 

and distributions may be obtained as 

+00+00 +00 

f 
ÏQx(t, a; M n y (t, a; 7) dr a2 da j x(t) 

y*(t) dt 1 (16) 
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+00 

if 
}f(an, ^f*(an, 

a 
da 

C. Special cases 

We hâve just seen that, in a similar way as for the Cohen's class, spécifie structures of 

characterization functions (f, 17 or x) permit to investigate properties of the associated 

time-scale distributions. They also allow us to obtain spécifie définitions as spécial cases 

within the same class: some of them will now be reviewed. 

1) Product kernels. Just as the WT uses band-pass filters, the smoothing function 17 is 

preferrably chosen to be band-pass as a function of frequency. We thus define: 

n(t, v) 4 n^t, v - vo) �=:� f(n, r) �r) e-i21tv0't", 

where v0 is some non-zero frequency. Using this notation, an interesting identifiée tion 

between time-scale and time-frequency distributions may be found, provided that the 

weighting function f0(n, x) dépends only on the product n-r 

fo(n, x) = (jKnx) =� Qx{t,a;ID = Cx(t,^;nQ) . (18) 

As a spécial case, it can be easily checked that 

77w(r, v) = 8(t) 5(v - v0) =� nit, a; 77w) = Wit, VO 

which means that the usual WVD can be recovered as the «no smoothing» limit case, 

with the identification «frequency = inverse of scale». The condition under which this 

identification holds is met by numerous distributions. In addition to the class of 

generalized Wigner distributions (9), we can mention the Choï-Williams' distribution 

[17], which has recently received a spécial attention and which is associated to the choice 

foin, x) - f(nt� la, where a is some (positive) real-valued parameter. 

2) Scalograms. A simple example is the scalogram which, according to (8), can be seen 

as the affine smoothing of the WVD of the analyzed signal by the WVD of the analyzing 

wavelet [18] 
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\Tx(t, a)1 
= 

Qx(t, a; Wh) . 

Because the smoothing function associated to the scalogram is itself a WVD, it 

cannot be perfectly concentrated in both time and frequency: this results in bias on, e.g., 

marginals. We get for instance 
+00 +00 

j \Tx{t, a)\2dt = 
f 1 X(^) | IH o(n - va)12 dn , 

-00 -00 

if we make explicit the dependence of the band-pass filter transfer function on its central 

frequency va by letting H(n) = H0(n - v0). This is to be compared to (15): clearly, satisfy 

marginal in frequency would be obtained with a highly frequency-selective analyzing 

wavelet. This corresponds necessarily to a large amount of time spreading and, hence, to 

some loss in time resolution. 

Note that, in the case of the scalogram, the admissibility condition (4) is recovered 

from the energy condition (14). 

3) Bertrands' class. Another choice yields the Bertrands' class [8] 
+00 

Q^t, a; 77B) = - 
f 
peu) X( 1 X(u)) X*(\ \{-u)) 

e-i21t(tla)(,Ã.(u)-,Ã.(-U» du (19) 
lai - 00 

where M.u) and ii(u) are two arbitrary functions. 

Several points should be noted hère. 1) Eq.(19) is explicitly written in terms of time 

and scale, whereas the Bertrands' formulation uses frequency as a formai parameter 

playing the rôle of the inverse of scale. 2) Bertrands' approach puts emphasis on analytic 

signais and the integration in (19) is therefore limited to values of u for which A(u) is 

non-negative and to non-negative scale parameters a. Nevertheless, and for a sake of 

homogeneity, the above formulation will be retained throughout this paper. 

Given this définition, it turns out that it enters the framework of (11) if the 

weighting function is chosen as 
+00 

fB (n, X) = 
f 
peu) 5(n + [X(u) - A(-U)]) e-i21t(1"/2)(À(u)+À(-u» du _ 

- 00 

In order to support that claim, it is worthwhile to recall where Bertrands' class 

cornes from. As mentioned previously, it stems from a covariance requirement (with 

respect to affine transformations) applied to bilinear forms of the signal. The 

parameterization they retain reads [8] 
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+00+00 

Px(t, a;KB)= - 
f f 

KB(n, m) 
X (L a n) X a M) 

Q-^tia){m-n) dn dm ; (20) 

where the bi-frequency kemel is proposed to be of the form : 
+00 

KB(n, m) = 
f 
n(u) 5{n - X(u)) 5(m - X(-u)) du . (21) 

- 00 

Therefore, the resuit (20) is identical to the frequency-domain formulation (13) of 

the general class (11), up to the reparameterization : 

mn, m) = KB{m - ^ , 
m + 

~) (22) 

The associated (frequency-time) weighting functionfis then obtained by plugging 

(21) into (22) and by taking the partial Fourier transform over the second variable. 

Since Bertrands' class can be viewed as a spécial case of (11), we can apply any of 

the spécifie choices corresponding to (21). In particular, we can obtain the following 

distribution [8] 
+00 

1 f 
W) 

L 
(n/2) e-(11/2\ 

1. 
(n/2) e+�n/2» 

Bx(t, a) = 
1 al sinh(n/2) a sinh(n/2) a sinh(n/2) . 

en, 

which is associated to 

(u/2) e-(ul2) (u/2) 
AW~ 

sinh(u/2) 
' 
w"; " sinh(u/2) 

However, if we are to end up with distributions such as (23), it appears that the 

formulation (21-22) is unnecessarily complicated. This situation will be considered and 

simplified in the following subsection. 

4) Localized bi-frequencv kernels. A useful sub-class of (11) consists in characterization 

functions which are perfectly localized on some curve m = F(n) in their bi-frequency 

representation: 

jc £ n, m) = G(n) 8(m - F(n» �=� fan, x) = G(n) Q-UnF(n)T _ (24) 

where G(n) is an arbitrary function. The associated time-scale distributions then read 
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+00 

1 
\G{n)X{\[F{n)-\])X*(\[F(n)+§)t-W'l")*dn . 

Within this formulation, it can be checked that specifying 

G(n) = sinW2) ; 
Pin) = {nl2)co±{nJ2) 

allows to recover the particular Bertrands' distribution (23). More important is the fact 

that this spécifie définition may be constructed starting from a localized bi-frequency 

kernel by imposing a priori requirements and by retaining the characterization function 

which fulfills the associated structure constraints. This is detailed in Appendix D, making 

use of the results of subsection III-B to take into account the requirements (namely time- 

localization and a Moyal-type formula) which led the Bertrands to (23). 

Furthermore, a number of additional properties of distributions can be directly 

checked by inspection of (24). For instance, the energy distribution condition (14) 

becomes 
+00 

f m) G(O) = 1 . 
J M lf(0)l 

-00 

This clearly holds for the Bertrands' case (23), as well as the marginal condition 

(15) with the arbitrary normalization va = 1 Hz. 

5) Separable kernels and affine smoothed Wigner-Ville. It is known [19] that the trade- 

off underlying the time and frequency behaviors of the spectrogram can be overcome if 

we replace the associated WVD smoothing by a smoothing function which is separable in 

time and frequency 

Ho(t, v) = g(t) Ha(v). 

The resulting distribution (called the smoothed pseudo-WVD) reads 

+00+00 

Cx(t, v, n0)= f f 
Wx(u, n) g(u - t) H0(n - v) du dn 

- 00 . 00 

+00 +00 

= 
h 0 [ J g(u - t) x(u + i) x*(u 

+ 
i) du] 

e-i23tvTdT. (25) 
- 00 -00 
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This offers a great versatility for balancing e.g. time-frequency resolution and 

cross-terms reduction [19], although this is necessarily at the expense of the loss of other 

properties such as marginals. 

We propose a similar approach for time-scale distributions and define the affine 

smoothed WVD by taking 

ns(t, v) = JIo(t, v - vo) g(t) HO(v - va). 

The resulting définition is 

+00+00 

Q^t, a; ns) = 
ff u-t 

(26) 
- 00 - 00 

For practical calculations, an équivalent form, which parallels that of (25) and 

which relies on some prior affine smoothing pertaining to the Wigner-Ville kernel, is to 

be preferred. 

CUt, a; ns) = 

+00 +00 

f-pMj fI u - t -r + j) du] c-WW dr. 

D. From spectrograms to scalograms via Wigner-Ville 

The smoothing functions acting on the WVD to obtain spectrograms on one hand and 

scalograms on the other hand are found, by Propositions 1 and 2, to be of the form of a 

WVD. This suggests a continuous transition from spectrograms to scalograms via the 

WVD by suitably controlling the evolution of the (affine) smoothing function between a 

WVD and a delta function. The following Proposition shows that this can be achieved 

using separable kemels, which allow an independent control of the time and frequency 

(or scale) behaviors of the associated distributions. 

Proposition 4. A continuous passage from spectrograms to scalograms via Wigner- 

Ville is possible by means of separable kernels if and only if these latter are Gaussian : 



205 

0. Rioui and P. Flandrin : Wavelets and time-scale energy distributions 

where a, fi and va are (positive) real-valued parameters. 

The proof is given in Appendix E. 

The transition is controlled by the parameter n = in H ap , which runs from 0 

(WVD) to 1 (spectrogram/scalogram). An example of this transition is illustrated in 

Figure 2 which présents several analyses of a computed example (consisting of three 

Gaussian wave packets) resembling the one symbolically used in Figure 1. 

- Figure 2 - 

CONCLUSION 

The material presented in this paper is based on similar properties of two notions that are 

both defined by covariance requirements: 1) local frequency, covariant under modulations 

(or Fourier-frequency shifts); 2) time s^aling (or frequency scaling by Fourier duality), 

covariant under dilations or contractions. 

This similarity is evidenced by describing general time-frequency and time-scale 

energy distributions in a unified way as the resuit of some 2D correlation acting on the 

WVD. The WVD thus appears to play a central rôle in both analyses since it is (among a 

few other members of the Cohen's class, see Section n.B) covariant under frequency 

shifts as well as under scale dilations. Our spécifie choice of putting emphasis on the 

WVD is motivated, among other things, by the fact that it is real-valued. 

The WVD thus belongs to both classes of time-frequency and time-scale 

distributions with the simple identification «scale = inverse of frequency». This is well 

illustrated by the last resuit presented in this paper, which shows a continuous transition 

from spectrograms to scalograms with the WVD as a middle step. In light of this, we 

recommend that various properties of time-frequency and time-scale methods be 

compared keeping in mind that both resuit from a smoothing (more generally, a 

correlation) operation acting on a common kemel (the WVD), the différence being related 

to the nature of the smoothing operation used: time-frequency or affine (time-scale) 

smoothing. Moreover, this continuous transition permits to balance time-frequency 

resolution and cross-terms reduction in the time-scale représentation, in a similar (but 

différent) way as for the smoothed pseudo-WVD. Other spécifie requirements (such as 

energy normalization, time marginal, etc.) and associated parameterizations of the 

representation were also studied in this paper. This results in a great versatility for the 

choice of representations appropriate for various applications. 
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Since a large class of time-scale and time-frequency représentations is now 

available, with many possible (and sometimes, exclusive) properties, some analysis 

should be done on the analysis tool itself in order to express panicular needs: starting 

from the most general formulation, one can, for instance, build a subset of time-scale 

energy representations, suitable for a given application, by imposing spécifie 

requirements. Controlling a few parameters on this set of analyses should help in many 

ways, e.g. for determining which représentation best reveals a given time-scale 

signature. 
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APPENDIX A 

Proof of Proposition 1 

It is known that Cohen's class can be derived from a shift-covariance requirement with 

respect to both time and frequency [20]. Therefore, if we introduce the time-frequency 

shift operator 

[LWHa v)h](u) = h(u - 1) e*2� , (Al) 

onehas 

Cl WH (t. v)a("� n;IT) = Ch(u - 1; n - v, 77). 

On another hand, Moyal's formula [11] guarantees that, for any two finite energy 

signais, 

+00 +00+00 

1 
jx{t) y*(t) dt\2 = j 

ï Wx(u, n) Wy(u, n) du dn 

-00 - OO - OO 

+00+00 

= f A, (n, r) A y (n, 
r) dn d-r (A2) 

- OO - OO 

Using (7) and applying Parseval's equality, we obtain 

+00+00 

f F Cx(u, n; IT) 
C (u, n; II) du dn 

- OO - OO 

+00+00 

= f \f(n, x)\2Ax(n, x)A*(n, 
x) dn d-r 

- OO - OO 

and, hence, a generalized Moyal's formula holds for ail members of Cohen's class which 

are characterized by a weighting function of modulus unity [14]. This is true especially if 

y(t) is chosen as in (Al): in such a case, the left-hand side of (A2) identifies to the 

spectrogram, which complètes the proof. a 
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APPENDIX B 

Proof of Proposition 2 

According to the définition (7), one has 

+00+00 

Ch(JL^J-,an; 
77) = 

J J f(m, 
x) An(m, x) e-i21t(m(u -0A« 

+ zan) dm d-r 

-00-00 

+00+00 

= 
J J f(am, ^) [Ah(am, ^) e'2�1'] e"'271^" + 1"n) dm dx.. 

-00-00 

It can be easily checked that the quantity into brackets corresponds to the ambiguity 

function of h(t) after action of the affine transformation (10). Therefore, we obtain 

ch^j~ an; II) = CLA(t,a)h(U, n; 

provided that 

f.an,^=f(n,x) 
(Bl) 

for any a. Weighting functions satisfying (Bl) are functions of the product of their 

variables. The proof is completed by considering again the unit modulus condition under 

which Moyal's formula holds. N 

APPENDIX C 

Proof of Proposition 3 

Assume the following covariance requirement relative to affine transformations (10) is 

imposed to a time-scale distribution Q 

A-A(fta)*('.a� = QJrJr �� f ) (CI) 

If the desired distribution Q is supposed to be constructed as a bilinear form in x 

characterized by some kemel K, then 
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+00+00 

^(f,a)= f [K{u,u';t,a)x{u)x*{u')dudu' 

-00-00 

and it follows from the covariance requirement (Cl) that 

a K(au + 0, au' + 9; t, a) = K(u, u'. a 

for any a, any 9 and any a, or, equivalently, 

K(u, u';t,a)=^K(^-,^J-;t-9,a) . 

If we fix 9 = t and a = a, this implies that the kernel must verify 

=-a K(-, " -a 0, 1). 

Therefore, one has 

+00+00 

Qx{t,a)= 
f J \K{^,U�^1;0,\)x{u)x*(u')dudu' 

- 00 - 00 

+00+00 

- 00 - 00 

+00+00 

= 

f f u-t 
- 00 - 00 

with the smoothing function 77 defined as 
+00 

JIU, v) = jK(t + \, 
t - 

^, 0, 1) 
Qï2*vrdx . 

-00 

This complètes the proof. 
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APPENDIX D 

Derivation of Bertrands' définition 

Assume our time-scale distributions are characterized by a kemel function whose bi- 

frequency représentation is localized according to : 

xfa, m) â G(n) 8(m - F(n)) . (Dl) 

Further spécifications of this kernel function can be obtained by imposing spécifie 

requirements to the corresponding distribution. 

1) Time localization. Imposing time localization (in Bertrands' sensé [8]) 

yields 

+00 

nxCt, a; n5) = a f 
G{an) � ^«(mq) dn 

" F2(an) - (an/2)2 

and, hence, the condition : 

G2(n) = F2(n) - (n/2)2 . (D2) 

2) Moval-tvpe formula. If we impose the condition (17) for the Moyal-type formula (16) 

to hold, we obtain, within the structure (Dl), 

\f{an, -r |) "f2 

= 

J GHan) 
^ � * 

a2 

Therefore, (17) is satisfied if 
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dF 

G2(n) = F(n)-nC^(n) . (D3) 

The simultaneous requirements of 1) time localization (D2) and 2) Moyal-type 

formula (D3) lead to the differential equation 

F(/i)-n^(n) = JF2(/z)-(«/2)2 , 

which is équivalent to 

U(n) dn (n) - V(n) dn (n) 
= U(n) V(n) , (D4) 

after introducing the auxiliary functions 

U(n) = F(n) - (n/2) ; V(n) ^ F(n) + {n/2) . 

Moreover, if both sides of (D4) are divided by V(n) and if we introduce a new 

function W(n) = U(n)/V(n), we get 

dW 
-dn-in) = W(n) , 

whose solution reads 

�F(n) - 
(n/2) 

W(n) 
F(n) + (n/2) Ct 

(D5) 

It follows from (D5) that W(0) = 1. This implies c = 1 which, in turn, implies 

F(n) = (n/2) coth(n/2) . (D6) 

We then deduce from (D3) and (D6) that 

G2(n) = ((�/2)-^±I . 12» ({n/2y^±l + (n/2) n2 en (D7) 

and, hence, 
G(n) = sinh(n/2) 

This complètes the proof. 
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APPENDIX E 

Proof of Proposition 4 

For a sake of convenience, let us introduce the notation 

H(v) â H0(v-v0) 

which allows us to consider (25) and (26) in a common framework, with either Ho for 

the smoothed pseudo-WVD or H for the affine smoothed WVD. If both spectrograms 

and scalograms are supposed to be attainable through separable kemels, then their 

associated smoothing function, which is a WVD, must necessarily be itself a separable 

function of time and frequency. However, if we impose to a WVD to be separable, e.g. 

Wx(t,v)=g(t)H0(v) , (El) 

we readily obtain 
+00 

\X(v)12 = 
f 
W.x(t, v) �= G(0) Ho(v) 

-00 

and 
+00 

2 
jwx(t,v)dv 

=g(t)h0(0) . 
-00 

Therefore, a separable WVD is necessarily of the form 

Wit, v) G(O) ho (0) 
- (E2) 

From (El), it follows that 

+004.00 

G(0) ho(O) = J J Wx(t, v) dtdv Ex � 0 
-00-00 

and, hence, (E2) is a non-negative quantity: 

Wx(t, v) � 0 . 
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This means that, if separable WVDs exist, they are necessarily everywhere non- 

negative [21]. The non-negativity condition being imposed, we know from Hudson's 

theorem [22] that the only signais which are admissible are exponentials of quadratic 

forms in t (with possibly complex-valued coefficients) such that 

x(t) = t�az +P*+y� , Re (al � 0 . 

However, since separability is imposed too, no coupling between time and 

frequency is allowed, which restricts the class of solutions to 

x(t) = (2a/7t)w e-a.1 e-^e'V =� Wx(t, v) = 2 e-29 e-�2* /«)(v- 02 , 

where a and Ç are real-valued, yr is a pure phase factor and the normalization has been 

chosen for ensuring energy conservation. Therefore, a suitable choice of separable 

smoothing functions which allows a continuous passage from Wigner-Ville to 

spectrograms or spectrograms is of the form of a (normalized) product of Gaussians, i.e. 

This complètes the proof. N 
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FIGURE CAPTIONS 

Figure 1 

Compared time-frequency resolutions of spectrograms and scalograms 

(a) Spectrogram with médium resolution in time and frequency 

(b) Spectrogram with low (resp. high) resolution in time (resp. frequency) 

(c) Spectrogram with high (resp. low) resolution in time (resp. frequency) 

(d) Scalogram with frequency-dependent resolution 

Figure 2 

From spectrograms to scalograms via Wigner-Ville (time: ��, frequency: T, jx- iKHafS) 

(a) Spectrogram (p. = 1) 

(b) Smoothed pseudo-Wigner-Ville (J1 = 0.6 ) 

(c) Smoothed pseudo-Wigner-Ville (ja = 0.25 ) 

(d) Wigner-Ville (p. = 0) 

(e) Affine smoothed Wigner-Ville (p. = 0.25) 

(f) Affine smoothed Wigner-Ville {jj. = 0.6) 

(g) Scalogram (p. = 1) 
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Figure 1 
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Figure 2-a 
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Figure 2-b 
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Figure 2-c 
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Figure 2-d 
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Figure 2-e 
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Figure 2-f 
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Figure 2-g 
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ABSTRACT 

In this paper, an exact block formulation of the Constant Modulus Algorithm (CMA) 

is presented, on which a réduction of arithmetic complexity is achieved. Due to the 

équivalence between the original CMA formulation and ours, the convergence properties of 

the CMA are maintained, which is not the case in the Treichler et al . implementation in 

frequency domain of this algorithm. Furthermore, our approach allows the use of very small 

block lengths ( e.g., N = 2), the réduction of the arithmetic complexity increasing with the 

block size. 
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1. INTRODUCTION 

The Constant Modulus Adaptive Algorithm (CMA) is a spécial case of a more general 

algorithm that was first proposed by D.N. Godard [1] as a method for blind equalization for 

data modems. Another similar algorithm may be obtained from [10]. The CMA was 

extensively studied by Treichler et al . [2,3] for a communication application. Indeed, in 

many modulation schemes, such as frequency modulation (FM) and phase modulation (PM), 

the signal to be transmitted possesses the constant envelope property. The received signal, 

however, has lost this property due to multipath and interférence effects. The CMA restores 

the constant envelope property of the signal and increases the SNR. This algorithm thus 

employs just the a priori knowledge about the envelope of the transmitted signal and has the 

nice characteristic that no référence signal is required. 

Nevertheless, the CMA has some shortcomings. First, it involves the minimization of 

a nonconvex cost function [1]. This non-convexity implies the existence of local minima, 

and a satisfactory convergence of the algorithm does not imply a true minimization of the cost 

function. Second, the algorithm may capture a constant modulus interférer rather than the 

constant modulus signal of interest [3]. Thèse two problems can be overcome by a simple 

filter initialization [1,3] and will not be considered hère. Another drawback is the large 

number of arithmetic operations required for thi« algorithm. In order to reduce this load, 

Treichler et al . [4] proposed to compute the nonlinear error in the time - domain while 

updating weigths and filtering in the frequency-domain. Unfortunately, this algorithm is only 

an approximation of the initial one, and has been observed to hâve very slow convergence 

[4]. 

The main resuit of this paper is that it is possible to both reduce the arithmetic 

complexity of the CMA -by working in blocks that may be very small, if required- and 

maintain convergence properties : from the mathematical point of view, the algorithm thus 

obtained is strictly équivalent to the CMA. 

Section II briefly recalls the initial version of the CMA, and provides an evaluation of 

the arithmetic complexity in two cases of implementation. 

Section III provides the basis of our approach : merging the computations of two 

successive CMA outputs permits to reduce the required number of operations per output 

point. 
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This is generalized in section IV in which we establish an exact block formulation of 

the CMA on which a réduction of the arithmetic complexity is feasible by using the "Fast 

FIR" technique [ 5,9]. Two spécial cases are studied with more détails : The first one is the 

recursive application of the fast FIR of length 2, which has the advantage of allowing an 

improvement of the arithmetic complexity even for very small block lengths. The second one, 

which uses FFT as an intermediate step, is more efficient for larger blocks. 

Note that the blocksize never dépends on the filters length, and that the usual 

constraint that the FFT length should be at least twice the filter's length does not hold hère. 

This fact has a lot of advantages when thinking of memory requirements or overall System 

delay. 

n. THE INITIAL CMA 

n.l. Dérivation of the algorithm 

The Constant Modulus Algorithm's organization is depicted in Fig.l, where y(n) is 

the output of a complex FIR filter : 

L-l 

y(n) = Xt n H = HtXn Ix(n-i)hi 

L being the length of the filter, Xn the vector of the past L complex data at time n , 

and H the vector of complex weights : 

Xn = [x(n)x(n-1) ...... x(n - L + 1) r 

H =[ho hl ...... hL-Ir 

The purpose of the adaptation process is to find a weight vector H that minimizes 

fluctuations in the complex envelope of the output y(n). Hence, a natural criterion J measures 

the distance between the modulus of y(n) and the constant modulus of the transmitted signal : 

(2) 

J 
= iE{[|y(n)|2-l]2} 

where E dénotes statistical expectation and where the modulus of the signal is assumed to be 
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equaltol. 

A possible algorithm for the coefficients updating is as follows : 

(3) 

Hn+1=Hn-^iVJ(n) 

where p. is a positive step size and V the gradient operator : 

(4) 

VJ(n) = 
aJ(n) 

9Hn 

= E{[|y(n)|2-l]y(n)X;} 

where * dénotes the complex conjugate. 

Of course, since eq.(4) involves a mathematical expectation, it cannot be used as it is. 

It has been proposed in [1,2] to replace it by an instantaneous gradient estimate, as given in 

(5) (note that similar approach led to the LMS algorithm) : 

(5) 

VJ(n)=[|y(n)|2-l]y(n)X; 

The CMA is thus described by the following set of équations : 

(6) 

a) y(n) = XÎlHn 

b) cc(n) = n[|y(n)|2-l]y(n) 

c) Hn+1 = Hn-a(n)X; 

H. 2. Arithmetic complexity of the CMA 

II.2.1. Initial version ( CMA1) 

Assuming the usual 4 mult - 2 add complex multiplication scheme is used, the 

arithmetic complexity of the initial CMA, as described by eq.(6), is as follows : Eq.(6a) 

requires 4L real multiplications, and (4L - 2) real additions. The computation of (6b) 

requires 5 real multiplications and 2 real additions, while eq.(6c) requires 4L real 
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multiplications and 4L real additions. This results in the following total number of real 

opérations per output point : 

(7) 

8L+5 multiplications 

(8) 

8L additions 

Note that since Il has not been chosen as a négative power of 2, it appears in this count. 

111.2.2. "Fast" complex multiply-based version 

It is well known that a complex mutliplication can be computed as follows : 

(9) 

a) (xr+jxi)(hr+jhi) = [(xr+xi)hr-xi(hr+hi)] 

+j[(xr+xi)hr-xr(hr-hi)] 

b) =[(hr + hi)xr-hi(xr+xi)] 

+ j[(hr + hi)xr-hr(xr-xi)] 

In the case of fixed coefficient FIR filtering, eq. (9a) is preferred, because hj±hj can 

be precomputed, so that the overall computational load is 3 mults and 3 adds, which results 

in an exchange of one multiplication for one addition. When hr and hj are not fixed, the 

apparent cost is (3 mults, 5 adds). However, it is shown in the following that the use of (9b) 

in the CMA équations (6) allows a réduction in the total number of opérations compared to 

the initial algorithm. Using (9b), (6) is rewritten as follows : 

(10) 

a) y(n) = [(H^+4)tX^-(Xrn+X^)tH|1] 

+ j[(H�HJ1)tX^-(X^-X^)tH^] 

b) 
cc(n) = n[|y(n)|2-l]y(n) 

c) H^1=H^-[(ar(n)-ai(n))X^+ai(n)(X^ + XJ1)] 

HU=4-[(ar(n)-ai(n))Xj1-ar(n)(X^-Xi1)] 

A straightforward opération count would be as follows : 3L mults and 6L - 1 adds in 

(lOa), 5 mults and 2 adds in (lOb) and 3L mults and 4 L + 1 adds in (10c). 
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Nevertheless, remembering that Xrn±Xin has a single additional term compared to 

Xrn.i ± Xin-1 and that identical terms are stored in the filtering process, it is easily seen 

(Fig.2) that 2(L - 1) additions can be saved. 

The overall CMA process, based on a complex FIR scheme as depicted in Fig.2 

hence requires : 

(11) 

6L+5 mults 

(12) 

8L+4 adds 

which reduces the total number of opérations by about 2L. In other words, one fourth of the 

number of multiplications has been saved, at the cost of 25 % additional memory locations in 

some implementations. This second algorithm will be referred to as CMA2. 

With thèse two versions of the CMA as starting points, we shall dérive in the 

remaining of this paper an exact block formulation of this algorithm, which allows a 

reduction of the arithmetic complexity. The tools we use are the same ones as in the fixed 

coefficients case [9], and this dérivation follows the same lines as for the LMS case [6,7], on 

which similar work was already performed. 

m. AN EXAMPLE OF CMA WITH REDUCED NUMBER OF OPERATIONS 

Let us first consider the required computations in the CMA at two successive time 

samples n - 1 and n. By appropriately re-arranging the corresponding equations, we shall 

obtain an exact équivalent of eq.(6) requiring a lower number of operations per output point. 

Consider eq.(6), written at time n - 1 : 

(13) 

a) y(n-l) = Xt n -1 Hn-1 

b) a(n-l) = ^[|y(n-l)|2-l]y(n-l) 

c) H^H^-^n-DX;.! 

Substituting (13c) into (6a) results in : 

(14) 
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y(n) = X' n H.-I - cc(n - 1) X' n X* n-1 

= X' n Hn-1 -U(n - 1) s(n) 

where: 

s n = n n-1 

Equations (14), (13a) can be combined in matrix form to give : 

(15) 

y(n) L X1 n 
�Ls(n) 

0 

The first term of this équation appears to be the computation of two successive 

outputs of a fixed coefficient filter. Thus, we can apply on the fixed part of eq.(15) the same 

techniques as explained in [9] : 

'ho(n-l) 

xt- n Hn-1 
[x(n -1) 

x(n-2) ...... x(n - L) 
. hl (n -) 

X� x(n) x(n-l) x(n-L + l) J : 

hL.^n-l^ 

"ho(n-D 

h2(n-l) 

x(n-l) 
x(n-3)...x(n-L+l) x(n-2) X(n-4)...X(n-L)] 

L l 

~[x(n) x(n-2)...x(n-L + 2) x(n-l) x(n-3)...x(n-L + 1) 
hl (n -1) 

h3(n-l) 

X.^n-l), 

where the even and odd terms of the involved vectors hâve been grouped. Furthermore, in 

order to obtain a more compact notation, assume L is even, and define : 
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A0=[x(n) x(n-2) x(n-L + 2)]1 

A1=[x(n-1) x(n-3) x(n-L + l)]1 

A2 = [x(n - 2) x(n - 4) ...... x(n - L)]t 

Hn-1 = [ho (n - 1) h2 (n - 1) h^n-l)]' 

HU = Mn-l)h3(n-l) ...... h L-1 (n - 

Equation (16) is now rewritten as : 

(17) 

[X:-I]Hn-1 

= 

[Aà t 1 

The same kind of work can be performed for the updating of the filter taps. First 

substitute (13c) into (6c) : 

(18) 

Hn+i =Hn_1-a(n)X;-a(n-l)X;_1 

Or, with the above notations : 

(19) 

"+1 = ^ 
-a(n) ; -a(n-l) \ _Hn+lJ LHn-lJ LAlJ ���Now, 

the following set of équations is exactly équivalent to the définition of the 

CMA, for a block of two outputs : 

(20) 

Ly'(n) J A a{J[hU. 

y(n) J Ly'(n) J Un) 0 a(n) 

c) 
rH2+il 

= K-i]_rAi A;lra(n-1)- 

Note that from a computational point of view, eq.(20b) states some problem : the 

computation of y(n) seems to require the knowledge of a(n) which itself is defined in tenus 

of y(n). Nevertheless, since the matrix involved in eq.(20b) is strictly lower triangular, this 
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équation can be solved as follows : y(n-l) is readily obtained, then compute a(n-l) by its 

définition (13b), then obtain y(n) by the second line of (20b), and finally compute a(n) from 

y(n). Although a(n) and y(n) are related in a non-linear manner, this kind of equation will 

always be solvable by substitution, due to the nature of the matrix involved in eq.(20b) 

(strictly lower triangular). 

Now, reduction of arithmetic complexity can take place, by rewriting (20) as : 

(21) 

y(n) J Ly'(n) J 0 oJ|_a(n) 

[0] = [H^l - rAÎ(a(n-l) + a(n))-(A1-A0)*a(n) 

The réduction of the number of operations has mainly been obtained in the first 

equation of the set : (21 a) involves only three différent length L/2 inner products instead of 4 

inner products of the same size in (20a). 

We shall now more precisely explain the organization of the computation, step by 

step, and evaluate the arithmetic complexity : 

step a) computation of y'(n - 1) and y'(n) by eq.(21a) 

step b) recursive computation of s(n) : 

(22) 

s(n) = s(n - 2) + [x(n)x*(n-l) + x(n - 1)x*(n - 2) 

-x(n-L)x*(n-L-l)-x(n-L-l)x*(n-L-2)] 

step c) y(n - 1) = y'(n - 1). Compute oc(n - 1) by (13b), then substitute in (21b) to get 

y (n), and finally use (6b) for obtaining a(n) - eq.(21b) 

step d) compute the update ofH - eq. (21c) 

step e) incrémentation of n by 2 then go to step a) 
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Several considérations similar to the ones in [6,7] , allow to precisely evaluate the 

number of complex arithmetic opérations involved in (21) : 

Step a) The filtering opération Ato (Hon-1 + Hln-l) is common between the two 

terms of (21a), which requires 3 length L/2 filters, two of which are applied to combinations 

of the input samples, namely : 

(23) 

A2-A1=[x(n-2)-x(n-l), ,x(n-L)-x(n-L + l)]1 

A1-A0=[x(n-l)-x(n), ,x(n-L + l)-x(n-L + 2)]1 

Just like in section II, the apparent number of additions involved in (23) can be reduced by 

noticing that the previous set of scalar products involved in the computation of y(n-3), y(n-2) 

already required nearly the same combinations of the input samples, and that only two new 

complex additions are to be computed : ( x(n-2) - x (n-1) ) and ( x(n-l) - x(n) ). 

Step b) involves two complex multiplications and two complex additions (half the 

complex mults were already computed previously). 

Step c) involves the computation of y(n) with one complex addition and one complex 

multiplication, plus two equations of the type (13b), which require a total of six real mults. 

Finally, step d) requires the complex product A * (a(n-l)+a(n)), which is common 

between the two equations (21c). Moreover, (Aj - Ao) and (A2 - Aj) were already calculated 

in (21a). 

The above considerations allow to evaluate the réduction in the number of complex 

operations per output point required for implementing the CMA. Nevertheless, the précise 

improvement in terms of real operations dépends on the way the complex multiplications are 

performed (see section 11-2). 

When the complex multiplications are performed with the usual 4 mult-2 add scheme, 

the total number of operations for computing two outputs is : 

(24) 

12L+22 real multiplications 

(25) 

14L+22 real additions 
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We dénote this algorithm by FCMA1, for a block length N = 2. 

When the "fast" complex multiply scheme is used for computing the length L/2 filters, 

as explained in section 11.2.2, the corresponding algorithm is called FCMA2, and its 

computational load for a blocklength N = 2 is : 

(26) 

9L+22 real multiplications 

(27) 

14L+36 real additions 

Table 1 gives the number of opérations per output point for ail the algorithms 

explained up to now : CMA1, CMA2, FCMA1 andFCMA2. 

It can be observed that each "fast" algorithm reduces by about 25 % the number of 

multiplications compared to their initial counterpart, while slightly reducing the number of 

additions. The total number of real operations is seen to be 20 % less than the one required 

by a straightforward implementation of the CMA. 

Note that this reduction is obtained only by a re-arrangement of the initial equations, 

and that there is an exact équivalence, mathematically speaking, between the initial algorithm 

and our block version of it. Hence, ail thèse algorithms hâve the same convergence rate. 

This method has been explained in a rather spécifie manner, by merging the 

computations of two successive CMA outputs. We show in the next section that this 

approach is much more general : grouping the computations of more outputs results in greater 

computational savings. 

IV. GENERALISATION TO ARBITRARY N 

We shall follow the same lines as in section III : First, we provide an exact block 

formulation of the CMA for arbitrary N, which is in the form of a fixed filtering, followed by 

a correction of the outputs, and an update of the coefficients that are to be used in the next 

block. Concerning the fixed coefficients filtering, we shall refer essentially to réf. [5,9], and 

only recall some results. We shall rather concentrate on the adaptive part of this algorithm. 
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IV. 1. Exact block formulation of the CMA 

Let us assume that L = NM, M a positive integer, and let us write the fixed FIR filter 

output équations at time n-N+1, n-N+2, n-1, n : 

(28) 

y'(n - N + 1) Xn-N+1 

y'(n - N + 2) XÎ,_N+2 

= Hn-N+1 

y*(n-D xu 
y'(n) xl 

In the same manner as with the example N = 2, we may write the exact output 

équations at time n - N + 1, n- N + 2, n-1, n, of the CMA : 

(29) 

"y(n-N + l)l ry'(n-N + l)l |"a(n-N + l)" 

y(n-N + 2) y'(n-N + 2) a(n-N + 2) 

_S(n) : 

y(n-l) y'(n-l) a(n-l) 

_y(n) _y'(n) a(n) 

with 

(30) 

0 0 0 

s, (n - N + 2) 0 : 

S(n)= .2V 
s, (n - N + 3) ...... 

_sN_!(n) SN-2 (n) .................................... sl(n) 0 

where 

si(n) = XÎ1X;_i , i 1,2, ........... N-1 
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The remaining part of the algorithm is the coefficients updating which is expressed as 

follows : 

*a(n-N + l)" 

a(n-N+2) 

oc(n-l) 

a(n) 

(28), (29) and (31) can be written in matrix form as follows : 

(32) 

a) Yn = X(n)Hn-N+I 

b) Yn = Y,, - S (n) ccn 

c) Hn+1 = Hn_N+1-X+(n)an 

where t denotes the transpose conjugate, Yn' is a vector of N successive outputs of a fixed 

filter, Yn represents N successive outputs of the complex CMA filter, X(n) is a matrix (NxL) 

of the N last input vectors and an the vector (Nxl) formed from a(n-i) for i=0 to i=N-l. 

The set of équations (32) with the expressions relating a(n) and y(n) (eq.(6b) at time 

n-N+1, ,n) form an exact équivalent of (6) for a whole block of outputs 

y(n-N+l), ,y(n). Eq.(28) is an FIR filtering, whose coefficients remain unchanged 

during the whole block of outputs, and is thus amenable to a réduction of the arithmetic 

complexity through the techniques explained in [9]. 

Eq. (29) requires more inspection, since both vectors on each side of the équation dépend on 

the same unknowns Yn through eq.(6b). Nevertheless, since S(n) is strictly lower triangular, 

(29) can be solved in a manner strictly parallel to the computation of the solution of a linear 

System with a lower-triangular matrix : First initialize y(n-N+l)=y '(n-N+1) then obtain 

a(n-N+l) by (6b) at time n-N+1, solve in y(n-N+2) using the second line of (29) from 

which a(n-N+l) is obtained (6b). Then, a(n-N+l) and a(n-N+2) allow the computation of 

y(n-N+3) by the third line of (29). Iterating the process provides both Yn and an in (32b). 

Eq. (32c) then provides the values of H to be used in the next itération. It is seen that the 

filter weights are updated once per data block instead of once per data sample. Nevertheless, 

this updating is performed in such a manner that the weights are equal to those that could 

hâve been found in the initial CMA at the same time. 
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In this way, expressions (32) are an exact block formulation of the CMA with the 

advantage that arithmetic complexity can be saved by using the same techniques as described 

in [6,7]. 

IV.2. Block Toeplitz formulation 

A formulation of (28-31) using subsampled versions of the différent signais involved 

allows the dérivation of the fast algorithm for any N : 

Define: 

(33) 

Aj=[x(n-j) x(n-N-j) ... x(n-Ni-j) ... x^-L + N-j)]1 

j 0,1, ........ 2N-2 

i = 0,1, ,(L/N)-1 

a vector of length L/N ; and 

(34) 

Hn-N+l=[hk hk+N ...... hk+Ni ...... hk+L-N] (n-N 
+ 1) 

k = 0,l ,N-1 

Then, eq.(28) becomes : 

AN-1 AN ........ N-3 tN-2 Fii-N+1 

N AN-1 A2N-3 Hn-N+1 

Y = 

A A1 H N-2 Al N N-2 

A1 A1 At N-LJL H n-N+lj N-1 

and (31) gives : 

(36) 
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Hn+1 Hn-N+1 AN-1 AN-2 ..................... Al A N + 1) 

Hn+i H n 1 -N+l A^ An-i ........................... A* a(n-N + 2) 

H n+l N-1 H n-N N-1 +1 LA2N-2 A2N-3 AN-I 

Expressions (35) and (36) play a key rôle for reducing the arithmetic complexity of 

the algorithm, since they can be seen as a filtering équation with éléments replaced by 

vectors. Hence, ail fast FIR filtering algorithms apply on this kind of matrix-vector products 

[ 5,9]. Eq. (29) has not been changed by this block formulation, and it seems that the most 

efficient way to compute the matrix S is the use of the following recursions : 

A first équation (38) provides the expression of the first column of matrix S : 

(38) 
i 

Sj(n - N + i + 1) = Si (n - N) + £ x(n - N + i - j + 1) x*(n - N - j + 1) 
j=o 

i 

- £ x(n-L-N + i-j + l)x*(n-L-N-j + l) 
j=o 

i = 0,1, .......... N-1 

Equation (39) provides the computations to be performed along the diagonals : 

(39) 

Sj(n + 1) = Si(n) + x(n + l)x*(n -i + 1) 

- x(n - L + 1) x*(n - L - i + 1) 

The above considérations allow to evaluate precisely the number of arithmetic 

operations required for operating this block-CMA, whatever the block size N is. It should be 

noted that the number of operations to be performed per output point can be decomposed in 

two terms : the first one is due to the "fixed" coefficient filtering and to the update ofH. This 

terni decreases with N : working with larger blocks results in more efficient algorithms. The 

second one is due to the computation of matrix S, and this term increases with N. Therefore, 

for a given filter length, there exist an optimum blocksize that will also dépend on the type of 

fast algorithm that is used. The next two sections study two spécial cases of interest, where 

both the block-size and the filter's length are powers of 2. 
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IV.3. FCMA based on short-length FIR algorithms 

The first case of interest is the recursive application of the computation we used in 

section III. If the block length is a power of 2 (N = 2n), a fast FIR algorithm can be obtained 

by applying n times the décomposition (21a), thus resulting in 311 subfilters of size L/N, the 

inputs and outputs of which are sub-sampled by a factor N compared to the input of the 

System. 

A précise évaluation of the number of opérations required by this algorithm for 

computing a block of N = 211 outputs is provided in appendix A.l. It is shown that, if the 4 

mult-2 add complex multiply scheme is used in the filtering part (FCMA1), the number of 

operations to be performed per output point for a filter of length L = 2n M is : 

(37) 

8 (3/2)n M + 6 2n - 1 multiplications 

(38) 

4(3(3/2)n-l)M + 7 2n + 8(3/2)n-15 additions 

If the "fast" complex mutliply scheme is used (FCMA2, see section H.2.2.), the 

resultirg number of operations per output point are : 

(39) 

6 ( 3/2 )n M + 6 2n - 1 multiplications 

(40) 

4 ( 3 ( 3/2 )n - 1 ) M + 7 2" + 12 ( 3/2 )n - 13 - 2/2" additions 

Note that as long as M �4 (i.e. the filter is at least 4 times as long as the block length) 

and whatever the blocksize may be, the FCMA requires fewer operations than the CMA. This 

means that a reduction of the arithmetic complexity is feasible even for such short filters as 

L=8. 

Furthermore, if we suppose that M = 2n ,we see that the arithmetic complexity of 

FCMA varies with 0(311) instead of 0(4n) for the CMA . This shows the efficiency of this 

approach. 

The important point concerning thèse numbers is that the précise arithmetic 

complexity involves a term growing with N (updating of S) and another one diminishing 

with N (fast FIR). Hence, équations (37) and (39) hâve a minimum. The zeroes of the 
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dérivations of thèse functions provide the approximate value of the optimum block length : 

(41) 

n = -0.6 + 0.7 log2 L for the FCMA1 

(42) 

n = -0.9 + 0.7 log2 L for the FCMA2 

Table 2 provides a comparison of the number of opération per output point required 

by the various algorithms for the approximate optimum blocksize given by (41) and (42). A 

réduction by a factor of 2 of the total number of opérations is seen to be very easily obtained 

for filters longer than L = 64, and a block length as small as N = 8. 

IV.4. FFT-based implementation of FCMA 

It is well known that the FFT can be used for a fast implementation of an FIR filter, 

through the use of overlap-add or overlap-save techniques. Since (35) has the form of an FIR 

filter équation, the FFT technique can be applied. The main différences with the classical 

technique [4] are that the FFT length is twice the blocklength instead of twice the filter's 

length, and that sufficient care has been taken in the block formulation of the algorithm in 

order to maintain the rate of convergence of the CMA. 

A simple way of understanding this method consists in extending the size of the 

block-Toeplitz matrix of eq. (35) in such a way that the resulting matrix is cyclic. The 

resulting équation is : 

(43) 

y" n T'(n) T(n) 0 

where T (n) is the block-Toeplitz matrix of eq.(35), 0 a null vector of size N, Yn" a set of 

outputs that do not need to be computed (overlap-save technique). 

T(n) is choosen (44) in order to give the block-cyclic property to the above matrix : 

(44) 
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an-i 0 ........................... N-3 N-2 

A2N-2 AN-1 N-3 

T'(n)= 

AN+i Ao 

A ............................................. A k-l 

eq.(43) involves inner products of the form Ait Hk. Let us dénote by Ci(n) the matrix 

(2Nx2N) made from the ith term of the blocks of matrix of eq.(43). When developing ail 

inner products in term of the individual components, (43) is rewritten as : 

(45) 

[y'n] .. 
= 1 

[ - i ] Yn i=o 0 J 

where 

Hn-N+l=[nNi nNi+l h Ni+N-2 nNi+N-l ] (n ~~ N + 1) 

i = 0,1,2, ,(L/N)-1 

Each matrix Ci(n) is cyclic, hence can be diagonalized by a Fourier matrix of size 2N : 

(46) 

yJ L i-o 0 J. 

where 

F2NCi(n)F2-Ji=Di(n) 

is a diagonal matrix, whose éléments are the DFT of the first row of Ci(n). 

Furthermore, it can easily be seen that Dj(n)=Dj_i(n-N). This implies that eq.(46) 

represents 2N complex filters of length L/N in the Fourier domain, subsampled by a factor 

1/N. The overall organization of this scheme is provided in Fig.3. It is seen to require 

(L/N)+2 FFT of length 2N per block of data of size N, plus 2N complex filters of length L/N 

which run at a rate divided by N. 
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The same kind of work has to be performed for the updating of the coefficients : 

eq.(36) is first extended to become block-cyclic. Considering separately each ith term of the 

vector Hk and Ai results in the following set of équations : 

(47) 

i = 0,1,2, ,(L/N)-1 

W = Diag{I,I,......,I,O,O,........,O} 

and finally : 

(48) 

- 0 W FIN i (n) F2 [an] 

i = 0,1,2, ,(L/N)-1 

where Di*(n) is the complex conjugate of the matrix Dj(n). 

Eq.(46),(48) , together with (29) are seen to represent the FFT-based implementation 

of the FCMA. A précise count of the required number of opérations is provided in Appendix 

A.2., and compared in table 2 for a number of filter lengths of interest. It is seen that this 

method requires the lowest number of multiplications among ail considered methods for 

lengths greater than 32, and a lower number of opérations (adds plus mults) above L=128. 

For a filter of length 512, the FFT-based implementation requires a number of opérations 

divided by 4.5 compared to the initial algorithm. Note that this performance is obtained for 

quite small blocklengths. The table 2 makes the distinction between two versions of 

FFT-based CMA, depending on the algorithm chosen for the complex filters of length L/N, 

as seen in section n.2.2. Note that the number of opérations for both FFT-based algorithms 

are similar. Hence, the choice between them will rely on structural considérations. 

V. SIMULATIONS 

Some of thèse algorithms hâve been simulated, to verify our affirmations conceming : 

a) The exact équivalence between the CMA and the FCMA, 

b) the speed of our algorithm in relation to the initial one. 
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The complex input signal is (see Fig.l) : 

x(n)=s(n)+sM(n)+b(n) 

where s(n) is the constant modulus transmitted signal, sM(n)=(3 s(n-T) the signal due to the 

effects of multipath propagation and b(n) a zero-mean white noise. 

The objective is to use the CMA to provide an output y(n) which is an estimation of the 

transmitted signal s(n) : 

y(n)=s(n) 

Our aim hère is not to concentrate on properties of the CMA itself, but to check the 

équivalence between the initial and fast versions of this algorithm. Fig.4 provide the 

convergence curves (J(n) averaged on 64 points, normalized by the corresponding input 

energy) of algorithms CMA1 and FCMA1 in the case of a complex FIR filter of length 

L=256 and a blocksize of N=32.These curves are clearly seen to be identical. As for the 

speeding up of the algorithm, we observed that the FCMA1 saved 40% computation time 

compared with the CMA1, which is nearly the ratio of the total number of opérations, while 

exhibiting exactly the same convergence behaviour. This gives an indication on the accuracy 

issue of the FCMA : The updating of coefficients si being performed recursively, one may 

wonder if this recursivity could introduce IIny major drawback. We hâve shown that in the 

LMS case [7], and for a fixed-point computation, this way of computing only results in a 

slight increase of the residual error. It is also shown that, in any realistic case, thèse errors 

cannot resuit in an instability of the algorithm [7]. The same demonstration holds for the 

CMA case, and will not repeated hère. 

It is interesting to note that the matrix S dépends only of the input signal, and some 

approximations are feasible [6,7]. 

VI. CONCLUSION 

In this paper, we provided a new algorithm wich allows a reduction of arithmetic 

complexity of the CMA. This réduction is possible whatever the blocksize is, and even for 

the smallest blocklength (N=2). 

Furthermore, we showed that it was also possible to work in the frequency-domain 

and that the obtained algorithm is strictly équivalent to the initial CMA. 
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Ail thèse algorithms share the same advantages : same convergence as CMA with a 

lower arithmetic complexity, and small blocksize. The small blocksize allows the memory 

requirements to remain reasonable, and reduces the overall System delay. 

The algorithms based on short-length FIR algorithms are efficient for very small 

blocklengths, while FFT-based algorithms are more efficient for médium size ones. 

Furthermore, there is a possibility that the convergence rate can be improved using 

this technique. This work is under consideration and will be reported. 
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APPENDIX A 

Evaluation of the arithmetic complexity of the proposed algorithms for blocklengths 

N=2". 

A.l. Based on short-Iength FIR filters 

This algorithm tums the fixed coefficient filtering (28) of length L into 3n complex 

filters of length L/N, that are used for computing a block of N outputs. The précise number 

of real opérations required by thèse filters dépends on the chosen type of implementation (see 

section 11.2.2.). This transformation is obtained by linear combinations of subsampled input 

séquences (recursive application of (35))which cost a total of : 

4 ( 3n - N ) complex additions. 

The second step is the correction of Yn in order to obtain Yn. This first requires the 

computation of the éléments of the matrix S(n), by application of eq.(38) and (39). This 

requires : 

2N ( N - 1 ) complex multiplications, 

5N N - 1 )/2 complex additions. 

Once S(n) is obtained, eq.(29) is solved by substitution, as explained in section IV. 1., which 

requires a total of : 

N real multiplications, 

N ( N + 1 ) complex multiplications, 

N2 complex additions. 

The final step is the updating of H to be used in the next block computation. This first 

requires the computation of Xt(n) an, which is computed in the same manner as Yn'. By 

taking into account the fact that the combinations of the input samples need not to be 

computed again, this requires : 

2 311 L/N complex multiplications, 

3n+l L/N - 2L + 3n - N complex additions. 

Finally, once the impulse response is obtained, the linear combinations of the 

coefficients Hk need to be computed. This requires : 

3n L/N - L complex adds, 

and the final computation of (36) requires L complex additions more. 
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When the 4-mult 2-add complex multiplication sheme is used in the FIR filtering, the 

resulting algorithm (FCMA1) requires a total of : 

8 311 L/N + N ( 6N - 1 ) realmults, 

12 3n L/N - 4L + 8 3n + N ( 7N - 15 ) real adds. 

Finally, for the so-called FCMA2, where the complex filter scheme is that of Fig.2, 

we obtain the following number of opérations : 

6 311 L/N + N ( 6N - 1 ) real mults, 

12 3° L/N - 4L + 12 3° + N ( 7N -13 ) - 2 real adds. 

A.2. tt 1 -based implementation 

The overall organization of the algorithm is the same one as before, the différences 

being found in the complex filtering sheme and in the updating of the coefficients: 

In fact, the FFT scheme transforms the length-L filter into 2N complex filters qf 

length L/N, at the cost of L/N length-2N FFT's for computing the weights, one FFT for the 

détermination of DO(n) ( note that Di(n), i=l,2,...,(L/N)-l, hâve already been computed, 

since Dj(n)=Di.j(n-N) ) and one length-2N inverse FFT for recovering the outputs. 

As for the updating of the weigths, the overall computation, as given in (48) requires 

(L/N)+l length-2N FFT's, plus 2L complex multiplications and 3L comple� additions. 

Furthermore, let us assume that the FFT is computed using the split radix algorithm 

[11], we obtain as a resuit : 

For the FFT-based FCMA1 : 

4L ( log2N + 2 ) + 8 L/N + 6 N2 + 6N log2N - 13N + 12 real mults, 

2L ( 61092N + 7 ) + 8 L/N + 7 N2 + 18N log2N - 9N + 12 real adds, 

and for the FFT-based FCMA2 : 

4L ( log2N + 1 ) + 8 L/N + 6 N2 + 6N log2N - 13N + 12 real mults, 

2L ( 6 1092N + 7 ) + 8 L/N + 7 N2 + 18N log2N - N + 12 real adds. 
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Figure captions 

Fig.l : Overall organization of the CMA. 

Fig.2 : Efficient implementation of the complex filter found in the CMA in terms of real 

opérations. 

Fig.3 : Implementation of the complex filter based on shorter FFT's. 

Fig.4 : Error curve of the 

a) Constant Modulus Algorithm 

b) Fast Constant Modulus Algorithm. 

Table captions 

Table 1 : Comparison of the arithmetic complexity per output point of the CMA and the 

FCMA for a blocksize of N=2. 

Table 2 : Comparison of the number of opérations per output point required by the various 

algorithms. 
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Fig. 1 : The Constant Modulus Algorithm. 
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Fig. 2 : Complex FIR filtering using three real FIR filters. 
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Fig. 3 : Shorter FFT - based FIR filtering scheme. 
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Table 1 : Comparison of the number of opérations per output point of the CMA and 
the FCMA for a blocksize of N = 2 



Table 2 : Comparison of the number of operations per output point required by 
the various algorithms. 
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ABSTRACT 

We review the three well known fast algorithms for the solution of Yule-Walker (YW) 

équations: Levinson algorithm, Euclidean algorithm and Berlekamp-Massey algorithm, and 

show the relation between each of them and the Padé approximation problem. This connection 

has already been noticed for some of them, but we intend hère to offer a synthetic view of thèse 

fast algorithms. 

We classify the algorithms solving YW equations with référence to three criteria, namely: 

-the path they follow in the Padé table 

-the organization of the computation: we distinguish between one-pass and two-pass 

algorithms. 

-the auxiliary variables used: some algorithms use the backward predictor of same degree 

as intermediate variable for computing the forward predictor (or vice versa), while others use 

two predictors of the same type but of successive degrees. 

This classification shows that the set of known classical algorithms is not complète, and 

we propose the missing variants. With thèse variants of the Berlekamp-Massey and Euclid 

algorithms, we are able to obtain both forward and backward predictors without additional cost. 

Furthermore, we give a unified representation of the two-pass algorithms, in such a way 

that the application of the divide and conquer strategy becomes straightforward. A general 

doubling algorithm which represents ail the associated doubling algorithms in an exhaustive 

way is provided. 

EDICS Category: 5.1.6 Computational Algorithms 

* Permission to publish this abstract separately is granted 
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1. INTRODUCTION 

Speeding up the solution of Yule-Walker équations is very important, since this problem 

appears frequently in various fields such as error-correcting codes, digital signal processing, to 

name only a few. For example, the key équation for decoding Bose-Chaudhuri-Hocquenghem 

(BCH) / Reed-Solomon (RS) / Goppa codes [4] and the équation involved in the identification 

of coefficients of an autoregressive model are Yule-Walker équations. The Levinson algorithm, 

Berlekamp-Massey algorithm, and Euclidean algorithm are the three well known fast algorithms 

for this purpose, each of them being linked initially with one spécial application, although their 

usefulness has been recognized for the other ones later on. 

By exploiting the Toeplitz structure of the coefficient matrix, the Levinson algorithm [18] 

solves a Yule-Walker équation with 0(n2) arithmetic opérations, where n is the size of the 

matrix. The Berlekamp-Massey algorithm was developed by Berlekamp [4] for solving 

precisely the key équation for decoding BCH codes, and was interpreted by Massey as a linear 

feedback shift-register synthesis having the shortest length [19]. The relation between a Yule- 

Walker équation and a Padé approximant [6] makes also possible the Euclidean algorithm 

[17,20] for solving the Yule-Walker équation. This algorithm requires also 0(n2) arithmetic 

opérations. 

Although proposed for solving the same équation, thèse algorithms are based initially on 

various concepts. Our main purpose is therefore to compare them and to offer a synthetic view 

of thèse fast algorithms. 

First, we recall that ail thèse algorithms can be interpreted as Padé approximation 

algorithms [6,7,15], which provides a better understanding of the essential of the problem. 

This interprétation clarifies the relation between différent algorithms, gives an explanation of the 

diversity of algorithms, and provides possibilities for the development of new ones. 

Then, we show that ail thèse algorithms hâve two différent versions, belonging 

respectively to the following classes defined in [8]: 

- the one-pass algorithms, that evaluate directly the denominators of Padé approximants; 
- the two-pass algorithms, that compute first the numerators or the remainders of Padé 

approximants via a séquence of elementary opérations and then repeat the same séquence 

of opérations to obtain the denominators. 
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It is shown that the one-pass algorithms are computationally more efficient than the two- 

pass algorithms, while the two-pass algorithms which provide more information, hâve the 

essential advantage of allowing the dérivation of very powerful signal procès sing algorithms, 

namely the doubling algorithms ( "superfast algorithms" ) and the parallel algorithms [24]. 

Thus, for each algorithm belonging to one class, we develop the corresponding one belonging 

to the other class. The Levinson algorithm being of the one-pass type, we obtain its two-pass 

équivalent by a simple combination of this algorithm with that of Schur [25], which is already 

known. For the Berlekamp-Massey and Euclidean algorithms, we develop two new 

corresponding algorithms: the two-pass Berlekamp-Massey algorithm and the one-pass 

Euclidean algorithm. We complète therefore thèse algorithms in both classes. 

When the polynomials to be processed in the algorithms are seen as forward or backward 

prediction polynomials in the prédiction theory, it is seen that the Levinson algorithm works on 

both forward and backward prediction polynomials, while the Euclidean's works only on the 

forward one, and the Berlekamp-Massey's works only on the backward one. We develop for 

each of the last two algorithms a variant which is able to provide both types of predictors while 

maintaining the computational complexity almost unchanged. 

Throughout the paper, the arithmetic complexity is evaluated for each algorithm. We 

show that the algorithms in the same class require nearly the same number of arithmetic 

operations, and that the Levinson algorithm is the only one for which the arithmetic complexity 

can be reduced when the matrix is symmetric. 

Finally, we study the common structure of the two-pass algorithms allowing to apply the 

divide and conquer strategy. The application of this strategy converts the classical algorithms 

into the class of so-called doubling algorithms which is faster asymptotically 

[1,2,3,15,16,22,23]. We then présent a general doubling algorithm which represents ail the 

doubling algorithms in an exhaustive manner. 

The remaining of the paper is divided into six sections as follows: 

2. Preliminaries 

3. Classical algorithms 

4. Summary of the classical algorithms 

5. Development of the missing variants 

6. Doubling algorithms 
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7. Conclusion 

The preliminary section recalls the Padé approximation and describes the Yule-Walker 

equation as a Padé approximation problem. The section on classical algorithms is divided into 

three subsections, presenting successively the three algorithms for which we discuss the 

following points: 

- the Padé approximants to be evaluated 

- the number of multiplications required 
- the class to which the algorithm belongs 

In section 4, we give a summary of thèse algorithms and point out the missing variants to be 

developed in section 5. Then, based on the common structure of the classical two-pass 

algorithms, section 6 gives a gênerai principe for the application of the doubling strategy to the 

classical algorithms. Finally, we conclude the paper with a short summary. 

2. PRELIMINARIES 

Solving a Yule-Walker equation is shown to be closely related to the Padé approximation 

of a formai power séries [see réf. 6]. We recall the définition "f the Padé approximation 

problem and its connection with the Yule-Walker equation. 

2.1. Padé approximant 

Definition [13,14,21]: Let C(z) = cq + clz+ C2 z2 + ...be a formai power séries with Cq * 0. A 

rational function of the form u(z)/v(z) is an (m, n) Padé approximant for C(z) if 

deg(u(z))�m (1) 

deg(v(z)) £ n (2) 

C(z)v(z) - u(z) = O(zm+n+l) (3) 

For a formai power séries, there always exists a Padé approximant of order (m, n) represented 

by the rational function rm�n(z): 

Pm,n(z) 

am,nVw � 
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with Pm,n(z) and am^i(z) relatively prime and pmin(0) 
= c0, am,n(O) 

= 1. 

The Padé table of the formai power séries C(z) is a doubly infinité array of the uniquely 

determined rational function rm�n(z) 
= 
pm)n(z)/am(n(z), which can be represented as follows: 

Table 1: Padé table 

By définition of rmo(z), the first column contains the partial sums of C(z): 

m ~* 

rrr4 O(z) = 1 c k zk 
k=0 

The power séries C(z) is said to be normal if, for each pair (m, n), the Maclaurin 

expansion of rm,n(z) agrées with C(z) exactly up to the power zm+n. The Padé approximant 

rm,n is normal if it occurs exactly once in the Padé table. The power séries C(z) is normal if ail 

its Padé approximants are normal; that is, no two are equal [14]. 

2.2. Yule-Walker équation 

The Yule-Walker (YW) equation is defined as a System of linear équations: 

en Co- ao- f"anl |~cn coirbol 0 

= or = 

c2n en - an 0 c2n en - bn an (5) 
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where a(z) and b(z) (a(z) = ao + al z + ... + anzn, b(z) = bg + bl z + ... + bnzn) are seen as the 

forward and backward prédiction polynomials of the corresponding system. It is shown in [6] 

that the solution of the YW équations can be described as a Padé approximation problem. This 

interprétation is recalled below. 

The équation (5) is completed as follows: 

Co |~Po Co Po 

0 .. 0 . 

Pn-l 

Cn Co ao Pn Cn Co bo 0 

.. 0 .. 0 
= or = 

C2n cn an 0 C2n cn |_bnJ qo 

qo 

C2n L�ïn-lJ C2n qn (6) 

with pn = qo = otn. By noting c(z) = c0 + clz + ... + c2nz2n, C(z) = c(z) + 0(z2n+1), p(z) = 

Po + Piz + ... + pnzn, and q(z) = q0 + qiz + ... + qn-lzn-l, p(z) = p0 + plZ + ... + Pn- 

lZn-1, and q(z) = qo + qiz +... + q^11, we hâve the polynomial description of (6): 

C(z)a(z) = p(z) + z2n+1q(z) 

C(z)b(z) = p(z) + z2nq(z) (7) 

Comparing (7) with the définition of the Padé approximant, we see that p(z)/a(z) and p(z)/b(z) 

with deg( p(z)) = n, deg(a(z)) = n, deg((p(z)) = n-1, deg(b(z)) = n are respectively the Padé 

approximants of order (n, n) and (n-1, n) for C(z). The solution of the Yule-Walker équation is 

thus described as a Padé approximation problem. 

This simple considération already provides an interesting information: an is the forward 

predictor, while bn is the backward one. The understanding of an and bn as Padé approximants 

of order (n,n) and (n-l,n) respectively shows that the backward predictor is certainly easier to 

obtain, since it is an approximant of lower order than the forward one. 
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3. CLASSICAL ALGORITHMS 

We présent hère three classical algorithms: the Levinson algorithm (and Schur algorithm), 

Euclidean algorithm and Berlekamp-Massey algorithm. Our goal is not to describe the détails of 

the algorithms, but to: 1) interprète them as Padé approximation algorithms; 2) group them 

together in two classes, namely one-pass algorithms and two-pass algorithms; 3) compare their 

arithmetic complexity. 

Considering that the algorithms require almost as many additions as multiplications, we 

evaluate only the latter for each algorithm. The number will be noted after each step in a square 

bracket. 

3.1. Levinson Agorithm 

We recall the Levinson algorithm as w.ell as the Schur algorithm. For thèse algorithms, 

we can find in [7] their interprétation as Padé approximation algorithms. The Levinson 

algorithm [12,18] solves the following équations: 

_ 0 

JlnJln-.. 

_C2n Cnjl_ 0 an (8) 

which are Yule-Walker équations with an and ho respectively the forward and backward 

prediction vectors in the prédiction theory. Let Q be the principal minor of dimension i+1 of the 

matrix in the above équation, which is supposed to be non singular. The prédiction vectors of 

two succesive orders obey the following recursion relationships: 

c,( 
+K«.ib a, -1- + K,,i -Cc .0 

=a 

Ci(_b 
+Kb- f) 5 

i-i- + K4i -(X 0 =« 
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Thèse two équations constitute the main recursion relationships of the Levinson algorithm. The 

algorithm is summarized below. 

ALGORITHM 1 ( LEVINSON ) 

ao(z) = bo(z) 1, Cn 

For i = 1, ..., n 

i-i 

54i_l Eb i_,,j C n-1-j 
j=0 [i-l] 

i-l 

a, ^ai-l,jCn+i-j 
j=° [i-l] 

Kb,i = - P^i.i (xi-1 [1] 

Ka,i = -Pa,i-l/Oi-i [1] 

a.(z) K 
1 

a. Az) 

aj = cti.! (1 - K^ Kb,i ) 
= cci-1 +$w K^ [1] 

We can easily evaluate the number of multiplications required by this algorithm, which is 

equal to 2n2 + n. In the case where the matrix C is symmetric, we hâve {3a)i 
= 
f3bi, Kai 

= 
Kb,i, 

and ai(z) = bi#(z) = z¡b¡(z-l) , this number is reduced to n2 + n . 

In the above algorithm, the parameters Ka,i and Kb,i, known as reflection coefficients, are 

computed via the scalar products (3ai and Pb j. Thèse parameters provide the recursion 

relationship for the prédiction polynomials ai(z) and bi(z), and the only recursion is carried out 

on thèse prédiction polynomials. This algorithm is thus classified as a one-pass algorithm. 

The Schur algorithm [25] provides an alternative method for computing the reflection 

coefficients { K^j , Kbi } via the recursion of the polynomials pi(z), qj(z), p^(z) and qj(z): 
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ALGORITHM 2 ( SCHUR ) 

Pi(z) ~LKa.iZ 
1 JLPi-l(z)- 

Z[zq.(z)J [z 
1 [zqi-i(z). 

with 

KM+l="Pi,n-l/Pi,n 

Ka,i+l=-qi,0/qi,0 

where 
n-l n 

Pi(z)= EPijzJ' Pi(z)= Spu^ 

j=0 ' j=0 

n n-l 

qi(z) 
= 

Eqi,jzJ' qi(z)= Y, q zi. 
j=0 j=o 

The variables pg, qn , Pij, qi ; involved in the algorithm are found in the following 

linear équations: 

Co P0-0 Pn,0 Po.O Pn,o" 

. 0 1 

Pot q^ n-l 

Pn,n-l| 

c 2n C n 
1,1 

bn.iJ 

a 

a n, n- q 0, q n,o 
1 q^ _ ' 

- q 

Obviously, we hâve pi�n_! = pb�i, qi�0 
= 
Pa,i� and qi)0 

= 
Pi,n 

= a,. 

The Levinson type two-pass algorithm is obtained by combining the computation of the 

reflection coefficients Ka ; and Kb j in Schur's manner, and the prédiction polynomials ai(z) 
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and bi(z) in Levinson's manner, in such a way that the recursive itérations are performed 

altogether on p,(z), qi(z), Pi(z), qi(z) and ai(z), bi(z). The combined algorithm called 

Levinson/Schur algorithm is written below: 

ALGORITHM 3 ( LEVINSON/SCHUR ) 

First pas s: 

Po(z) 
= 

c0 + cjz + ... + Cn-izn-1, Po(z) 
= 

c0 + CjZ + ... + cnzn, 

qo(z) 
= 

Cn + cn+1z + ... + c2nzn, qo(z) 
= 

cn+1 + ... + c2nzn-l, 

For i = 1, ..., n 

Kb4 
= - 

" Pi-l.n-1 / Pi-l,n 

Ka,i = - qi-i.o/qi-i.o [1] 

p.(z) K .z 
1 p. ,(z) 

zq.(z) K 
1 zq. ,(z) 

[2(n-i)] 

Second pass: 

ao(z) = bo(z) = 1 

For i = 1, ..., n 

The number of multiplications required for evaluating this algorithm is 3n2-n, which is 

more than the corresponding one-pass algorithm (Levinson algorithm). If the matrix is 

symmetric, this number may be reduced straightforwardly to 1.5n2-0.5n. 
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As seen in section 2, the ratio Pi(z)/bj(z) and pi(z)/ai(z), with pj(z) = pjg + Pij z + ... + 

Pin.! zn-1, and pj(z) = Pjq + Pij z + ... + pin zn, are respectively the Padé approximants 

of types (n-l, i) and (n, i) for C(z). Thus, for i from 0 to n, it is seen that this algorithm 

computes the Padé approximants of types (n-1, 0), (n, 0), (n-1, 1), (n, 1), ..., (n-1, n), (n, n), 

which has the form of a sawtooth related to a row in the Padé table (see fig. 1). This is a resuit 

given in [7]. 

Based on a conventional three-term recursion for polynomials which are orthogonal on 

the unit circle, a variant of the Levinson algorithm has been proposed in [26] . This variant 

computes only the polynomials ai(z) or bi(z), the forward or backward predictor, but not both 

of them. As a conséquence, only the Padé approximants of types (n-1,0), (n-1,1), ..., (n-l,n) 

(or (n,0), (n,l), ..., (n,n) ) are computed, which constitute a simple row in the Padé table. 

We note that ail thèse types of algorithms (Levinson, Schur, Levinson/Schur) require that 

ail the principal minors of matrix C be not singular, that is, the polynomial c(z) must be normal. 

The generalization of this algorithm to the case where the matrix C has any rank profile can be 

found in [9, 26]. 

3.2. Euclidean Algorithm 

The Euclidean algorithm was originally developed for computing the greatest common 

divisor (GCD) of two entries or two polynomials [5,20]. The application of this algorithm to 

the computation of Padé approximants is an original suggestion of Kronecker [17]. Using this 

algorithm for solving a YW equation is related directly to its application for Padé approximation 

[5]. We first recall the original algorithm for the computation of the GCD of two polynomials, 

and its extension for solving YW equation. The relation between this algorithm and the Padé 

approximation has been described in [6]. 

3.2.1. Extended Euclidean algorithm 

Let us consider the problem of computing the GCD of two polynomials s(z) and t(z): 

GCD(s, t), and the "comultiplicators" u(z) andv(z): 

s(z) u(z) + t(z) v(z) = GCD(s, t) (12) 

Suppose that deg(s(z)) � deg(t(z)), the Euclidian algorithm computes GCD(s, t) by a séquence 

of recursive divisions: let so(z) = s(z), s^(z) = t(z), we construct a séquence of remainder 

polynomials si(z) for 1 � i � n by Euclidean division: 
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si_i(z) = quj(z) Si(z) + si+1(z) (13) 

The recursion being continued till i = n when sn+i(z) = 0, the resulting sn(z) is the GCD(s, t). 

Once the quotients quj(z) are known, we can evaluate u(z) and v(z). The algorithm 

involving thèse two passes (computation of GCD then évaluation of the comultiplicators) is 

called "Extended Euclidean Algorithm" [8], and is summarized below: 

ALGORITHM 4 ( EXTENDED EUCLIDEAN ) 

First pass: 

so(z) = s(z); si(z) = t(z) 

For 1 � i � n 

quj(z) = quotient of the Euclidean division Si_i(z)/Sj(z) 

_si+1(z)J"[l 
1 

- qu i(z) [s i(z) 

_Sn+l(z)J~L 0 

Second pass: 

ui vj Lo 1 

For i= 1, ... n 

ui Vi+J [0 -qu.(Z)J[_Ui v. _ 

3.2.2. Extended Euciidean algorithm for solving YW équation 

To apply the extended Euclidean algorithm for solving a YW équation, we consider the 

polynomial description of the problem, i.e. the first equation of (7): 

-z2n+l q(z) + c(z) a(z) = p(z), (14) 
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By taking s(z) = - z2n+1, t(z) = c(z), we remark that (11) and (13) are of the same form with 

q(z) = u(z) and a(z) = v(z), if p(z) is the GCD of s(z) and t(z). In fact, if we apply the 

extended Euclidean algorithm to the polynomials s(z) = - z2n+1 and t(z)=c(z), the GCD would 

be found as a resuit of the recursion when deg( p(z)) = 0. However, we are interested in the 

solution of the YW équations. If c(z) is normal, this solution is found at the n-th recursion, the 

solution a(z) is of degree n, and deg( p(z)) is also equal to n. If c(z) is not normal, then the 

solution of the YW équations is found at an intermediate step where deg(a(z)) � n and 

deg( p(z)) � n. Thus the Euclidean algorithm for solving équation (13) is as follows ( see Réf. 

[5] for a detailed démonstration): 

ALGORITHM 5 ( EUCLIDEAN ) 

First pass: 

p.!(z) = -z2n+l, p0(z) = c(z) 

For i = 0, ... , r 

quj(z) = quotient of the Euclidean division Pi_i(z)/ pj(z) [3] 

deg( j)r(z)) � n+1 

deg( pr+1(z))�n 

Second pass: 

a.j(z) = 0, ao(z) = 1 

For i = 0, ..., r 

Solution 

a(z) = ar+ 1 (z) / ar+1(0) 

In the case where c(z) is normal, r = n-1, and the number of multiplications required by 

this algorithm is 3n2+4n. 
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The évolution of the parameters involved in this algorithm is shown below in matrix 

form: 

Co Po,o Pn,0 

Cn Co ao,o an pnn 

.0 

0 ai,i . 

C2n cn an�nJ Po,2n 0 

qn,o 

o . 0 . 

This algorithm is of the two-pass type. It computes successively the Padé approximants 

(2n, 0), (2n-l, 1), (2n-2, 2), ..., (n, n), which form an antidiagonal of the Padé table (fig.l), a 

resuit having been given in [6]. If c(z) is a normal power séries, ail thèse approximants are 

distinct and deg(a(z)) = deg( p(z)) = n. 

We observe that, this algorithm computes successively the solution of the following 

linear équations in which ai(z) = aïo + an z + ... +au zi are seen as the forward prédiction 

polynomials. 

C2n-i c2n-2i ai,0 Pi,2n-i 

c2n c2n-i J [_ai,i 0 
(16) 

It will be shown in section 5 that it is possible to obtain in addition the backward prédiction 

polynomials without increasing the computational complexity (Algorithm 8 below). 

3.3. Berlekamp-Massey Algorithm 

This algorithm [4] was originally developed for decoding the BCH codes. It was 

interpreted as the synthesis of an autoregressive filter [19], with the following system of 

equations: 
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Cn-1 c0 ~iïbll |"-Cn 

_c2n-2 cn-lJ|_bnJ L_C2n-lJ (17) 

which is équivalent to 

"cn coi r 1 0 

bl = 

c2n cn bn an 
(18) 

This algorithm computes therefore the backward prédiction vector in the prédiction 

theory, while the Euclidean algorithm computes the forward one, and the Levinson algorithm 

computes both of them. Nevertheless, changing the initial algorithm to obtain the forward one 

is trivial since we need only to carry out the algorithm on the reverse of the polynomial c(z). A 

variant which computes both forward and backward prédiction vectors is developed in 

section 5 (algorithm 10). 

We give hère only the algorithm. For its dérivation, the reader is referred to [5,4,19]. 

ALGORITHM 6 ( BERLEKAMP-MASSEY ) 

bo(z) = to(z) = 1, 

L=0, dt=l 

For r = 0, .... 2n-l 
L 

dr 
= 

XbjCr-j 

if (�4=0), then 

"br+i(z)l [1 1) ] [b, (z) { LWWj 0 z tr(z) }; 

if ( (cL^K)) and (2L�r) ), then 
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"br+l (Z)] 1 drdClz][br(Z)] 

tLtr+l(z)J 
0 z 

JLlr(z)J j [L] 

else ( (cL*0) and (2L�r) ) 

(L = r+1-L 

[br+l (Z)] 
1 drdClz][br(Z)] 

_Wz)J L1 0 JUtoJ [L] 

dt = dr 

Solution b(z) = br(z). 

We give hère some explanation about the parameters used in the algorithm: L is the order 

of polynomials br(z), which is différent from the recursion order r. The recursions are carried 

out on polynomials br(z), r 
= 0, 1, ..., 2n-l, and some of them are stored in the auxiliary 

polynomials tj.(z) when they are denominators of a Padé approximants of c(z). In the case 

where c(z) is normal, only the polynomials at even recursion orders will be stored. It is easily 

seen that this algorithm is of the one-pass type, since the polynomials br(z) are obtained in a 

non recursive manner. 

The number of multiplications required by this algorithm in the case where c(z) is normal, 

is 2n2+2n. We remark that it is of the same order as that of the other one-pass algorithm 

(Levinson algorithm) stated before. 

We emphasize the fact that ail the br(z) are not denominators of Padé approximants of 

c(z), but only the ones that are stored in 4(z) are the denominators of the Padé approximant of 

order (r/2, r/2) with r even in the case where c(z) is normal. Thus, for r = 0, ..., 2n, this 

algorithm computes the denominators of the Padé approximants of types (0,1), .... (n-l,n), 

which constitutes a main diagonal in the Padé table. 



283 

4. SUMMARY OF THE CLASSICAL ALGORITHMS 

As seen above most of the results provided in section 3 hâve been explained elsewhere in 

the literature, at least partially. Nevertheless, only a global view of YW équations as a Padé 

approximation problem will allow the dérivation of new results: 

1) AU thèse three algorithms evaluate the denominator of the Padé approximant of type (n,n) 

or (n-l,n). They cover various paths in the Padé table: 

fig. 1 évolution of the various algorithms in the Padé table. 

2) The Levinson algorithm is of the one-pass type. We obtain the corresponding two-pass 

version by a combination with the Schur algorithm. The Euclidean algorithm is shown to be of 

the two-pass type, its one pass version is missing. The Berlekamp-Massey algorithm is of the 

one-pass type, its two-pass version is to be developed. 

3) The Levinson algorithm computes both forward and backward predictors of the 

associated System. The Euclidean algorithm and the Berlekamp-Massey algorithm compute 

respectively the forward and backward predictor, the variants of thèse two algorithms for 

computing both predictors altogether are missing. 

The following table shows what are the algorithms already known, and what are the 

missing variants to be developed in the next section. 
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Table 2 Variants of the algorithms known or missing 

5. DEVELOPMENT OF THE MISSING VARIANTS 

5.1. The variants of the Euclidean algorithm 

By comparing the Euclidean algorithm with that of Levinson/Schur, we remark that the 

first pass looks like Schur's algorithm, and the second one looks like Levinson's. We are 

therefore motivated to develop a one-pass algorithm which would be similar to that of 

Levinson, by hoping that it will be more efficient than the initial (two-pass) Euclidean 

algorithm. 

As for the Levinson algorithm, we suppose that the formai power séries c(z) associated 

with the Toeplitz matrix is normal. The idea is to replace the computation of quotients quj(z) in 

the initial algorithm by a scalar product which is a non recursive computation, just like the 

computation of the reflection coefficients in the Levinson algorithm. For this, we examine the 

explicit expression of quj(z): 

quj(z) 
= quotient of the Euclidean division Pj.^z)/ pj(z) (19) 

with 
Pi.1(z)=_pi_1)0+ Pi-l,lz 

+ .1+ Pi.Un.i+1z2n-i+1 

Pi(z)= pii0+ Puz + ...+ P^n-i22""* 

c(z) is normal, then pj 2n.j * 0, we obtain 

quj(z) = qui0 
+ 
quuz (20) 

with quu 
= 

pj.li2n.i+1/ pU2n-j_ 

qui,0 = ( Pi-l,2n-i-qui,l Pi,2n-i-l�/ Pi,2n-i 
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And, the recursion of Pj(z) is replaced by the computation of its last two éléments: 

Pi,2n-i = t c2n-i' ---, c2n-2i 1 t \q, -, a¡,i ] (21) 

Pi,2n-i-l = t c2n-i-l' ..., c2n-2i-l 1 [ a¡,O' "' a¡,i (22) 

This algorithm is summarized below: 

ALGORITHM 7 ( ONE-PASS EUCLIDEAN ) 

I F-1,2n+l 110 il 

ao(z) 1 

For i = 0, ..., n-1 

i 

Pi,2n-i 
= 

Lai,F2n-i-j 
j=o [1+1] 
i 

Pi,2n-i-l 
= 

il,ai,jc2n-i-l-j 

j=o _ [1+1] 

q ui,l 
= 

Pi-l,2n-i+l/Pi,2n-i 

qui,0 =(Pi-l,2n-i-qui,lPi,2n-i-l)/Pi,2n-i [2] 

i+iv ' i-iv ' v^i,o n 1,1 7 iv ' [2i+2] 

Solution: 

a(z)=an(z)/an(0) 

The resulting algorithm requires (2n2+5n) multiplications. Indeed, this one-pass 

algorithm is computationally more efficient than the initial two-pass algorithm. It should be 

noted that this algorithm supposes that the polynomial c(z) is normal, but it can be generalized 

for the anormal case without difficulty. 

As we hâve mentioned before, the algorithm computes only the forward predictor 

solution. The variant which provides both the forward and backward one is developed below. 
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First, we introduce an auxiliary polynomial bj(z) = bio + bil z + ... +bii zi , which 

represents a backward prédiction polynomial. It is the solution of the following linear 

équations: 

"C2n-i C2n_2il bi,O 0 

0 

c2n c2n-i J |_bi,i ^i�° (23) 

Then, we organize the variables involved in the algorithm in the following matrices: 

"C() Po,o Pn,0 P0,0 Pn,0 

Pn.n-1 

Cn Co ao,o an,0 bo,o bn,0 Pn,n 0 

0 .. 

0 ai,i 0 bi,i " .. Po,2n-iO 0 

C2n cn an,n bn,n P0,2n° 0 qo.0 � qn,o 

qn,o 

o 0.0. 

(24) 

The recursions for ai(z) and bi(z) are the same ones as for pj(z) and pi(z), which are 

easily deduced by decreasing at each step one degree of the polynomials pi(z) and pi(z). This 

recursion dépends only on the last coefficients of the pi(z) and pi(z) ( pi,2n-i and Pi,2n-i+l ). 

For example, it may be as follows: 

aj(z) 
= - 

(Pi_Un-i / Pi-l,2n-i+l)ai-l(z) + zbi-l^) 

bi (z) = -(Pi-l,2n-i/Pi,2n-i)ai(z) + bi-l (z) (25) 
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If thèse last coefficients are computed via the recursion of the polynomials pi(z) and pi(z), then 

the resulting algorithm is of the two-pass type. If they are computed via scalar products, we 

obtain a one-pass algorithm. We give hère only the one-pass version. 

ALGORITHM 8 ( Forward and backward EUCLIDEAN ) 

ao(z) 1 ( 111 

P0,2n 
= C2n 

For i = 1, .... n 

i-l 

Pi-1.2n-i 
= 

Z^bi-l,jc2n-i-j 

ai(z) = - (Pi-l,2n-i / Pi-l,2n-i+l)ai-l(z) + zbi-l(z) ���i 

Pi,2n-i 
= 

Z^ai,jc2n-i-j 
J=0 [i+1] 

bi(z) = (Pi-1,2,-i / Pi,2n-i)ai (7) + bi-, (z) 
[i+2] 

Solution: 

a(z)=an(z)/an(0) 

bn (z) = bn (z) 1 bn (0) 

The resulting algorithm requires (2n2 + 6n) multiplications, which is almost the same number 

as that obtained for the one pass Euclidean algorithm which provides only the forward 

prédiction polynomial, i.e., the backward predictor is given nearly for free in this new 

algorithm. 

5.2. The variants of the Berlekamp-Massey algorithm 

A two-pass Berlekamp-Massey algorithm is developed for completing the classical 

algorithms in both classes, and also for obtaining an algorithm which makes the development of 

its associated doubling algorithm easier. Observe that the parameter dr is the first élément of the 

vector shown in the following matrix description: 
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c0 do 

. 0 ��dl 

Cn Co 0 b3.2 
= . dr 0 

b2n.nJ 

C2n Cn dO,2n dr,2n-r d2n_ 

do dr (26) 

Hence, the two-pass algorithm is obtained by computing thèse parameters via the recursion of 

the vectorsdr, which constitutes the first pass of the algorithm. The recursion relationship is 

exactly the same one as that for br (or br(z)). The algorithm is described below: 

ALGORITHM 9 ( TWO-PASS BERLEKAMP-MASSEY ) 

First pass: 

do(z) 
= c(z), dt = 1, do'(z) 

= c(z), L = 0 

For r = 0, 1, ..., 2n-l 

cL= cLj (the first élément of dr(z) 
if (dr = 0), then 

"dr+i�z� l = 
0 rdr(z) 

Ld'r+i(z)J 10 zJLd*r(Z)J 

if [(�L* 0) and (2L�r)], then 

if[((L*0)and(2L�r)],then 

{ d r+l (z) o d r (z) [2n.r+1] 
L = r+1-L 

dt dr 



289 

Second pass: 

bo(z) = to(z) = 1, 

L=0, dt=l 

For r = 0, ..., 2n-l 

if ((L=0), then 

LWWj 1 zJK^J }; 

if((dr^0)and(2L�r)),then 

"br+i(z)]_ri -drdt-1zlrbr(z)" jU+iU)] 0 z 
JLtrC^J j ���else 

( (cL*0) and (2L�r) ) 

{L = r+1-L 

"br+i(z)"| _ 1 drdClz][br(Z)] 

.W^J'L1 0 tr(z) pL-!] 

dt = dr ) 

It is easily checked out that the number of multiplications required for evaluating this 

algorithm is equal to 3n2+2n in the case where c(z) is normal. It is thus of the same order of 

magnitude as that of the other two-pass algorithms described before. 

As for the Euclidean algorithm, we can also modify a Berlekamp-Massey algorithm for 

computing both the forward and backward prédiction polynomials. The development of this 

algorithm follows the same lines and will not be repeated. The one-pass version is provided 

below: 

ALGORITHM 10 ( Forward and backward BERLEKAMP-MASSEY ) 

bo (z) 1 

do.O = co, r = 0 
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For i = 1, ..., n 

r = r+l 

di-1,0 
= 

5�i-i.jcr-j 
j=o [i-l] 

aj(z) = bj.^z)- (di-1,0 /di_lf0)zai_1(z) ���r = r+l 

i 

di,o 
= 

Sai,jcr-j 
j=0 [i] 

bi(z) = ai(z) - (di)0 / dj_1)0) z bi-, (z) ���Solution: 

a(z) = an(z) 

The number of multiplications required is (2n2 + n), which is even less than that of the original 

algorithm, while providing a set of additional forward prédiction polynomials (ao(z), ..., an(z) 

We hâve thus completed the missing variants for the three classical algorithms. In table 3, 

we give the number of multiplications for each version of the algorithms described before. 

Table 3: Numbers of multiplications required for each algorithm 

where a/b: forward or backward predictor to be computed 

a+b: forward and backward predictors to be computed 
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We remark that the algorithms providing both forward and backward predictors hâve 

almost the same computational complexity as those providing only the forward or backward 

predictor. AU the algorithms of one-pass type require fewer arithmetic opérations than the two- 

pass algorithms ( 0(2n2) versus 0(3n2) ). Nevertheless, the structure of the two-pass 

algorithms is fundamental for the development of the doubling algorithms which we will 

describe in the next section. 

Some différences are to be mentioned between the three classical algorithms. First, the 

Levinson algorithm is the only one which can be simplified for a symmetric matrix, since the 

other algorithms perform the recursions on partial matrices that are not symmetric, excepted at 

the very last step. Next, thèse algorithms will hâve différent finite précision properties since the 

recursion relationships are related to the inverse of différent minors of the Toeplitz matrix ( the 

principal minors for Levinson algorithm, the minors along the second diagonal for Euclidean's 

(from bottom to top) and Berlekamp's (from top to bottom) ), and the condition number of 

différent minors are différent. The detailed analysis is out of the scope of this paper. 
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6. DOUBLING ALGORITHMS 

Ail the algorithms that we hâve discussed so far require a number of multiplications 

which is proportional to n2. In this section we show how the divide and conquer strategy [5] 

can be used to reduce the computational complexity of ail thèse algorithms for large n. Our goal 

is not to study each algorithm in détail, but to retrieve the essential of the problem, and to try to 

give a unified présentation of the doubling algorithms. 

6.1. A Unified Présentation of The Classical Algorithms 

Despite the diversity of the classical algorithms, they hâve a common structure on which 

the doubling strategy relies. 

First, we remark that the development of a doubling algorithm based on a two-pass 

algorithm is straightforward (e.g. the development of the doubling Euclidean algorithm [5] ). 

As for a one-pass algorithm, it relies implicitly on the corresponding two-pass version, since a 

scalar product in the algorithm can be seen as an élément of some polynomial. The computation 

of the scalar product is then replaced by the computation of the corresponding polynomial, 

which can be found in the 2-pass version of the algorithm. A practical example is the 

development of the doubling Berl Pt-imp-Massey algorithm (cf. The Recursive Berlekamp- 

Massey Algorithm in [5]). 

Then, we note that the recursion relationship is the same one for the polynomials in the 

first pass as for the second pass. Moreover, the recursion in each pass is carried out either on 

one polynomial séquence involving three terms ( three same type of polynomials of successive 

order) or on two polynomial séquences involving two terms. This means that the recursion is 

always in the following general form: 

with Fi(z) a polynomial matrix of dimensions 2x2. We hâve ti(z) 
= 
Sj.^z) in the case where 

three terms recursion is used. 

Thus, we hâve picked up the common structure of the classical algorithms for the 

development of the corresponding doubling algorithms. The following general présentation of 

the algorithms summarizes this stucture: 
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First pas s: 

Initialization of uQ(z) and v0(z) 

For i = 1, 2, ..., n 

Fi(z) 
= function of (uj.^z), v^z)) 

"u.(z)l \ , =F.(z) 
[u. 

l \ , (z)"| 
L v i (z) 

�L v 
i-iv (z) yJ /* outgoing recursion */ 

Second pass: 
Initialisation of ao(z) and bo(z) 

For i = 1, 2, ..., n 

L ix L i-iv /* incoming recursion */ 

Now, this general représentation allows us to explain the principle of the doubling 

algorithms for ail thèse classical algorithms in a unified manner. 

6.2. Application of The Doubling Strategy 

We start with the définition of a polynomial matrix of dimensions 2x2: 

i 

Fk,i(z)=riF^) 
i=k (28) 

Using this définition, the polynomials aj(z) and bj(z) in the general algorithm can be expressed 

as follows: 

^.i(Zlb0(z)J 

For splitting the algorithm, we suppose that n is even, thus we hâve: 

F n, l(z) = Fn, W + l(z) Fn/2, i(z) (30) 

Then, 
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"ak(Z)l=F (J,"lW" 
_bk(z)J rn.rf2+.^|bi/2(2)J (31) 

The second pass has been splitted in two parts, the first one being the computation of an/2(z) 
and bnj2(z), while the second half provides Fn n/2+i(z)- 

The second pass dépends on the resuit of the first pass, Fi(z), i 
= 1,2, ..., n, and the 

computation of thèse polynomial matrices should be also splitted. For this, we examine the 

expression of ui(z) and vi(z) for i � n/2: 

V.(z) -Fi,iV2+l(Z)Fn/2,l(Z) vQ(z) 

with 

"u_,2(z)"| = F (z) 
ruo(z)" 

v (z) 
ri 2, 

v (z) ���We 

note that the recursion is initialized at order n/2, by u^Cz) and v^ni2)- The recursion 

hère is of outgoing type: the orders of the polynomials ui(z) and vi(z) decrease when i 

increases. Therefore, the orders of unj2(z) and vn^(z) are lower than those of u0(z) and vQ(z). 
As for Fi(z), i 

= 1, 2, ..., n/2, it is easily seen that it does not dépend on every coefficient of 

Uo(z) and vQ(z). In fact, the initial polynomials for the first half are of the same orders as that of 

Uj^z) and vn/2(z), which are the initial polynomials of the second half. 

Therefore, we hâve also splitted the second pass. The resulting algorithm is thus entirely 

splitted. It is summarized below: 

THE SPLITTED GENERAL ALGORITHM 

First half: 

Initialization: 

u 0 (z) 
Ta part of uQ(z)~ 

v'Q(z) 
a part of vQ(z) 

F'ftl(z)«-I 
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For i = 1, 2, ..., n/2 

F'i(z) 
= function of (u'^z), v'^z)) 

F'u(z) 
= Fi(z) FimlA(z) 

Output F'n/2,l(z) 

.b^z)J (z)rb O(Z) 

Second half: 

Initialisation: 

_v"0(z)J [Uo(Z)] 
F"Q1(z),-I 

For i = 1, 2, .... n/2 

F"i(z) = function of (u'\A(z), v"iA(z)) 

VI, (z) v (z) 

F".1(z)=F".(z)F"._u(z) 

Output: F'^jCz) 

Combination: 

"an(z)l (zï IX/?^" ' 
.bn(z)J 

* n/2,1^ 
(z) bnliz) 

If we compare each half of the splitted algorithm with the initial algorithm, we remark that 

the latter computes directly the polynomials ai(z) and bi(z), while the former computes the 

polynomial matrices F\ j(z) (or F"j j(z)), which are of dimensions 2x2 and contain 4 

polynomials instead of 2. The computational complexity is therefore increased. However, this 

initial increase in the arithmetic complexity makes the application of the divide and conquer 

strategy feasible, which allows a large compensation for the additional computations. 

The following figure shows the structure of the splitted algorithm: 
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fig.2 organization of the divide and conquer algorithms 

We remark that the splitted algorithm contains twice the same algorithms of half order, 

with some additional computations for the initialization of the second half and the combination 

of the partial results obtained in each half. The number of multiplications required for this 

algorithm, we note it M(n), follows the relationship below: 

M(n) = 2 M(n/2) + Ms(n) (34) 

where Ms(n) is refered as the number of multiplications required for the additional 

computations ( initialization and combination). 

It is easily seen that the initialization of the second part and the final combination are in 

fact polynomial products. This type of opération is essentially a linear convolution. Therefore, 

we can use any fast convolution algorithm, for example, the FFT method [10,11], and we 

obtain the computational complexity of the splitted algorithm: 

Ms(n) = Cte nlog2n (35) 

If we continue this splitting opération for each half of the algorithm, ( this is feasible, since the 

splitted algorithm préserves the same structure as that of the initial one), for n = 2v, we obtain 

M(n) = A n(log2n)2 (36) 

with A a given constant. 

We hâve thus succeeded in applying the doubling strategy to the general algorithm, and 

obtain a doubling algorithm which requires a number of multiplications proportional to 

n(log2n)2. Since ail the classical algorithms belong to the class described in section 6-1 on 

which the divide and conquer strategy has been applied, this doubling algorithm represents 

exhaustively their associated doubling algorithms. A précise dérivation of thèse doubling 
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algorithms is easily obtained by applying the strategy explained in section 6 on any of the two- 

pass algorithms, either computing both forward and backward predictors, or based on a three- 

term récurrence. 

The case of the doubling Levinson/Schur algorithm has been explained with some détail 

in [1,2,3] by Ammar and Gragg, called "Generalized Schur Algorithm". In [27], we hâve 

developed the algorithm from the above general framework, and the resulted algorithm has got 

a more concise présentation, and it has a lower arithmetic complexity in small dimension cases. 

Since the above approach can be applied to any two-pass algorithm, it can also be applied to the 

split-Levinson algorithm which allows the computational complexity to be further divided by 

two when the Toeplitz matrix is symmetric. 

7. CONCLUSION 

In this paper, we hâve provided a general framework for the description of the classical 

algorithms solving Yule-Walker équations. We provide an exhaustive présentation of thèse 

algorithms in terms of Padé approximants, which includes some partial results already 

published. This présentation allows the obtention of new versions of thèse algorithms. The 

arithmetic complexity of ail thèse algorithms is seen to be nearly équivalent inside each of the 

two classes we hâve distinguished, and in any case is proportional to N2. They will 

nevertheless hâve différent properties in terms of error accumulation. 

This unified présentation allows to understand the common structure underlying thèse 

algorithms, and we could thus obtain a general description of the associated doubling 

algorithms, which require a number of multiplications proportional to N 10922 N. 
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