

Mesure de la pluie avec un radar spatial : étude de la contamination par l'écho de surface dans les lobes secondaires d'antenne

P. Amayenc, M. Marzoug

► To cite this version:

P. Amayenc, M. Marzoug. Mesure de la pluie avec un radar spatial : étude de la contamination par l'écho de surface dans les lobes secondaires d'antenne. [Rapport de recherche] Note technique - CRPE n° 185, Centre de recherches en physique de l'environnement terrestre et planétaire (CRPE). 1990, 73 p., figures, tableaux. hal-02191761

HAL Id: hal-02191761 https://hal-lara.archives-ouvertes.fr/hal-02191761

Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. CENTRE NATIONAL D'ETUDES DES TELECOMMUNICATIONS

RP 10309

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

CENTRE DE RECHERCHES EN PHYSIQUE DE L'ENVIRONNEMENT TERRESTRE ET PLANETAIRE

NOTE TECHNIQUE CRPE / 185

MESURE DE LA PLUIE AVEC UN RADAR SPATIAL : ETUDE DE LA CONTAMINATION PAR L'ECHO DE SURFACE DANS LES LOBES SECONDAIRES D'ANTENNE

Par

P. AMAYENC M.MARZOUG

INSTITUT DE L'INFORMATION SCIENTIFIQUE ET TECHNIQUE 2. Allée du Parc de Brabois - Tél. 83.50.46.00 INIST - 54514 VANDŒUVRE LÊS NANCY CEDEX

674965

ou

TOAE

RPE/ABM 38-40, rue du Général Leclerc 92131 ISSY-LES-MOULINEAUX,FRANCE CENTRE NATIONAL D'ETUDES DES TELECOMMUNICATIONS Centre Paris B CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Département TOAE

CENTRE DE RECHERCHES EN PHYSIQUE DE L'ENVIRONNEMENT TERRESTRE ET PLANETAIRE

NOTE TECHNIQUE CRPE/185

MESURE DE LA PLUIE AVEC UN RADAR SPATIAL : ETUDE DE LA CONTAMINATION PAR L'ECHO DE SURFACE DANS LES LOBES SECONDAIRES D'ANTENNE

par

P. AMAYENC et M. MARZOUG RPE/ABM 38-40 rue du Général Leclerc 92131 ISSY-LES-MOULINEAUX

Le Directeur . SOMMERIA

Le Directeur Adjoint

Mai 1990

CNET

MM.	POITEVIN THABARD	Directeur du CNET Directeur Adjoint	
	COLONNA	du CNET Adjoint Militaire	
	MERLIN	Directeur des Programmes	
	BLOCH THUE	DICET	PA
MME	HENAFF	DICET	PAI PAI
MM.	PIGNAL RAMAT		PA
	ABOUDARHAM	PAB-SHM PAB-STC	EX.
MME	THEBAULT PARIS	PAB-STS PAB-RPE	ΕĘ
MM.	BAUDIN BERTHELIER BIC	PAB-RPE PAB-RPE DAB-DDE	
-	CERISIER GENDRIN	PAB-RPE PAB-RPE	
	LAVERGNAT ROBERT	PAB-RPE PAB-RPE	
	ROUX SOMMERIA TESTUD	PAB-RPE PAB-RPE DAB-DDE	
	VIDAL-MADJAR	PAB-RPE	

A/RSM/SIM	HAMIDI RIDHA
B/DIR	PAPET-LEPINE
B/IFE/COD	ROCHARD [2]
B/MER/STA	BRAYER
B/MER/STA	RENAN
A/TPA/PRG	MOUNIER
B/RPE/ETP	GLOAGUEN
B/RPE/OBT	EYMARD
B/RPE/OBT	HAUSER
B/RPE/OBT	TACONET [2]
B/RPE/OPN	FERAUDY (de)
B/RPE/TID	LEBLANC

TERIEUR

.

ERM

DELSOL

.

.

CNRS

MM.	BERROIR	TOAE
	CHARPENTIER	SPI
MME	SAHAL	TOAE
MM.	COUTURIER	INSU
MME	LEFEUVRE	AD3
Μ.	DUVAL	AD5

CNES

MMES	AMMAR		
	DEBOUZY		
MM.	BAUDOIN		
	FELLOUS		
	HERNANDEZ	(Toulouse)	

Bibliothèques

.

CNET-SDI (3) CNET-EDB CNET-RPE (Issy) (5) CNET-RPE (St Maur) (2) Observatoire de Meudon CNRS-SA CNRS-INIST CNRS-LPCE

.

AVANT - PROPOS

Cette étude a été réalisée dans le cadre des travaux de Phase A du radar à pluie du projet BEST et d'un contrat ESA-ESTEC n° 8127 / 88 / NL / BI (SC) portant sur l'étude d'un radar à double faisceau

RESUME

On considère le cas d'un radar (14 à 35 GHz) de mesure des précipitations opérant depuis une plate-forme satellitaire, tel celui défini pour le projet de mission spatiale B.E.S.T., en utilisant une antenne à ouverture réelle. Dans certaines configurations, le signal "pluie" provenant des échos reçus par le lobe principal dans les diverses portes de distance peut être contaminé, voire occulté, par les échos rétrodiffusés sur la surface (terre ou océan), via les lobes secondaires de l'antenne si le niveau de ces derniers n'est pas assez faible. On présente une étude analytique générale de ce problème reliant les spécifications sur le diagramme de gain d'antenne aux taux de contamination possibles. Les résultats sont analysés en fonction des paramètres géométriques de la visée, des caractéristiques de définition de l'instrument, de la structure des précipitations interceptées et des propriétés de la surface.

SOMMAIRE

I - HYPOTHESES ET FORMULATION DU PROBLEME	p 1
I-1 Echos de pluie	p 2
I-2 Echos sur la surface	p 4
I-2-1) Expression générale	
I-2-2) Calcul de la surface S _S	
I-3 Rapport de contamination	p 8
I-3-1) Définition	
I-3-2) Analyse des termes	
I-4 Définition d'une spécification $\Delta G_{f min}$ sur le gain d'antenne	p 11
II - APPLICATIONS NUMERIQUES : NIVEAUX REQUIS SUR LES L.S.	p 13
II-1 Résumé des équations utiles	p 13
II-2 Valeurs des paramètres et modèles	p 14
II-2-1) Paramètres de définition du radar	
II-2-2) Altitudes critiques et incidences des échos sur la surface	
II-2-3) Modèle de pluie	
II-2-4) Modèle de σ^0	
II-3 Evaluation des termes de ΔG_{min}	p 18
II-4 Spécifications sur ΔG : Résultats et discussion	p 20
II-4-1) Analyse générale	
II-4-2) Révision des conditions de calcul et implications	
a) Modification des caractéristiques du radar	
b) Variation du coefficient de rétrodiffusion de la surface	
c) Pluie non uniforme ou d'extension horizontale limitée	
II-4-3) Cas des échos de surface repliés	
a) Conditions d'ambiguité	
b) Effets de contamination	
II-5 Etude approximative de $ riangle G$ pour un modèle d'antenne réelle	p 35
III - CONCLUSIONS	p 38
III-1 Revue de l'étude	p 38
III-2 Synthèse pour deux configurations typiques de radar spatial	p 40
III-2-1) Radar "simple faisceau" à balayage transverse	
III-2-2) Radar à double faisceau ou "stéréoradar"	
IV - REFERENCES	p 45
TABLES	p 47
FIGURES	p 51
NOTATIONS ET ACRONYMES	p 65

T

I - HYPOTHESES ET FORMULATION DU PROBLEME

L'étude présentée a pour but d'évaluer l'effet de contamination apporté aux échos de pluie observés à partir d'un radar spatial, par les lobes secondaires (L.S.) de l'antenne. Le signal pluie reçu par le lobe principal dans chaque porte de distance peut en effet être contaminé par les échos de pluie ou sur la surface provenant par les lobes secondaires si le niveau de ces derniers n'est pas assez faible vis-à-vis du niveau de gain maximum dans l'axe du lobe principal.

On négligera ici la contamination par les échos de pluie (via les L.S.) en considérant qu'un niveau de lobes secondaires ≤ 25 dB assure une protection suffisante (50 dB aller-retour) comparable à celle obtenue dans le cas d'un radar au sol. Par contre, la contamination par l'écho sur la surface (via les L.S.) doit être examinée spécifiquement car, dans certaines conditions d'incidence, le coefficient de rétrodiffusion de la surface peut être suffisamment élevé pour que le signal pluie soit contaminé et éventuellement occulté. On présente donc ici une estimation de cet effet. La démarche générale suivie est formellement analogue à celle utilisée dans l'étude technique du radar à pluie (Manabe et Ihara, 1988) prévue pour la mission TRMM (Simpson et al., 1988). Il nous a semblé utile d'expliciter en détail les fondements analytiques du calcul et d'apporter quelques généralisations dans le développement et les applications, en utilisant les caractéristiques du radar à pluie prévu pour la mission BEST (Fellous et al., 1989). La conclusion (section III) est écrite sous la forme d'un survol synthétique de l'étude rappelant les principaux résultats obtenus.

Dans l'étude générale, on admet les hypothèses suivantes :

i) on se place dans le cas d'une terre plane;

ii) le radar opère à une altitude $h \ge 300$ km, à une fréquence comprise dans la gamme 10 - 35 GHz, et émet des impulsions parfaitement rectangulaires de courte durée τ (porte de longueur $c\tau/2 \le 500$ m), justifiant l'approximation $c\tau/h \le 1.5 \times 10^{-3}$ utilisée pour simplifier certains calculs;

iii) les échos de surface "repliés", associés à des retours d'impulsion depuis des distances inférieures ou supérieures à celles de la zone de distance non ambigüe (supposée inclure la couche de pluie et la surface) ne sont pas pris en compte, ce qui équivaut à ne considérer que les échos de surface directs correspondant aux retours de la même impulsion et à négliger ceux des impulsions précédentes ou suivantes (ambiguité de rang \pm N avec N \geq 1);

(iv) le lobe principal de l'antenne est supposé de forme Gaussienne, de révolution autour de son axe principal, avec une ouverture angulaire à mi-puissance (3 dB) θ_1 faible ($\theta_1 < 1^\circ$);

(v) l'incidence (par rapport au nadir) θ_0 du lobe principal est limitée à $\theta_0 \le 20^\circ$;

(vi) la pluie est uniforme et occupe une couche de hauteur H_p et d'extension horizontale infinie

On examinera plus loin les conséquences provenant du changement de certaines des hypothèses précédentes.

La géométrie utilisée dans les calculs est représentée sur la Fig. 1a, montrant comment l'écho de surface via les L.S., dans l'intervalle de distance $[(r_0 - c\tau/4), (r_0 + c\tau/4)]$ centré en r₀, peut être reçu simultanément avec l'écho de pluie du lobe principal dans le même intervalle de distance.

I-1 Echos de pluie

Avec les hypothèses précédentes, la puissance P_R de l'écho de pluie, reçu au retour d'une impulsion à la distance radiale r_0 , par le lobe principal à l'incidence θ_0 (par rapport au nadir) est donnée (Doviak et Zrnic, 1984) par :

(1)
$$P_{R} = \frac{P_{t}\lambda^{2}c\tau\theta_{1}^{2}G_{0}^{2}L}{1024 \pi^{2}\ln 2r_{0}^{2}} \eta(r_{0},\theta_{0})l_{R}$$

avec les notations:

λ	:	longueur d'onde
Pt	:	puissance transmise
G ₀	:	gain dans l'axe du lobe principal
$\eta(r_0, \theta_0)$:	réflectivité de Mie de la pluie, supposée uniforme dans le volume diffusant
l _R	:	facteur d'atténuation le long du trajet aller-retour
L	:	facteur de perte total dans le système

La réflectivité radar η peut s'exprimer comme

(2)
$$\eta = |K|^2 \pi^5 Z/\lambda^4$$

où $|K|^2$ est le facteur diélectrique (pour l'eau $|K|^2 \approx 0.93$) et où Z est le facteur de réflectivité "équivalent" de Rayleigh.

En négligeant l'atténuation par les nuages et les gaz atmosphériques (approximation usuelle pour f < 35 GHz et pour les trajets considérés), le terme l_R qui représente alors le facteur d'atténuation due à la pluie, intégré sur le trajet aller-retour entre le sommet de la zone pluie et la distance radiale r_0 , à l'incidence θ_0 , est donné par

(3)
$$l_{\rm R} = \exp\left(-0.46 \int_{(h-H_p)/\cos\theta_0}^{(h-z)/\cos\theta_0} K(r,\theta_0) dr\right)$$

où K est le coefficient d'atténuation spécifique (en dB/km) due à la pluie, supposé uniforme dans le volume diffusant, et où z est l'altitude de la porte considérée à la distance radiale r_0 et l'incidence θ_0 .

L'atténuation totale A_R (exprimée en dB > 0) subie par le signal pluie sur le trajet aller-retour est donnée par

(4)
$$A_R = -10 \log l_R = \int_{(h-H_p)/\cos\theta_0}^{(h-z)/\cos\theta_0} 2 K(r,\theta_0) dr$$

Dans le cas d'une pluie uniforme sur la hauteur H_p , on obtient

(5)
$$A_{R}^{U} = 2 K (H_{p} - z) / \cos \theta_{0}$$

Il est commode de définir la surface S_R interceptée au sol par l'empreinte (au nadir) du lobe principal à 3 dB. Elle est donné par :

(6)
$$S_R = \pi (h tg\theta_1)^2 / 4 \cong \pi h^2 \theta_1^2 / 4$$

En utilisant (2) et (6), l'équation (1) s'écrit alors :

(7)
$$P_{R} = \frac{P_{t} \pi^{2} |K|^{2} c \tau}{256 \ln 2 \lambda^{2}} \frac{S_{R}}{r_{0}^{2} h^{2}} L G_{0}^{2} Z l_{R}$$

I-2 Echos sur la surface

I-2-1) Expression générale

Le signal de surface contaminant l'écho de pluie considéré précédemment est celui renvoyé, via les L.S., par la surface S_S à la distance r_0 du radar (voir Fig. 1a). Il correspond à un signal revenant à une incidence moyenne γ , par rapport au nadir, avec une puissance P_S donnée par :

(8)
$$P_S = \frac{P_t \lambda^2 L}{64 \pi^3 r_0^4} \sigma^0(\gamma) l_S \int_{\theta_0 - \gamma}^{\theta_0 + \gamma} G^2(\omega) ds(\omega)$$

où $\sigma^0(\gamma)$ est le coefficient de rétrodiffusion de la surface (section efficace de rétrodiffusion par unité de surface), supposé ne dépendre que de l'incidence γ et donc uniforme sur S_S et où ds est l'élément de surface dans S_S. L'intégrale porte sur l'ensemble des angles ω (par rapport à l'axe du lobe principal) qu'il est nécessaire de balayer pour décrire la surface S_S, vue sous l'incidence γ . Le paramètre l_S qui représente le facteur d'atténuation intégré sur la couche de pluie uniforme, pour tous les trajets à incidence γ , est donné par :

(9)
$$l_{\rm S} = \exp\left(-0.46 \int_{(\rm h-H_p)/\cos\gamma}^{\rm h/\cos\gamma} K(r,\gamma) dr\right)$$

L'atténuation totale (exprimée en dB > 0) subie par le signal de surface sur le trajet aller-retour est donnée par:

(10)
$$A_{S} = -10 \log(l_{S}) = \int_{(h-H_{p})/\cos\gamma}^{h/\cos\gamma} 2 K(r,\gamma) dr$$

Dans le cas considéré d'une pluie uniforme sur la hauteur H_p, on a :

(11) $A_{S}^{U} = 2K H_{p} / \cos \gamma$

Le dernier terme de l'equ.(8) représente l'intégrale du carré du gain d'antenne. En définissant une valeur moyenne G_m^2 du carré du gain G^2 , sur l'intervalle d'intégration ($\theta_0 - \gamma$, $\theta_0 + \gamma$), donnée par

(12)
$$G_m^2(\gamma) = \frac{1}{2\gamma} \int_{\theta_0 - \gamma}^{\theta_0 + \gamma} G^2(\omega) d\omega$$

on obtient alors pour l'intégrale considérée :

(13)
$$\int_{\theta_0 - \gamma}^{\theta_0 + \gamma} G^2(\omega) \, dS(\omega) \cong G_m^2(\gamma) \, S_s(\gamma)$$

L'incidence γ à laquelle les échos de surface (via les L.S.) sont reçus, est associée à toute radiale interceptant la surface à la distance r_0 du radar, définissant le centre de la porte considérée sur l'intervalle ($r_0 - c\tau/4$, $r_0 + c\tau/4$). Elle peut être relié à θ_0 , h et z en utilisant les relations géométriques.

- (14) $r_0 \cos \theta_0 = h z$
- (15) $r_0 \cos \gamma = h$

pour obtenir

(16)
$$\cos\gamma = h \cos\theta_0 / (h-z)$$
 pour $0 < \gamma < \theta_0$

L'équation (8) donnant P_S devient alors :

(17)
$$P_{S} = \frac{P_{t}\lambda^{2}}{64\pi^{3}r_{0}^{4}} L G_{m}^{2}(\gamma) S_{s}(\gamma) \sigma^{0} l_{S}$$

I-2-2 Calcul de la surface S_S

L'aire S_S est donnée par plusieurs expressions suivant l'altitude z de l'écho de pluie considéré, la hauteur h du satellite et l'incidence θ_0 du faisceau principal. On a :

(18)	$S_s = S_1 = \pi c \tau (h - z) / \cos \theta_0$	pour $z \le z_1$
(19)	$S_s = S_2 = \pi \{ [(h - z) / \cos\theta_0 + c \tau / 4]^2 - h^2 \}$	pour $z_1 \le z \le z_2$
(20)	$S_s = S_3 = 0$	pour $z \ge z_2$

avec

(21)
$$z_1 = h - (h + c\tau/4) \cos\theta_0$$

(22)
$$z_2 = h - (h - c\tau/4) \cos\theta_0 = z_1 + (c\tau/2) \cos\theta_0$$

En utilisant (16), l'aire S_S peut également s'exprimer en fonction de l'angle γ , par :

(23)	$\pi \operatorname{cth} / \cos \theta_0 \ge S_1 = \pi \operatorname{cth} / \cos \gamma \ge \pi \operatorname{cth}$	pour $\cos\theta_0 \le \cos\gamma \le \cos\gamma_1$ (r_0 > h + c\tau/4)
(24)	$\pi c\tau h \ge S_2 = \pi \{ [h / cos\gamma + c\tau / 4] - h^2 \} \ge \pi c\tau h / 2$	pour $\cos\gamma_1 \le \cos\gamma \le 1$ (h \le r_0 \le h + c\tau/4)
(25)	$S_2 \leq \pi c \tau h / 2$	pour $\cos \gamma = 1$ ($h - c\tau/4 \le r_0 < h$)
(26)	$S_3 = 0$	pour cosγ non défini (r ₀ ≤ h – cτ/4)

où l'angle γ_1 est donné par

(27)
$$\cos \gamma_1 = (1 + c\tau/4h)^{-1}$$

En pratique, l'angle γ_1 est toujours faible. Dans les conditions usuelles (h \geq 300 km, ct/2 \leq 500 m), on a en effet $\gamma_1 \leq 2,3^{\circ}$.

On notera que z_1 , donné par (21) peut également s'exprimer en fonction de l'angle d'incidence γ par

(21 bis) $z_1 = h (1 - \cos \theta_0 / \cos \gamma)$

Pour θ_0 donné, l'aire S_S est celle d'une surface annulaire, donnée par (18) ou (23), si l'altitude de z de l'écho de pluie est inférieure à l'altitude critique z_1 (θ_0), donné par (21) ou (21 bis). Ce cas, illustré en Fig. 2a, correspond à $\gamma > \gamma_1$ avec γ_1 donné par (16) et $r_0 > h + c\tau/4$. La surface annulaire S₁ est maximale pour $z \approx 0$ ou $\gamma \approx \theta_0$ et vaut alors

(28) $S_{1\max} \approx \pi c \tau h / \cos\theta_0$

Lorsque z croît, en restant toutefois inférieure à l'altitude critique z_2 (θ_0), donnée par (22), S_S se réduit à une surface circulaire S₂, donnée par (19) ou (24) (25). La transition, qui a lieu pour $\gamma = \gamma_1$, $z = z_1$ et $r_0 = h + c\tau/4$ est illustrée en **Fig. 2b**. La surface circulaire S₂(γ_1) est alors maximale (égale à la surface annulaire minimale S_{1min} = S₁(γ_1)) et vaut

(29)
$$S_{2max} = S_{1min} = \pi c \tau h / (1 + c\tau / 4h) \approx \pi c \tau h$$

Lorsque z est supérieur à z_1 et croît en restant inférieur à z_2 , la surface circulaire S_2 diminue. Pour $\gamma = 0$ ou $r_0 = h$, correspondant à l'altitude z'₁ donnée par

(30)
$$z_1 < z'_1 = h (1 - \cos \theta_0) < z_2$$

on se trouve dans le cas illustré en Fig. 2c et la surface circulaire $S_2(0)$ est donnée par

(31)
$$S_2(0) = \frac{\pi c \tau h}{2} (1 + c \tau / 8h) \cong \pi c \tau h / 2$$

Lorsque z atteint z_2 , la surface circulaire s'annule et $S_3 = 0$ (voir Fig. 2d). Pour $z \ge z_2$, ou $r_0 \le (h - c\tau/4h)$, il n'y a plus d'intersection avec la surface et l'écho de pluie n'est plus contaminé par l'écho de surface via les L.S.

Ainsi, dans le cas général, les portes "pluie" dans la zone d'altitude $[0 - z_2(\theta_0)]$ sont contaminées par l'écho de surface à incidence oblique (**ESIO**) associé à une surface annulaire $S_1(\gamma)$ avec $\gamma_1 \leq \gamma \leq \theta_0$, à l'exception éventuelle de la porte d'altitude la plus élevée sous z_2 dans la gamme d'altitude $[z_1(\theta_0) - z_2(\theta_0)]$ qui est contaminée par l'écho de surface proche du nadir (**ESPN**) associé à une surface circulaire $S_2(\gamma)$ avec $0 \leq \gamma < \gamma_1$. La contamination s'étend à toute la zone de pluie de hauteur H_p lorsque $z_2 \geq H_p$ pour θ_0 donné. Les conditions pratiques dans lesquelles on peut rencontrer les diverses configurations étudiées sont illustrées dans l'application numérique (voir § II-2-2 et Fig. 5).

Si l'on utilise l'analyse précédente en cherchant à caractériser l'effet maximum de contamination par l'écho de surface, dans chaque configuration, on peut finalement développer les considérations suivantes. Les surfaces de type S₁ (annulaire), pour θ_0 donné, varient dans les limites comprises entre π cth et π cth/cos θ_0 (Equ. 23). En se limitant à des valeurs $\theta_0 \leq 20^\circ$, la variation relative de la surface S₁ n'excède pas 6 % lorsque $\gamma_1 < \gamma \leq \theta_0$. La faible variation de S₁ en fonction de γ est due au fait que l'augmentation du diamètre moyen de la couronne pour γ croissant est à peu près compensée par la diminution de sa

largeur. Avec une erreur n'excédant pas 6 % pour $\theta_0 = 20^\circ$ et 2 % pour $\theta_0 = 10^\circ$, on peut donc quantifier l'effet de contamination maximale par les ESIO en choisissant :

(32)
$$S_s = S_{1max} \approx \pi c \tau h / \cos\theta_0$$
 et $\sigma^0(\gamma)$ cas ESIO $(\gamma_1 < \gamma \le \theta_0, z < z_1)$

Les surfaces de type S_2 (circulaire) peuvent varier d'une valeur nulle à une valeur bornée supérieurement par $S_{2max} \approx \pi c \tau h$. L'angle γ_1 étant toujours faible ($\leq 2^\circ$), on peut alors, dans le cas le plus défavorable, quantifier l'effet de contamination maximale par l'ESPN en choisissant:

(33) $S_s = S_{2max} \approx \pi c \tau h$ et $\sigma^0(0)$ cas ESPN ($0 \le \gamma \le \gamma_1$, $z_1 \le z \le z_2$)

I-3 Rapport de contamination

I-3-1) Définition

On peut définir le rapport des puissances du signal pluie utile, au signal de surface contaminateur, à partir de (7) et (17) sous la forme :

(34)
$$P_R / P_S = \frac{|K|^2 \pi^5 10^{-18} \delta}{2 \ln 2 \lambda^4} \frac{c\tau}{2} \frac{G_0^2}{G_m^2(\gamma)} \frac{S_R}{\cos^2 \theta_0 S_S(\gamma)} \frac{Z}{\sigma^0(\gamma)} \frac{l_R}{l_S}$$

où Z est exprimé en unités conventionnelles (mm^6/m^3) et où δ est un terme convectif qui vaut $[1 + z/(h-z)]^2$ et qui peut être pris égal à l'unité avec une erreur inférieure à 3.5 % pour h \geq 300 km et z \leq 5 km.

Le rapport P_R/P_s , exprimé en dB, définit alors un rapport de contamination ρ donné par

(35)
$$\rho(dB) = P_R/P_S(dB) = C + 2\Delta G + \Delta S + Z - \sigma^\circ + \Delta A$$

où tous les termes sont exprimés en dB et Z en dBZ, avec

(36) C (dB) = 10 log
$$[10^{-18} |\text{K}|^2 \pi^5 \lambda^{-4} c\tau/(4 \ln 2)] = -157 + 10 \log (c\tau \lambda^{-4}/2) (MKSA)$$

(37)
$$\Delta G(dB) = 10 \log [G_o / G_m(\gamma)]$$

(38)
$$\Delta S(dB) = 10 \log \left[S_R / (\cos^2 \theta_0 S_S) \right]$$

$$(39) \qquad \Delta A(dB) = A_S - A_R$$

où A_S est donné par (10) et A_R par (4).

Dans le cas d'une pluie uniforme, en utilisant (5), (11) et (16), on obtient :

(40)
$$\Delta A^{u}(dB) = 2 \text{ K } z (1 - H_{p} / h) / \cos \theta_{0}$$

I-3-2) Analyse des termes

L'équation (35) présente l'avantage de séparer les termes, de natures différentes, intervenant dans le calcul de ρ .

Le terme ΔS peut être explicité à partir de (38), en utilisant (6) pour S_R et (28), (29) pour S_S associé à une contamination maximale. On obtient :

(41)
$$\Delta S (dB) = \Delta S_1 = 10 \log[h \theta_1^2 / (4 c \tau \cos \theta_0)]$$
 cas ESIO ($\gamma_1 < \gamma < \theta_0$, $0 < z < z_1$)
(42) $\Delta S (dB) = \Delta S_2 = 10 \log[h \theta_1^2 / (4 c \tau \cos^2 \theta_0)]$ cas ESPN ($0 < \gamma \le \gamma_1$, $z_1 \le z \le z_2$)

Le terme C, donné par (36) ne dépend que des caractéristiques du radar utilisé (choix de τ et λ). Pour θ_0 donné, le terme de gain ΔG , donné par (37) peut être calculé si l'on connaît le gain dans l'axe du lobe principal G₀ et le gain moyen intégré G_m(γ) dont l'expression, tirée de (12), est :

(43)
$$G_{m}(\gamma) = \left[\frac{1}{2\gamma} \int_{\theta_{0}-\gamma}^{\theta_{0}+\gamma} G^{2}(\omega) d\omega\right]^{1/2}$$

L'intégrale porte sur l'intervalle angulaire 2γ entre $(\theta_0 - \gamma)$ et $(\theta_0 + \gamma)$ du diagramme de rayonnement de l'antenne (voir Fig. 1b) correspondant à la valeur de γ considérée, elle-même donnée par (27) à partir de θ_0 , h et z. Sur la Fig. 3, on a représenté un diagramme de rayonnement typique (avec décroissance continue du niveau des L.S.) et indiqué un intervalle d'intégration possible pour le calcul de $G_m(\gamma)$, dans le cas général, avec la signification de ΔG . Notons que, dans le cas des ESIO ($\gamma_1 < \gamma \le \theta_0$) sur la surface S_1 , pour z faible (proximité de la surface), on a $\gamma \approx \theta_0$, mais l'intégration doit évidemment rester limitée aux L.S. et ne s'applique donc que pour $\omega > \theta_c$ où θ_c est l'ouverture angulaire correspondant à la transition entre le lobe principal et les L.S. : l'intégrale de gain porte donc au maximum sur l'intervalle $(\theta_c, 2\theta_0 - \theta_c)$ excluant le lobe principal. Lorsque z croit (en restant inférieur à z_2) l'angle γ est plus faible et l'intervalle d'intégration, centré sur θ_0 , diminue. Dans le cas des ESPN $(0 \le \gamma \le \gamma_1)$, l'intervalle d'intégration est faible avec un maximum possible ($\theta_0 - \gamma_1$, $\theta_0 + \gamma_1$). Lorsque γ tend vers 0, G_m tend formellement vers $G(\theta_0)$. On considèrera cependant l'intégrale sur l'intervalle $2\gamma_1$ centré sur θ_0 , par compatibilité avec la définition de S_2 (équ. 33) et ΔS_2 (équ. 42). L'angle θ_0 étant quelconque, l'effet de contamination maximum se produit en fait lorsque l'intervalle d'intégration $2\gamma_1$ contient le lobe secondaire de niveau le plus élevé (premier L.S. dans le cas d'un diagramme avec décroissance continue des pics des L.S.).

On est ainsi amené à considérer deux cas de figure dans la signification de ΔG , donné par (43), pour calculer l'effet de contamination maximal, à θ_0 donné.

Dans le cas des ESIO :

(44) $\Delta G = \Delta G_1 = 10 \log [G_0 / G_m(\gamma)] \quad \text{cas ESIO} \quad \gamma_1 < \gamma \le \theta_0$

où G_m est une spécification sur le gain moyen intégré sur l'ensemble des L.S. dans l'intervalle ($\theta_0 - \gamma$, $\theta_0 + \gamma$) et que l'on doit associer à ΔS_1 (équ. 41) et $\sigma^0(\gamma)$ dans le calcul de ρ .

Dans le cas des ESPN :

(45) $\Delta G = \Delta G_2 = 10 \log [G_0 / G_m(\gamma_1)] \text{ cas ESPN } \gamma \le \gamma_1$

où G_m est une spécification sur le gain moyen intégré sur l'intervalle $(\theta_0 - \gamma_1, \theta_0 + \gamma_1)$ et que l'on doit associer à ΔS_2 (équ. 42) et $\sigma^0(O)$ dans le calcul de p.

En condition de pluie uniforme, le terme d'atténuation différentielle ΔA^u , donné par (40), augmente avec K et dépend de z, θ_0 et H_p. Dans les conditions usuelles (H_p \leq 5 km, h \geq 300 km), on peut l'estimer, avec une erreur maximale de 1,3 % (sur la valeur exprimée en dB), par

(46)
$$\Delta A^{u}(dB) \cong 2 \text{ K z } / \cos\theta_{0}$$

 ΔA^{u} s'annule avec z (proximité de la surface) car, dans ce cas, les longueurs de trajets considérés pour l'écho de pluie ou de surface sont très voisins ($\gamma \approx \theta_0$) et les atténuations totales respectives sont quasi-identiques. Pour z plus élevé (respectant $z \leq z_2$), ΔA^{u} peut atteindre une valeur maximale

(47)
$$\Delta A^{u}_{max} = 2 K H_{p} / \cos \theta_{0}$$

dans le cas où l'écho de pluie obtenu au sommet de la couche de pluie ($z = H_p$) et pour l'incidence θ_0 , subit une atténuation négligeable alors que l'écho de surface, obtenu à incidence voisine de la verticale subit l'atténuation maximale sur la hauteur de pluie H_p de la couche. Dans tous les cas intermédiaires, correspondant à $0 < z < H_p$ (ou $0 < \gamma \le \theta_0$), ΔA^u est plus faible et augmente comme ($\cos \theta_0$)⁻¹.

Les valeurs de Z et K peuvent être reliées au taux précipitant R par des relations Z-R et K-R appropriées. La valeur du coefficient de rétrodiffusion de la surface $\sigma^0(\gamma)$ peut être obtenue à partir d'un modèle adapté à la longueur d'onde choisie et dépendant, le cas échéant, d'autres paramètres (nature de la surface, rugosité, etc.).

Une valeur du rapport de contamination $\rho = 0$ dB signifie que l'écho de pluie et l'écho de surface contaminateur contribuent de façon égale à la puissance reçue. Il est d'usage de considérer $\rho = 0$ dB comme une référence de calcul, sachant que l'effet de contamination peut raisonnablement être considéré comme négligeable pour $\rho \ge 3$ dB.

I-4 Définition d'une spécification ΔG_{min} sur le gain d'antenne

L'équation (35) donnant ρ peut être exploitée de différentes manières. On peut fixer les caractéristiques du radar, y compris le diagramme de rayonnement de l'antenne G(ω), puis, pour chaque valeur du couple (θ_0 , z), déterminer les termes du membre de droite en utilisant un modèle de pluie (et les relations Z-R et K-R appropriées) et un modèle $\sigma^0(\gamma)$. Les valeurs de ρ ainsi obtenues caractériseront dans chaque cas l'importance des effets de contamination par rapport à la valeur de référence $\rho = 0$ dB. Cette procédure est difficile à appliquer car elle nécessite en particulier de connaître à priori G(ω) et le calcul de G_m (dans Δ G) varie pour chaque configuration (θ_0 , z) considérée. Il est donc tout aussi significatif d'utiliser (35), avec la valeur de référence $\rho = 0$ dB, pour calculer des spécifications Δ G(γ) correspondant à une

valeur Z_{min} assignée à priori à Z, pour chaque configuration (θ_0 , z) analysée. La valeur de $\Delta G(\gamma)$ ainsi obtenue devient une spécification technologique minimale ΔG_{min} des performances requises sur le niveau des L.S. de l'antenne pour obtenir $\rho \ge 0$ dB. C'est cette démarche que nous avons adoptée en exploitant (25) sous la forme :

(48) $\Delta G_{\min} = (-C - \Delta S - Z_{\min} + \sigma^0 - \Delta A) / 2$

Avec cette définition, on aura alors, d'après (35), $\rho \ge 0$ dB si $\Delta G \ge \Delta G_{\min}$ pour Z = Z_{\min} , ou si $\Delta G = \Delta G_{\min}$ pour Z $\ge Z_{\min}$, Z_{\min} représentant la valeur assignée à priori à Z pour calculer ΔG_{\min} avec (48).

II - APPLICATIONS NUMERIQUES : NIVEAUX REQUIS SUR LES L.S.

II-1 Résumé des équations utiles

Pour les applications numériques, on retiendra finalement les équations suivantes, déduites de l'analyse précédente :

¢.

(49)
$$\rho(dB) = P_R / P_S(dB) = C + 2\Delta G + \Delta S + Z - \sigma^0 + \Delta A$$

(50)
$$\rho \ge 0$$
 si $\Delta G \ge \Delta G_{\min}$ et $Z = Z_{\min}$ donné
ou
si $\Delta G = \Delta G_{\min}$ et $Z \ge Z_{\min}$ donné

(51)
$$\Delta G_{\min} = (-C - \Delta S - Z_{\min} + \sigma^0 - \Delta A)/2 \text{ pour } \rho = 0 \text{ dB}$$

(52)
$$C = -157 + 10 \log (c \tau \lambda^{-4} / 2)$$
 (unités MKSA)

(53)
$$\Delta A = A_S - A_R$$
 (cas général equ. (10) et (4))

(54)
$$\Delta A^{u} = 2 \text{ K z} / \cos \theta_{0}$$
 (pluie uniforme)

<u>ESIO</u>: $\gamma 1 < \gamma \le \theta_0$, $0 < z < z_1$

(55)
$$\cos\gamma = h \cos\theta_0 / (h - z)$$

(56)
$$\cos \gamma_1 = (1 + c \tau / 4h)^{-1}$$

(57)
$$z_1 = h - (h + c \tau / 4) \cos \theta_0 = h (1 - \cos \theta_0 / \cos \gamma_1)$$

(58)
$$\Delta G = \Delta G_1 = 10 \log \left[G_0 / G_m(\gamma) \right]$$

(59)
$$G_{m}(\gamma) = \left[\frac{1}{2\gamma} \int_{\theta_{0}-\gamma}^{\theta_{0}+\gamma} G^{2}(\omega) d\omega\right]^{1/2}$$

(60)
$$\Delta S = \Delta S_1 = 10 \log [h \theta_1^2 / (4 c \tau \cos \theta_0)]$$

(61)
$$\sigma^0 = \sigma^0(\gamma)$$

<u>ESPN</u>: $0 \le \gamma \le \gamma_1$, $z_1 \le z \le z_2$

(62)
$$z_2 = h - (h - c \tau/4) \cos\theta_0 = z_1 + (c \tau/2) \cos\theta_0$$

(63)
$$\Delta G = \Delta G_2 = 10 \log [G_0 / G_m(\gamma_1)]$$

(64)
$$G_m(\gamma_1) = \left[\frac{1}{2\gamma_1} \int_{\theta_0 - \gamma_1}^{\theta_0 + \gamma_1} G^2(\omega) d\omega\right]^{1/2}$$

(65)
$$\Delta S = \Delta S_2 = 10 \log [h \theta_1^2 / (4 c \tau \cos^2 \theta_0)]$$

$$(66) \qquad \sigma^0 = \sigma^0 (0)$$

On notera que ρ et ΔG ne dépendent pas en fait de la durée d'impulsion τ utilisée (ou de la longueur des portes radar $c\tau/2$) car la quantité $c\tau$ s'élimine entre C et ΔS lans les équations (48) ou (50). La longueur de porte $c\tau/2$ doit cependant être fixée pour déterminer z_1 , z_2 et γ_1 .

II-2 Valeurs des paramètres et modèles

II-2-1) Paramètres de définition du radar

Nous adopterons les valeurs suivantes

(67)
$$h = 500 \text{ km}$$

(68) $c\tau/2 = 250 \text{ m}$
(69) $\lambda = 2.2 \text{ cm} (f = 13.75 \text{ GHz})$ ou $\lambda = 0.86 \text{ cm} (f = 35 \text{ GHz})$
(70) $\theta_1 = 0.18^\circ$
(71) $\theta_c \approx 3\theta_1 / 2 = 0.27^\circ$

Ces valeurs sont caractéristiques de celles retenues comme spécifications pour le radar à pluie du projet BEST (B.E.S.T, 1988, Marzoug, 1989) avec f=13.75 GHz en version

nominale. Elles correspondent à une résolution transverse du lobe principal (à 3 dB) au nadir de 1.6 km, associée à une surface d'empreinte $S_R \approx 2 \text{ km}^2$. Par ailleurs, comme indiqué auparavant, l'angle d'incidence θ_0 du faisceau principal sera limité à l'intervalle :

$$(72) \qquad 0 < \theta_0 \le 20^\circ$$

II-2-2) Altitudes critiques et incidences des échos sur la surface

Dans ces conditions, on obtient $\gamma_1=1.28^\circ$ pour l'incidence marquant la transition entre les ESIO ($\gamma_1>1.28^\circ$) et les ESPN ($\gamma_1<1.28^\circ$).

Dans la Fig. 4 sont illustrées les valeurs des altitudes critiques z_1 et z_2 pour les valeurs de $\theta_0 \le 20^\circ$. A titre d'exemple, pour $\theta_0 = 5^\circ$, on a $z_1 = 1778$ m et $z_2 = 2027$ m. Les portes "pluie" centrées à des altitudes z < 1778 m peuvent être contaminées par les ESIO. Entre 1778 m et 2027 m, il peut y avoir contamination par l'ESPN. Au dessus de 2027m, il n'y a plus de contamination par des échos sur la surface. Si l'on choisit une hauteur de pluie $H_p = 5$ km, la contamination a lieu dans toutes les portes pluie pour $\theta_0 \ge 8^\circ, 21$, incidence pour laquelle $z_2=H_p$, tandis qu'elle limitée aux portes d'altitude $z < z_2(\theta_0)$ si $\theta_0 < 8^\circ, 21$. Lorsque $\theta_0 < \gamma_1 = 1.28^\circ$, seule la porte pluie la plus proche du sol peut être contaminée par l'ESPN, puisqu'au dessus de $z_2(\gamma_1) = 250$ m, il n'y a plus d'effet de contamination.

Les valeurs de l'incidence des échos sur la surface (éq. 55) et celles des bornes correspondantes de l'intervalle d'intégration angulaire $[\theta_0 - \gamma, \theta_0 + \gamma]$ sur lequel doit porter l'intégration quadratique du gain d'antenne dans la définition de $G_m(\gamma)$ (equs. (58) et (64)) sont indiquées dans la **Table 1** en fonction de θ_0 et pour différentes valeurs de l'altitude z de l'écho de pluie. L'absence de valeur correspond à l'absence d'écho de surface contaminateur pour le cas considéré. Le cas échéant, l'intervalle 2 γ est limité à [θ_c , $2\theta_0 - \theta_c$] lorsque ($\theta_0 - \gamma$) < θ_c avec $\theta_c = 0.27^\circ$ ou à [$\theta_0 - \gamma_1$, $\theta_0 + \gamma_1$] lorsque $\gamma < \gamma_1 = 1.28^\circ$ (cas des ESPN). Dans la **Fig. 5**, on a illustré les valeurs de γ , ($\theta_0 - \gamma$) et ($\theta_0 + \gamma$) en fonction de θ_0 pour z= 0.5 km et z= 5 km. On constate que pour θ_0 donné, l'intervalle d'intégration décroit lentement avec z et porte progressivement sur une région des L.S. de plus en plus concentrée autour de l'angle θ_0 . Pour z donné, l'intervalle d'intégration s'élargit rapidement et inclut progressivement les L.S. des plus proches aux plus éloignés de l'axe principal à mesure que z décroit.

II-2-3) Modèle de pluie

Nous considérons une couche de pluie de hauteur

(73) $H_p = 5 \text{ km}$

Nous envisageons en premier lieu un taux de pluie uniforme R dans la couche comme référence de calcul pour ΔG_{min} . Les conséquences apportées par un écart à cette hypothèse seront évoquées plus loin (§ II.4.2).

Dans le cas de diffusion de Mie, s'appliquant pour les longueurs d'onde considérées, le facteur de réflectivité radar équivalent Z dépend de la longueur d'onde et la distribution dimensionnelle des gouttes de pluie n(D). Il peut généralement être relié au taux précipitant R par une relation de la forme $Z = \alpha R^{\beta}$; il en est de même du coefficient d'atténuation spécifique K, qui dépend en plus de la température des gouttes et que l'on peut généralement exprimer sous la forme $K = a R^b$ (Ulbrich, 1983). Les relations Z-R et K-R utilisées sont indiquées dans la **Table 2**. Elles sont obtenues pour des conditions de diffusion de Mie avec une distribution de gouttes de type Marshall et Palmer (1948). Les relations Z-R sont déduites des travaux de Goldhirsh et Walsh (1982) à 13.75 GHz et Wexler et Atlas (1963) à 35 GHz. Les relations K-R, aux deux fréquences, sont déduites des résultats de Olsen et al. (1978), pour une température des gouttes de 20°.

Les variations de Z ou K avec R, pour R compris entre 0.1 et 100 mm/h sont illustrées dans les Figs. 6a et 6b, pour les deux fréquences considérées. L'écart entre Z_{14} et Z_{35} s'annule pour R \approx 4 mm/h et croît lentement pour les valeurs de R plus faibles ou plus élevées. Pour R=1 mm/h, on obtient $Z_{14}=24$ dBZ et $Z_{35}=25.5$ dBZ. L'atténuation spécifique est beaucoup plus forte (environ 10 fois) à 35 GHz qu'à 14 GHz. Pour R=1 mm/h, on a K₃₅ = 0.27 dB/km et K₁₄ = 0.028 dB/km.

II-2-4) Modèle de σ^0

Le coefficient de rétrodiffusion de la surface peut être extrêmement variable car il dépend de nombreux paramètres, dont les plus significatifs sont : la nature de la surface (sol ou océan), la rugosité du sol (terrain nu, végétation, zone résidentielles, industrielles, agricoles, etc ...), l'état de surface de la mer, la longueur d'onde et la polarisation de l'onde, l'incidence d'observation par rapport au nadir, la vitesse du vent en surface et l'azimut de la visée (dans le cas de l'océan), et l'échelle du pixel considéré. Suivant les cas de figure, des formulations théoriques peuvent être établies. Par ailleurs des observations expérimentales couvrant partiellement les conditions énoncées ont servi à établir des paramétrisations. Les plus nombreuses concernent l'observation de l'océan (ex. Moore et Fung, 1979; Moore, 1985; Masuko et al., 1986), à différentes longueurs d'onde.

Au dessus de l'océan, pour des incidences voisines du nadir (typiquement comprises entre 0 et 20°), la section efficace de rétrodiffusion de l'onde radar peut être calculée en utilisant l'approximation de Kirchhoff comme résultant d'un phénomène quasi-spéculaire dépendant de la rugosité de la surface pour des échelles très supérieures à la longueur d'onde utilisée (Valenzuela, 1978). L'effet de l'incidence γ s'exprime alors comme :

(74)
$$\sigma^0(\gamma) = \sigma^0(0) (\cos\gamma)^{-4} \exp(- tg^2\gamma / s^2)$$

où s² est la variance de la distribution des pentes de la surface.

Dans ces conditions, σ^0 dépend encore de la vitesse du vent mais assez peu de l'azimut de la visée. La dépendance de σ^0 avec la longueur d'onde n'est pas parfaitement établie. Des représentations paramétriques plus simples ont été proposées. La plus utilisée (ex. Moore et Fung, 1979) est du type

(75)
$$\sigma^{0}(\gamma) = \sigma^{0}(0) \exp(-\gamma/\gamma_{0})$$

où $\sigma^0(0)$ et γ_0 varient avec la fréquence. Avec σ^0 exprimé en dB, on obtient alors

(76)
$$\sigma^0(\gamma) = \sigma^0(0) - m\gamma \ (\sigma^0 \text{ en } dB, \gamma \text{ en } km)$$

avec m = $4.34 / \gamma_0$.

En bande Ku (\approx 14 GHz), Manabe et Ihara (1988) ont ajusté une loi du type (74) à des données obtenues sur l'océan par un diffusiomètre aéroporté (Expérience AAFE RADSCAT en 1984) pour un vent de surface entre 7.5 et 10 ms⁻¹, avec $\sigma^0(0)=14.1$ (\approx 12 dB) et S \approx 0.196. L'ajustement de la loi paramétrique simple du type (76) aux même données fournit $\sigma^0_{14}(0) = 14$ et m₁₄ = 0.75, et est illustré dans Fig.7.

A 35 GHz, les données expérimentales sont rares. Les résultats de Masuko et al. (1988) sur l'océan conduisent, pour des conditions analogues aux précédentes (vitesse du vent en surface entre 7.5 et 10 ms⁻¹) avec un ajustement de type (76), à $\sigma^{0}_{35}(0) = 6$ et m₃₅ = 0.675, également illustré dans la Fig.7.

La variabilité de σ^0 en fonction du vent et de l'azimut de visée (Masuko et al., 1986) peut

introduire une incertitude de plusieurs dB (Typiquement ± 3 dB) sur les lois retenues, pour un vent compris entre 3 et 20 m s⁻¹.

Au dessus des terres, l'extrême variabilité de σ^0 suivant la nature du terrain ne permet guère d'obtenir de paramétrisation générale. Les résultats expérimentaux disponibles (Ulaby et al., 1981) indiquent néammoins que, pour un type de terrain donné, σ^0 décroit également avec l'incidence γ entre 0 et 20°. Cependant, les valeurs moyennes près du nadir sont généralement plus faibles (5 à 10 dB) que celles observées au dessus de l'océan (surface plus réfléchissante que le sol) avec une marge de variation plus faible en fonction de l'incidence, toutes choses égales par ailleurs. On peut donc penser que le choix de valeurs de σ^0 typiques de l'océan pour des incidences voisines du nadir ($\leq 10^\circ$) constitue également une borne supérieure dans le cas des sols, pour une fréquence donnée.

II-3 Evaluation des termes de ΔG_{min}

Les différents termes contribuant à l'expression de ΔG_{\min} , donnée par (51) sont évalués ci dessous.

<u>Terme C</u>

Suivant la fréquence utilisée (14 ou 35 GHz), on obtient d'après (52) :

(77)
$$C_{14} = -67.7 \text{ dB}$$

(78) $C_{35} = -50.4 \text{ dB}$

La spécification sur ΔG_{\min} est d'autant plus forte que C est fort.

<u>Terme ΔS </u>

Les équations (60) et (65) fournissent :

- (79) $\Delta S_1 = -26.1 10 \log (\cos \theta_0)$
- (80) $\Delta S_2 = -26.1 20 \log (\cos \theta_0)$

Pour θ_0 valant 0°, 10°, 20°, les contributions des termes en $\cos\theta_0$ sont respectivement de 0, 0.07 et 0.27 dans ΔS_1 et de 0, 0.14 et 0.54 dans ΔS_2 . Elles peuvent donc être négligées et l'on prendra une valeur caractéristique, par défaut :

(81)
$$\Delta S = \Delta S_1 = \Delta S_2 \approx -26 \text{ dB} \qquad 0 < \theta_0 < 20^\circ$$

<u>Terme $\sigma^{0}(\gamma)$ </u>

Nous choisirons, pour chaque fréquence, une loi de variation de σ^0 avec l'incidence γ typique de l'océan, avec les lois ajustées obtenues plus haut :

(82) $\sigma^{0}_{14} = 14 - 0.75 \gamma$ $0 < \theta_{0} < 20^{\circ}$ $(\sigma^{0} \text{ en dB}, \gamma \text{ en }^{\circ})$ (83) $\sigma^{0}_{35} = 6 - 0.675 \gamma$ $0 < \theta_{0} < 20^{\circ}$ $(\sigma^{0} \text{ en dB}, \gamma \text{ en }^{\circ})$

caractérisant des valeurs moyennes pour un vent de l'ordre de 10 m s⁻¹ avec une marge d'incertitude de ±3 dB pour $3 < v < 20 \text{ ms}^{-1}$ et constituant vraisemblablement un maximum pour le cas des sols, près du nadir. La spécification sur ΔG_{\min} est d'autant plus forte que σ^0 est fort.

Terme Zmin

Utilisé comme paramètre de calcul, sa valeur est associée à celle de ΔG_{min} et peut être traduite en valeur de R correspondante (relation Z-R). Les spécifications sur ΔG_{min} sont d'autant plus fortes que Z_{min} est faible. Idéalement, Z_{min} devrait être choisi proche du seuil de détection du radar. Nous considèrerons typiquement la gamme de taux précipitant R_{min} allant de 0.1 à 2 mm/h correspondant à Z_{min} allant environ de 10 à 30 dBZ. Les valeurs de référence seront :

(84)	$R_{\min} = 1 \text{ mm/h}$	$Z_{min} = 24 \text{ dBZ} \text{ à } 14 \text{ GHz}$
(85)	R _{min} = 1 mm/h	Z _{min} = 25.5 dBZ à 35 GHz

<u>Terme ΔA </u>

Ce terme dépend des valeurs de z et θ_0 considérées (equs. 53 et 54) ainsi que de la valeur de K (reliée à R par la relation K-R).

Dans le cas d'une pluie uniforme, il sera évalué dans chaque cas à l'aide de (54). On notera qu'il s'annule avec z et qu'il est borné supérieurement (pour z=H_p et θ_0 =20°) par

(86) $\Delta A_{max} = 2.13 \text{ K H}_{p}$

Avec H_p=5 km et pour la valeur de référence $R_{min}=1$ mm/h, correspondant à K₁₄=0.028 dB/km et K₃₅=0.27 dB/km, on a :

(87)	$R_{\min} = 1 \text{ mm/h}$	$\Delta A_{max} = 0.3 \text{ dB} \text{ à } 14 \text{ GHz}$
(88)	$R_{\min} = 1 \text{ mm/h}$	$\Delta A_{max} = 2.9 \text{ dB} \text{ à 35 GHz}$

La spécification sur ΔG_{\min} est d'autant plus forte que ΔA_{\max} est faible

Expression finale pour le calcul de ΔG_{min}

Avec les valeurs retenues pour C (éq. 76 et 77) et Δ S (éq.80), l'expression de Δ G_{min} finalement utilisée, à partir de (50) est :

(89)
$$\Delta G_{\min} = (92.7 - Z_{\min} + \sigma^0 - \Delta A) / 2$$
 à 14 GHz

avec ΔA donné par (54) et σ^0 donné par (82)

(90)
$$\Delta G_{\min} = (76.4 - Z_{\min} + \sigma^0 - \Delta A) / 2$$
 à 35 GHz

avec ΔA donné par (54) et σ^0 donné par (83).

Dans chaque cas, Z et K sont obtenus à partir de R spécifié, en utilisant les relations appropriées de la Table 2.

II-4 Spécifications sur ΔG : Résultats et discussions

II-4-1) Analyse générale

Dans la Fig. 8, on a représenté les valeurs de ΔG_{\min} à 13.75 GHz en fonction de l'angle d'incidence θ_0 du lobe principal pour plusieurs valeurs de R_{min} comprises entre 0.1

et 10 mm/h. Dans chaque cas sont indiqués les résultats correspondant à des échos de pluie à l'altitude z=0.5, 2 et 5 km. L'incidence correspondante des échos sur la surface $\gamma(\theta_0)$ est également reportée pour les différents valeurs de z. Chaque courbe donne ΔG_{\min} associé à l'ensemble (z, θ_0 , R_{\min}) considéré. On constate une rapide décroissance de ΔG_{\min} avec θ_0 , due essentiellement, pour R_{\min} donné, à la décroissance de σ^0 avec l'incidence $\gamma(\theta_0)$.

Pour z donné, quelque soit R_{min} , le décrochage des courbes observé lorsque θ_0 décroit, marque la limite inférieure de l'incidence θ_0 pour laquelle peuvent apparaitre les échos de surface contaminateurs, à l'altitude considérée. Cette limite qui correspond à $\gamma=0$, à lieu pour θ_0 d'autant plus faible que z est faible avec un effet de contamination maximum associé à l'ESPN ($\gamma \le \gamma_1$). Lorsque θ_0 excède cette limite, pour z donné, ΔG_{min} diminue et la contamination résulte des ESIO ($\gamma_1 < \gamma < \theta_0$).

Par ailleurs, pour θ_0 et z donnés, il est clair que la spécification est d'autant plus sévère que R_{min} est faible. Pour les valeurs de R_{min} considérées, l'effet d'atténuation (terme ΔA de l'equ. (88)) qui allège progressivement la spécification, ne devient significatif que pour R_{min} ≥ 5 mm/h.

Les résultats globaux indiquent que pour le cas de référence $R_{min} = 1 \text{ mm/h} (Z_{min}=24 \text{ dBZ})$, une spécification $\Delta G_{min} \approx 41 \text{ dB}$ est requise pour se prémunir dans tous les cas d'une contamination importante ($\rho \le 0 \text{ dB}$). Cette limite est portée à environ 48 dB pour R=0.1 mm/h. Il est certainement très difficile, voire impossible d'atteindre $\Delta G_{min}=40 \text{ dB}$ pour toutes les valeurs de l'intervalles 2 γ considéré dans la moyenne quadratique du gain sur les L.S. (voir § I.3.2, Fig.3 et § II.2.2, Fig.4), dans le cas d'une structure d'antenne spatiale de grandes dimensions (quelques mètres). La difficulté est d'autant plus grande que d'une part, l'intervalle angulaire 2γ (centré sur θ_0) considéré est faible (l'ESPN constitue le cas limite) et d'autre part, qu'il est proche du lobe principal, c'est à dire à θ_0 faible. La contamination la plus forte aura lieu pour une zone d'altitude de plus en plus basse lorsque θ_0 décroit (cf. Fig.4 : zone ESPN ou région de la zone ESIO jouxtant la zone ESPN). On doit donc s'attendre à voir la spécification éventuellement non respectée dans ces cas.

Si l'on admet que la limite $\Delta G_{\min}=35 \text{ dB}$ constitue une valeur réaliste, on peut atteindre une contamination quasi-négligeable ($\rho \ge 0$) : (i) quel que soit θ_0 et z pour $R_{\min} \ge 5 \text{ mm/h}$ ($Z_{\min} \ge 35 \text{ dBZ}$); (ii) seulement si $\theta_0 > 10^\circ$ à 13° (suivant z) pour $R_{\min} \ge 2 \text{ mm/h}$ ($Z_{\min} \ge 28.5 \text{ dBZ}$); (iii) seulement si $\theta_0 > 15^\circ$ pour $R_{\min} \ge 1 \text{ mm/h}$ ($Z_{\min} \ge 24 \text{ dBZ}$).

La Fig. 9 indique des valeurs de ΔG_{min} à 35 GHz, dans une présentation identique à

celle de la Fig.8, réduite aux valeurs de $R_{min} = 0.01, 0.1$ et 1 mm/h. On note que dès $R_{min} = 0.5$ mm/h, l'effet d'atténuation (terme ΔA dans ΔG_{min}) apparait non négligeable, allégeant d'autant plus la spécification que z est fort, à θ_0 donné. On voit, toutes choses égales par ailleurs, que ΔG_{min} est plus faible (d'environ 12 à 13 dB) à 35 GHz qu'à 14 GHz. Cet effet qui conduit à un gain de l'ordre de 24 dBZ sur Z_{min} , pour une même valeur de ΔG_{min} , provient essentiellement de deux causes : (i) la diminution d'environ 16 dB du terme C, qui varie en λ^{-4} avec la section efficace de rétrodiffusion de la pluie (equ. 77 au lieu de 76), (ii) la diminution de σ^0 (voir Fig.7) de l'ordre de 8 dB (equ. 82 au lieu de 81); et à un degré moindre, de l'effet d'atténuation (terme ΔA) plus fort à 35 GHz. A la valeur de référence $R_{min} = 1 \text{ mm/h}$ ($Z_{min} = 25.5 \text{ dBZ}$), une valeur ΔG_{min} d'environ 28 dB assure un effet de contamination quasi-négligeable dans tous les cas. Une valeur de $\Delta G_{min} \approx 30 \text{ dB}$ (resp. 35 dB) assure une protection aussi efficace pour $R_{min} \ge 0.5 \text{ mm/h}$ ou $Z_{min} \ge 21.5 \text{ dBz}$ (resp. $R_{min} \ge 0.1 \text{ mm/h}$ ou $Z_{min} \ge 12 \text{ dBZ}$).

La Fig. 10 indique les valeurs de ΔG_{min} en fonction de Z_{min} ou R_{min} (à 13.75 et 35 GHz) qui sont nécessaires pour assurer une protection optimale dans tous les cas (z \leq 5 km, $\theta \leq 20^{\circ}$) contre la contamination par les échos de surface, avec un rapport de contamination $\rho \geq 0$ dB. Dans la **Table 3**, on a extrait quelques valeurs caractéristiques de la correspondance entre ΔG_{min} et Z_{min} en indiquant les valeurs de R_{min} associées. Dans la Fig. 10 comme dans la Table 3, les valeurs de ΔG_{min} sont voisines des maxima des courbes obtenues dans les Figs. 8 (13.75 GHz) ou 9 (35 GHz) à z = 0.5 km (où ΔA ~0), pour chaque valeur de R_{min} considérée. Ces résultats peuvent être interprétés de deux manières. En premier lieu, pour une spécification ΔG_{min} donnée, ils indiquent la valeur minimale Z_{min} (ou R_{min}) garantissant une protection contre les échos de sol avec un rapport de contamination $\rho \geq 0$ dB ; pour les valeurs de θ_0 et z. Inversement, pour Z_{min} (ou R_{min}) donné, ils indiquent la spécification ΔG_{min} minimale assurant un rapport de contamination $\rho \geq 0$ dB pour un ensemble de valeurs de θ_0 et z. Inversement, pour Z_{min} (ou R_{min}) donné, ils indiquent la spécification ΔG_{min} minimale assurant un rapport de contamination $\rho \geq 0$ dB pour un ensemble de valeurs de θ_0 et z. Inversement, pour Z_{min} (ou R_{min}) donné, ils indiquent la spécification ΔG_{min} minimale assurant un rapport de contamination $\rho \geq 0$ dB pour les valeurs inférieures, la contamination apparaîtra possible avec $\rho < 0$ dB pour les valeurs de θ_0 et z déjà mentionné.

Par conséquent, si la réalisation technologique de l'antenne permet d'obtenir une valeur de spécification ΔG^* (pour un intervalle d'intégration 2 γ donné du gain moyen sur les L.S.), le rapport de contamination sera favorable (ρ >0) pour l'ensemble des valeurs (θ_0 , z, R_{min}) associées à $\Delta G_{min} < \Delta G^*$ dans les abaques des Figs. 8 (13.75 GHz) ou 9 (35 GHz) ; il sera défavorable (ρ <0), pour l'ensemble des valeurs (θ_0 , z, R_{min}) associées à $\Delta G_{min} > \Delta G^*$. Le taux de protection (ρ >0 dB) ou de contamination (ρ <0 dB) sera caractérisé (cf. équ. 49) par la valeur :

22

.

(91)
$$\rho = 2 (\Delta G^* - \Delta G_{\min})$$

obtenu pour chaque valeur du triplet (θ_0 , z, Z_{min} ou R_{min}) considéré. Le raisonnement reste valable si ΔG^* n'est pas constant avec γ , comme il est probable en pratique : dans ce cas, l'angle γ dépendant de θ_0 et z, il suffit de prendre en compte la valeur $\Delta G^*(\theta_0, z)$ correspondante. A titre d'exemple, à 13.75 GHz (Fig. 8), si l'on considère une valeur constante $\Delta G^*=35$ dB, on obtient pour $R_{min} = 2$ mm/h, $\theta_0=5^\circ$ et z=0.5 km, un rapport $\rho =$ -4.4 dB traduisant une contamination importante ; pour les mêmes valeurs de R_{min} et z mais avec $\theta_0=15^\circ$, on obtient $\rho=+3.6$ dB traduisant une contamination négligeable. De la même manière, pour $\theta_0=5^\circ$ et z=0.5 km, on obtient un rapport $\rho=+6.4$ dB pour $R_{min}=10$ mm/h, $\rho=+1.6$ dB pour $R_{min}=5$ mm/h, $\rho=-4.4$ dB pour $R_{min}=2$ mm/h et $\rho=-9.6$ dB pour $R_{min}=1$ mm/h. Rappelons enfin que, dans la Fig. 4, est défini le domaine de θ_0 et z où les effets de contamination peuvent éventuellement exister (avec un rapport de contamination ρ dépendant de R et $\Delta G(\gamma)$ au point considéré) et celui où ils sont absents.

Si l'on élimine la nécessité d'observer à des angles θ_0 faibles, la spécification optimale peut être notablement réduite. Dans le cas d'un stéréoradar opérant avec $\theta_0 = 18^{\circ}$ (impliquant $\gamma \ge 16^{\circ}$ pour $z \le 5$ km), il est clair d'après les Figs. 8 et 9 que la spécification optimale peut être réduite d'environ 5 dB. Cette valeur caractérise, pour une courbe donnée, la différence entre les valeurs de ΔG_{\min} prises respectivement au sommet de la courbe et près de $\theta_0 =$ 18°. Il s'ensuit que les résultats de la Fig. 10 et de la Table 3 s'appliquent au cas du stéréoradar (avec $\theta_0 = 18^{\circ}$) en diminuant ΔG_{\min} de 5 dB.

I-4-2) Révision des conditions de calcul et implications

Les résultats obtenus pour ΔG_{min} représentent des spécifications optimales puisqu'elles sont censées assurer une protection contre la contamination par les échos de sol via les L.S., pour l'ensemble des configurations de θ_0 et z retenues jusqu'au cas le plus défavorable correspondant à l'ESPN. Le calcul a été effectué avec des valeurs de ΔS standard maximales (équ. 41 et 42, § I.3.2), des valeurs de σ° représentatives de conditions moyennes (§I.2.4), un terme d'atténuation différentielle représentatif d'une couche de pluie uniforme d'extension horizontale infinie, et des caractéristiques données du radar (§II.2.1). Dans ces conditions, on peut estimer à environ 3 dB la marge d'incertitude sur les valeurs de ΔG_{min} obtenues. Avec les caractéristiques considérées, les spécifications sur ΔG_{min} sont technologiquement déjà difficiles à réaliser à 13.75 GHz, probablement plus réalistes à 35 GHz (cf. Table 3), si l'on retient le seuil R_{min} = 1 mm/h comme valeur de référence. On doit donc discuter la sensibilité de cette spécification aux termes intervenant dans sa définition, lorsqu'on modifie les hypothèses de calcul. Cette analyse est reprise à partir de l'expression de ΔG_{min} données par (51) et des expressions littérales des divers termes C, ΔS , Z_{min} , σ° et ΔA pris indépendemment. Nous ne remettrons pas en cause l'approximation d'une terre plane. La prise en compte de la rotondité de la terre peut néanmoins amener une modification significative de ΔG_{min} pour $\theta_0 \ge 10^{\circ}$ ainsi qu'une nécessité de réviser les valeurs des altitudes critiques z_1 et z_2 et des angles d'incidences γ en fonction de θ_0 et z.

a) Modification des caractéristiques du radar

Nous envisageons des modifications possibles du seul point de vue de l'impact sur ΔG_{\min} sans examiner les autres conséquences, plus ou moins favorables, sur les performances du radar.

Une modification δh de l'altitude de h du satellite entraîne, via le terme ΔS , une modification de ΔG_{\min} de 1/2[10 log($\delta h/h$)]. Doubler h conduit donc à une diminution potentielle de 1.5 dB, assez faible, de ΔG_{\min} .

Via le même terme ΔS , une modification $\delta \theta_1$ de l'ouverture θ_1 du lobe principal, entraîne une modification de ΔG_{\min} de $1/2[20 \log(\delta \theta_1/\theta_1)]$. Doubler θ_1 conduit donc à une diminution potentielle de 3 dB de ΔG_{\min} .

Comme indiqué auparavant (§II-1) ΔG_{\min} est indépendant de la durée d'impulsion (ou de la longueur des portes) qui intervient à la fois dans les termes ΔS et C.

Enfin, un changement $\delta\lambda$ de la longueur d'onde λ entraîne une modification, via le terme C, sur ΔG_{\min} de 1/2[40 log ($\delta\lambda/\lambda$)]. Doubler la fréquence conduit donc à une diminution potentielle de 6 dB sur ΔG_{\min} . De plus, cette diminution doit être cumulée avec la diminution d'une quantité $\delta\sigma^{\circ}/2$ (en dB) introduite par la diminution corrélative de $\delta\sigma^{\circ}$ de σ° avec l'augmentation de fréquence. C'est de loin l'effet le plus important, illustré ci-dessus (§II-4-1) par les résultats présentés à 13.75 et 35 GHz avec une diminution globale de l'ordre de 12 dB sur ΔG_{\min} .

Un exemple de changement de spécification apporté par les modifications des caractéristiques de radar est fourni par le cas du radar à pluie de la mission TRMM. Ce dernier est prévu à 13.75 GHz avec h=350 km et θ_1 =0.76°. En utilisant ces valeurs dans la

formalisme que nous avons présenté et en modifiant légèrement les lois Z-R et K-R ainsi que le modèle $\sigma^{\circ}(\gamma)$ pour les rendre identiques aux choix retenus par les auteurs de l'étude (Manabe et Ihara, 1988), on aboutit à une diminution de ΔG_{\min} de l'ordre 5.5 dB (donnée par +0.75 dB dû à h et -6.25 dB dû à θ_1). Nous avons vérifié que les résultats sont en excellent accord (à 0.5 dB près) avec les simulations numériques de Manabe et Ihara, qui indiquent, par exemple, $\rho=0$ dB pour $\Delta G_{\min}=35$ dB avec R_{min}=0.7 mm/h, $\theta_0=5^{\circ}$ et z<1 km.

b) Variations du coefficient de rétrodiffusion de la surface

Trois facteurs peuvent intervenir pour modifier ΔG_{\min} via la valeur de σ° . En premier lieu, l'effet de la fréquence, mentionné plus haut, entraîne une diminution de ΔG_{\min} lorsque la fréquence croît, en raison de la diminution de σ° . En second lieu, la diminution $\delta\sigma^{\circ}$ de σ° avec l'angle d'incidence fait que la spécification nécessaire ΔG_{\min} est d'autant plus faible (dans la proportion $\delta\sigma^{\circ}/2$) que l'incidence γ de l'écho de sol croît. Cet effet ne peut être utilisé pour réduire à priori la spécification ΔG_{\min} dans le cas d'un radar à balayage transverse perpendiculairement à la trace subsatellitaire, car l'angle γ peut prendre toutes les valeurs entre 0 et θ_0 . Par contre, l'allègement de spécification peut être utilisé si la configuration de travail du radar est telle que γ reste toujours supérieur à une valeur minimale γ_{\min} pour laquelle σ° à la valeur maximale $\sigma^{\circ}(\gamma_{\min})$: c'est le cas du stéréoradar opérant à θ_0 fixé sur chaque faisceau (Testud et Amayenc, 1988). L'analyse de ces deux configurations sera reprise plus loin (voir § III-2).

Enfin, dans le calcul de ΔG_{\min} , on a considéré $\sigma^{\circ}(\gamma)$ uniforme sur toute surface S_s produisant l'écho par rétrodiffusion. Une distribution non uniforme de $\sigma^{\circ}(\gamma)$, due par exemple à une modulation par le vent de surface pour l'océan où à la nature des sols, peut introduire des variations favorables (diminution) ou défavorables (augmentation) dans la valeur de ΔG_{\min} qui est définie à partir de la valeur moyenne de σ° sur la surface S_s .

c) Pluie non uniforme ou d'extension horizontale limitée

Rappelons tout d'abord que, dans le modèle de pluie, les relations Z-R et K-R retenues constituent des lois moyennes dans des conditions standard (voir §2-3 et Table 1). On doit s'attendre en réalité à une certaine marge de variabilité, en particulier en fonction de la distribution dimensionnelle des gouttes de pluie. Cet effet vaut surtout pour les lois Z-R (Ulbrich et Atlas, 1978) les lois K-R étant d'autant moins sensibles à cet effet (Atlas et Ulbrich, 1974) que la fréquence croît entre 10 et 35 GHz. Dans l'analyse formelle de ΔG_{min}

présentée, une variation de la loi Z-R se traduit par une modification de la valeur de R_{min} obtenue, pour ΔG_{min} donné. Une variation de la loi K-R entraîne par contre une modification directe du terme d'atténuation ΔA , pouvant modifier légèrement ΔG_{min} lorsque ce terme devient significatif (voir §II-4-1).

Les résultats présentés ont été obtenus dans le cas d'une couche de pluie de hauteur $H_p=5$ km, uniforme (R constant) et d'extension horizontale infinie (même modèle de pluie pour l'écho de sol et l'écho de pluie à incidences différentes). Une modification de H_p agit sur ΔG_{min} , via le terme ΔA , avec les conséquences similaires à celles d'une variation de la loi K-R. Lorsque ΔA est significatif, une augmentation δH_p de H_p (en km) conduit à une diminution maximale (voir équ. 86) de 1.07 K δH_p sur ΔG_{min} , restant relativement faible (<1 dB) en pratique pour $\delta H_p \approx 1$ km et $R_{min} \approx 1$ mm/h.

Une remise en cause de l'hypothèse d'uniformité ou d'extension infime de la couche de pluie peut par contre avoir des conséquences beaucoup plus importantes. On peut en effet imaginer des configurations où les trajets du signal pluie (à incidence θ_0) et du signal de surface (à incidences γ) ne traversent pas le même modèle de pluie ϵ t ne subissent donc pas des atténuations comparables. Nous nous bornerons ici à formuler simplement des implications qui en découlent sur ΔG_{min} . Il est clair que, dans les cas évoqués, c'est via la variation du terme ΔA que ΔG_{min} peut être modifié. Il est alors judicieux de revenir à l'expression de ΔG_{min} (équ. 51) avec les formulations générales du terme ΔA (équ. 53, 10 et 4). A partir de (51) et (53), on peut alors écrire :

(92)
$$\Delta G_{\min} = (-C - \Delta S - Z_{\min}^{(a)} + \sigma^0 - A_S)/2 \quad \text{pour } \rho = 0 \text{ dB}$$

où $Z^{(a)}$ (dBZ) est le facteur de réflectivité "apparent" de la pluie, égal au facteur de réflectivité vrai Z (dBZ), diminué de l'atténuation intégrée A_R (dB) sur le trajet aller-retour

(93)
$$Z^{(a)} = Z - A_R$$

Le seuil minimal de réflectivité, satisfaisant la spécification ΔG_{\min} donnée, porte alors sur la réflectivité apparente $Z^{(a)}$ et non plus sur la réflectivité vraie Z. Le seuil $Z_{\min}^{(a)}$ diffère d'autant plus de Z_{\min} que le taux précipitant R est fort (A_R élevé) mais s'identifie avec Z_{\min} pour R faible (A_R négligeable).

As est l'atténuation intégrée (due à la pluie) moyenne du signal de surface (cf. équ. 10) sur l'ensemble des trajets à incidence γ .

La valeur du rapport de contamination (équ. 49 et 50 dans le cas d'une pluie uniforme d'extension infinie) devient alors :

(94)
$$\rho (dB) = C + 2 \Delta G + \Delta S + Z^{(a)} - \sigma^{\circ} + A_S$$

(95)
$$\rho \ge 0$$
 si $\Delta G \ge \Delta G_{\min}$ et $Z^{(a)} = Z_{\min}^{(a)} \operatorname{donn\acute{e}}$
ou
si $\Delta G = \Delta G_{\min}$ et $Z^{(a)} \ge Z_{\min}^{(a)} \operatorname{donn\acute{e}}$

Ces formulations générales de ΔG_{\min} (équ. 92) et de ρ (équ. 94) s'identifient à celles utilisées jusqu'ici dans le cas de pluie uniforme (termes Z_{\min} et ΔA au lieu de $Z^{(a)}$ et A_S) et la relation avec le taux précipitant reste naturellement liée à la valeur de la réflectivité vraie Z.

Dans la Fig.11, on indique les valeurs de $Z^{(a)}$ en fonction de Z après traversée d'une couche de pluie de hauteur H_p=5 km ou H_p=1 km, à 13.75 GHz (fig. 11) et à 35 GHz. On a également reporté le taux précipitant correspondant à la valeur de Z dans chaque cas. On voit, par exemple, qu'à 14 GHz et pour H_p=5 km, une réflectivité apparente $Z^{(a)}=20$ dBZ correspond à Z₁=20.2 dBZ ou Z₂=50.2 dBZ. A 35 GHz, pour H_p=5 km, $Z^{(a)}=20$ dBZ correspond à Z₁=21.2 dBZ ou Z₂=34.5 dBZ. Lorsque la hauteur de pluie décroît (H_p=1 km), l'intervalle entre Z₁ et Z₂, qui correspond à une même réflectivité apparente, s'élargit car la valeur de Z₂ doit être plus élevée pour que l'augmentation d'atténuation conduise à la même valeur de réflectivité apparente. Le maximum de Z^(a), observé dans chaque cas, est d'autant plus faible et se produit pour Z d'autant plus faible que H_p est grand. Dans la définition du radar de la mission BEST, le seuil de détection à 13.75 GHz (pour une impulsion et avec un rapport signal à bruit de 0 dB) avec H_p=5 km, est prévu pour Z^(a)~8 dBZ correspondant à une gamme de détection sur R allant environ de 0.1 à 70 mm/h.

L'existence d'un seuil $Z_{min}^{(a)}$ sur la réflectivité apparente, nécessaire pour respecter une spécification ΔG_{min} donnée (avec A_S fixée), requiert non seulement que le taux précipitant R ait une valeur minimale R_{min} (R>R_{min}) associée à Z~Z^(a) (A_R faible), mais qu'il soit également inférieur à un maximum R_{max} (R<R_{max}), correspondant à une réflectivité Z_{max} plus forte, pour la même réflectivité apparente Z^(a)=Z_{max}-A_R. La valeur de Z_{max} (ou de R_{max}) dépend évidemment de l'atténuation intégrée A_R. L'intervalle Z_{min}-Z_{max} (ou R_{min}-Z_{max}), correspondant à ΔG_{min} donnée, est d'autant plus grand que A_S est fort (écho de surface atténué). Ainsi, la spécification ΔG_{\min} (ρ =0 dB) sera obtenue pour $Z_{\min}(a)$ associée à des valeurs Z_{\min} (ou R_{\min}) et Z_{\max} (ou R_{\max}), dépendant du modèle de pluie, qui définit l'atténuation de l'écho de surface (AS) vis-à-vis de l'atténuation de l'écho de pluie (AR). Si AS et AR restent voisins ($\Delta A=A_S-A_R$ de l'ordre de quelques dB au plus) comme dans le cas d'une pluie uniforme et d'extension horizontale infinie, seul le seuil sur R_{\min} (avec $R>R_{\min}$) est à considérer en pratique pour garantir une spécification ΔG_{\min} donnée car R_{\max} a une valeur élevée, généralement située au-delà du taux précipitant maximum détectable par le radar. Par contre, lorsque AS devient faible vis-à-vis de AR ($\Delta A=0$), la condition $R_{\min}<R<R_{\max}$ devient nécessaire car R_{\max} peut rapidement entrer dans la gamme de détection possible du radar. Les valeurs de R_{\min} et R_{\max} ne peuvent être prédites à priori sans spécifier la configuration du modèle de pluie choisi, fixant AR et AS en tout point.

L'effet de contamination sera négligeable (ρ >0 dB), pour $\Delta G=\Delta G_{min}$, si $Z_{min}<Z<Z_{max}$ ($R_{min}<R<R_{max}$) et il sera fort (ρ <0 dB) si $Z<Z_{min}$ ($R<R_{min}$) ou $Z>Z_{max}$ ($R>R_{max}$). De la même manière, pour $Z=Z_{min}$ ($R=R_{min}$) ou $Z=Z_{max}$ ($R>R_{max}$), la contamination sera d'autant plus faible (ρ >0 dB) que la spécification ΔG^* , réalisable technologiquement, excède ΔG_{min} et elle sera d'autant plus forte (ρ <0 dB) qu'elle lui est inférieure. La valeur du taux de protection (ρ >0) ou de contamination (ρ <0) est donnée, comme précédemment (équ. 91), pour chaque valeur du couple (θ_0 , z) considérée, par :

(96) $\rho = 2 (\Delta G^* - \Delta G_{\min})$

On voit finalement, d'après (92) que la spécification sur ΔG_{\min} est d'autant plus forte et contraignante que A_S (terme toujours > 0) est faible, c'est-à-dire que l'écho de surface via les L.S. est peu atténué (vis-à-vis de l'écho de pluie dans le lobe principal), le cas limite étant l'écho de surface obtenu en air clair avec A_S=0. Inversement, elle sera d'autant plus faible et moins contraignante que A_S est grand (écho de surface atténué, éventuellement plus que l'écho de pluie si A_S>A_R) avec un taux d'allègement de A_S / 2 (en dB) sur ΔG_{\min} , pour Z_{min}^(a) donné. Ces configurations sont assez extrêmes mais elles sont d'autant plus probables que la pluie n'est pas uniforme aux échelles horizontales d'espace englobant l'ensemble des radiales aux incidences θ_0 et γ considérées. C'est le cas des systèmes convectifs qui possèdent une structure cellulaire variant à l'échelle de quelques kilomètres. C'est également le cas de systèmes de pluie (uniforme ou non) d'extension limitée pouvant aboutir à une réception de l'écho de surface après traversée d'une zone de pluie plus faible que celle observée directement, voire en air clair (écho de surface moins atténué que l'écho de pluie direct, voire non atténué), ou après traversée d'une zone de pluie plus intense que celle observée directement (écho de sol plus atténué que l'écho de pluie direct). De telles

configurations ont d'autant plus de chance de se produire que l'angle d'incidence θ_0 est grand. Notons, par exemple, que dans le cas du stéréoradar avec $\theta_0 = 18^\circ$, l'incidence des échos de surface correspondant à $\gamma \ge 16^\circ$ (voir Figs. 8 et 9) implique un diamètre de la couronne des échos de surface de l'ordre de 300 km (pour h = 500 km) sur laquelle l'uniformité de la pluie est très peu probable.

En raison de la variété des configurations intermédiaires possibles, une étude analytique générale devient inopérante et seules des simulations numériques de cas d'espèce peuvent être envisagées. A titre indicatif, on a considéré ici un cas extrême où l'écho de surface est totalement en air clair (As=0) et où l'écho de pluie direct a lieu dans une couche de pluie uniforme de hauteur H_p=5 km, dans les conditions étudiées auparavant. Dans la Fig. 12, on indique, pour ce cas, les valeurs de $Z_{min}^{(a)}$ et celles de Z_{min} et Z_{max} (avec R_{min} et R_{max} correspondants) associées à une spécification ΔG_{min} qui assure une protection optimale ($\rho \ge 0$ dB) dans tous les cas ($\theta_0 \le 20^\circ$, $z \le 5$ km) contre les effets de contamination par l'écho de surface, à 13.75 et à 35 GHz. Dans la Table 4, on a extrait quelques valeurs caractéristiques de la correspondance entre ΔG_{\min} et $Z_{\min}^{(a)}$, Z_{\min} , Z_{\max} , R_{\min} et R_{\max} . Pour Zmin (ou Rmin), les résultats sont voisins de ceux obtenus précédemment (pluie uniforme, d'extension horizontale infinie avec $H_p=5$ km, voir Fig. 10 et Table 3) car l'atténuation de l'écho de pluie AR est faible, pour les valeurs de R considérées et donc proche de As=0 (on a alors $Z_{min} \approx Z_{min}^{(a)}$). La légère différence (~0.5 à 1 dB) provient d'une part, du fait que la correspondance entre $Z^{(a)}$ et Z est prise pour $H_p=5$ km (cf : Fig. 11), ce qui équivaut à choisir une altitude z=0 pour l'écho de pluie au lieu de z=0.5 km dans le cas précédent, et d'autre part, du fait que ΔG_{\min} optimal est calculé de manière exacte à partir de l'équ. (94) avec A_S=0 et de la valeur de σ° au nadir, dans chaque cas.

Les résultats indiquent bien la diminution de l'intervalle Z_{min} - Z_{max} (ou R_{min} - R_{max}) lorsque la spécification ΔG_{min} décroît, jusqu'à obtenir un intervalle nul pour certaines valeurs de $Z_{min}^{(a)}$ qui seraient requises mais pour lesquelles il n'existe pas de solution en Z ou R (cf. Fig. 11). Dans ce cas, la contamination (avec ρ <0) existe pour toutes les valeurs de Z ou R. Lorsque l'intervalle Z_{min} - Z_{max} (ou R_{min} - R_{max}) existe, pour ΔG_{min} donné, il indique la gamme de valeurs de Z (ou R) assurant une contamination négligeable (ρ >0). En dehors de cette gamme (Z<Z_{min} ou Z>Z_{max}), la contamination est possible (ρ <0) et elle est plus ou moins forte suivant les valeurs de θ_0 et z.

Les spécifications optimales obtenues sont sévères. Il est d'usage de définir, par convention, la gamme de détection du radar à partir des échos détectables, au retour d'une impulsion avec un rapport signal à bruit ≥ 0 dB, au fond d'une couche de pluie uniforme de
5 km d'épaisseur. Notons cependant que la borne supérieure de la gamme de taux précipitants détectables est très sensible aux paramètres du radar, à la loi d'atténuation utilisée et à la référence de rapport signal à bruit retenue; de plus, l'accroissement du nombre d'échantillons indépendants dans la mesure radar peut élargir significativement la gamme de détection sans toutefois réduire les possibles effets de contamination par l'écho de surface. Dans ces conditions, pour couvrir à chaque fréquence une gamme de taux précipitant non contaminée, recouvrant en grande partie la gamme de détection typique du radar on devrait avoir, au moins, $\Delta G_{\min} \approx 43 \text{ dB}$ pour une gamme non contaminée [0.6 - 48 mm/h] à 13.75 GHz (avec $Z_{min}^{(a)} \approx 11 \text{ dBZ}$) et $\Delta G_{min} \approx 38 \text{ dB}$ pour une gamme non contaminée [0.04 -12 mm/h] à 35 GHz (avec $Z_{min}^{(a)} \approx 6$ dBZ). Il convient encore de remarquer, comme précédemment, qu'en utilisant le bénéfice de la diminution de σ^0 avec l'incidence, on obtient une diminution de 5 dB de ΔG_{min} dans le cas du stéréoradar opérant avec $\theta_0 = 18^\circ$, pour couvrir les mêmes intervalles de taux ptécipitant non contaminés, à chaque fréquence, ce qui conduit à retenir $\Delta G_{\min} \approx 38$ dB à 13.75 GHz et ≈ 33 dB à 35 GHz. Cette diminution s'applique aux résultats de la Fig. 12 et de la Table 4. Rappelons qu'il s'agit de spécifications optimales pour un cas extrême puisque l'écho de surface contaminateur, obtenu en air clair (et proche du nadir) a une valeur maximale.

Ces considérations indiquent donc que les effets de non uniformité ou d'extension limitée de la pluie peuvent induire, le cas échéant, de fortes déviations sur les valeurs (optimales) requises sur ΔG_{min} obtenues dans le cas standard (pluie uniforme et d'extension horizontale infinie). Cependant, ces effets peuvent aussi bien aller dans le sens d'une réduction (écho de surface plus atténué que l'écho de pluie) que d'une augmentation (écho de surface moins atténué que l'écho de pluie, voire non atténué) de la contamination du signal pluie par le signal de surface via les L.S. de l'antenne.

II-4-3) Cas des échos de surface "repliés"

Nous n'avons considéré jusqu'ici que les échos de surface directs reçus dans la zone de distance radiale non ambiguë d_1 - d_2 avec $d_1 \le r_0 \le d_2$. On doit cependant envisager la possibilité de recevoir également les échos de surface contaminateurs depuis une distance radiale r'₀ appartenant à la zone ambiguë avec r'₀< d_1 ou r'₀> d_2 . Ces échos apparaîtront à une distance radiale r₀ à déterminer en zone non ambiguë, à cause de l'effet de repliement. Nous analysons ce type de configuration ci-dessous avec les caractéristiques qui leur correspondent du point de vue de la contamination apportée à l'écho de pluie.

a) Conditions d'ambiguité

La zone de distance radiale non ambiguë D est fixée par le choix de la fréquence de répétition f_R des impulsions d'émission avec

(97)
$$D = d_2 - d_1 = c / (2 f_R)$$

où c est la vitesse de la lumière.

Sa localisation dans l'espace le long d'une radiale est en général calculé pour englober, quel que soit l'incidence θ_0 , une zone H formée d'une hauteur de pluie H_p (altitude > 0), augmentée d'une zone d'échos de pluie "miroir" de hauteur H_m (altitudes fictives < 0), obtenus après double réflexion du signal pluie sur la surface (Meneghini et Atlas, 1986). Suivant la valeur de f_R, qui résulte d'autre compromis dans la définition du radar, ceci peut être réalisé à partir de valeurs de d₁ et d₂ fixes, avec D suffisamment grand pour que la condition précédente soit réalisée pour tous les angles θ_0 considérés, ou en asservissant, le cas échéant, les valeurs de d₁ (et d₂) à θ_0 , lors du balayage. Par ailleurs, en opérant depuis l'espace, on a toujours D«h. II est donc souhaitable et généralement possible d'ajuster f_R (donc D) et éventuellement l'origine de la zone non ambiguë d₁, pour que les échos reçus ne recouvrent pas les impulsions d'émission. De plus, ce calcul d'optimisation inclut des marges pour tenir compte d'autres effets tels que la variation d'altitude du satellite, les temps de garde, etc... (Akawa et al., 1988 ; Marzoug, 1989).

Ainsi, les échos directs non ambigus, correspondant à une impulsion émise n sont généralement reçus après l'émission de l'impulsion (n+i) avec typiquement 5<i<15 et correspondant à des échos de (i+1)^{ème} trace. Les échos ambigus d'ordre +N ou -N correspondent respectivement à la réception (simultanée avec les échos directs) des échos repliés de l'impulsion (n-N) en (i+1+N)^{ème} trace (N≥1) ou de l'impulsion (n+N) en (i+1-N)^{ème} trace (1≤N<i).

Une telle configuration est illustrée dans le shéma de la Fig. 13, où l'on a représenté la réception des échos non ambigus (d'une impulsion n) et la réception simultanée d'échos ambigus d'ordre +1 (impulsion n+1) et -1 (impulsion n-1).

b) Effets de contamination

Nous distinguerons deux types d'échos de surface repliés, via les L.S.. Le type I correspond a une ambiguité d'ordre >0, illustré pour N=+1 (impulsion suivante) dans la

Fig. 14a. Le type II correspond à une ambiguité d'ordre <0, illustrée pour N=-1 (impulsion précédente) dans la Fig. 14b.

Soit z_{d1} et z_{d2} les altitudes correspondant aux distances radiales d_1 et d_2 de début et de fin de zone non ambiguë, sur la radiale à incidence θ_0 . La zone non ambiguë couvre les hauteurs de "pluie directe" H_p et de "pluie miroir" H_m si

(98) $D \ge (H_p + H_m) / \cos \theta_0$

Les relations géométriques analogues à (14) et (15) permettent d'écrire :

(99)	$d_1 \cos \theta_0 = h - z_{d1}$	$z_{d1} \ge H_p > 0$
(100)	$d_1 \cos \gamma_{d1} = h$	
(101)	$d_2 \cos\theta_0 = h - z_{d2}$	$z_{d2} < 0$, $ zd_2 \ge H_m$
(102)	$d_2 \cos \gamma_{d2} = h$	

donnant

(103) $\cos \gamma_{d1} = h \cos \theta_0 / (h - z_{d1})$

(104) $\cos \gamma_{d2} = h \cos \theta_0 / (h - z_{d2})$

L'écho de surface contaminateur via les L.S., apparaît à la distance radiale r'₀, associée à l'altitude z' et à l'angle d'incidence γ avec :

(105) $\mathbf{r'}_{\mathbf{O}}\cos\theta_{\mathbf{O}} = \mathbf{h} - \mathbf{z'}$

(106) $r'_{O} \cos \gamma' = h$

(107) $\cos\gamma' = h \cos\theta_0 / (h - z')$

Il apparaîtra par repliement, dans la zone non ambiguë à la distance radiale :

(108) $r_0 = r'_0 + N D$

associée à l'altitude de repliement

(109)
$$z = z' + N D \cos\theta_0 = h (1 - \cos\theta_0 / \cos\gamma') + N D \cos\theta_0$$

où N est l'ordre du repliement.

Ainsi, dans les Fig. 14a et 14b, on voit qu'alors que les échos de surface directs (non repliés) correspondent à des angles d'incidence γ tels que $0 < \gamma < \theta_0$, les échos de surface repliés correspondent à des angles d'incidences γ' vérifiant

(110) $0 < \gamma' < \gamma_{d1} < \theta_0$ (type I, ambiguité d'ordre > 0)

(111) $\gamma' > \gamma_{d2} > \theta_0$ (type II, ambiguité d'ordre < 0)

où γ peut encore s'exprimer, dans les deux cas, par :

(112)
$$\cos\gamma' = h \cos\theta_0 / (h - z + N D \cos\theta_0)$$

pour une ambiguité d'ordre N.

La contamination par les échos de surface ambigus (repliés) peut alors être évaluée par analogie avec le cas des échos non ambigus. La spécification ΔG_{\min} nécessaire (équ. 51) ou le rapport de contamination obtenu (équ. 49) peuvent être calculés, comme auparavant, mais avec les valeurs de γ appropriées pour l'incidence des échos de surface, qui se refèreront maintenant à l'altitude de repliement z donnée par (109) et à l'angle θ_0 considérés.

Dans le cas des échos repliés de type I (ambiguité >0 d'ordre +N, cf. Fig. 14a pour N=1), l'angle γ 'est toujours plus faible que dans le cas des échos non ambigus. Le calcul de ΔG_{\min} , pour θ_0 et z (altitude de repliement) donnés, devra être effectué avec la valeur de σ° correspondante, plus forte sauf pour $\gamma' \sim 0$ (incidence proche du nadir). Les conditions d'apparition des ESIO sont encore données par $z_1 \le z \le z_2$ et celles de l'ESPN par $z > z_2$ mais z_1 est maintenant donné par (109) au lieu de (57) avec $\cos\gamma' = \cos\gamma_1 = (1 + c\tau/4h)^{-1}$, et z_2 reste par définition (equ. 62) tel que $z_2 = z_1 + (c\tau/2) \cos\theta_0$. Les autres termes (c, ΔS , ΔA , Z_{\min}) de ΔG_{\min} ne subissent pas de modification. La spécification optimale sur ΔG_{\min} , obtenue pour l'écho de surface non ambigu proche du nadir, couvre donc le cas de l'écho de surface ambigu de type I (ambiguité d'ordre > 0). Lorsque ces échos existent, ils sont

naturellement, pour θ_0 donné, à des configurations où γ' ($\langle \gamma_{d1} \rangle$) existe, ce qui implique $\gamma_{d1} \geq 0$. L'intervalle angulaire de calcul du gain intégré moyen $G_m(\gamma)$ est maintenant (θ_0 - γ' , $\theta_0 + \gamma'$), centré sur θ_0 et de largeur 2 γ' , généralement plus faible que l'intervalle 2γ correspondant au cas des échos non ambigus (à même θ_0 et même z) et diminuant lorsque l'ordre d'ambiguité croît.

Dans le cas du stéréoradar opérant avec $\theta_0 = 18^\circ$, les échos repliés de type I peuvent apparaitre à toutes les incidences γ entre 0 et γ (avec $\gamma \approx 16^\circ$ à 17.5° pour les échos directs). La possible réduction de 5 dB sur ΔG_{min} , évoquée précédemment, ne s'applique donc plus. Il existe cependant un moyen, simple et généralement possible, de se prémunir contre les échos de surface ambigus de type I. Il suffit de respecter la condition $d_1 < h$ (pour tout θ_0) dans la définition du radar, ce qui a pour effet de supprimer l'existence même de ce type d'échos puisqu'il n'existe alors plus d'intersection possible avec la surface à des distances radiales inférieures à celle de l'origine d_1 de la gamme non ambiguë.

Dans le cas des échos repliés de type II (ambiguité <0 d'ordre -N, cf. Fig. 14b pour N=-1), l'angle γ' est plus grand que dans le cas des échos non ambigus. La détermination de ΔG_{\min} , pour θ_0 et z (altitude de repliement) donnés, bénéficiera donc de la diminution de σ_0 correspondante et l'on aura toujours à faire au cas des ESIO (cos γ' >cos γ_1). Les autres termes C, ΔA , Z_{min} ne subissent pas de modification de principe mais le terme ΔS doit être pris à une valeur $\Delta S_1'$ maximale, croissante avec γ' , que l'on peut approximer (au lieu de 41) par :

(113)
$$\Delta S_1' = h \theta_1^2 \cos\gamma' / (4 c \tau \cos^2 \theta_0)$$

où $\gamma' > \gamma_{d2} > \theta_0$. $\Delta S'_1$ est plus grand que la valeur standard ΔS_1 prise dans le cas des échos de surface direct, d'un facteur multiplicatif $\cos\gamma'/\cos\theta_0$. Ce facteur croît lorsque l'ordre d'ambiguité augmente négativement sans excéder quelques dB (<0) mais se trouve largement compensé par la diminution de σ° . On peut donc encore considérer que la spécification optimale sur ΔG_{min} , obtenue pour l'écho de surface non ambigue proche du nadir, couvre également le cas des échos de surface ambigus de type II (ambiguité d'ordre <0). Cependant, l'intervalle angulaire de calcul du gain intégré moyen dans $G_m(\gamma)$ porte maintenant sur l'intervalle (γ' - θ_0 , γ' + θ_0) de largeur 2 θ_0 , centré sur γ' (Fig. 14 b), qui est d'autant plus grand que θ_0 est grand (incluant les L.S. d'autant plus éloignés de l'axe) et que l'ordre d'ambiguité est négativement élevé, pour une altitude de repliement z considérée.

On remarquera finalement que la condition d'existence de l'écho de surface non ambigu via les L.S., pour les géométries considérées dans les Figs. 14a et 14b est maintenant $\gamma_{d1} < \gamma < \gamma_{d2}$ et non plus $0 < \gamma < \theta_0$. Ceci est dû à l'inclusion de la zone d'échos de pluie "miroir" (hauteur H_m en altitudes négatives) dans la zone non ambigue. Ceci n'enlève aucune généralité aux résultats présentés auparavant pour le calcul de contamination de l'écho de pluie direct aux altitudes positives (sur la hauteur H_p) susceptibles d'apparaître pour $0 < \gamma \le \theta_0$, suivant les valeurs de θ_0 et z considérées ; pour $\theta_0 < \gamma < \gamma_{d2}$, c'est la réception de l'écho de pluie "miroir" qui peut être contaminée.

II-5 Etude approximative de ΔG pour un modèle d'antenne réelle

Il nous a semblé utile de caractériser les spécifications ΔG que l'on peut attendre dans le cas d'une antenne réelle, à partir de la valeur du gain intégré moyen $G_m(\gamma)$ intervenant dans sa définition (cf. : équ. 58). Nous nous limitons au cas d'une antenne pour laquelle les maxima des L.S. décroissent en fonction de l'angle polaire θ , à raison de N dB par octave (N>0). La fonction de gain G(θ), suivant la ligne de ces maxima est alors proportionnelle à θ^{-k} (avec k positif) :

(114)
$$\mathbf{k} = \mathbf{N} / (10 \log 2)$$

Si G₁ représente le pic du premier lobe secondaire situé à A(dB) sous le pic G₀ du lobe principal, on a

(115)
$$G_0/G_1 = a \text{ avec } a = 10^{A/10} \text{ (A en dB > 0)}$$

Dans ces conditions, pour $\theta > \theta_{L1}$, on a :

(116)
$$G^2 = G_1^2 (\theta / \theta_{L1})^{-2k} = (G_0 / a)^2 (\theta / \theta_{L1})^{-2k}$$

où θ_{L1} est l'angle polaire correspondant au pic du premier L.S. (généralement de l'ordre de $2\theta_1$, si θ_1 est l'ouverture angulaire du lobe principal à 3 dB).

Nous considèrerons un majorant de $G_m(\gamma)$, défini initialement par (59) en faisant porter l'intégrale du gain sur la ligne de décroissance des maxima des L.S. On conservera la même notation $G_m(\gamma)$ pour ce majorant et on se limitera au cas des échos de surface non repliés $(0<\gamma<\theta_0)$, en posant :

(117)
$$m = \gamma / \theta_0$$
 avec $0 < m < 1$

Le développement du calcul de l'intégrale de $G_m(\gamma)$ fournit alors :

(118)
$$G_0 / G_m = a (\theta_0 / \theta_{L1})^k [2m (2k-1)]^{1/2} [(1-m)^{1-2k} - (1+m)^{1-2k})]^{-1/2}$$

La valeur de ΔG correspondante est, rappelons le, donnée par :

(119)
$$\Delta G = 10 \log (G_0 / G_m)$$

Nous évaluons ΔG ci-dessous, pour trois configurations particulières de l'angle γ (ou du paramètre m).

Le premier cas, qui correspond à γ -0 (ou m-0), est celui des ESPN. Il est caractérisé par un intervalle d'intégration angulaire 2γ très faible, centré sur θ_0 . On obtient :

(120)
$$G_0 / G_m \approx a (\theta_0 / \theta_{L1})^k$$

où l'on voit que G_m représente, à la limite, la valeur du gain $G(\theta)$ pour $\theta = \theta_0$ le long de la ligne des maxima des L.S. La spécification correspondante est :

(121)
$$\Delta G (dB) \approx A + N \log(\theta_0 / \theta_{L1}) / \log 2$$

qui peut ainsi être étudiée en fonction des paramètres du diagramme de rayonnement: A, N, θ_{L1} et θ_0 . Par exemple, pour A=30 dB et N= 6 dB/octave, on aurait $\Delta G \ge 40$ dB pour $\theta_0/\theta_{L1} \ge 3.2$ ou $\theta_0/\theta_1 \ge 6.4$. Avec $\theta_1 = 0.18^\circ$, la condition est satisfaite pour $\theta_0 \ge 1.16^\circ$.

Le deuxième cas correspond à $\gamma \approx \theta_0$, que nous choisirons en fait à la valeur $\gamma = \theta_0 - \theta_{L1}$ (ou m=1- θ_{L1}/θ_0). Il est représentatif des ESIO, à basse altitude, avec un intervalle 2γ (centré sur θ_0) grand, voisin de $2\theta_0$. On obtient

(122)
$$G_0/G_m \approx a [2(2k-1)]^{1/2} (\theta_0/\theta_{L1})^{1/2}$$

La spécification correspondante est :

(123)
$$\Delta G (dB) \approx A + 5 \log (\theta_0 / \theta_{L1}) + 5 \log [2N/(5 \log 2) - 2]$$

qui peut être étudiée en fonction de A, N, θ_{L1} et θ_0 , dans le cas des ESIO avec γ voisin de θ_0 . Par exemple, pour A=30 dB et N=6 dB/octave, on aurait $\Delta G \ge 40$ dB pour $\theta_0/\theta_{L1} \ge$

16.6 ou $\theta_0/\theta_1 \ge 33.2$. Avec $\theta_1 = 0.18^\circ$, la condition est satisfaite pour $\theta_0 \ge 6^\circ$.

Enfin, le troisième cas est celui des ESIO avec $0 < \gamma < \theta_0$. Il est représentatif des ESIO, à haute altitude, avec un intervalle 2γ (centré sur θ_0) de valeur intermédiaire entre 0 et θ_0 . En choisissant $\gamma = \theta_0/2$ (ou m=1/2), on obtient :

(124) $G_0/G_m \approx a (\theta_0/\theta_{L,1})^k [2(2k-1)]^{1/2} 2^{-k} [3^{2k-1}/(3^{2k-1}-1)]^{1/2}$

La spécification correspondante est

(125)
$$\Delta G (dB) \approx A + N \log(\theta_0/\theta_{L1})/\log 2 + 5 \log[\{2N/(5\log 2) - 1\} / \{3^{N/(5\log 2) - 1} - 1\}] + N [(1 - \log 2) / \log 2] - 5$$

qui peut être étudiée en fonction de A, N, θ_{L1} et θ_0 , dans le cas des ESIO avec $0 < \gamma < \theta_0$. Par exemple, pour A =30 dB et N=6 dB/ octave, on aurait $\Delta G \ge 40$ dB pour $\theta_0/\theta_{L1} \ge 7.5$ ou $\theta_0/\theta_1 \ge 15$. Avec $\theta_1 = 0.18^\circ$, la condition est satisfaite pour $\theta_0 \ge 2.7^\circ$.

Les valeurs de ΔG obtenues sont des approximations, mais permettent au moins de fixer l'ordre de grandeur que l'on peut envisager d'atteindre dans les conditions étudiées, pour un diagramme d'antenne réelle idéalisé.

III - CONCLUSIONS

On présente tout d'abord un survol de l'étude rappelant les résultats essentiels puis une synthèse des éléments obtenus pour les deux configurations de radar spatial considérées.

III-1 Revue de l'étude

La formulation analytique des effets de contamination possibles du signal pluie par l'écho de surface, via les L.S. de l'antenne, pour un radar spatial à impulsion (Figs. 1 et 2), nous a conduit a définir un rapport de contamination ρ avec $\rho \ge 0$ dB correspondant à une contamination inférieure ou égale à 50% dans la puissance totale de l'écho (pluie + surface) reçu. Ceci a permis de définir un spécification ΔG_{min} portant sur le rapport entre le gain maximum (pic du lobe principal) et un gain moyen (dans le domaine des L.S.) intégré sur un intervalle 2γ d'angle polaire (Fig. 3 et Table 1), avec ΔG_{min} associé à $\rho = 0$ dB. Toute configuration du signal pluie, définie par l'incidence θ_0 du lobe principal et l'altitude z de l'écho de pluie, determine l'incidence $\gamma(\theta_0, z)$ de l'écho de surface contaminateur (Figs. 4 et 5) lorsque ce dernier existe proche du nadir ($\gamma < \gamma_1$, cas ESPN) ou à incidence oblique ($\gamma_1 \le \gamma < \theta_0$, cas ESIO) et correspond à une valeur spécifique de ΔG_{min} .

En utilisant les expressions analytiques obtenues, des valeurs caractéristiques de ΔG_{min} ont été calculées avec des paramètres de définition appropriés du radar spatial (frequence f, ouverture à 3 dB du lobe principal θ_1), un modèle de coefficient de rétrodiffusion $\sigma^0(\gamma, f)$ typique de la surface de l'océan, et un modèle des paramètres (Fig. 6 et Table 2) et de la structure spatiale de la pluie.

Dans la mesure où ΔG_{\min} dépend des valeurs relatives des atténuations totales de l'écho de pluie (A_R) et de l'écho de surface (A_S), les résultats ont été tout d'abord formulés dans un *cas standard associé à une couche de pluie uniforme (taux R) de hauteur H_p et d'extension horizontale infinie*. Ceci a conduit à définir un seuil de réflectivité Z_{min} (ou de taux précipitant R_{min}) au dessus duquel la spécification est satisfaite (Figs. 8 et 9) avec $\rho \ge 0$ dB, pour chaque configuration (θ_0 , z). Une *spécification optimale* (avec les valeurs associées de Z_{min} et R_{min}) a également été établie comme minimisant la contamination pour tous les ensembles (θ_0 , z) avec $0 < \theta_0 < 20^\circ$ et z ≤ 5 km (Fig. 10 et Table 3); cette spécification correspond à la protection contre l'écho de surface le plus puissant possible proche du nadir (cas ESPN). La façon dont ΔG_{\min} et sa valeur optimale peuvent varier lorsqu'on modifie les paramètres de définition du radar ou lorsqu'on révise certaines hypothèses du calcul a été examinée. L'effet le plus important vient de la contamination possible par des échos de surface en air clair (écho de surface non atténué par la pluie). Ceci conduit à remplacer le seuil Z_{min} sur la reflectivité vraie par un seuil Z_{min}^(a) sur la reflectivité apparente (Fig. 11) et implique que Z soit dans un intervalle de reflectivité [Z_{min} - Z_{max}] pour minimiser les effets de contamination. L'intervalle non contaminé [R_{min} - R_{max}] correspondant pour le taux précipitant, associé à la spécification ΔG_{\min} , dépend de la structure spatiale de la pluie. Des résultats ont été présentés avec l'écho de surface en air clair et l'échopde pluie au fond d'une couche de pluie uniforme de hauteur H_p = 5 km (Fig. 12 et Table 4).

Tous les résultats mentionnés pour ΔG_{\min} s'appliquent au cas des échos de pluie directs (non ambigus). Ils sont également applicables (Figs. 13 et 14) au cas des échos de pluie repliés (ambigus) à l'exception des échos repliés avec ambiguité d'ordre positif dans le cas de la configuration stéréoradar pour laquelle peut apparaitre un sous dimensionnement de ΔG_{\min} . Cependant, l'occurrence de ce type d'échos repliés depuis une distance radiale inférieure à celle de l'origine d₁ de la zone de distance non ambiguë, peut être supprimée en respectant la *condition* d₁ < h (altitude du satellite) dans la définition du radar.

La Table 5 présente une synthèse des valeurs de spécifications optimales requises dans le cas standard (pluie uniforme d'extension horizontale infinie). Les résultats correspondants pour le seuil R_{min} au dessus duquel les effets de contamination deviennent négligeables ($\rho \ge$ 0 dB) sont indiquées pour deux configurations : i) dans la partie supérieure, pour la configuration "tous θ_0 " ($0 < \theta_0 < 20^\circ$) et $z \le 5$ km associable à un radar spatial avec balayage transverse dans le plan perpendiculaire à la trace subsatellitaire, ii) dans la partie inférieure, pour la configuration $\theta_0 = 18^\circ$ et $z \le 5$ km associable à un stéréoradar. Les résultats relatifs à la fréquence 24 GHz ont été ajoutés à ceux obtenus dans l'étude à 14 et à 35 GHz.

Trois effets, dont les causes physiques ont été analysées dans le texte, émergent de l'analyse des résultats de la **Table 5** : i) la décroissance de ΔG_{\min} lorsque le seuil R_{\min} croit, ii) la décroissance de ΔG_{\min} avec la fréquence, iii) l'abaissement de ΔG_{\min} dans le cas du stéréoradar par rapport au cas "tous θ_0 ". On doit ajouter qu'une légère diminution de ΔG_{\min} peut également être obtenue dans, tous les cas, en augmentant l'ouverture à 3 dB du lobe principal mais au détriment des autres performances du radar. Par ailleurs, ΔG_{\min} est indépendant de la durée d'impulsion. On observe que, pour R_{\min} fixé, même dans le cas standard idéalisé, la spécification ΔG_{\min} apparait difficile à respecter pour le cas "tous θ_0 " et à basse fréquence, si l'on considère que $\Delta G_{\min} \approx 35$ dB constitue une valeur technologique probablement assez difficile à dépasser. La configuration "stéréoradar" est plus favorable de ce point de vue, d'autant plus que la spécification portant sur un large intervalle d'integration angulaire 2γ (dans le domaine des L.S.) est probablement plus facile à atteindre. Il est cependant évident que la sélection fréquence et configuration de balayage pour le radar résulte également des autres exigences dans les performances (gamme de détection, résolution transverse, algorithmes applicables pour la reconstitution du taux précipitant, etc...).

Une évaluation approximative des spécifications que l'on peut espérer atteindre dans le cas d'une antenne réelle, avec décroissance continue des pics de gain des L.S., a été effectuée (§ II-5).

Dans le cas non standard (structure de pluie non uniforme) qui conduit à définir (dans la situation la plus défavorable avec l'écho de surface en air clair) un intervalle non contaminé $[Z_{min} - Z_{max}]$ correspondent à une spécification ΔG_{min} avec un seuil $Z_{min}^{(a)}$ sur la reflectivité apparente, il n'est pas possible d'associer un intervalle non contaminé unique $[R_{min} - R_{max}]$ sur le taux précipitant, puisque $Z_{min}^{(a)}$ dépend de la structure de la pluie. Cependant, ile souhaitable que l'intervalle [Rmin - Rmax] soit le plus voisin possible de la gamme de détection du radar. Cette gamme de détection est usuellement définie avec une structure de pluie conventionnelle, correspondant par exemple à l'écho de pluie au fond d'une couche uniforme de hauteur 5 km, au retour d'une impulsion avec un rapport signal sur bruit de 0 dB. Avec cette définition et pour les valeurs utilisées pour les paramètres de définition du radar, on obtient des gammes non contaminées ($\rho \ge 0$ dB) valant [0.6 - 48 mm/h] à 14 GHz, [0.1 - 25 mm/h] à 24 GHz et [0.04 - 12 mm/h] à 35 GHz qui recouvrent assez bien les gammes de détection typiques prévisibles du radar, à condition d'adopter des valeurs de valeurs de spécification maximale $\Delta G_{min} \approx 43 \text{ dB}$ à 14 GHz, 41 dB à 24 GHz et 38 dB à 25 GHz, pour la configuration "tous θ_0 ". Ces valeurs sont diminuées de 5 dB pour la configuration "stéréoradar", mettant à nouveau en évidence l'avantage de cette dernière technique dans la réduction des effets de contamination. Ainsi, $\Delta G_{min} \approx 38 \text{ dB} \text{ à } 14 \text{ GHz}$, \approx 36 dB à 24 GHz et \approx 33 dB à 35 GHz constituent des valeurs de spécifications maximales adéquates pour le stéréoradar. Dans la Table 5, Ces valeurs maximales de ΔG_{\min} , associées à la protection contre l'écho de surface contaminateur en air clair, sont soulignées dans chaque cas.

III-2 Synthèse pour deux configurations typiques de radar spatial

Les éléments de synthèse présentés s'appliquent au cas des échos de surface directs (non ambigus) ou repliés de type II (ambigus d'ordre négatif). On admet que les échos repliés de

40

type I (ambigus d'ordre positif) peuvent être éliminés par le choix adéquat de l'origine de zone de distance non ambiguë (cf : § II-4-3-b).

III-2-1) Radar "simple faisceau" à balayage transverse

Dans le cas d'un radar monofaisceau à balayage transverse, tel que ceux prévus dans les missions TRMM et BEST (option nominale) par exemple, l'étude présentée est directement applicable en considérant que l'incidence θ_0 du lobe principal dans le plan perpendiculaire à la trace varie entre 0 et θ_{max} pour un secteur de balayage ($-\theta_{max}$, $+\theta_{max}$) qui définit la fauchée de l'instrument. Il n'y a donc pas lieu de revenir sur les résultats acquis dans cette étude avec les spécifications du radar de BEST (cf. §II-2-1).

A 13.75 GHz (option nominale), une spécification optimale de $\Delta G_{\min} \approx 43$ dB, dans le cas standard (pluie uniforme, d'extension horizontale infinie), apparaît nécessaire pour être protégé de forts effets de contamination au-dessus de R ≈ 0.5 mm/h. Dans le cas le plus défavorable, avec l'écho de sol en air clair et proche du nadir (ESPN), une telle spécification assure également une contamination négligeable ou faible dans la gamme de détection prévue pour le radar, au fond d'une couche de pluie de hauteur H_p = 5 km. Il est possible de retenir une valeur plus faible, typiquement $\Delta G_{\min} \approx 41$ dB à 24 GHz ou 38 dB à 35 GHz (option 1 du radar de BEST), avec une transposition appropriée des performances (cf : Table 5).

Pour des angles de balayage $\theta_0 < 6^\circ$ (fauchée nominale de 100 km de large), les effets de contamination possibles restent confinés à des altitudes $z \le 2.5$ km (cf : Fig. 4). Avec un angle d'incidence atteignant 17° (fauchée optionnelle de 300 km de large), ils pourraient apparaître potentiellement partout entre 0 et environ 20 km d'altitude.

La spécification demandée est d'autant plus difficile à respecter que le gain moyen requis sur les L.S. concerne un intervalle angulaire 2γ faible (visées proches du nadir) et pour les altitudes des plus proches du sol. Lorsque θ_0 croît, les effets les plus importants seront concentrés à des altitudes croissantes, voisines de celles correspondant à l'ESPN (cf : Fig. 4), atteignant z=5 km pour $\theta_0 \sim 8^\circ$.

III-2-2) Radar à double faisceau ou "stéréoradar"

Dans le cas du stéréoradar (option 2 du radar de BEST), le radar opère avec un faisceau pointé vers l'avant de la plateforme et l'autre pointé vers l'arrière, à une incidence de l'ordre de 18° par rapport au nadir pour chacun d'eux. On peut également envisager un balayage transverse (augmentant l'incidence des faisceaux), mais nous nous limiterons au cas où les deux faisceaux sont dans le plan vertical contenant l'axe satellite-nadir, sans perte de généralité des conclusions.

Par rapport au cas précédent, le principal changement est que l'incidence des échos de surface est alors limité à une valeur minimale γ_{min} allant de 16° à 17.8° suivant l'altitude z variant entre 5 à 0.5 km. Dans l'évaluation de ΔG_{min} optimal (se référant auparavant à la valeur de σ° au nadir), on bénéficie donc de la réduction de σ° avec l'incidence entrainant un allègement de la spécification d'environ 5 dB.

A 13.75 GHz, on peut envisager de retenir $\Delta G_{min} \approx 38$ dB (au lieu de 43 dB) pour être protégé des effets de contamination au-dessus de R ≈ 0.5 mm/h, dans le cas d'une couche de pluie uniforme d'extension horizontale infinie. Les résultats de la Table 3 ou de la Figure 10 sont alors applicables avec une réduction de 5 dB sur ΔG_{min} . Par ailleurs, la gamme d'altitude contaminée s'étend alors de 0 à 30 km environ (cf : Fig. 4). Cependant, elle ne concerne pas l'ESPN, mais uniquement les ESIO jusqu'à 5 km d'altitude (et même plus haut), valeur retenue pour la hauteur de couche de pluie. Il n'y a donc pas lieu de craindre non plus une contamination par l'écho de surface en air clair au nadir mais uniquement pour des incidences de l'ordre de 16° à 18°, ce qui conduit à utiliser les résultats de la Fig. 12 ou de la Table 4, mais avec une diminution de 5 dB sur ΔG_{min} . Une valeur $\Delta G_{min} \approx 38$ dB garantit donc également une contamination negligeable ou faible par l'écho de surface en air clair dans la gamme de détection du radar au fond d'une couche de pluie de hauteur H_p = 5 km..

Les mêmes considérations conduisent à retenir $\Delta G_{\min} \approx 36 \text{ dB}$ (au lieu de 41 dB) à 24 GHz ou $\approx 33 \text{ dB}$ (au lieu de 38 dB) à 35 GHz.

Les spécifications sont donc moins sévères dans le cas du stéréoradar que dans le cas du radar à balayage transverse perpendiculaire. Elles sont d'autre part associées à des intervalles angulaire 2γ , pour le calcul du gain moyen des L.S., toujours importants (cf : Fig. 5 avec $\gamma \approx 17^{\circ}$) et sont, par conséquent, probablement plus faciles à réaliser.

Il reste à examiner l'impact possible des effets de contamination sur l'analyse stéréoradar. La technique opérant avec une incidence elevée ($\theta_0 = 18^\circ$) impliquant $\gamma \ge 16^\circ$, les cas où l'écho de surface a lieu en air clair n'ont probablement rien d'exceptionnel si l'on considère que le diamètre de la couronne des échos de surface est alors d'au moins 300 km. Les effets de contamination sont attendus pour R < R_{min} ou R > R_{max}. On peut donc envisager de possibles contaminations aux taux précipitants faibles ou élevés.

Tout d'abord, pour reconstituer le champ d'atténuation spécifique bidimensionnel dans le plan des deux faisceaux, l'algorithme de traitement des données nécessite l'intégration d'une équation différentielle à partir d'un "contour de bord du système" précipitant ou l'on peut considérer que l'atténuation est négligeable, typiquement 0.1 dB/km (Testud et Amayenc, 1988). Ceci correspond à R≈ 3 mm/h pour 13.75 GHz, à R≈ 0.9 mm/h pour 24 GHz et à R≈ 0.4 mm/h pour 35 GHz. Ces valeurs excèdant toutes les valeurs de R_{min} associées dans chaque cas aux spécifications optimales extrèmes indiquées auparavant, sont dans l'intervalle non contaminé. Les effets de contamination n'amènent donc pas de distorsion sur la détermination du contour du système à faible taux précipitant.

Par contre, dans les régions de forte précipitation correspondant à des cellules de pluie intense, qui constituent par essence le terrain privilégié d'analyse de l'algorithme stéréoradar, la contamination par l'écho de surface peut être importante dès que $R > R_{max}$ dans le cas où l'écho de surface revient depuis une aire située majoritairement en air clair. Il est alors probable que des effets de contamination apparaitront pour des taux de pluie proches de la borne supérieure de la gamme de detection. L'analyse stéréoradar peut donc être perturbée au coeur des cellules de pluie, et ceci d'autant plus que le taux précipitant excède les valeurs de R_{max} et/ou que l'on opère à une fréquence élevée.

On doit finalement noter que tous les résultats présentés doivent être considérés comme relativement schématiques. Ils sont sans doute applicables, sans modifications essentielles aux cas de pluie stratiformes étendues (correspondant généralement à des taux précipitant R< 10 mm/h) même en présence d'un gradient vertical du taux précipitant. Il convient de les nuancer dans le cas de pluies convectives à caractère cellulaire (correspondant généralement à R> 10 mm/h) car on ne peut alors en toute rigueur retenir que la relation entre la valeur du seuil $Z_{min}^{(a)}$ de reflectivité apparente et la valeur de la spécification ΔG_{min} associée. La détermination de conditions sur les valeurs de reflectivité Z (ou de taux précipitant R) correspondant à $Z_{min}^{(a)}$ dépend en effet de la structure spatiale du modèle de pluie qui détermine les atténuations intégrées sur le trajet, pour l'écho de pluie comme pour l'écho de surface, intervenant dans le calcul de ΔG_{min} . Pour aller plus loin dans la quantification précise des valeurs de taux de contamination, il est envisageable d'appliquer le formalisme développé dans la présente étude à des simulations numériques assez lourdes en utilisant : i) des gabarits de diagramme de gain pour des types d'antenne candidate satisfaisant les autres spécifications générales requises pour l'instrument, afin de déterminer la fonction de gain

 $G_m(\gamma)$ dans toutes les configurations nécessaires, ii) un large choix de paramètres de définition du radar, iii) des modèles de structure de pluie fixant, dans chaque cas, la correspondance entre la reflectivité apparente $Z^{(a)}$ et la reflectivité vraie Z (ou le taux précipitant R) en tout point de l'espace.

IV - REFERENCES

Atlas D. and Ulbrich C.W., 1974 : The Physical Basis For Attenuation-Rainfall Relationships And The Measurement of Rainfall Parameters By Combined Attenuation and Radar Methods, J. Rech. Atmos., 8, 275-298

Awaka J., Kozu T., Okamoto K., 1988 : A feasability study of rain radar for the tropical rainfall measuring mission, 2. Determination of basic system parameters, J. of the Communications Research Laboratory, 35(145), 111-133.

BEST (Bilan Energétique du système tropical), 1988 : Objectifs scientifiques et définition préliminaire d'une mission spatiale dans le cadre des programmes GEWEX et Géosphère-Biosphère, Document de Synthèse, Eds. CNES, Toulouse, Oct. 1988, 58 pp.

Doviak R.J. and Zrnic D.S., 1984 : Doppler Radar and Weather Observations, Academic Press, New York, 458 pp.

Fellous J.L., Ratier A., Orgeret M., Karouche N., Chalon G., 1989 : BEST - towards a GEWEX dedicated low inclination mission, in Proceedings of XXXXth Congress of International Astronautical Federation (I.A.F.), Malaga (Espagne), 9-13 Oct. 1989, (in press)

Goldhirsh J. and Walsh E.J., 1982 : Rain measurements from space using a modified seasat-type radar altimeter. IEEE trans. Ant. Prop., AP-30 (4). 726-733.

Manabe T. and Ihara T., 1988 : A feasability study of rain radar for the tropical rainfall measuring mission, 5. Effects of surface clutter on rain measurements from satellite, J. of the Communications Research Laboratory, 35(145), 163-181.

Marshall J.S. and Palmer W.M.K., 1948 : The Distribution of Raindrops With Size, J. Meteor., 5, 165-166.

Marzoug M., 1989 : Etude d'un radar spatial pour la mesure des précipitations - Application au projet B.E.S.T., Thèse de l'Université Paris 7, 5 septembre 1989, 275 pp

Masuko H., Okamoto K., Shimada M., Niwa S., 1986 : Measurement of Microwave Backscattering Signature of the Ocean Surface Using X Band and K_a Band Airborne Scatterometers, J. Geophys. Res., 91 (C11), 13065-13083.

Meneghini R. and Atlas D. 1986 : Simultaneous Ocean Cross Section and Rainfall Measurements from Space with a Nadir-Looking Radar, J. Atmos. Ocean. Technol., 3 (3), 400-413.

Moore R.K., 1975 : Radar sensing of the ocean, I.E.E.E. J. Oceanic Eng., OE (2), 84-113

Moore R.K. and Fung A.K., 1979 : Radar determination of winds at sea, Proc. IEEE, 67(11), 1504-1521.

Olsen R.L., Rogers D.V., Hodge D.B., 1978 : The aR^b Relation in the calculation of Rain Attenuation, IEEE trans. Antennas Propag., AP-26 (2), 318-329.

Simpson J., Adler R.F., North G.R., 1988 : A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Am. Meteor. Soc., 69, 278-295.

Testud J. and Amayenc P., 1989 : Stereoradar Meteorology: A Promising Technique to Observe Precipitation from a Mobile Platform, J. Atm. Ocean. Technol., 6(1), 89-108.

Ulaby F.T., Moore R.K., Fung A.K., 1981 : Microwave Remote Sensing: Active and Passive, Tome I, Addison-Wisley publishing Company.

Ulbrich C.W. and D. Atlas, 1978 : The Rain Parameter Diagram: Methods and Applications, J. Geophys. Res., 83 (C3), 1319-1325.

Ulbrich C.W., 1983 : Natural Variation in the Analytical Form of the Raindrop Size Distribution, J. Clim. Appl. Meteor., 22, 1764-1775.

Valenzuela G.R., 1978 : Theories for the interaction of electromagnetic and oceanic waves - a review. Boundary-Layer Meteor., 13, 61-85.

Wexler R. and Atlas D., 1963 : Radio reflectivity and attenuation of rain, J. Appl. Meteor., 2, 276-280.

θ ₀ (°)			z (km)	m)			
	0.5	1	2	3	4	5	
1	-	-	-	•	•	•	
2	•	•	•	-	•	-	
3	1.56° (1.44-4.56)	-	•	•	•	•	
4	3.08 (0.92-7.08)	1.80 (2.20-5.80)	-	-	•	-	
5	4.30 (0.70-9.30)	3.46 (1.54-8.46)	0Ø (3.72-6.28)	•	-	•	
6	5.43 (0.57-11.43)	4.79 (1.21-10.79)	3.14 (2.86-9.14)	-	•	•	
7	6.51 (0.49-13.51)	5.99 (1.01-12.99)	4.78 (2.22-11.78)	3.13 (3.87-10.13)	-	•	
8	7.58 (0.42-15.58)	7.14 (0.86-15.14)	6.16 (1.84-14.16)	4.99 (3.01-12.99)	•	-	
9	8.63 (0.37-17.63)	8.24 (0.76-17.24)	7.41 (1.59-16.41)	6.48 (2.52-15.48)	5.38 (3.62-14.38)	4.00 (5.00-13.00)	
10	9.67 (0.33-19.67)	9.33 (0.67-19.33)	8.60 (1.40-18.60)	7.81 (2.19-17.81)	6.43 (3.57-16.43)	5.92 (4.08-15.92)	
15	14.78 * (0.27-29.73)	14.56 (0.44-29.56)	14.12 0.88-29.12)	13.66 (1.34-28.66)	13.18 (1.82-28.18)	12.69 (2.31-27.69)	
20	19.84 * (0.27-39.73)	19.68 (0.32-39.68)	19.36 (0.64-39.36)	19.03 (0.97-39.03)	18.70 (1.30-38.70)	18.36 (1.64-38.36)	

TABLE 1 : Illustration de quelques valeurs (cf : Fig. 5) de l'incidence γ (en degrés) des échos de surface et des bornes correspondantes de l'intervalle angulaire d'intégration ($\theta_0 - \gamma$, $\theta_0 + \gamma$), centré sur θ_0 , intervenant dans la définition du gain moyen $G_m(\gamma)$, pour différentes valeurs de l'incidence θ_0 du lobe principal et de l'altitude z de l'écho de pluie. Note : (*) intervalle limité à (θ_0 , $2\theta_0 - \theta_c$) avec $\theta_c = 0.27^\circ$; (^ø) intervalle limité à ($\theta_0 - \gamma_1$, $\theta_0 + \gamma_1$) avec $\gamma_1 = 1.28^\circ$ associé au cas des ESPN (voir texte).

FREQUENCE (GHz)	$\mathbf{Z} = \boldsymbol{\alpha}$	Rβ	K =	a R b
13.75	α = 259	β = 1.54	a = 0.0275	b = 1.189
35	$\alpha = 350$ (R < 5)	β = 1.32	a = 0.266	b = 1
	$\alpha = 350^{\circ}$ (5 < R < 20)	$\beta = 1.15$		
	$\alpha = 780$ (R > 20)	β = 0.95		

TABLE 2 : Relations Z (mm⁶ m ⁻³) - R (mm h ⁻¹) et K (dB km ⁻¹) - R (mm h ⁻¹) utilisées à 13.75 et 35 GHz.

ΔG _{min}	13.7	75 GHz	35 (GHz
(dB)	Z _{min}	R _{min}	Z _{min}	R _{min}
	(dBZ)	(dBZ)	(dBZ)	(dBZ)
28	49	41	25.5	1
30	45	23	21.5	0.5
35	35	5	12	0.1
38	29	2	6	0.03
41	24	1	0	0.01
43	19.5	0.5	-5	0.005
48	9	0.1	-15	0.001

TABLE 3: Spécifications optimales ΔG_{\min} et valeurs correspondantes de Z_{\min} et R_{\min} , requises pour obtenir $\rho \ge 0$ dB dans tous les cas ($z \le 5$ km, $\theta_0 \le 20^\circ$), à 13.75 et 35 GHz. Les résultats correspondent au cas de la Fig. 10 pour une pluie uniforme d'extension horizontale infinie. Dans le cas d'un stéréoradar avec $\theta_0 = 18^\circ$, la table doit être lue en diminuant ΔG_{\min} d'environ 5 dB.

1. Sec. 1.

17

4

∆G _{min} (dB)	13.75 GHz				<u></u>	3	5 GHz			
	(a)			(a)						
	Z _{min}	Z _{min}	Z _{max}	R _{min}	R _{max}	Z _{min}	Z _{min}	Z _{max}	R _{min}	R _{max}
	(dBZ)	(dBZ)	(dBZ)	(mm/h)	(mm/h)	(dBZ)	(dBZ)	(dBZ)	(mm/h)	(mm/h)
·										
28	50.7	-	-	-	-	26.4	-	-	-	-
30	46.7	-	-	-	-	22.4	25	33.5	0.92	4.1
35	36.7	-	-	-	-	12.4	13	37.5	0.12	9
38	30.7	31	47	2.8	30.5	6.4	6.5	39	0.037	12.1
41	24.7	25	49	1.2	41.2	0.4	0.4	40	0.013	14.8
43	20.7	21	50	0.6	47.8	-3.6	-3.6	40.5	0.0063	16.4
48	10.7	11	52	0.15	64.5	-13.6	-13.6	42.5	0.0011	26.9

TABLE 4 : Spécifications optimales ΔG_{\min} et valeurs correspondantes de la réflectivité apparente $Z^{(a)}_{\min}$ et des intervalles ($Z_{\min} - Z_{\max}$) et ($R_{\min} - R_{\max}$), nécessaires pour obtenir $\rho \ge 0$ dB dans tous les cas ($z \le 5$ km, $\theta_0 \le 20^\circ$), à 13.75 et 35 GHz. L'absence de valeur Z (ou R) traduit l'impossibilité d'une solution pour la valeur requise de $Z^{(a)}_{\min}$. Les résultats correspondent au cas de la Fig. 12 avec l'écho de surface en air clair et l'écho de pluie dans une couche uniforme d'extension horizontale infinie et de hauteur H_p = 5 km. Dans le cas d'un stéréoradar avec $\theta_0 = 18^\circ$, la table doit être lue en diminuant la valeur de ΔG_{\min} d'environ 5 dB.

R _{min} (mm/h)		ΔG _{min} (dB)	CONDITIONS incidence lobe principal θ_0	
	13.75 GHz	24 GHz	35 GHz	
0.05	51	44	38	
0.1	48	<u>41</u>	35	" tous θ ₀ "
				(0 < θ ₀ ≤20°)
0.5	43	36	30	
1	41	34	28	et
2	38	31	25	z ≤ 3 km
0.05	46	39	33	
0.1	43	<u>36</u>	30	" stereoradar "
0.5	38	31	25	$(\theta_0 = 18^\circ)$
1	36	28	22	et
2	33	26	20	z ≤ 5 km

TABLE 5 : Synthèse des valeurs de specifications optimales ΔG_{\min} (avec l'écho de surface le plus fort) requises pour obtenir un rapport de contamination $\rho \ge 0$ dB pour $R \ge R_{\min}$ à 13.75 GHz, 24 GHz et 35 GHz. Les résultats correspondent au cas standard d'une couche de pluie uniforme (taux R_{\min}) d'extension horizontale infinie pour un radar spatial à l'altitude h = 500 km

avec une ouverture (à 3 dB) du lobe principal $\theta_1 = 0.18^\circ$ (résolution transverse 1.6 km). La partie

supérieure correspond au cas d'un radar " tous θ_0 " (balayage perpendiculaire à la trace) et la partie inférieure correspond au cas d'un "stéréoradar" double-faisceau (chacun à l'incidence 18°) avec l'altitude de l'écho de pluie limitée à 5 km dans les deux cas. Les valeurs soulignées indiquent des spécifications maximales requises dans le cas le plus défavorable avec l'écho de surface en air clair.

FIG. 1a : Géométrie et notations utilisées pour calculer la contamination apportée par le signal de surface, via les lobes secondaires, sur le signal pluie dans le lobe principal à incidence θ_0 et à la distance radiale r₀ (altitude z) du radar spatial. L'aire hachurée S_s est celle sur laquelle est rétrodiffusé le signal de surface "contaminateur" avec l'incidence moyenne $\gamma(\theta_0, z, h)$.

FIG. 1b : Limites angulaires (angle 2γ) du diagramme de rayonnement de l'antenne, intervenant dans le calcul de l'écho de surface contaminant l'écho de pluie et correspondant au cas de la Fig. 1a.

FIG 2 : Illustration des diverses configurations de la surface S_s , dans le calcul de l'écho de surface (S_1 annulaire, S_2 circulaire, $S_3 = 0$) avec indication des paramètres critiques z_1 , γ_1 et z_2 , pour une incidence θ_0 donnée du lobe principal.

FIG. 3 : Exemple d'intervalle angulaire (largeur 2γ , centré sur θ_0) d'intégration de $G(\omega)$ utilisé pour le calcul du gain moyen $G_m(\gamma)$ dans un diagramme de rayonnement d'antenne hypothétique (avec décroissance continue du niveau des lobes secondaires)

ALTITUDE (Km)

FIG. 4: Altitudes critiques z_1 et z_2 en fonction de l'angle d'incidence θ_0 du lobe principal par rapport au nadir, pour h = 500 km et c $\tau/2 = 250$ m. Ces courbes délimitent les zones correspondant aux échos de surface à incidence oblique (ESIO, $z < z_1$), aux échos de surface proches du nadir (ESPN, $z_1 \le z \le z_2$) ou à l'absence d'échos de surface contaminateurs ($z > z_2$)

FIG. 5 : Incidence γ (courbes tiretées) de l'écho de surface et intervalle angulaire (courbes pleines) d'intégration ($\theta_0 - \gamma$, $\theta_0 + \gamma$), centré sur θ_0 , intervenant dans la définition du gain moyen $G_m(\gamma)$ pour différentes valeurs de l'incidence θ_0 du lobe principal et de l'altitude z (0.5 et 5 km) de l'écho de pluie. La courbe $\gamma = \theta_0$, correspondant à z = 0, est tracée pour référence. Les ESPN (resp. ESIO) correspondent à $0 < \gamma \leq \gamma_1 = 1.28^\circ$ (resp. $\gamma > \gamma_1 = 1.28^\circ$)

FIG. 6 : Variations du facteur de réflectivité Z (Fig. 6a) et du coefficient d'atténuation spécifique K (Fig. 6b) en fonction du taux précipitant R, à 13.75 et à 35 GHz.

FIG. 7 : Variations du coefficient de rétrodiffusion σ^0 de la surface de l'océan en fonction de l'angle d'incidence γ des échos par rapport au nadir, à 13.75 et à 35 GHz. Ces lois paramétriques moyennes correspondent à des observations avec un vent de surface de l'ordre de 10 m s⁻¹.

FIG 8: Spécification ΔG_{\min} (échelle de gauche) sur le niveau de gain des L.S. à 13.75 GHz en fonction de l'angle d'incidence θ_0 du lobe principal, pour différentes valeurs de l'altitude z de l'écho de pluie et du taux précipitant R_{min}, correspondant à un rapport de contamination $\rho = 0$ dB. Pour θ_0 , z et R_{min} donnés, la sélection d'une spécification ΔG^* conduit à un rapport de contamination $\rho(dB)=2(\Delta G^* - \Delta G_{\min})$. La variation de l'angle d'incidence γ (échelle de droite) de l'écho de surface, en fonction de θ_0 et z est également indiquée. Pour z donné, le cas ESPN (resp. ESIO) correspond à $0 < \gamma < \gamma_1$ (resp. $\gamma_1 \le \gamma < \theta_0$). Les résultats sont relatifs à une couche de pluie uniforme d'extension horizontale infinie.

FIG. 9 : Identique à la Fig. 8 mais à 35 GHz.

FIG. 10 : Valeurs optimales de ΔG_{\min} en fonction de Z_{\min} , nécessaires pour obtenir un rapport de contamination $\rho \ge 0$ dB, de l'écho de pluie par l'écho de surface via les L.S. dans tous les cas ($z \le 5$ km, $\theta_0 \le 20^\circ$). Les valeurs correspondantes de R_{\min} , en dessous desquelles $\rho \ge 0$ dB, sont indiquées dans l'échelle supérieure à 13.75 et à 35 GHz. Les résultats s'appliquent au cas d'une couche de pluie uniforme d'extension horizontale infinie. Dans le cas d'un stéréoradar avec $\theta_0 = 18^\circ$, les courbes doivent être lues en diminuant ΔG_{\min} d'environ 5 dB.

FIG. 11 : Facteur de réflectivité apparent $Z^{(a)}$ en fonction du facteur de réflectivité Z après traversée d'un couche de pluie de hauteur $H_p = 1$ ou 5 km, à 13.75 (trait plein) et à 35 GHz (trait tireté). La valeur du taux précipitant correspondant à Z, pour chaque fréquence, est indiquée dans l'échelle supérieure. La courbe Z = Z est tracée pour référence.

FIG. 12 : Valeurs de ΔG_{\min} optimales en fonction de la réflectivité apparente minimale $Z^{(a)}_{\min}$, requises pour obtenir un rapport de contamination $\rho \ge 0$ dB de l'écho de pluie (couche uniforme de hauteur H_p = 5 km) par l'écho de surface (supposé en air clair), dans tous les cas ($z \le 5$ km, $\theta_0 \le 20^\circ$). Les valeurs de Z_{min} et Z_{max} (correspondant au taux précipitants R, indiqués dans l'échelle supérieure à 13.75 et à 35 GHz) associées à $Z^{(a)}_{\min}$, fixent l'intervalle de réflectivité vraie Z (ou de taux précipitant R) dans lequel $\rho \ge 0$ dB. Pour les valeurs $Z^{(a)}_{\min}$ indiquées en tireté, cet intervalle est nul. Dans le cas d'un stéréoradar avec $\theta_0 = 18^\circ$, les courbes doivent être lues avec une diminution de ΔG_{\min} d'environ 5 dB.

FIG. 13 : Schémas d'émission - réception correspondant à l'observation non ambiguë pour l'impulsion n, et à l'observation avec ambiguité d'ordre N = 1 (impulsion n+1) ou N = 1 (impulsion n-1), pour le même intervalle temporel de réception des échos radar. L'intervalle de distance non ambigu est donné par D = c T_R/2.

FIG 14 : Géométrie de réception de l'écho de surface ambigu (a) d'ordre N = 1 (impulsion suivante), (b) d'ordre N = -1 (impulsion précédente), via les L.S., apparaissant dans la zone ambiguë à l'altitude z' et contaminant l'écho de pluie, après repliement à l'altitude z sur l'axe principal d'incidence θ_0 . L'écho de surface ambigu a lieu à l'incidence γ alors que l'écho de surface non ambigu aurait lieu à l'incidence γ (cf. Figs. 1 et 2). La zone de distance non ambiguë (d1, d2) recouvre une couche de pluie d'échos directs (hauteur H_p) et d'échos "miroir" (hauteur H_m).

NOTATIONS ET ACRONYMES

a	coefficient de la relation K-R ou rapport G_0/G_1
A	atténuation totale (dB) sur le trajet aller-retour ou valeur (en dB) de $a = G_0/G_1$
A _R	atténuation totale (dB) de l'écho de pluie sur le trajet aller-retour
AS	atténuation totale (dB) de l'écho de surface sur le trajet aller-retour
b BEST c	coefficient de la relation K-R Bilan Energétique du Système Tropical vitesse de la lumière
С	terme de "constante radar" dans l'expression de ρ
d ₁	distance origine de l'intervalle de distance non ambiguë
d2	distance finale de l'intervalle de distance non ambiguë
D	intervalle de distance non ambiguë
ESIO	Echo de Surface à Incidence Oblique
ESPN	Echo de surface Proche du Nadir
f	fréquence
^I R	frequence de répétition des impulsions
G	fonction de gain d'antenne
G0	
G1	gain au pic du premier L.S.
G _m	gain moyen dans le domaine des L.S.
h	altitude du satellite
H _m	hauteur équivalente de pluie "miroir"
н _р	hauteur de la couche de pluie
i	indice courant
k K K ² In	exposant de la loi de décroissance du gain des pics des L.S. en fonction de θ atténuation linéique spécifique (dB / km) due à la pluie facteur diélectrique de l'eau logarithme népérien
log	logarithme naturel
l _R	facteur d'atténuation total de l'écho de pluie sur le trajet aller-retour
۱ _S	facteur d'atténuation total de l'écho de surface sur le trajet aller-retour
L L.S.	pertes dans le système radar Lobes Secondaires
m	paramètre de la loi $\sigma^0(\gamma)$ ou rapport γ/θ_0
min	(indice) minimum
-----------------	--
max	(indice) maximum
n	numéro d'impulsion émise
Ν	ordre d'ambiguité ou taux de décroissance (dB/octave) du gain des pics des L.S.
PR	puissance moyenne reçue de l'écho de pluie
PS	puissance moyenne reçue de l'écho de surface
Pt	puissance d'émission
r	distance radiale
ro	distance radiale de l'écho de pluie
R	taux précipitant
s ²	variance de la distribution des pentes de surface de l'océan
Si	(i=1, 2 ou 3) valeur particulière de S _S
S _R	aire de l'empreinte (à 3 dB) du lobe principal au niveau de la la surface
Ss	aire de rétrodiffusion de l'écho de surface via les L.S.
Τ _R	période de répétition des impulsions
TRMM	Tropical Rainfall Measurement Mission
z	altitude au dessus de la surface
z ₁	valeur critique de z
z ₂	valeur critique de z
z _{d1}	altitude de début de zone ambiguë
zd2	altitude de fin de zone ambiguë
Z	facteur de reflectivité de la pluie
Z(a)	facteur de reflectivité apparent de la pluie
α	coefficient de la loi Z-R
β	coefficient de la loi Z-R
γ	incidence (par rapport au nadir) de l'écho de surface via les L.S.
γ ₀	paramètre de la loi $\sigma^0(\gamma)$
γ1	valeur critique de γ
γ _{d1}	incidence (par rapport au nadir) de l'écho de surface correspondant à l'altitude d_1
γ _{d2}	incidence (par rapport au nadir) de l'écho de surface correspondant à l'altitude d_1
δ	terme correctif dans l'équation radar
ΔA	terme d'atténuation dans l'expression de ρ

66

line and the

ΔA^{u}	valeur de ΔA dans le cas d'une pluie uniforme
ΔG	specification sur le gain moyen des L.S. dans l'expression de
ΔG_{min}	valeur de ΔG pour $\rho = 0$ dB
∆G*	valeur technologique donnée de ΔG
ΔS	terme de surface dans l'expression de ρ
η	reflectivité radar
θ	angle polaire (par rapport à l'axe du lobe principal)
θ ₀	incidence (par rapport au nadir) du lobe principal
θ1	ouverture angulaire à 3-dB du lobe principal
θ _c	distance angulaire du premier zéro de la fonction de gain
θ_{L1}	distance angulaire du pic du premier L.S.
λ	longueur d'onde
ρ	rapport de contamination (dB)
σ ⁰	coefficient de rétrodiffusion de la surface
τ	longueur d'impulsion
ω	angle polaire (par rapport à l'axe du lobe principal)

ρ