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INTRODUCTION 

Le groupe "Traitement du Signal" du Département ETP publie régulièrement en 

note technique les articles soumis à des revues de comité de lecture, afin d'une part de 

diffuser l'information en interne au CNET, et d'autre part de disposer d'une référence 

interne permettant de dater le travail. En effet, le délai de parution des articles dans les 

revues à comité de lecture comme IEEE Transactions on Acoustics, Speech and Signal 

Processing est très long (2 à 3 ans d'attente de la soumission à la parution). 

Cette note technique regroupe plus particulièrement les articles consacrés aux 

transformées en Ondelettes. La plupart de ces travaux ont été réalisés dans le cadre d'une 

thèse ENST suivie par 0. Rioul et dirigée par P. Duhamel. L'article 1 est un article de 

vulgarisation destinés aux traiteurs de signaux. L'article 2 unifie la présentation de la 

version discète de la transformée en ondelettes et fait le lien avec d'autres transformées 

(pyramidales, banc de filtres). L'article 3 se consacre à la nouvelle propriété de 

"régularité" apportée par la théorie des Ondelettes. Enfin, l'article 4 traite les problèmes 

d'implantation et de réduction de charge de calcul. 
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Wavelet Transforms in Signal Processing 

Olivier RIOUL. AND Martin vetterli* 

'Centre National d'Etudes * Department of Electrical Engineering 
des Télécommunications and Centerfor Télécommunications 

CNETIPABIRPE Research 
38-40 rue du Général Leclerc Columbia University 
92131 Issy-Les-Moulineaux New York, NY 10027-6699 

France USA. 

INTRODUCTION 

Wavelets hâve recently attracted attention in several fields of applied mathematics and engineering 

[WAV89]. In particular, they are of interest for the analysis of non-stationary signais, a central 

problem in signal processing; the Wavelet Transform (WT) provides an alternative to the Gabor or 

Shon-Time Fourier Transform (STFT) [ALL77], [GAB46] and is related to the Wigner-Ville 

distribution [BOU85], [CLA80], [FLA90] as weIL 

Like thèse techniques, the WT is invemble and can be applied to gênerai signais, since no apriori 

assumptions are made on them. In constrast to the STFT, the WT performs a constant relative 

bandwidth analysis, providing a different tiling of the time-frequency plane. In fact, the notion of 

scale is introduced as an alternative to Fourier frequency, leading to a so-called time-scale 

représentation. 

Wavelet analysis and synthesis may also be seen as a signal expansion into particular bases. The 

wavelets are defined as the corresponding basis functions; they are generated by time-shifts and 

dilations/contractions from a single prototype, which can be though of as a bandpass filter. 

Similar to other transforms common in signal processing, the WT, which maps a signal into a 

time-scale plane," can be defined as a continuous [GR089] or discrète [DAU88], [DAU90a], 

[MEY89] representation of continuous-time signais, or can be defined for discrete-time signais as 

well [DAU88], [RIO90b], [VET90a], [VET90b]. 
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The idea of looking at a signal at various scales and analysing it with various resolutions has 

emerged independently in many différent fields of mathematics, physics and engineering. Although 

similar ideas and constructions took place as soon as the beginning of the century [HAA10], 

[FRA28], [LIT37], [CAL64], [YOU78], wavelet theory has been developped as a unifying 

framework in the mid-eighties by researchers of the "French school," under the impulsion of a 

geophysicist, a theoredcal physicist and a mathematician (namely, J. Morlet, A. Grossmann, and Y. 

Meyer.) They built strong mathematical foundations around the subject and labelled their work by the 

name of "Ondelettes" (Wavelets.) They also considerably interacted with other fields. In this context, 

L Daubechies and S. Mallat soon caught the attention of the signal processing community on the 

subject of wavelets [DAU88], [MAL89a]. Since then, a number of theoretical, as well as practical 

contributions hâve been made on various aspects of WTs, and the subject of wavelets is growing 

rapidly. There remains, however, a large number of open questions and still-unclear points that are 

amenable to a spécifie décision, depending on the application (e.g. the choice of the "wavelet 

prototype".) 

This review covers the main définitions and properties of wavelet transforms, while focusing on 

signal processing applications. Its purpose is to présent a simple, synthetic view of the subject. Non- 

specialists interested in reading further on a particular advanced problem are referred to the 

bibliography. 

There hâve been différent ways of considering wavelets. Some see them as a very promising 

brand new theory [CIP90]. Others doubt that they could truly be a major breakthrough in signal 

processing, since depending on the field one works in, WTs can be scen either as constant-Q analysis 

[YOU78], wide-band cross-ambiguity functions [SPE67], affine cohérent states' expansions 

[DAU90a], [PAU85], Frazier-Jawerth transform [FRA86], perfect reconstruction octave-band filter 

banks [EST77], [MIN85], [SMI86], [SMI87], or a variation of Laplacian pyramid decomposition 

[BUR83], [BUR89]! We think that the interest and merit of wavelet theory is to unify ail this into a 

common framework, thereby allowing new ideas and developments. 
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L NONSTATIONNARY SIGNAL ANALYSIS 

The aim of signal analysis is to extract some kind of relevant information from a signal, by 

transforming iL "Parametric" methods include a priori assumptions on the signal in the analysis; this 

may yield sharp estimations if thèse assumptions are valid, but is obviously not of gênerai 

applicability. In :his paper we focus on "non-parametric" methods applicable to any gênerai signal 

[FLA89]. In addition, we shall consider invertible analysis transformations: the analysis thus 

unambiguously represents the signal, and more involved functions such as parameters' estimation, 

coding, pattern récognition can be performed on the "transform side," where relevant properties hâve 

been exhibited. 

Our approach is to consider a gênerai signal as being a non-stationary signal; we shall therefore 

first give indications on which type of linear analysis is adapted for stationary signais and then extend 

it to non-stationary signais. 

Intuitively, stationarity means that the properties of the signal do not evolve in time. This notion is 

formalized when e.g. the signal is modelized as a stationary statistical process. For such signais x(t), 

the natural "stationary transform" is the well-known Fourier transform [FOU88]: 

X(f) = [X(t) 
e-'J* dr (1) 

The analysis coefficients X(f) which define the notion of global frequency fin a signal, are computed 

as inner products of the signal with sinewave basis functions of infinité duration. As a resuit, Fourier 

analysis works well if the (deterministic) signal is composed of a few stationary (e.g., sinewaves) 

components. However, any abrupt change in time in a non-stationary signal is spread out over the 

whole frequency axis in X(f); therefore an analysis adapted to non-stationary signais requires more 

than the Fourier Transform. 

Two différent views of the same extension of the Fourier Transform are hère possible, with one 

common purpose: introduce time dependency in the analysis (while preserving linearity): 

1) Define a local frequency parameter by adapting the Fourier Transform to occurences of limited 

duration (over which stationarity is assumed). This is the aim of the next section. 
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2) Modify the sinewave basis functions used in the Fourier Transform to functions more 

concentrated in time (at the expense of loss of Fourier frequency resolution.) We shall see that this 

approach leads to the same methods as in 1). 

IL SCALE VS. FREQUENCY 

//./. The Short-Time Fourier Transform: Analysis with Fixed Resolution. 

One way to introduce a frequency depending on time is tô define th: instantaneous frequency as 

proportional to the time-derivative of the phase of the analytic signal [FLA89]. If the signal is not 

narrow-band, however, the instantaneous frequency averages différent spectral components in time. 

To become accurate in time, we therefore need one more dimension, that is a two-dimensional time- 

frequency representadon S(tf) of the signal x(t) composed of spectral characteristics depending on 

time. That kind of representation is similar to the notation used in a musical score. The local 

frequency f is defined through an appropriate définition ofS(tf). 

A straightforward adaptation of the Fourier Transform to define S(tf) was first used by Gabor 

[GAB46] and is as follows: consider a signal, and assume it is stationary when seen through a 

window g of limited extent, centered at time location t: 

x(t)g(t-x) 

then do Fourier analysis: this yields the Short-Time Fourier Transform (STFT) 

STFT(t,/) = jx(t)g(t - x) 
e-ie dt (2) 

which maps the signal into a two-dimensional function in a time-frequency plane (if). Note that, 

although the local frequency f is still very close to the Fourier frequency (the Fourier Transform 

properties remain built in the définition of the STFT), it crucially dépends on the choice of the 

window g(t). The time-frequency plane is, by definition, filled "column by column", i.e. Fourier 

Transform after Fourier Transform when the window g(t) "slides" in time through the signal 

evolutions. However, as shown in Fig. 1, the STFT may be interpreted "line by line" as well: for a 

fixed analysed frequency, as t varies, the STFT is the output of some filter whose impulse response 
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is the modulated window g(t) ew (within a phase factor). In other words, the STFT may aiso be 

seen as a modulated filter bank [ALL77]. 

From thèse two dual interpretadons a fundamental drawback of the STFT, related to the so-called 

time and frequency resolution, can be shown. Frequency (or time) resolution means power of 

discrimination in the analysis. From what bas just been said it is easy to find the conditions under 

which two pure sinwaves (two short bursts, respective-y) can be distinguished by the analysis in 

frequency (in time, respectively:) the différence of the two frequency (time, respectively) locations 

must be smaller than the extent of the Fourier Transform of g(t): Gif) (g(r), respectively). Thèse 

extents can be formally defined as 

4/2 = \f*\G{ffdf ^^jt2\g(tfdt (3) 

A small Af (At, respectively) contributes for a good frequency (time, respectively) resolution in the 

analysis. The fundamental drawback conceming àt and A/is two-fold: 

1) Increasing time resolution (i.e., narrowing the window) is donc necessarily at the expense of 

decreasing frequency resolution, and vice versa. This is due to the so-called uncertainty principle, or 

Heisenberg's inequality 

Time - Bandwidth Product = A/A/^Jj- 

Gaussian Windows are often used [GAB46], [ALL77], [DAU90a] since they reach the lower bound. 

2) Fig. 2.(a) shows that once a window is chosen (i.e., once the STFT, or the analysis, is 

chosen), the resolution capabilities in time and frequency of the STFT remain fixed ail over the time- 

frequency plane, i.e. for ail analysed points (xf). Consequently, if a more accurate representation (in 

time of frequency) around a particular pattem in the time frequency plane is needed, the STFT has to 

be recomputed ail over again. 

Therefore, since the STFT has limited resolution capabilities, it is only adapted to signais with 

limited variations and dynamics in time and frequency. For example, if the signal is composed of 

small bursts associated to long, quasi-stationary components, each type of component can bc 

analysed with good time or frequency resolution, but not both. 
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111. The Continuais Wavelet Transform: a Multiresolution Analysis. 

To overcome the resolution limitation of the STFT (that is point 2) above), one can imagine to let 

the resolution àt, A/vary in the time-frequency plane, hence to obtain a multiresolution analysis. 

Intuitively, when the analysis is viewed "line by Une" as a filter bank, the time resolution must 

increase with the central frequency of the analysis filters. We therefore impose that A; is inversely 

proportional to/, or 

The filter bank is then composed of band-pass filters with constant relative bandwidth (so-called 

"constant-Q" analysis). Another way to say this is that instead of being regularly spread over the 

frequency axis (as for the STFT case), the frequency responses of the analysis filters are regularly 

spread in a logarithmic scale over the frequency axis (see Fig. 3). This kind of filter bank is used for 

modelizing frequency responses of the cochlea situated in the inner car and is therefore adapted to 

auditory perception, e.g. of music: filters satisfying (4) are naturally distributed into octaves. 

Since (4) is satisfied, the anaJysis filters no longer limit the resolution in time or frequency. For 

example, two very close short bursts can always be eventually separated in the analysis by going up 

to higher analyzed frequencies to increase time resolution (see Fig.2.(b)). This kind of analysis of 

course works best if the signal is composed of high frequency components of short duration plus low 

frequency components of long duration. 

The Continuous Wavelet Transform (CWT) exactly follows thèse ideas while adding a 

simplification: ail impulse responses of the filter bank are defined as scaled (i.c. stretched or 

compressed) versions of the same prototype h(t): 

where a is a scale factor (the constant is there for energy normaUzation.) This results in the 

définition of the CWT: 

CWT,(t,a) = -fcjxit) n(^j dt 
(5) 

Since the same prototype h(t), called basic wavelet, is used for ail filter impulse responses, no 
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spécifie scale is privileged, i.c. wavelet analysis is self-similar at ail scales. Moreover this 

simplification is useful to dérive mathematical properties of the CWT. 

In connection with the modulated window used in the STFT, the basic wavelet could be chosen as 

a modulated window [GOU84], [GR089]: 

Then the frequency responses of the analysis filters indeed satisfy (4) with the identification 

f 

But more generally h(t) can be any band-pass function and the scheme still works. In particular one 

can dispense with complex-valued transforms and deal only with a fully real-valued definition. 

It is important to note that the notation/for local frequency in this section has nothing to do with 

that described for the STFT: indeed, it is associated to the scaling scheme (see Box 1.) As a resuit, 

this local frequency (whose définition dépends on the basic wavelet) is no longer adapted to 

modulations (as was the case for the STFT) but is now well adapted to dilations/contractions, Le., 

scaling a signal scales its CWT accordingly. This is the reason why the terminology "scale" is often 

preferred to "frequency" for the CWT, the word "frequency" being reserved for the STFT. 

m. WAVELET ANALYSIS AND SYNTHESIS 

Another way to introduce CWTs is to define wavelets as basis functions. Indeed basis functions 

already appear in the preceding definition (5) when one secs it as an inner product: 

CWT,(t,a) = J x(t) di 

which measures the "similarity" between the signal and the basis functions hax(t) 
= 
-fe h' (*=?�) called 

wavelets. The wavelets are scaled and translated versions of the basic wavelet prototype h(t) (see 

Fig.2.(c)-(d)). A similar point of view exists for the STFT; for both transforms, the sinewaves basis 

functions of the Fourier Transfonn are replaced by more localized référence signais (such as 

modulated Windows or wavelets) labeUed by time and frequency (or scale) parameters. In fact both 

transforms may be interpreted as ambiguity functions used in radar or sonar processing (see Box 2.) 
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Since wavelet analysis is defined as wavelet basis coefficients, we expcct that any gênerai signal 

can be represented as a décomposition into wavelets, i.e. that the original waveform is synthesized by 

adding elementary building blocks supported by the wavelets, of constant shape but différent size and 

amplitude. Another way to say this is that we want the continuously labelled wavelets A#t(;) to behave 

just like an orthonormal basis [MEY90]: the analysis is done by inner products, and the synthesis 

consists in summing up an the orthogonal projections of the signal onto the wavelets: 

x(t) = Cst JJcwT(t,û) MO ^ (6) 

The measure in this intégration is formally equivalen : to dt 4([GOU84]. We hâve assumed hère that 

both signal and wavelets are either real-valued or complex analytic so that only positive dilations a�0 

hâve to be taken into accounL Otherwise (6) is more complicated. 

Of course the ha x(t) are certainly not orthogonal since they are very redundant (they are defined 

for continuously varying a and x) but this reconstruction formula is indeed satisfied whenever h(t) is 

of finite energy and band pass (which implies that it oscillâtes in time like a short wave, hence the 

name "wavelet"). More prccisely, if h(t) is assumed sufficiently regular, the reconstruction condition 

is 
f h(t) 

� = 0. 

Note that the reconstruction takes place only in the energetic sensé: for example, a signal may 

reconstructed only with zéro mean since f h(t) 
dl = O. ln fact the type of convergence of (6) may be 

straightened and is related to the numerical robustness of the reconstruction [DAU90a]. Another 

reconstruction formula, due to Morlet [GOU84], [GR089] 

x(t) = CstjCW7(.t,a)4j 

is often preferred in actual implementation since it requires only one intégration. 

Similar considérations can be done for the STFT, and the similarity is remarkable [DAU90a], 

- [FLA90], [RIO90a]. However in the STFT case, the reconstruction condition is less restrictive: only 

finite energy of the window is required. 
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IV. SCALOGRAMS 

Since the CWT behaves like an orthonormal basis decomposition, it can be shown that it is 

isometric [GR084], i.e. it préserves energy: 

JJ|CWT(t,a)|2 "' 
= Energy of signal x = j\x(tfdt (7) 

Therefore, the scaltgram, that is the squared modulus of the CWT, appears 10 be a distribution of the 

signal's energy in ihe time-scale plane (associated with measure �y-, and thus expressed in power 

per frequency unit. 

The main advantage of the energetic representation is that it produces an easily interprétable visual 

2D representation of signais [GR089]; each time-scale pattern in the time-scale plane contributes for 

the global energy of the signal. However an energetic representation has some disadvantages, too. 

The scalogram cannot be, in gênerai, inverted: phase information is necessary to reconstruct the 

signal. Moreover it has been shown on some examples [GR089] that the phase representation more 

accurately reveals isolated, local bursts in a signal than the energy representation does (see Box 3.) 

Also, since the scalogram is bilinear in the analysed signal, cross-terms appear as interférences 

between patterns in the time-scale plane and this may be undesirable. For example, the basic wavelet 

is generally chosen to be complex analytic so as to avoid interférences between negative and positive 

frequencies. 

Of course similar derivations can be donc for the STFT, leading to the well known spectrogram 

(square modulus of the STFT.) Note that in the wavelet case, the energy of the signal is distributed 

with différent resolutions according to Fig. 2.(b). 

In particular, Fig. 4.(a) shows that the influence of the signal's behavior around � = r0 on the 

analysis is limited to a cône in the time-scale plane; it is therefore very "localized" around t0 for small 

scales. In the STFT case, the corresponding région of influence would be as large as the extent of the 

analysing window, whatever the analyzed frequency (see Fig. 4.(b).) Moreover, the time-scale 

analysis being logarithmic in frequency, the area of influence of some pure frequency f0 in the 

analyzed signal will narrow as/0 increases (see Fig. 4.(c)-(d).) 
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Fig. 5 show some examples of spectrograms and scalograms for synthetic and speech signais (see 

Box 3.) Also, more involved energy représentations can be developped for both time-frequency and 

time-scale (see Box 4.) 

V. Wavelet frames AND ORTHONORMAL BASES 

V. 1. Discretization of Time-Scale Parameters. 

In section in we hâve seen that the continuously labelled basis functions (wavelets) /»^t(r) behave 

in the wavelet analysis and synthesis just like an orthonormal basis. A natural question arises 

[MEY89]: if we suitably discretize the time-scale parameters a, t, and for suitable choices of the basic 

wavelet h(t), can we obtain a true orthonormal basis? 

There is a natural way of discretizing the time-scale parameters a, x [DAU90a]: since two scales a. 

� a, roughly correspond to two frequencies 10 � Il' the wavelet coefficients at scale a, can be 

subsampled at (fjf^ the rate of the coefficients at scale a0, according to Nyquist's rule. We 

therefore choose to discretize the time-scale parameters on the sampling grid drawn in Fig. 7, that is, 

we hâve a = a and b 
= k aj T, wherey and k are integers. The corresponding wavelets and wavelet 

coefficients are hjJt(t) - a,,-J'h(a.-Ji - leT) and cJ,! = x(t) hj.." (t) dl, respectively. 

An analogy is the following: assume your wavelet analysis is like a microscope. First you choose 

the magnification, that is, a;J. Then you move to the location of your choice. Now, obviously, if the 

magnificadon is large (that is, you are looking at small détails), you want to move by small steps ai T 

in order to catch détails. 

The problem is to find av T, and h(t) such that the sum of projections 

reasonably reconstructs the signal x(t). Evidently when a. is close enough to 1 (and if T is small 

enough) the wavelet functions are overcomplete, signal reconstruction by (8) is still very close to (6) 

and will take place within non-restrictive conditions on h(,). On the other hand, if the sampling is 
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sparse, e.g. the computation is donc octave by octave (a0 = 2) a true orthonormal basis will be 

obtained only for very spécial A(f)'s [DAU90a], [MEY90]. 

V. 2. Wavelet Frames. 

The theory of wavelet frames was derived by Daubechies [DAU90a]. It provides a gênerai 

framework which covers the two extrême situations just mentionned. It therefore permits to balance 

1) redundancy, i.e. sampling density in Fig. 7, and 2) restrictions on h(t) for the reconstruction 

scheme to work. The less redundancy, the tighter thèse restrictions but the fewer computed wavelet 

coefficents, which is more adapted to coding schemes. 

The theory of frames [DUF52] is based on the assumption that the linear correspondance x(t) -» 

c .. is bounded, 
with bounded inverse. The family of wavelet functions is then called aframe and is 

such that the energy of the wavelet coefficients (sum of the square modules) relative to that of the 

signal lies between two positive "frames bounds" A and B. Thèse frame bounds can be computed 

from a0, T and h(t) using Daubechies' formulae [DAU90a]. What is interesting is that they govem 

the accurateness of signal reconstruction by (8). More precisely, we hâve 

with relative SNR greater than (ft/A+l)/(B/A-l) (see Fig.8.) The closer BIA is to one, the more 

accurate the reconstruction. It may happen that A=B ("tight frame"), in which case the wavelets 

behaves exactly like an orthonormal basis, although they may not even be linearly independent! The 

reconstruction formula can also be made exact in thé gênerai case if one uses différent synthesis 

functions h'A (which constitute 
the dual frame of the A^'s [DAU90a].) 

V. 3. Introduction to orthogonal wavelet bases. 

If a dght frame is such that ail wavelets h.À 
are necessary to reconstruct the signal (i.e., if one is 

removed, a gênerai signal cannot be synthesized), then the wavelets form an orthonormal basis of the 

space of signais with finite energy [HEI90]. Orthonormality, of course, means 



0. RIOUL AND M. VETTEULL WAVELET TRANSPORMS 12 

Again this can be extended to synthesis functions h' *� Al, leading'to 
so-called biorthogonal wavelet 

bases [COH90], [VET 90a], [VET90b] Such schemes are best understood when one tums to the 

discrete-time cas?. This is the subject of the next section, which focuses on the orthogonal case. 

VI. THE DISCRETE TIME CASE 

In the discrète time case, two methods were developed independently in the late sevendes and early 

eighties which lead naturally to discrète wavelet transforms, namely subband coding [CRI76], 

[CR076], [EST77] and pyramidal coding or multiresolution signal analysis [BUR83]. The methods 

were proposed for coding, and thus. the notion of critical sampling (of requiring a minimum number 

of samples) was of importance. Pyramid coding actually uses some oversampling, but because it has 

an casier intuitive explanation, we will describe it first. 

VI.1 The Multiresolution Pyramid 

Given an original séquence x(n), n � Z, we dérive a lower resolution approximation at a lower 

scale y(n) by lowpass filtering (with a filter having impulse response h(n) and subsampling by two 

(that is, dropping every other sample): 

y(k) = Eg(k) x(n - 2k) 

The resolution change is obtained by the lowpass filter (loss of high frequency détail). The scale 

change is due to the subsampling by two, since a shift by two in the original signal x(n) results in a 

shift by one in y(n). 

Now, based on this Iowpass and subsampled version of x(n), we try to find an approximation 

a(n) to the original. This is donc by first upsampling yen) by two (that is, inserting a zéro between 

every sample) since we need a signal at the original scale for comparison. 

y'(2n) = yen), /(2/. + 1) = 0 

Then, y'(n) is interpolated with a filter with impulse response g'(n) to obtain the approximation a(n): 
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a(n) L,I(k) y'(n-k) 

Note that if g(n) and g\n) were perfect halfband filters (having transmission 1 from -xc/2 to rc/2 and 0 

elsewhere), then the Fourier transform of a(n) would be equal to the one of x(n) over the range (-1tI2, 

jc/2) while being zéro elsewhere. That is, a(n) would be a perfect halfband lowpass approximation to 

x(n). 

Of course, in gênerai a(n) is not going to be equal to x(n) (in the previous example, x(n) would 

hâve to be a halfband signal). Therefore, we compute the différence between a(n) (our approximation 

based on y(n» and x{n): 

d(n) = x(n) - a(n) 

It is obvious that x(n) can be reconstructed based on d(n) and a(n) (that is, y(n» by simply adding 

them, and the whole process is shown in Fig. 9. However, there has to be some redundancy, since a 

signal with sampling ratef is mapped into two signais d(n) andy(n) with sampling rates ft and/j2, 

respectively. 

However, the séparation of the original signal x(n) into a coarse approximation a(n) plus some 

additional détail contained in den) is conceptually important. Because of the resolution change 

involved Oowpass filtering followed by subsampling by two produces a signal with half the 

resolution at half the scale of the original), the above method and related ones are part of what is 

called multiresolution signal analysis [ROS84] in computer vision. 

The scheme can be iterated on y(n), creating a hierarchy of lower resolution signais at lower 

scales. Because of that hierarchy and the fact that signais become shoner and shoner (or images 

smaller and smaller), such schemes are called signal or image pyramids [BUR83]. 

VI.2 Subband Coding Schemes 

We hâve seen that the above System créâtes a redundant set of samples. This redundancy can bc 

removed if the filters g(n) and g'(n) meet certain conditions (see Box 5), but we will look at a 

différent scheme instead, where no such redundancy appears. It is the so-called subband coding 

scheme first popularized in speech compression. The lowpass, subsampled approximation is obtained 

exactly as explained above, but, instead of a différence signal, we compute the "added détail" as a 
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highpass filtered version of x(n) (using a filter with impulse response h(n», followed by 

subsampling by two. Intuitively, it is clear that the "added détail" to the lowpass approximation has to 

be a highpass signal, and it is obvious that if g(n) is an idéal halfband lowpass filter, then an idéal 

halfband highpass filter h(n) will lead to a perfect représentation of the original signal into two 

subsampled versions. 

This is exactly one step of a wavelet décomposition using sin(x)/x filters, since the original signal 

is mapped into a lowpass approximation (at half the scale) and an added détail signal (also at half the 

scale.) In particular, using thèse idéal filters, the discrète version is identical to the continuous wavelet 

transform. 

What is more interesting is that it is not necessary to use idéal (that is, impractical) filters, and yet 

x(n) can be recovered from its two filtered and subsampled versions which we now call yo(n) and 

y,(/i). To do so, both are upsampled and filtered by g'(n) and h'(n) respectively, and finally added 

together, as shown in Fig. 10. Now, unlike the pyramid case, the reconstructed signal (which we 

now call i(n)) is not identical to x(n), unless the filters meet some spécifie constraints, which are 

referred to as the perfect reconstruction property. 

The easiest case to tnalyze appears when the analysis and synthesis filters in Fig. 10 are identical 

(within time-reversal) and that perfect reconstruction is achieved (that is, x(n) - x(n), maybe within a 

shift.) Then it can be sbown that the subband analysis/synthesis corresponds to a décomposition onto 

an orthonormal basis, followed by a reconstruction which amounts to summing up the orthogonal 

projections. We will assume FIR filters in the following. Then, it turns out that the highpass and 

lowpass filters are related by: 

h(L-l-n) (-l)Hg(n) (9) 

where L is the filter length (which has to be even). Note that the modulation by (-1)" transforms 

indeed the lowpass filter into a highpass one. 

Now, the filter bank in Fig. 10, which computes convolutions followed by subsampling by two, 

évaluâtes inner products of the séquence x(n) and the séquences [g(-n+2k), h(-n+2l)) (the time 

reversai cornes from the convolution, which reverses one of the séquences). Thus: 

y0(k) = {g(-n + 2k)\x(n)) 
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yl(k) = {h(-n + 21) 1 x(n» 

Because the filter impulse responses form an orthonormal set, it is very simple to reconstruct x(n) as: 

*(*) = î,[y0(k)h(-n + 2k) + yi(k)g(-n + 2k)] (10) 
p- 

that is, as a weighted sum of the orthogonal impulse responses, where the weights are the inner 

products of the signal with the impulse responses. This is of course the standard expansion of a 

signal into an orthonormal basis, where the resynthesis is the sum of the orthogonal projections. 

From (10), it is also clear that the synthesis filters are identical to the analysis filters within time 

reversai. 

Such perfect reconstruction filter banks hâve been studied in the digital signal processing literature, 

and the orthonormal décomposition we just indicated is usually referred to as a "paraunitary" or 

"lossless" filter bank [VAI89]. An interesting property of such filter banks is that they can be written 

in lattice form [VAI88], and that the structure and properties can be extended to more than two 

channels [VAI89], [VET89]. 

VI 3 The Discrete Wavelet Transform 

We hâve shown how to décompose a séquence x(n) into two subsequences at half rate, or half 

resolution, and this by means of "orthogonal" filters (orthogonal with respect to even shifts). 

Obviously, this process can bc iterated on either or both subsequences. In particular, to achieve finer 

frequency resolution at lower frequencies (as obtained in the continuous wavelet transform), we 

iterate the scheme on the lower band only. If g(n) is a good halfband lowpass, h(n) is a good 

halfband highpass (by (9)), and one iteration of the scheme créâtes a lowband that corresponds to the 

lower quaner of the frequency spectrum. Each further itération halves the width of the lowband 

(increases its frequency resolution by two), but due to the subsampling by two, its time resolution is 

halved as well. At each iteration, the current high band corresponds to the différence between the 

previous lowband and the current one, that is a passband. Schematically, this is équivalent to Fig. 11, 

and the frequency resolution is as in Fig. 2.(b). 

An important feature of this discrète algorithm is its relatively low complexity. Actually, the 

following somewhat surprising resuit holds: independently of the depth of the tree in Fig. 11, the 
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complexity is lincar in the number of input samples, with a constant factor that dépends on the length 

of the filter. The proof is straightforward. Assume the computation of the first filter bank requires Co 

opérations per input sample (Co is typically of the order of L). Then, the second stage requires also 

Cq opérations per sample of its input, but, because of the subsampling by two, this amounts to Cq/2 

operations per sample of the input signal. Therefore, the total complexity is bounded by: 

which demonstrates the efficiency of the discrète wavelet transform algorithm and shows that it is 

independent of the number of octaves that one computes [RI090c]. 

VIA Iterated Filters and Regularity 

There is a major différence between the discrète scheme we just saw and the continuous time 

wavelet transform. In the discrète time case, the rôle of the wavelet is played by the highpass filter 

h(n) and the cascade of subsampled lowpass filters followed by a highpass filter (which amounts to a 

bandpass filter). Thèse filters, which correspond roughly to octave band filters, unlike in the 

continuous wavelet transform, are not exact scaled versions of each other. In particular, since we are 

in discrète time, scaling is not as easily defined, since it involves interpolation as well as time 

expansion. 

Nonetheless, under certain conditions, the discrète System converges (after a certain number of 

iterations ) 10 a System were subséquent filters are scaled versions of each other. Actually, this 

convergence is the basis for the construction of continuous dme compactly supported wavelet bases 

[DAU88]. 

It will be convenient to use z-transforms of filters, e.g. G(z) = Lg(n) z~" in the following. 
a 

Now, we would like to find the equivalent filter that corresponds to the lower branch in Fig. 11, 

that is the iterated lowpass filter. It can be easily checked that subsampling by two followed by 

filtering with G(z) is équivalent to filtering with G(r) followed by the subsampling (z2 inserts zéros 

between samples ot the impulse response, which are removed by the subsampling). That is, the first 

two steps of lowpass filtering can be replaced by a filter with z-tranform G^.Gfz2), followed by 
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subsampling by 4. More generally, calling Gi(z) the équivalent filter to i stages of lowpass filtering 

and subsampling by two (that is, a total subsampling by 2'), we get: 

Gi(z) = nC(z^) 
1-0 

Call its impulse response ̂(n). 

As i infinitely increases, this filter becomes infinitely long. Instead, consider a function f(x) 

which is piecewise constant on intervais of length 1/2' and has value 2'12 gi(n) in the interval [n/2', 

(n+l)/2']. That is,/(x) is a staircase function with the value given by the samples of gl(n) and 

intervais which decrease as 2-i. It can be verified that the function is supporud on the interval 

[0, L-l]. Now, for i going to infinity,/(i) can converge to a continuous function, or a function with 

finitely many discontinuities or even a fractal function. Fig. 12 shows two examples, one where 

r(x) is continuous and another where/°(.r) has fractal behavior. 

I. Daubechies gave a sufficient condition so that the iterated function converges to a continuous 

function. In essence, the filter G(z) must hâve a sufficient number of zéros at z = -1, or half sampling 

frequency, so as to attenuate repeat spectras. Based on this sufficient condition, one can construct 

filters which are both orthogonal and converge to a continuous function. Such filters are called 

regular, and examples can be found in [DAU88], [DAU90b], [RIO90b], [VET90] (see Box 6.) 

VU Scaling Functions and Wavelets Obtainedfrom Iterated Filters 

Call the final function to which/(x) converges gjtf). Bccause it is the product of lowpass filters, it 

is itself lowpass and is called a "scaling function" because it is used to go from a fine scale to a 

coarser scale. Because of the product (11) from which the scaling function is derived, gt(x) satisfies 

the following two scale différence equation: 

*�(*)= t,g(n)gt(2x-n) (12) 

and Fig. 13 shows two such examples. The second one is based on a filter which is regular and 

orthogonal to its even translates and was designed by L Daubechies [DAU88]. 
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So far, we hâve only discussed the iterated lowpass and its associated scaling function. However, 

from Fig. 10, it is clear that a bandpass filter is obtained in the same way, except for a final highpass 

filter. Therefore, similarly to (12), the wavelet he(x) is obtained asr 

h, (x) h(n) g. (2x - n) 

that is, it satisfies also a two scale équation. Now, if the filters h(n) and g(n) form an orthonormal set 

with respect to even shifts, then the functions gjjt-l) and he(x-k) form an orthonormal set (see Box 

7.) 

Because they also satisfy two scale différence equations, it can be shown [DAU88] that the set 

h (2~lx-k), �6 Z, forms an orthonormal basis for the set of square integrable functions L (R). We 

hâve shown how regular filters can be used to generate continuous wavelet bases. The converse is 

also true, that is, orthonormal sets of scaling functions and wavelets can be used to generate perfect 

reconstruction filter banks. 

CONCLUSION 

We hâve seen that Short-Time Fourier Transforms and Wavelet Transforms represent altemadve 

slicings of the time-frequency (or time-scale) plane. Two major advantages of the Wavelet 

Transforms are that they can zoom in to time discontinuities and that orthonormal bases can be 

constructed. 

In the discrète case, the Wavelet Transform is équivalent to a logarithmic filter bank, with the 

added constraint of regularity on the lowpass filter. 

The theory of wavelets can be seen as a common framework for techniques that had been 

developped independendy in various fields. This conceptual unification furthers the understanding of 

the mechanisms involved, quantifies trade-offs, and points to new potential applications. 
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BOX 1 : THE SCALE AND RESOLUTION NOTIONS 

In order to understand what the CWT does in connection with the scale and time-resolution 

notions, consider the following dilation/contraction opération acting on the analysed signal x(t): 

x(t) �x(at) 

When a decreases, the signal is progressively dilated so that we are able to see more and more détails 

in its temporal wavefonn. This means that the time-resolution of the signal we see increases as a 

decreases (because the eye basically low-passes the signal x(at).) 

As a resuit, the new information that cornes into the eye when resolution increases is something 

like a band-pass filtering ofx(at). But by making a change of variables in the definition (5) of the 

CWT, we indeed obtain a band-pass filtering of x(at): 

CWT{t,a} = f x(x) h(t --)dt 

The CWT, as a function of x, may therefore be interpreted as the infinitésimal novelry of 

information between two (very close) time-resolutions. 

When the signal is dilated enough (for small a), no further new information cornes into the eye and 

dilating is no more useful: the highest time-resolution of the signal itself bas then been attained, and 

that corresponds to the lowest scale a of interest for analysing the signal. 

Note that hère the scale parameter a is not associated to the analysed signal, but rather to the 

wavelet hel/a) which analyses the signal at scale a in equation (5). The scale parameter is of course 

similar to the notion of scale used for maps: decreasing the scale means compressing the wavelet, 

which thereby analyses thin détails on the signal. On the contrary, for very large scales, the wavelet 

is so stretched that it can see a large portion of the signal In the above description, the proper scale of 

the signal x(at) is in fact I/o. 
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BOX 2: STFTS AND CWTS AS AMBIGUTTY FUNCTIONS 

The inner product is often used as a similarity measurement and because both STFTs and CWTs 

are inner products, they appear in several detection/estimation problem. Consider, for example, the 

problem of estimating the location and velocity of some target in radar or sonar applications. The 

estimation procédure consists in first ( metting a known signal h(t). In présence of a target, this signal 

will retum to the source (received signal x(t» with a certain delay x, due to the target's location, and a 

certain distortion (Doppler cffect) due to the target's velocity. 

For narrow-band signais, the Doppler effects amounts in a single frequency shift 10 and the 

characteristics of the target will be determined by maximizing the cross correlation funcdon (called 

"narrow-band ambiguity functionj rW0053] 

jx(t)h(t - x) 
e"*"* dt = STFT(x,/) 

For wide-band signais, however, the Doppler frequency shift varies in the signal's spectrum, 

causing a streching or a compression in the signal. The estimator thus becomes the "wide-band 

ambiguity function" [SPE67], [AUS90] 

fa jx(t) h(^\ 
dt = CWT,(x,a) 

As a resuit in both cases, the "maximum likehood" estimator takes the form of a STFT or a CWT, 

i.e. of an inner product between the received signal and either STFT or wavelet basis funcdons. The 

basis function which best fits the signal is used to estimate the parameters. 

Note that, although the wide-band ambiguity function is a CWT, for physical reasons, the dilation 

parameter a stays in the order of magnitude of 1, whereas it may cover several octaves when used in 

signal analysis. 
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BOX 3: SPECTROGRAMS AND SCALOGRAMS 

We présent spectrograms and scalograms for some synthetic and a real signal. The signais are of 

length 3 S k the STFT uses a Gaussian-like window of length L = /Zi and the scalogram is obtained 

with a Morlet wavelet (a complex sinusoid windov/ed withaGaussian)oflengthfrom 23 to 363. 

First, Fig. 5.1 shows the analysis of two Diracs and two sinusoids with Short-Time Fourier 

Transform and Wavelet Transform. Note how the Diracs are well time-localized at high frequencies in 

the scalogram. Fig. 5.2 shows the analysis of three starting sinusoids, and Fig. 5.3. shows the 

transforms of a chirp signal. Again, the transitions are well resolved at high frequencies in the 

scalogram. Finally, Fig. 5.4 shows the analysis of a stretch of speech signal, where the onset of 

voicing is clearly seen in both représentations. 
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BOX 4: INCORPORATING THE STFT, CWT AND WlGNER- VILLE DISTRIBUTION INTO A COMMON 

CLASS OF TIMEFREQUENCY OR TIME-SCALE ENERGY REPRESENTATIONS 

There has been considérable work in extending the spectrogram into more gênerai time-frequency 

energy distributions TF(x,/), which ail hâve the basic property of distributing the signal's energy ail 

over the time-frequency plane: 

jJTFW)dxdf=j\x(tfdt 

Among them, an alternative to the spectrogram for nonstationary signal analysis is the Wigner- 

Ville distribution [CLA80], [BOU85]: 

W,(x,/)= jx(x 
+ 
j) x\x - j) 

e- 2jftft dt 

which has becn widely adressed in the literature. More generally, the whole class of time-frequency 

energy distributions hâve been fully described by Cohen [COH66]: they can ail be seen as smoothed 

(or, more precisely, correlated) versions of the Wigner-Ville distribution. The spectrogram is itself 

recovered when the "smoothing" function is the Wigner-Ville distribution of the analysing window! 

A similar situation appears for time-scale energy distributions. For example, the scalogram can be 

written as [FLA90], [RIO90a] 

\CWT{x,af=\\WM(t,\) Wh�!�,a\) dtdv 

i.e. as some 2D "affine" correlation (some say corrélation on the affine group [GR084]) between the 

signal and "basic" wavelet 's Wigner-Ville distributions. This remarkable formula tells us that there 

exists strong links between Wavelet transforms and Wigner-Ville distributions. And, as a matter of 

fact, it can be generalized to define the most general class of time-scale energy distributions [FLA90], 

[RIO90a], just as in the time-frequency case. 

By progressively controlling gaussian smoothing functions, Fig. 6 shows that it is even possible 

to go continuously from the spectrogram of a given signal to its scalogram, provided that one passes 

by its Wigner-Ville distribution at the middle [FLA90], [RI090a]. This property may allow us to 

décide whether or not we should choose time-scale analysis tools, rather than time-frequency ones for 

a given problem. 
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BOX 5: CRmCALLY SAMPLED PYRAMID 

Because one stage of a pyramid décomposition leads to both a half rate low resolution signal and a 

full rate différence signal, we hâve an increase in the number of samples by 50%. This oversampling 

can be avoided, in which case the systera reduces to a subband coding System. 

To see this, note that the upper branc i of the pyramid System of Fig. 9 is équivalent to the lowpass 

branch (analysis and synthesis) of the subband System of Fig. 10. If the lowpass filter is part of a 

perfect reconstruction filter bank, the. différence signal is equal to the highpass branch of a subband 

System (since added to the lowpass branch. it would yield perfect reconstruction). That is, using the 

notation H (resp. G) to dénote the operator corresponding to lowpass filtering with h(n) (resp. g(n» 

followed by subsampling by two, and H , G their conjugate transposes (which correspond to 

upsampling by two and interpolating with the conjugate filter), we hâve (sce Fig. 10): 

d = (I-G,GXx) = H*H(x) (1) 

Because the filter impulse responses form an orthonormal set with respect to even shifts when we 

hâve an orthogonal filter bank, we hâve: 

HH* = I 

Thus, filtering d by hl(n) and subsampling by two leads to: 

H(J) = HH*H(jr) = H(jc) 

that is, exacdy equal to the highpass analysis output of a subband coder. From this subsampled 

version of x, we can recover d by (1) and thus perfectly reconstruct the input, showing that a 

critically sampled pyramid scheme is just a subband coding System. Note that we assume linear 

processing throughout. If non-linear processing is involved (like quantization), the oversampled 

nature of the pyramid can actually lead to greater robustness. 
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BOX 6: REGULAR SCALING FILTERS 

The regularity property of wavelet filters (see section IV. 4) has recently attracted attention to the 

digital signal processing community, especially for image coding applications [ANI90], [MAL89b]. 

In fact it is well known that the structure of computations in a Discrète Wavelet Transform and in an 

octave-band filter bink are identical. Therefore, besides the différent views and interpretations that 

hâve been given on them. the main différence lies in the filter design: wavelet filters are chosen so as 

to be regular. RecaU that this means, with the notation of section IV.4 and S, that the piecewise 

constant function a;sociated to the discrète wavelet séquence h.(n) of z-transform Gi(z) H(z2') 

converges (e.g. pointwise), asj indefinitely increases, to a regular limit function he(x). By "regular" 

we mean that ht(x) is at least continuous, or better, once or twice continuously differentiable. The 

regularity order is the number of times hc(x) is continuously differentiable. 

In practise the convergence is very fast (the discrète wavelets are almost undistinguishable from 

their analog counterparts after 3 to 7 iterations - it can be shown that the more regular the limit 

function, the faster the convergence to this limit [DAU90], [RIO90d]). This justifies the study of the 

limit hc(x) which is, in practice, attained after a few octaves. Since an error in a wavelet coefficient 

results, after reconstruction, in an overall error proportional to a discrète wavelet hj(n), regularity 

seems a nice property e.g. to avoid visible distortion on a reconstructed image [ANI90]. 

From equation (9) and (11), the knowledge of g(n) suffices to détermine the limit he(x). Several 

methods hâve been developped to estimate the regularity order of the limit knowing the coefficients 

g(n), most of which being based on Fourier transform techniques. Recently, a time-domain technique 

bas been developped which provides optimal estimâtes [DAU90c], [RIO90d]. 

It can be shown that in order the limit to be N times continuously differentiable, the z-transform 

G(z) must hâve at least N+l zéros at z=-l. This can be interpretated as a flatness condition on the 

spectrum at half sampling frequency. As a resuit, maximally regular wavelet filters are very close to, 

but différent from [DAU90b] maximally fiât filters [HER71]. It is still not clear whether maximally 

flat or maximally regular filters are most adapted to coding schemes [AKA90], [ANI90]. The minimal 
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regularity order necessary for good coding performance of discrète wavelet transform schemes, if 

needed at ail, is also not known and remains a topic for future investigation. 
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BOX 7: MULTIRESOLUTION ANALYSIS 

The concept of multiresolution approximation of functions was introduced by Y.Meyer and 

S.Mallat and provides a powerful framework to understand wavelet decompositions. The basic idea 

is that of successive approximation, together with that of "added détail" as one goes from one 

approximation to the next. finer one. A formai définition can be found in [MAL89a], [MAL89c], 

[MEY90], and we wiU only give the intuition behind the construction. 

Assume we hâve a ladder of spaces such that: 

'"dVlczVx cV0�z V, c K« c- 

with the property that if flx) e V,-, then f(x- 2"'*) £ V,-, k c- Z, and f(2x) e Vhl. Call Wt the 

orthogonal complément of Vi in V^j. Therefore: 

V i-1 = v i(D wj (1) 

Thus, Wi contains the "added détail" necessary to go from the resolution Vi to Vi-1. Iterating (1), it is 

clearthat: 

Vn*wMMbwMQwMb~ (2) 

that is, a given resolution can be attained by a sum of added détails. 

Now, assume we hâve an orthonormal basis for Vo made up of a function ge(x) and its integer 

translates. Because Vo e V j, gt(x) can be written in terms of the basis in V-1: 

g.(x) c. g.(2x - n) 

Then it can be verified that the function: 

A.U) = E (- 1)" c.., g. (2x - n) 
a 

and its integer translates form an orthonormal basis for WQ. Because of (2), it can be shown that hc(x) 

and its scaled and translated versions form a wavelet basis of L2(R) [MAL89a], [MAL89c], 

[MEY90]. 

The multiresolution idea is now very intuitive. Assume we hâve an approximation of a signal at a 

resolution corresponding to Vo. Then a better approximation is obtained by adding the détails 

corresponding to Wq, that is, the projection of the signal in W 0 which amounts to a weighted sum of 
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wavelets at that scale. Thus, by iterating this idea, a signal in L2(R) can be seen as the successive 

approximation or weighted sum of wavelets at finer and finer scale. 
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FIGURES CAPTIONS 

Fig. 1. Time-frequency plane corresponding to the Short-Time Fourier Trransform. It can either 

be seen as successive Fojrier Transforms (column by column) or as a modulated filter bank (line by 

line). 

Fig. 2. Basis functions and time-frequency resolution of the Short-Time Fourier Transform 

(STFT) and the Wavelet Transform (WT). (a) Coverage of the time-frequency plane for the STFT, 

(b) for the WT. (c) Corresponding basis functions for the STFT, (d) for the WT ("wavelets".) 

Fig. 3. Tiling of the frquency domain (a) for the STFT (uniform coverage) and (b) for the WT 

(logarithmic coverage.) 

Fig. 4� Régions of influence in rime (a),(b) or frequency (c),(d) drawn as shaded areas in the 

time-scale (a), (c) and time-frequency (b), (d) plane (see text) 

Fig. 5. Spectrograms and scalograms. Analysis of the sum of two Dirac puises and two 

sinusoids (Fig. 5.1), of three starting sinusoids (Fig. 5.2.), of a chirp signal (Fig. 5.3.), and of a 

stretch of speech signal (Fig. 5.4.) 

(a) Amplitude of the STFT. (b) Phase of the STFT. (c) Amplitude of the WT (d) Phase of the WT. 

Fig. 6. From spectrograms to scalograms via Wigner- Ville. By controlling only one prameter ji, 

it is possible to make a full transition between time-scale and time-frequency analyses. Hère seven 

analyses of the same signal (composed of three Gaissian packets) are shown. Note that the best joint 

dm-frequency resolution is attained for the Wigner-Ville distribution, while both spectrogram and 

scalogram (which can be thought of smoothed versions of Wigner- Ville) provide reduces cross-term 

effects compared to Wigner- Ville, (after [FLA90], [RIO90a].) 

Fig. 7. Dyadic sampling grid in the time-scale plane. Each node corresponds to a wavelet basis 

function hjit) (see text.) 

Fig. 8. Reconstruction Signal/Noise Ratio (SNR) error after frame décomposition for différent 

sampling densities a. 
= 2W (N = number of voices per octave), b=aj k b0. The basic wavelet is the 

Morlet wavelet (modulated Gaussian) used in [GR089]. The accurateness of the reconstruction 
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grows as N increases and b0 decreases, i.e. as the density of the sampling grid of Fig. 7 increases. In 

other words, redundancy refines reconstruction, (after [DAU90a].) 

Fig. 9. Pyaramid Scheme. Derivation of a lowpass, subsampled approximation y(n), from which 

an approximation a(n) tox(n) is derived by up-sampling and interpolation. 

Fig. 10. Subband Coding Scheme. Two subsampled approximations, one corresponding to low 

and the other to high frequencies, are computed. The reconstructed signa- is obtained by re- 

interpolating the approximations and summing them. The filters on the left form an analysis filter 

bank. while on the right is a synthesis filter bank. 

Fig. 11. Block diagram of the Discrète Wavelet Transform implemented with discrete-time filters 

and subsampling by two. 

Fig. 12. Iterated low-pass filter. (a) h(n) = (1,3,3,1) converges to a regular, smoothed function. 

(b) h(n) = (-1,3,3,-1) converges to a fractal function (see text.) 

Fig. 13. Scaling functions satisfying two-scale différence equations. (a) the hat function. (b) the 

D4 wavelet obtained from a length-4 regular filter by Daubechies. 
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Fig. 1. Time-frequency plane corresponding to the Shon-Timc Fourier Trransform. It can either 

be seen as successive Fourier Transforms (column by column) or as a modulated filter bank (line by 

line). 
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Fig. 2. Basis functions and time-frequency resolution of the Shon-Time Fourier Transform 

(STFT) and the Wavelet Transform (WT). (a) Coverage of the time-frequency plane for the STFT, 

(b) for the WT. (c) Corresponding basis functions for the STFT, (d) for the WT ("wavelets".) 



Fig. 3. Tiling of the frquency domain (a) for the STFT (uniform coverage) 
and (b) for the WT 

(logarithmic coverage.) 

Fig. 4. Régions of influence in rime (a),(b) or frequency (c),(d) drawn as shaded areas in the 

time-scale (a), (c) and time-frequency (b), (d) plane (see text.) 
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Fig. 5. Spectrograms and scalograms. Analysis of the sum of two Dirac puises and two 

sinusoids (Fig. 5.1), of three starting sinusoids (Fig. 5.2.), of a chirp signal (Fig. 5.3.). and of a 

stretch of speech signal (Fig. 5.4.) 
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Fig. 6. From spectrograms to scalograms via Wigner- Ville. By controlling only one prameter li, 

it is possible to make a full transition between time-scale and time-frequency analyses. Hère seven 

analyses of the same signal (composed of three Gaissian packets) are shown. Note that the best joint 

tim-frequency resolution is attained for the Wigner-Ville distribution, while both spectrogram and 

scalogram (which can be thought of smoothed versions of Wigner-Ville) provide reduces cross-term 

effects compared to Wigner- Ville, (after [FLA90], [RIO90a].) 
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Fig. 7. Dyadic sampling grid in the time-scale plane. Each node corresponds to a wavelet basis 

function hjjit) (see text.) - 

Fig. 8. Reconstruction Signal/Noise Ratio (SNR) error after frame décomposition for différent 

sampling densities a0 
= 21JN (N = number of voices per octave), b=aj k b0. The basic wavelet is the 

Morlet wavelet (modulated Gaussian) used in [GR089]. The accurateness of the reconstruction 

grows as N increases and b0 decreases, i.e. as the density of the sampling grid of Fig. 7 increases. In 

other words, redundancy refines reconstruction, (after [DAU90a].) 



Fig. 9. Pyaramid Scheme. Derivation of a lowpass, subsampled approximation y(n), from which 

an approximation a(n) to x(n) is derived by up-sampling and interpolation. 

Fig. 10. Subband Coding Scheme. Two subsampled approximations, one corresponding to low 

and the other to high frequencies, are computed. The reconstructed signal is obtained by re- 

interpolating the approximations and summing them. The filters on the left fonn an analysis filter 

bank, while on the right is a synthesis filter bank. 

Fig. 11. Block diagram of the Discrète Wavelet Transform implemented with discrete-time filters 

and subsampling by two. 
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Fig. 12. Iterated low-pass filter. (a) h(n) = (1,3,3,1) converges to a regular, smoothed function. 

(b) h(n) = (-1,3,3,-1) converges to a fractal function (see text) 
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Fig. 13. Scaling functions satisfying two-scale difference equations. (a) the hat function. (b) the 

D4 wavelet obtained from a length-4 regular filter by Daubechies. 
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Abstract � A global formalism for the analysis and synthesis of discrete-time signais at 

différent resolutions is presented in this paper. It uses précise définitions of scale and resolution to 

unify the Discrète Wavelet Transform (DWT), octave-band perfect reconstruction Filter Banks, and 

Pyramid Transforms in a common framework. Thèse schemes are described as a decomposition of 

an original signal into multiresolution "détails": in a DWT, thèse détails are supported by discrète 

wavelets. 

Although close to analog models such as wavelet séries decomposition, this approach is purely 

discrete-time-based, and is therefore readily applicable to practical Digital Signal Processing tasks. 

In addition, it has the same mathematical richness than the corresponding analog models, including 

several properties or filter design criteria such as biorthonormality, orthonormality and regularity. 
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INTRODUCTION. 

Wavelet Transforms, Octave-Band Filter Banks and Pyramid Transforms, which hâve been used 

for différent purposes in various fields-of Electrical Engineering and Mathematics, hâve been 

recognized recently as différent views of a common theory. This theory is hereafter referred to as 

Multiresolution Analysis and Synthesis. 

The aim of this paper is not to provide a complète state-of-the-art in Multiresolution Theory or 

Wavelet Theory (see, e.g., [6], [8], [29]) � nor is this paper intended to paraphrase mathematical 

concepts [22], [23]. Rather, this paper intends to enlighten various links between Filter Banks [31], 

Pyramid Transforms [5] and Wavelets [8], while deliberately focusing on discrete-time signais. 

Before stating in more détail the motivations that lead to this paper, it is necessary to briefly 

outline the basic properdes of Wavelet Transforms and review their connections to Filter Banks. 

The Continuous Wavelet Transform has been first introduced by Goupillaud, Morlet and 

Grossmann [15], [16]. It maps a one-dimensional signal x(t) into a two-dimensional représentation 

in a time-scale plane (b, a), as follows. 

CWT(a, b) = am Jx(r)\|/*(^) dt (1) 

The functions of time: V(^), called wavelets, are used to band-pass filter the signal. This is a 

sort of time-varying spectral analysis, where the scale parameter a plays the rôle of a local 

frequency: for large a, stretched wavelets analyze low frequencies; for small a, short, contracted 

wavelets analyze high frequencies. It is a multiresolution analysis, because the time-frequency 

extent of wavelets varies in the time-scale plane (b, a) according to a constant-Q analysis [36] � 

this feature is not provided by e.g. Short-Time Fourier Transforms [3]. As one would expect, the 

Continuous Wavelet Transform is mostly used in Signal Analysis. 

For coding or compression purposes, it is wise to economically represent the signal in terms of 

wavelet coefficients (1), hence to discretize time-scale parameters (b,a). Scale is often discretized 

octave by octave [8], i.e., a = 2j, j e Z, and wavelets are shifted in direct proportion to their extent, 

i.e., b = k 2j. Then, wavelet coefficients become inner products of the signal against analyzing 

wavelets \$. it): 

\x(t)M?]�k{t)dt, (2) 

where Vj, ,(f) 
= 2-j/2y(2-j t - k). (3) 
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This model still applies to analog (continuous-time) signais. A rich, mathematical theory has been 

developped by several mathematicians (including Meyer [23], Mallat [21], [22]), which is 

commonly referred to as "Multiresolution Analysis." It is based on a description of approximated 

versions of signais at différent resolutions using so-called "Multiresolution Spaces." Some of thèse 

ideas previously occured in image coding [5], [1]. 

Meyer's theory of Multiresolution Analysis allowed several authors [7], [11], [20], [23], to 

construct spécial wavelet prototypes 'V(t) for which perfect reconstruction of the signal x(t) is 

possible via a Wavelet Series, 

x(t) = L L wik o/i. k(t) , (4) 
;eZ ieZ 

where synthesis wavelets \j/. At) are defined similarly as (3), possibly with a différent prototype 

\j/(r) * v(t), closely related to v(t) [7]. 

We now tum to the connection with Filter Banks. In order that wavelet séries coefficients (2) be 

computed efficiently, Mallat [21] has derived a recursive algorithm that iteratively computes (2) 

octave by octave. This algorithm can easily be transposed to provide an inverse algorithm for the 

reconstruction part. Mallat's direct and inverse algorithms tum out to be exactly an analysis and 

synthesis Octave-Band Filter Bank [30]. 

Wavelet theory is therefore closely related to Filter Bank theory. The latter, which has been 

previously developped for applications such as subband coding of speech [10], has greatly 

influenced the former; known FIR filter design techniques [17], [30] were independently used by 

Daubechies [11] to construct orthonormal wavelets of finite length satisfying (2), (4) with \jlr(r) = 

VU). Other FIR filter designs were recently used [7], [34], [35] to construct linear phase, 

"biorthonormal" wavelets for which \j/(r) * y (t) - 

The connection between wavelet séries and filter banks has thus been extensively studied 

already. However, the "discrete-time side" of wavelet séries has not been fully exploited yet. It has 

been mainly used as a technical necessity to either dérive fast algorithms (which simply rely on the 

filter bank structure itself - for further developments see [26], [27]) or construct analog wavelet 

bases (via filter design). Very little multiresolution wavelet theory has been developped, if not at 

ail, in the sole framework of discrete-time signais: according to what can be found in the literature, 

analog wavelets are the interesting objects that underly discrete-time computational tools. 

This situation is similar to the one formerly observed in Signal Processing for linear filters and 

Fourier transforms. Discrète filters, as well as the Discrète Fourier Transform, were once 

exclusively considered as discretized versions of their analog counterparts, rather than interesting 

objects of their own. Since the mid-sixties, however, Discrete-Time Signal Processing has emerged 

as an independent theory [25], that has subsequently allowed new developments. 
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Very likely, a fully discrete-time présentation of Multiresolution Theory would be more 

appropriate for most practical situations in Digital Signal Processing; as a matter of fact, one often 

processes digital signais as the interesting objects. For example, an image is generally thought of as 

a nxm-pixel 8-bit data array, not as basis coefficients of a two-dimensional square integrable 

function of L2(R2). Various image compression schemes hâve been derived, based on the wavelet 

model for analog signais [4], [37], but they are essentially discrète in nature. 

For this reason, this paper focuses on discrete-time signais. Its primary purpose is to develop a 

discrete-time multiresolution theory that e.g. permits to define a Discrete Wavelet Transform 

(DWT) in its own right � that acts on one-dimensional discrete-time signais. In a DWT, the 

interesting objects are the discrete wavelets. Extension to two-dimensional signais can be 

straightforward: a wavelet décomposition of an image can be simply obtained by processing rows 

and columns separately [4], [21]. Other methods exist [33], but the underlying ideas are the same as 

in one dimension, which is the framework considered in this paper. 

This paper is for most part self-contained: in writing the paper, care has been taken that the 

reader need not previous knowledge on wavelet basics (although some rudimentary knowledge of 

z-transforms and vector spaces is assumed). As a resuit, since the discrete-time and continuous-time 

approaches hâve many things in common, most developments and ideas presented in this paper are 

known to wavelet experts � yet they may not appear as presented in the literature. 

NOTATIONS 

x or (x AI Original signal: a discrète, complex-valued séquence. 

x" Its nth sample. 

8 Impulse signal: 5. 
= 0 if n;t{), ô0 = 1. 

1 Identity operator: Ix = x. 

G, H Low-pass (high-pass) filtering operator, with impulse response [gj ( [hj 

Gjc Low-pass filtered signal, i.e., the discrète convolution g 
* x. 

(Gx)n Its nth sample. When needed, the input sample index is shown, as in (Gxk). 

îx , ix Up-sampled and down-sampled signal: (î*)^*,. C^^+i^» and (^x\ ~ X7* 

GÎx, l-G'x Up-scaled and down-scaled signal (see section I). 

(x; y) or (xs; y� Inner product of signais {xj and [y J : (r, y) = l x" y 

Ilxll Norm of signal Il x 111 = (x; x) 1 X 12.1 
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1. DlSCRETE-TlME SCALING 

The aim of this section is to define precisely the concept of scale for discrete-time signais. This 

notion is inspired from the commonly used scale of road maps: given a "real" object, the scale of a 

représentation of this object is the ratio of the length unit of the représentation to the corresponding 

real length. Hère the "real object" is an original discrete-time signal [xj, which is at scale 1 by 

définition. In this paper, scale refers to discrète dme: a scaled version of [xj is either 

- up-scaled: a discrete-time signal similar to {xj , but sampled at a higher rate, or 

- down-scaled: a discrete-time signal similar to {xj, but sampled at a lower rate. 

Since scale is a relative notion, we focus on the description of operators that change the scale, 

Le., map a signal into a scaled version of it. Throughout the paper we restrict to changes of scale by 

an integer power of two (but other scale factors are sometimes used [18]). We therefore study two 

basic scaling operators: 
- up-scaling operator (by a factor 2): a discrète équivalent to the dilation x(t) -� x(t(2). 

- down-scaling operator (by a factor 2): a discrète équivalent to the contraction x(t) -» x(2t). 

Examples. Obviously the scale notion is related to multirate Systems. For example, a down- 

scaled version of ix.1 could be (x.1 itself, down-sampled: 

(H 
= 
x:z". (5) 

However, up-sampling: 

0, n odd 

is not a good candidate for up-scaling, since it inserts a zéro between every other sample of [xj; 

hence x and îx do not hâve similar évolutions in time. This can be corrected by further interpolating 

the samples, as in the following example, illustrated in Fig. 1. 

{xH/2 , 

n even 

We now détermine general expression for up and down-scaling operators. We need some basic 

assumptions: 
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(a) Scaling operators are linear. 

(b) When scaling a signal, time-shifts are scaled accordingly: 

If yn = up-scaled version of xr, then y,2, 
= up-scaled version of xh k. 

If y = down-scaled version of x., then y,, 
= down-scaled version ofx ... 

(c) Shape preservation: Scaled versions hâve similar time évolutions (similar shapes). 

The third point is difficult to be properly expressed. Therefore it is not considered until section 

Vin, where it is connected to the "regularity" property. 

Assumptions (a) and (b) resuit in the following characterizations, proven in Appendix A: 

The up-scaled version ofx is of the form GÎx, where GÎ dénotes up-sampling (6) followed 

by filtering with some impulse response (gj: 

(GT*)�-X S****- (8) 
k 

The down-scaled version of x is of the form iG'x, where �lG' dénotes filtering with some 

impulse response (g.1, followed by down-sampling (5): 

(^G'x). = L g,2A-k Xk (9) 
k 

The impulse responses {gj and [g'J are not necessarily equal. They are assumed low-pass in the 

sequel; intuitively this is required by assumption (c) above � section VIE gives a theoretical 

justification. The example (7) corresponds to a 3-tap up-scaling filter ga= .5, gQ=l. 

The corresponding flow graphs of up and down scaling operators are shown in Fig. 2. They 

tum out to be usual building blocks of analysis and synthesis Filter Banks [31]! Note that the 

operator notation used hère is very easily connected to flow-graph implementation: for example, 

GÎ-lG'x means that the input x successively encounters a filter of impulse response g', a down- 

sampler, an up-sampler, and finally a filter of impulse response g. 

Using only two operators (8), (9), one can compute scaled versions of the original signal {xj at 

ail dyadic scales s = 2-i, where ie Z. Simply, the up-scaling operator (8) doubles the scale, while 

the down-scaling operator (9) halves it. Scaling filters gH, g. remain fixed at ail scales, i.e., ail scale 

transitions are performed the same way, and no particular scale is privileged. 

However, a scaled version of a given signal [xj at a given scale s is not unique. For example, 

x, (Gît (iGT*. and (GÎf (iG')M (GÎ)W («iG'f x are ail "scaled" versions of x at scale 1! 

To characterize scaled versions of x we need another parameter than scale, namely, resolution. This 

will be discussed in section m. 
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II. HERMITIAN TRANSPOSITION AND INNER PRODUCTS 

Before introducing the notion of resolution, it is convenient to say a few words about Hermitian 

transposition of operators, and inner products. 

In matrix notation, the up-scaling operator is 

... 
94 92 90 g-2 9-4 X-I (10) 

Gîx= ... gs g3 gl 9-1 g-3 ... x0 
... 

96 94 92 90 8-2 
»** 

XI 

Its Hermitian transpose is, by definition, the operator obtained by transposing and complex 

conjugating the matrix (10), i.e., 

� 8Î � Si 94 9; 
... 

'" 
91 90 9: 92 9; 

... 

... 
93 92 g-l go gl 

... 

This is exactly the matrix form of a down-scaling operator (9), whose scaling filter is [g'.J- 

Following the Filter Bank terminology [31], [g\J is called the paraconjugate sequence of [gj 

(the connection with filter banks will be explained in section VI). Paraconjugation will be denoted in 

this paper with a tilde symbol: 

g" 
= paraconjugate oîgn 

= 
gO." 

We hâve thus shown that the Hermitian Transpose of the up-scaling operator GÎ is the 

paraconjugate down-scaling operator ÏG. Similarly, the Hermitian Transpose of the down- 

scaling operator iG' is the paraconjugate up-scaling operator G'î. 

Hermitian transposition is useful for several reasons. First, it has a flow-graph interprétation. In 

fact, it is well known [9], [25] that transposing a linear operator amounts to transposing its flow 

graph: the Hermitian transposed flow graph is obtained by reversing the directions of ail arrows � 

hence summing nodes become branching nodes and vice versa � and by complex conjugating the 

multipliers' coefficients. From the discussion above, it follows that the flow graphs of Fig. 2 are 

eachother's Hermitian transpose if and only if the scaling filters [gj and [g'J are eachother's 
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paraconjugate (11). In any case, the flow-graph computational. structures of up and down-scaling 

operators are always tranpose of eachother. This has useful implications for e.g. deriving 

algorithms [26], [27]: for example, once an algorithm has been derived to compute down-scaling, 

the transposed algorithm computes up-scaling (and vice versa), at the same computational cost if 

both scaling filters hâve same length. The situation is the same for direct and inverse Wavelet 

Transforms (see section VI). 

Another characterization of Hermitian transposition uses inner products and will be useful in the 

sequel. By definition, the inner product of two discrete-time signais {XII} and [yj is the number 

y (12) 
fcy� = E \y\= (��� x-i xo xi -) y'o 

Y, 

This définition requires that signais hâve finite energy, i.e., 

Hxll2 = �x;x) = X IX Il 12 � (13) 
Il 

which is assumed throughout this paper. The inner product (x; y) measures the "similarity" between 

x and y. It also permits to interpret signais as geometrical vectors: for example, the signais x and y 

are said to be orthogonal if (x; y) = 0. They are orthonormal if they moreover hâve norm unity, 

i.e., Ilxll = 11 y 11 = 1. 

Using the definition (12), it is easy to show that the Hermitian transpose O* of some operator 0 

can be altematively defined as satisfying 

(x; Oy) (Ofx; y), (14a) 

or, equivalently, 

(x; oty) (Ox; y), (14b) 

for any signais x and y. Thèse equations do not introduce a new concept: only notations are new. 

They are useful when dealing with inner products because of their conciseness: any operator on the 

left side of an inner product can be brought to the right side after Hermitian transposition, and vice 

versa. For scaling operators we can thus write 
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(x; Gty (Id x; y (15a) 

(X; iG'y) = �G,Tx; y), (15b) 

which stand for 

��) 

III. Discrete-Time RESOLUTION AND 

BIORTHONORMALITY 

In this section we define the resolution notion for characterizing différent versions of an original 

signal [xj at the same scale. Intuitively, the more information is présent in a scaled version of 

{xh), the higher the resolution. More precisely, we define the resolution parameter r as follows. 

A scaled version of {xj, obtained by action of up and/or down-scaling operators on [xj, is at 

resolution r=V (j?O) if it is characterized by one sample every other r-I='2I sampling periods of 

For example, x itself is at resolution 1. Its down-scaled version J.G'x (9), which is at scale 

5=1/2, is also at resolution 1/2, because the down-scaling operator throws away half of the 

samples. Note that in gênerai, the resolution of a signal cannot exceed its scale, otherwise it would 

be characterized by more samples than actually présent in the signal! Therefore, we always hâve 

resolution � scale, (16) 

and because we start from an original signal lx.1 at resolution 1, ail resolutions considered in this 

paper are negative powers of two: r=2"y,y�0. 

How is affected resolution by up and down-scaling operators? We hâve seen that down-scaling, 

when applied to the original signal [xj, cuts both scale and resolution by two. As for up-scaling, 

since an up-scaled signal is computed directly from the signal coefficients, no resolution is added. 

That is, up-scaling "magnifies" a signal but does not add new détails. In addition, despite low-pass 

filtering présent in up-scaling (8), it is not necessary that information is lost when up-scaling a 

signal. This is clear from the example (7). We therefore assume in this paper that the up-scaling 

operator GÎ is one-to-one: 

If x * y, then GÎx * GÎy (17) 

This can be proven if e.g. the scaling filter{gj is FIR, by noting that GÎx = 0 implies, from (8), 

S* * *n = S^i * *» = °� hence * = 0- 
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To summarize, there are two important rules conceming changes of scale and resolution: 

� When replacing the original signal x by its down-scaled version «iG'x, both scale and 

resolution are halved. (18a) 

� Up-scaling any signal via GÎ doubles its scale but leaves resolution unchanged. (18b) 

Another example permits to halve the resolution while leaving the scale unchanged. It plays a 

central rôle in the following. Consider 

Ax = GÎiG'x, (19) 

obtained by first down-scaling x, then up-scaling the resuit. From (18), this signal is at scale 1 and 

resolution 1/2. The operator A is therefore called the approximation operator at half the 

resolution. Note that A does not reduce to a filter because it is not shift-invariant. Its flow graph is 

depicted in Fi g. 3. 

Characterization of scaled signais. It remains to be found under which conditions the scale and 

resolution parameter uniquely détermine the scaled versions of the original signal {xj. That is, 

among ail possible scaled versions of (x.1 obtained using up and/or down-scaling operators, there 

should be only one scaled version at a given scale s and resolution r. We give several équivalent 

conditions. 

It is proven in Appendix B that each of the following statements implies the others: 

(i) A scaled version of lx. at scale s = 2" and resolution r 
= 2-j is unique. It is given by 

(GÎy-'(iG7'x. (20) 

(ii) The approximation operator at half the resolution (19) is aprojector, i.e., 

A'=A. (21) 

(iii) Up-scaling followed by down-scaling leaves the signal unchanged, i.e., 

J.G' GÎ = I. (22) 

(iv) The two families of shifted scaling impulse responses {g...2t } and {g'''-2k }, indexed by k, 

are mutually biorthonormal. (Recall that g" is the paraconjugate (11) of g'.) This means that 

\ 8n-2k ' 8 «-2J / _ Zj8n-2k 8 n-V 
~ j q jf . 

(23) 

Besides being équivalent to (i), conditions (ii)-(iv) can be interpreted as follows. First, (21) 

states that there is no use in re-approximating the approximation Ax of x at resolution 1/2. Equation 

(22) means that A = GÎiG' GÎiG' indeed reduces to GÎiG' =A by simplification of the 

middle term iG' GÎ = I. This is illustrated using flow graphs in Fig. 3 (b). 
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In addition, (20); (22) implies that the down-scaling operator iG' halves both scale and 

resolution only if it applies to signais such as x itself (18a), which hâve same scale and resolution; 

however, for "over-scaled" signais -such as Ax- which hâve higher scales than resolutions, the 

operator iG' only halves scale and leaves resolution unchanged. 

The biorthonormality property (23) deserves attention. First, note that "biorthonormality" is just 

a short-hand for: "scaled versions of the original signal [xj are uniquely determined by their scale 

and resolution parameters." Therefore, biorthonormality is not something optional: it should always 

hold in "cohérent" multiresolution Systems, for which multiresolution approximations are unique. It 

will be therefore generally assumed in this paper. What is optional is orthonormality, a spécial case 

of biorthonormality for which one further imposes 

g. = g'" ' (24) 

so that the family of shifted signais {g...2.t} form an orthonormal set (see (23)) 

8*-2i - \ if -j . 
(25) 

Note that from (24) and the discussion of section n, orthogonality is again a shorthand for the 

combination of two properties: biorthogonality, plus "up and down scaling operators are Hermitian 

transpose of eachother." 

IV. MULTIRESOLUTION RESIDUE Signals AND PYRAMID 

TRANSFORMS 

The aim of this section is to give a précise idea of what a mutiresolution signal décomposition 

can be, based on the définitions and properties of scale and resolution discussed in the preceding 

sections. We assume that scale and resolution characterizes scaled signals as discussed in the last 

section (conditions (21)-(23)). Intuitively, in a multiresolution analysis, the original signal ix.1 is 

decomposed into several multiresolution components associated to différent resolutions. During 

synthesis, the signal is reconstructed from its multiresolution components. 

From (20), (22), a signal at some resolution r contains ail the necessary information to obtain 

versions at lower resolutions � r. Therefore, to avoid redundancy of information in a 

multiresolution analysis, the signal is decomposed into residue signals that catch "détails" from one 

resolution to the next finer one. Thèse residue signals are defined by différence as follows. 

Assuming that 
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s k 2r, .. (26) 

the residue signal of {xj at scale s and resolution r is the signal that doubles the resolution (i.e., 

increases resolution from r to 2r) when added to the scaled version of at scale s and resolution 

scaled signal + residue signal = scaled signal (27) 

(scale s, resolution r) (scale s, resolution r) (scale s, resolution 2r) 

Note that, from (26), the right-hand side of (27) is well defined according to (16). 

Therefore, a multiresolution decomposition of an original signal lx.) is a collection of residue 

signals at sucessive resolutions 1/2, 1/4, 1/8, .... Thèse residue signals are computed during 

multiresolution analysis. During multiresolution synthesis, the signal [xj is reconstructed 

starting from a low resolution scaled version of [xj, by applying (27) iteratively to increase 

resolution until resolution 1 is reached. Note that with this définition, a multiresolution 

decomposition differs from another only by the scales of multiresolution components. 

The Pyramid Transform is a direct application of thèse ideas. It was first introduced by Burt and 

Adelson [5] for image coding purposes; we describe hère pyramid décompositions for one- 

dimensional signals in the framework of this paper. A Pyramid Transform on J "octaves" 

décomposes the signal {xj into the collection of residues signals at scale 2.Cj-1) and resolution 2-i, 

where ;'=1, .... /, plus a low resolution version of (x.1, namely the scaled signal at scale and 

resolution 2V. This description is sufficient to fully describe a Pyramid Transform. 

It is easy to connect this to the well-known, original description of Burt and Adleson [5], by 

deriving a computational tree-structure for its implementation: Start with one step of decomposidon, 

i.e., let/=l. From the above definition, the original signal x is decomposed into two components: 

its residue signal at scale 1 and resolution 1/2, which from (19), (27) is 

x-Ax=x-GÎiG'x, (28) 

plus its scaled version at scale and resolution 1/2, i.e., iG'x. The corresponding flow graph is 

depicted in Fig. 4 (a). To reconstructx, iG'x is brought back to scale 1 and (27) is applied, i.e., 

GÎ (iG'x) + (x - GÎiG'x) = x. (29) 

In other words, one simply adds what has been previously substracted! The corresponding flow 

graph is depicted in Fig. 4 (b). This decomposition readily extends to a full computation of a 

Pyramid Transform on J octaves. Simply note that from the définition above, both scale and 

resolution parameters of multiresolution residue signals are halved at each stage (octave). Now, 

since any residue signal is a différence of scaled versions of x, the rules (18) apply for residue 

signals as well. Therefore, scale and resolution parameters of a multiresolution residue signal are 

halved when replacing x by iG'x. This amounts to iterate the basic computational structure (one 
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step décomposition) of Fig. 4 (a), (b) on (iG7x at each step (octave) ;'=0, ..., 7-1. This gives the 

flow graph of Fig. 4 (c). 

In Burt and Adelson's terminology [5], the above multiresolution residue signals form a 

Laplacian Pyramid, while the set of versions of {xj at scales 2" (i=O, ..., 7) is called a Gaussian 

Pyramid. The terminology "pyramid" cornes from the fact that multiresolution components are 

computed at successive scales, from scale 1 ("base" of pyramid") to scale 2,(1-1) ("top" of pyramid). 

"Gaussian" and "Laplacian" were named after the type of scaling filters used in [5]. 

Note that from the discussion above, perfect reconstruction is always vouched since one adds 

backs what has been substracted (see (29)). Therefore there is no constraint at ail on scaling filters 

gn and g'n. Even the basic biorthonormality constraint (23), which ensures uniqueness of scaled 

versions of x at a given scale, is not necessary for the scheme to work ! 

There is a price to pay, however: the multiresolution residue signals live at scales s=2" (i=0, ..., 

7-1) that are always twice their resolution. Therefore the transform is overcomplete: starting from 

an original signal sampled at rate 1/T, the multiresolution components of a Pyramid Transform are 

sampled at rate 1 / T ^ 2"' + 2-J = 2 / T. This means that there are about twice as many transform 

coefficients than the original signal samples! (In two dimensions this factor becomes 4/3 [1], [6], 

In contrast with the Pyramid Transform, the Discrète Wavelet Transform, presented next, is not 

overcomplete (there are as many wavelet coefficients as signal samples) but requires design 

constraints on scaling filters. 

V. THE DISCRETE WAVELET TRANSFORM AND PERFECT 

RECONSTRUCTION FILTER BANKS 

We hâve seen in the preceding section that a potendal drawback of the Pyramid Transform is its 

overcompleteness, due to the fact that residue signals involved are "over-scaled", i.e., their scale 

parameter is always twice the resolution parameter. In a Discrete Wavelet Transform (DWT), each 

residue signal is "critically sampled," i.e., its resulting scale and resolution parameters are equal. To 

describe the DWT we therefore need to extend the basic definition of residue signals (27) to the case 

where scale and resolution parameters are equal (thus violating the previous restriction (26)). 



64 

RIOUL: DISCRETE-TIME MULTIRESOLUTION THEORY -13- 

This can bc easily done by considering a perfect reconstruction two-band filter bank [24], [30], 

[32] depicted in Fig. 5 (a), in which the approximation operator at half the resolution (see Fig. 3 

(a)) explicitly appears. The perfect reconstruction condition can bc rewritten in operator's notation 

as 

x - GÎ iG'x = Ht iH'x, (30) 

where HÎ (.1.H', respectively) is defined similarly as GÎ (iG', respectively), but with différent 

filter impulse responses hm (h\, respectively). It is a well-known fact [24], [30], [32] that thèse 

filters should be high-pass, since the scaling filters gm and g. are assumed low-pass. 

Now, (30) is recognized as the residue signal of [xj at scale 1 and resolution 1/2 (28). We can 

therefore define iH'x as the residue signal of (x.1 at scale 1/2 and resolution 1/2. It is brought 

back to scale 1 by applying HÎ to give (30). This definition is immediately extended to residue 

signals at other common values of scale and resolution by application of the rules (18) as in the 

preceding section. This gives 

.1.H'(.1.G'y-lX (31) 

as the residue signal at scale and resolution 2-i (j�0). 

Using this extended définition of multiresolution residue signals, we are now ready to define the 

Discrète Wavelet Transform (DWT): A DWT of a signal {xj on J "octaves" décomposes it into 

"wavelet coefficients" {w'.}, which are precisely the residue signals (31) at scale and resolution 2'', 

for y=l, ..., J, plus a low resolution version of {xj, namely, the scaled signal at scale and 

resolution 21 called [v'J. To reconstruct the signal {xj, residue signals are first up-scaled by 

means of HÎ (as in (30)), then the basic definition (27) is applied to iteratively increase the 

resolution until resolution 1 is reached, i.e., until the original signal {xj is recovered. This is 

performed by the Inverse DWT (IDWT). 

This définition easily recognized as an octave-band filter bank [30] of Fig. 5(b), since in order to 

halve both resolution and scale parameters of residues signals at each step j, one just itérâtes the 

basic computational cell of Fig. 5 (a) to the scaled version (iG'vx, according to the rule (18a). In 

Fig. 5 (b), the analysis filter bank computes the DWT, whereas the synthesis filter bank computes 

the IDWT. Note that since this filter bank is critically sampled, there are as many computed wavelet 

coefficients as the signal samples. This can be considered as an improvement compared to the 

situation encountered in the last section for the Pyramid Transform. However, the four low-pass 

{g,.}, i8'H}� and high-pass (h.1, [h'J filters are constrained to satisfy the perfect reconstruction 

property (30). 

Since a DWT and an octave-band perfect reconstruction Filter Bank share the same 

computational structure, it can bc argued that nothing is new with the DWT. However, one interest 

of the DWT is that it provides an alternative formalism, which focuses on temporal multiresolution 
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decomposition rather than on subband frequency décomposition^ This formalism can be developped 

as a signal decomposition using temporal basis functions called wavelets, as follows. 

Define the basic analysis (synthesis) scaling sequence to be g~\ (gn, respectively). Also define 

the basic analysis (synthesis) wavelet to be the corresponding high pass impulse responses, i.e., 

h'll (hn, respectively). The whole set of scaling séquences and wavelets is obtained from the basic 

scaling séquences and wavelets by successive up-scalings: 

analysis scaling sequences: g,j = (G'îy"1 g" 

analysis wavelets: h'' = (G'îy"1 h' 

(32) 

synthesis scaling sequences: gi = (GÎy1 g 

synthesis wavelets: hf = (G fy-l h 

Then we hâve the following, proven in Appendix C: The wavelet coefficients wik of the original 

signal {x,,} at octave j 0=1» �, 7), that is the residue signal at scale and resolution 2V, are inner 

products (12) of X with the corresponding analysis wavelets: 

� 
= 

(XII; h\-vk � = LXII �LvJ� y-L (33a) 

Similarly the low resolution component is 

� = (x*�8'J.-2�k) (33b) 

Thus, the DWT on 7 octaves computes the inner products (33). Then, the Inverse DWT (IDWT) 

reconstructs the signal as a linear combination of shifted synthesis wavelets weighted by the 

corresponding wavelet coefficients, plus a very low resolution approximation of x, which is 

obtained similarly: 

*, Wk hi.-2j + 
Vk gj,2',t' (34) 

j=l k t 

Equations (33)-(34), proven in Appendix C, are simply a rewriting of the previous définition of the 

DWT/TDWT. They show that wavelet basis séquences underly a multiresolution decomposition: for 

example, each wavelet #�_2�t 
� shifted in proportion to their scale, as is usual [8] � contributes to 

represent x at a given resolution 2-i, around a given location k2'J in the signal. 
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VI. BIORTHONORMAL AND ORTHONORMAL DISCRETE 

WAVELETS 

The biorthonormality property (23) derived in section El ensures that scale and resolution 

parameters uniquely détermine a scaled or residue version of an original signal [xj . In a DWT, we 

moreover hâve the constraint of perfect reconstruction (without delay) (30) of the two-band filter 

bank of Fig. 5 (a). Because of perfect reconstruction, the biorthonormality property can be extended 

to wavelets: in fact, restricting to FIR filters for convenience, it is shown in Appendix D that the 

four filters g, g', h, h' are related by 

(When the filters are moreover assumed causal, this set of equations is slightly affected and induces 

a delay on the output of the filter bank.) Therefore, to actually design a DWT it is sufficient to find 

two low-pass filters satisfying biorthonormality (23) and to assign high-pass filters by (35). Now, 

using (35) and biorthonormality (23), it turns out that the two families of analysis and synthesis 

wavelets are mutually biorthonormal not only across time-shifts at a given scale, but also across 

scales: 

�*_,. 
*".-� � = 2�.'-*. (*".-,��= { if k = l and 

���A 

proof is given in Appendix D. In fact Appendix D shows more, namely that biorthonormality 

(23), hence (36) is already implied by perfect reconstruction. Thus, biorthonormality always occurs 

in a DWT because it uses a perfect reconstruction filter bank. 

Biorthonormality of wavelets (36) is perhaps easier to undertand if we note that, in (34), the term 

contributing to resolution 2-i is 

I �*.î î�\-vk)»H-2W (37) 
k 

Now (36) allows (37) to be a projection of x onto the subspace of signals spanned by the wavelets 

{/r')i_2/t}, since if x belongs to this subspace, then using (36) one finds that (37) reduces to x. In 

other words, owing to biorthonormality, the DWT décomposes a signal into projections of this 

signal onto subspaces corresponding to différent resolutions 2-1 (/=!,.... 7). This point of view is 

close to the original "Multiresolution Analysis" theory of Meyer [23] and Mallat [22]. 
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The Orthonormal Case. 

We hâve seen in section m that the orthonormal case is a spécial case of biorthonormality for 

which one further imposes gll = From (35), this implies 

hm=h\. (38) 

Thus, analysis and synthesis wavelets are equal. From the discussion of section II, it follows that 

the analysis and synthesis filter banks of Fig. 5 (b) which perform the DWT and the IDWT 

respectively, are Hermitian transpose of eachother. In other words the DWT is an orthogonal 

transform: it is composed of lossless or paraunitary two-band filter banks [31] for which analysis 

and synthesis filters are paraconjugate of eachother. 

From (38), (36), the wavelets form an orthonormal basis: 

hence (37) is now an orthogonal projection of x. This means that among ail signals y belonging to 

the subspace spanned by the {hin_2Jk k1, (37) is the one that minimizes the quadratic distance llx - yll2. 

Therefore, orthonormality can also be thought of as the condition for which multiresolution 

components are most similar to the original signal [21]. 

Orthonormality is often considered as an essential property for coding applications (see e.g., 

[21]), where the coding strategy is based on an LMS error criteria. However it is well known that 

orthonormal filters cannot be linear phase, except for a trivial choice [11], [35]. Note that 

orthonormality also simplifies the design: scaling and wavelet séquences are easily deduced from 

each other since (35) reduces to hn = (-1)" g\n. 

VII. COMPARISON WITH WAVELET SERIES 

There is a remarkable parallelism between the DWT, presented in the preceding section, and its 

countinuous-time counterpart, which has been developped for functions of a continuously varying 

parameter by Mallat [21], [22], Meyer [23], Daubechies [11], [7] and other authors. We refer to the 

latter as the orthonormal or biorthonormal wavelet series decomposition. Of course, this analog 

model uses a continuous version of the inner product (12), namely 
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(x(t);y(t)) =jx(t)y(t)dt.. (40) 
and applies to analog signals x(t) which hâve finite energy ( x(r) ; x(t) ). Also, up-scaling is the 

simple dilation x(t) -» -fe x(t/2) (in the présentation of the DWT above, the constant V2 has been 

integrated into the discrète scaling séquences). As for the DWT, one defines analysis and synthesis 

basic scaling functions, denoted by �|�(0 and �J�(r), and analysis and synthesis basic wavelets xj(t) 

and V(t). The whole set of scaling functions and wavelets are deduced as in (32), by successive up- 

scalings. For example, the synthesis wavelets are yty) = 2'in \\f(2'jt). The other basis functions 

involved, namely �j^(f), Vy'(0» e(t) are defined similarly. The wavelet séries coefficients arc 

(compare with (33a), (33b)) 

n x(t) i-V i(t-2ik) 

Vk = {x(t);$\t-2Jk)). (41) 

The reconstruction part uses a wavelet séries (compare with (34)) 

x(t) = XX K V('-2y*) + £ V\ tf(t-2Jk). (42) 
j=1 * * 

Analog wavelets are biorthonormal (compare with (36)) 

�*MK)ÎVXWfO�-{ 0 otherwise 
(43) 

and, of course, orthonormality occurs when analysis and synthesis wavelets are equal. Other 

properties such as symmetry or linear phase [7], [34], [35], finite length or "compact support" [7], 

[11], [35] are also expressed equivalently as they would be in the discrete-time case. 

Therefore, the sole ability of the wavelet transform to do multiresolution signal decomposition, 

using orthonormal or biorthonormal bases, should not be determining to décide whether to choose 

the discrete-time model or the continuous-time one, because both models share the same 

properties. 

It has been argued, however, that the regularity property is an exception to this rule: continuous- 

time wavelets are said to be regular if they are at least continuous, possibly with several continuous 

derivatives. Evidently this cannot be expressed directly on discrete-time signals. However we show 

in the next section that the regularity property can be expressed for discrete-time wavelets, and that 

the effect on the multiresolution analysis and synthesis are équivalent to what happens in the 

continuous-time case. Therefore, even the regularity property is no exception. 
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. Because of the strong parallelism that exists between the discrete-time and the continuous-time 

formalisms, it can be shown [7] that a DWT can always be deduced from a biorthonormal analog 

wavelet basis. More precisely, the discrète counterparts are defined by the relations [7] 

�(t) = V2 £ g'J(2t-n), v(r) = V2 £ (2 t- n), 

(44) 

(|�(r) = V2 J 8� �I�(2t-n), v(t) = VI £ hm y(2t-n). 
a a 

Furthermore, additional properties satisfied by continuous-time wavelets, such as orthonormality, 

symmetry, and finite length are automatically satisfied by the associated discrete-time wavelets [11], 

[7]. Thus, a continuous wavelet séries decomposition scheme induces an associated DWT, the latter 

being implemented as an octave-band Filter Bank. Moreover, fed by the discrète input (0.1, this 

filter bank provides the continuous-time wavelet séries coefficients (W,1 (/=1, ..., 7) and (V.1 } 

[7]. The algorithm was first derived by Mallat [21] in the context of orthonormal wavelets (see also 

[26], [27]). However, any arbitrary DWT cannot always be deduced from a Wavelet Séries 

decomposition scheme, because this association implies that the obtained discrète wavelets satisfy 

other constraints than (23), (35). For example, they must satisfy the relations [7] 

1 h,. = L h',. = 0, (45) 
a a 

which are not always met in perfect reconstruction filter banks [24], [30]. 

This has motivated several researchers [7], [19] to détermine the minimal conditions under which 

the converse deduction holds, i.e. under which continuous-time wavelet bases can be deduced from 

discrete-time wavelet bases. Necessary and sufficient conditions were recently derived, which tum 

out to be quite technical [7], [19]. It was previously shown [11], however, that a sufficient 

condition for the équivalence between the continuous-time case and the discrete-time case is the 

regularity property, which is by itself interesting; it is discussed in the next section. 

VIII. FILTER REGULARITY 

The regularity property was first required on continuous-time wavelets in order that analysis and 

synthesis be performed with "smooth" basis functions [8], [23]. Necessary conditions were then 

derived on discrète FIR filters involved in a DWT, so that they generate regular, compactly 

supported continuous-time wavelets [11], [7]. Therefore, the regularity property, brought by 
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wavelet theory, was soon recognized as a new design constraint for perfect reconstruction filter 

banks. The regularity property has also been observed in Pyramid Transforms [5]. 

The aim of this section is to show that, in multiresolution schemes, regularity can be properly 

expressed only in terms of discrète signals. We then make the connection with continuous-time 

basis functions and show how regularity can be taken into account in a filter design procédure. The 

results listed in this section can be found in [11], [13], [14], [28]. 

Intuitively, a discrete-time signal is "regular," or "smooth" if its samples vary smoothly in time. 

In the framework of multiresolution decomposition schemes, we give below a définition of 

"regularity," or "smoothness" for basis séquences obtained by successives up-scalings: the goal is 

to find the conditions on an up-scaling operator GÎ (8) under which signals like 

(Gîyx (46) 

vary smoothly, even for large j. We shall therefore say that the underlying scaling filter [gj is 

regular if the iterated signals (46) are. In a DWT, for example, regularity of the scaling filter [gj 

implies regularity for ail synthesis discrète wavelets and scaling séquences, since they are defined 

by successive up-scalings associated to [gj (32). On the other hand, regularity of analysis discrète 

wavelets and scaling séquences (32) holds if the scaling filter {g'J is regular. Note that regularity 

can also be studied for Pyramid Transforms because their équivalent basis functions [5] are also of 

the form (46). 

Regularity is believed to be useful in multiresolution decomposition schemes for several reasons 

[4], [2]. In a DWT, for example, any error ocurring in a wavelet coefficient wik results, from (34), 

in a perturbation in the synthesized signal which is equal to the corresponding synthesis wavelet 

séquence {#,_2�t}. It is therefore natural to require that this perturbation is smooth, rather than 

discontinuous, or even fractal-like, as in the example shown in Fig. 6 (a). This may be useful in 

e.g. image coding applications where a "fractal" perturbation is likely to "strike the eye" much more 

than a smooth one, for the same SNR level [4]. On the other hand, requiring that the signal is 

analyzed by smooth basis functions {h'JJ ensures that no "artificial" discontinuity (i.e., not due to 

the signal itself) appears in the wavelet coefficients �= (xm; h'1 ' , ). This should be of interest 

for compression purposes. 

Definition of Regularity. 

We study regularity for iterated signals like (46), i.e., for réponses to the operator (GÎy. We 

therefore consider the impulse responses 

t" 
= ((GÎy 5), (47) 

The following définition of regularity for t" is inspired from Hôlder regularity of continuous-time 

functions [14], [28] 
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. - For 0�a�l, gMs said to be regular of order r=a if it satisfies 

Xj^-t/JZc�r (48) 

where c is a constant independent of y and n. In other words, the slopes 

A^ = 
^-^/2-� (49) 

of the curve gJii plotted against n2'j, are constrained to increase less than 2i(1-a) as j increases: for 

a�l they may indefinitely increase (Fig. 6 (b) shows an example which satisfies (48) for 

oc=0.550...[12], [14]); for a=l they are always bounded (see Fig. 6 (c)). Note that the regularity 

condition (48) is stronger as a increases, thereby imposing smoother time évolutions of the 

séquence t". 
� In order to extend this definition to higher regularity orders, we impose (48) on the "discrète 

derivatives" of gn. The first "discrète derivative" of gi" is the slopes' séquence (49). The Nth 

discrète derivative A^V, is defined by applying N times the différence operator A. Now, giH is said 

to be regular of order r=N+a (0�cc�l) if its Mh discrète derivative AV� is regular of order a, i.e., 

if 

IAV�+1-AVj^c(2"0a (50) 

The example of Fig. 6 (c) is regular of order r � 2.102 [28]. Again this definition imposes a 

stronger condition as r increases; the condition (50) is hère imposed on "slopes of slopes" and 

therefore requires very smooth évolutions of 

Connection with Wavelet Series. 

It can be shown [28] that regular discrète wavelet and scaling séquences converge to continuous- 

time functions asj--7+OO. More precisely: 

the discrete curves {g'J (j gjal, (hi.1, {h'^J), when plotted against ni'', 

uniformly converge to cp(t) ($(r), V(0. ^(0. respectively). (51) 

(see [11], [28], for a more rigorous statement). 

In addition, thèse limit functions hâve the same Hôlder regularity order r as their discrète 

counterparts [28], Hôlder regularity r=N+a (0�a�l) being defined similarly as for discrete-time 

séquences: 

1 cp(N)(t+h) - cp(N)(t) 1 �c Ihla, (52) 

where ̂ (t) is the Nth derivative of cp(t) (compare with (50)). Note that a Hôlder regularity order 

r�N implies that N derivatives are continuous. 

Now, the continuous-time limits cp(t), �(t), ",(t), and \ji(t) can be used to define a Wavelet 

Séries decomposition as in section VII. Compacdy supported continuous-time wavelets hâve been 

designed by this method [11], [7]. 
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Therefore, owing to regularity, the identification between discrete-time and continuous-time 

wavelet schemes is complète: it is only a matter of préférence to say that continuous-time wavelets 

underly discrete-time ones (44) or vice versa (51). Likewise, the regularity property can be seen 

either on continuous-time functions (52) or on discrete-time séquences (50). 

A First Necessary Condition for Regularity. 

Regularity of the scaling filter (g.1 also implies shape preservation by the up-scaling operator 

GÎ (see assumption (c) of section I). In other words, up-scaling dilates the séquence {g'J but does 

not affect its shape: we have gi. = g1*1^ s g/+1i,+,, the approximations being sharper as j increases. 

Now since g**1 = GÎ gi, using (8), we hâve g,+12/i = £ gu g\_k (E gM) gjit, where L is the 

length of the scaling filter {gJ. Therefore ̂ gu = 1. Similarly one proves L Eu*\ 
= 1, starting 

t k 
from g/+lil+l ([28] contains a more rigorous proof). Thèse conditions are necessary conditions for 

shape preservation and for regularity. They can be written as 

L gll = 2 and �(-!)�*. = 0 (53) 

or as 0(^1^ 
= 2 and G(OU 

= 0, (54) 

where G^e**) is the transfert function of the scaling filter of impulse response [gJ. This justifies 

that scaling filters are preferably low-pass. 

Note that the first condition in (53) is simply a renormalization. In fact, in a DWT, one generally 

imposes [11], [7] 1: g" 
= 
X ^« = V2 so that biorthonormality (23) holds. Hence, the order of 

magnitude of the ig.1 decreases as 2'jl2 as; increases. This does not mean that the scaling 

séquences (gi.1 involved in a DWT are not regular; simply, one has to renormalize [gn] according 

to (53) so that the order of magnitude of [g'J is preserved for differentj's. 

Fig 6 shows several examples of iterated wavelet séquences (hi.) corresponding to différent 

choices of [gJ. In Fig 6 (a), the curve {Ji,.} rapidly diverge asj increases. This example does not 

even satisfy (53), therefore it is not continuous. The example shown in Fig. 6 (b) is the first 

Daubechies wavelet of length 4 [11]. It satisfies (53) but is clearly not very regular; this shows that 

(53) is not sufficient to obtain a high regularity order. Fig. 6 (c) is a very regular example.(see 

below). 

The example of Fig. 6 (d) is particularly interesting: it corresponds to one of Smith and Bamwell 

filters derived in [30]. Mathematically speaking, this example is not regular because (53) is not met. 
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However, in this case, the scaling filter has 40 dB attenuation in the stop band, hence the value of 

G(e"°) at (û=% is very small (about 10-2). As a resuit, (53) is "almost" satisfied and the iterated 

séquences [WJ "prétend" to be regular for smallj's. For largej's the curves eventually diverge, 

with strong oscillations near the modes of the wavelet (see Fig. 6 (d)). Although rejected by the 

mathematical definition above, such wavelets may be "regular enough" in applications where the 

number of octaves in the multiresolution decomposition is not too large. 

Necessary Conditions for Regularity: "Flat Filters" or "Vanishing Moments." 

A regularity order r�N requires more than (53), (54). In fact it can be shown [28] that the scaling 

transfert function G(�) is necessarily of the form 

G(e"°) = 2-N (l+eto) 
"+1 

F(0, (55) 

where F(l)=l. Conditions (53), (54) follow for N=Q. Hère (55) implies that up to N derivatives of 

the transfert function G(ei�a) vanish at W=1t, hence a regular scaling filter is "flat" at half the 

sampling frequency. In a DWT, using (35) one finds 

�ni A, = 0, i=O, .... N. (56) 

and similarly for [hj if the analysis scaling filter {g'J is "flat." Equation (56) means that the 

wavelet séquence { h\) has N+l vanishing moments [12], and this can be written similarly for the 

continuous-time wavelet iV (t) [12], [22], [23]. For example, the wavelet shown in Fig. 6 (c) has 

six vanishing moments. This property may be interesting by itself for some applications [12], [22]. 

The condition (55) or (56) can be easily integrated in a filter design procédure [7], [35]. 

However, it is only a necessary condition for regularity: there exist non regular examples for which 

(55) holds [28]! It is therefore important to a posteriori détermine the regularity order of a 

computed scaling filter {gJ. An efficient method is presented next 

Estimation of Regularity. 

Several regularity estimâtes hâve been derived. Daubechies estimate [11] is based on the 

détermination of maxima of spectra. It may require many computations to détermine a good estimate 

[11], [12] and is not optimal in general [28] (as far as the above définition is concerned). 

Daubechies and Lagarias hâve derived a method based on matrix algebra which yields optimal 

regularity estimates in some instances [14]. 

Another, easily implementable, method has been derived in [28]. We summarize it hère because 

it is of general applicability. It uses the séquence if,.} associated to F(ei�ù) in (55) to compute 

iterated sequencesl = (FÎy (8). Then, for any;', the regularity order is at least 
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N - i 1092 (57) 

(note that r. may be less than N). In addition, except for exceptional cases, r. (rapidly) tends to the 

optimal regularity order as j increases [28]. 

CONCLUSION 

The discrete-time multiresolution theory developped in this paper is entirely based on précise 

notions of scale and resolution (section I-IÏÏ). We hâve described both the Pyramid transform 

(section IV) and the Discrète Wavelet Transform (section V-VI) using thèse notions. We hâve 

shown that, in the context of discrete-time signais, the DWT is naturally implemented as an octave- 

band filter bank. 

Biorthonormality was derived as an essential condition for scaled versions of an original signal 

to be characterized by scale and resolution parameters. As explained in section VI, it also naturally 

arises in a DWT, because the DWT uses perfect reconstruction two-band filter banks. 

Orthonormality has been derived as a spécial case of biorthonormality, in which flow graphs are 

self transposed. 

Because this paper develops différent multiresolution techniques unified in a common 

framework, it enlightens either known or little-known links between the DWT and other 

multiresolution techniques: 

Links with Pyramid Transforms. The Pyramid Transform, as described by Burt and Adelson 

[8], is based on an intuitive notion of multiresolution decomposition of discrete-time signais, and 

the regularity property has been observed as well. The presentation of this paper therefore applies 

naturally to Pyramid Transforms (section IV). Note that since a Pyramid Transforms uses "over- 

scaled" multiresolution components, scale is hère clearly distinguished from resolution, both 

notions being sometimes confused in a DWT. 

Links with Continuous-Time Wavelet Series. We hâve seen that the discrete-time 

multiresolution theory derived hère shares the same rich properties as the continuous-time 

"multiresolution analysis" theory of Meyer [23]. Thèse include basis expansions, scale and 

resolution notions, orthogonality [11], [22] or biorthogonality [7], regularity [11], and the like. 

Therefore, it is only a matter of taste to décide whether analog wavelets underly discrete-time ones 

or vice versa. The DWT hence provides a cohérent alternative of seeing things, and both 

approaches hâve advantages and drawbacks. For example, a change of scale is evidently not so 

easily expressed for discrète séquences than it is for continuous-time signais. The discrète 
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approach, however, avoids technical proofs or makes them easier and readily provides numerical 

algorithms. 

Links with Filter Banks. Discrete-time Multiresolution Theory also gives a new way of looking 

at Filter Banks: it describes them as a temporal multiresolution décomposition rather than as an 

octave-band frequency décomposition. We hâve seen that new criteria in filter design are also 

brought by wavelets. In particular, there is a -presumably important- notion of regularity. In 

section VITI we hâve briefly discussed the regularity property for both discrete-time and continuous- 

time wavelets. 

Regularity has been taken into account in several FIR filter design procédures, in connection 

with other, classical criteria such as linear phase [4], [7], [34], [35] or orthonomality [11] (i.e., self 

transposition � see section VI). Although regular filters hâve been used in practical Systems [4], 

[4], [21], it is still not clear whether regularity is to play an important rôle in applications such as 

image coding. Besides, a good regularity estimate was not easily obtained [11]-[14]. In with 

respect, the récent estimate (57) might help [35]. Another, major difficulty in filter design is that 

many design constraints may be désirable (short lengths, linear phase, orthonormality, selectivity in 

frequency, regularity), and they often conflict with each other. For example, we hâve mentionned 

that orthonormality precludes linear phase, except for a trivial choice [11], [35]. It may therefore be 

necessary to relax most of the constraints in order to design scaling and wavelet filters that are e.g. 

close to be orthonormal, close to be linear phase, reasonably selective in frequency and with at least 

a given regularity order. Some results go in this direction: for example, [12], [30] contain 

orthonormal FIR filters which are close to being linear phase. On the other hand, [4], [7] contain 

biorthonormal, linear phase FIR filters which are close to being orthonormal. 

APPENDIX A 

GENERAL EXPRESSIONS FOR SCALING OPERATORS 

Proof of (8). Let ig.) be the impulse response of the up-scaling operator, that is the up-scaled 

version of 5 =1 if n=Q, 0 elsewhere. By assumption (b), g^ is the response to S.... Since the input 

signal can be written 

k 

its up-scaled version is, using linearity (a), 

which is (8). 
* 
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Proof of (9). Let- [g°J be the impulse response of the down-scaling operator to and 

{g^j} be the impulse response to (8.1 1. The input signal can bc written 

X, = Y, x 2* 0n-2Jk + X2k*l °»-l-2* 
k 

Its down-scaled version is therefore 

2-1 X2k8 ,..1: 
+ 

*2i+l �^i-t 

1 

Now let [g'J be defined by g2. 
= 
g. and g'2itt_l 

= 
gl". The down-scaled version becomes 

1 x 2k S 2n-2* X2k+l 8 2*-2Jk-l ' 
1 

which reduces to (9). M 

Appendix B 

DERIVATION OF BIORTHONORMALITY 

(i)^(ii). Since A approximates at half the resolution, it should leave Ax itself unchanged. That 

is, both Ax and A2x are at scale 1 and resolution 1/2, so they are equal and (21) holds. M 

(ii)=�(iii). Equation (21) can be written, using (19), 

Gîy = 0, 

where y = iG'(GÎiG' I) x. Now since up-scaling is one-to-one (17), this yields y=0, that is 

(iG' GÎ - 1) iG'x = 0, for ail signais x. (Bl) 

We now prove that any signal y with finite energy (13) can be written !G'x for some x. We can 

always write y = y' + y", 

where y' belongs to the range of the down-scaling operator iG' (hence it can be put in the form 

iG'x for some x), and where y" is orthogonal to any signal of this range: 

� y" ; iG'z ) = 0, for ail signais z. 

Using the transposition property (15b) one obtains 

( G 1 Î y" ; z ) = 0 for ail z, 

hence G'îy" = 0, which implies y"= 0 similarly as for GÎ (17). Therefore any signal y can be 

written y = y' = lG'x for some x. Now from (Bl), équation (22) immediately follows. M 

(iii)�=�(iv) Starting from (22) and the relation 
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and using (15b), we hâve 

( S,,-I:; S...,) (S...I:; (J.G' GÎS..) 

= �(G'T8)..2i;(GÎ8),2,) = |0 ^^ 

which is the biorthonormality property (23). M 

(iii)=�(i) From any possible expression of up-scaled versions of {xJ, simplify using (22) each 

time this is possible to obtain (20). a 

APPENDIX C 

DISCRETE Wavelet BASES 

Proof of (33): The residue signal at resolution and scale 27j (31) can be written 

Wk = (iH« (iG'V1 x\={ iW (iGT1 xm ; Ô ) 

Using the transposition property (15b) we hâve 

wik=(xii ; (G'îy-'H'ÎS^) 

-�x. ; ((G'IY1 À")..*» 
which reduces to (33a) by définition of h'j (32). One proves similarly that vJ = (iG'V x is 

équivalent to (33b). M 

Proof of (34): To reconstruct the signal, the wavelet coefficients W, and v7 are brought back to 

scale 1 and (27) is applied. This gives 

j 

x = Y, (Gîy1 HÎ ^ + (GÎlvl 
j=l 

Using the formula W = Y �8Hk (and similarly for v7), linearity and (32), this équation is easily 

seen to reduce to (34). É 
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Appendix D 

PERFEcr Reconstruction AND BIORTHONORMALITY 

Proof of (35) and biorthonormality (23), assuming perfect reconstruction (30). It is well 

known [24], [30], [31] that perfect reconstruction of the filter bank of Fig. 5 (a) can be expressed 

by two conditions, expressing that both aliasing and linear distortion are cancelled at the 

reconstruction. This can be written in matrix notation, using z-transforms: X(z) = Y xn z", as 

'G(z) 
H(z)\rG'(z)\j2" G(-z) H(-z))[h\z)) 0 

It follows that G'(z) = 2#(-z)/A(z) and H'(z) = -2G(-z)/A(z), where A(z) is the déterminant of the 

matrix. Assuming FIR analysis filters, A(z) is an odd polynomial in z and Z-1: A(z) = G(z)H(-z) - 

H(z)G(-z). In order that synthesis filters be also FIR it is therefore necessary that A(z) be an odd 

delay. Within normalisation and time-shifts for impulse responses we can write A(z) = 2z'K It 

follows that G'(z) = z H(-z) and H'(z) = -zG(-z), which reduces to (35). Note that whenever a 

causal implementation is required, one just hâve to shift finite impulse responses accordingly. 

Using the above relations the perfect reconstruction condition A(z) = 2z-1 becomes 

G(z)G'(z) + G(-z)G'(-z) = 2 

This can be interpreted using flow graphs as (22). It was shown in section III that this is équivalent 

to the biorthonormality condition (23). M 

Proof of (36): We have seen in section EU that (23) is equivalent to iG'GÎ = I. From the 

relations (35) on similarly proves that 

iH'HÎ = I, iH'GÎ = 0 and iG'HÎ = 0. (Dl) 

Now, using the définition (32), the left-hand side of (36) can be written 

( (Gîy-1 HÎ 8B.t ; (G'îy-1 IÍ'Î 8,., 

Using the transposition property (15b), we obtain 

( iH' (Gîy1 HÎ 

which, from (Dl), reduces to the right-hand side of (36). M 
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Figure CAPTIONS 

Fig. 1. Two successive up-scalings (by a factor 2) of an original discrete-time signal (top of 

figure). Up-scaling is performed by first-order interpolation (7). Up-scaled signais are stretched in 

time, but no resolution is added (see section HI). 

Fig. 2. Flow graphs of up and down scaling operators. (a) Up-scaling (8) is up-sampling plus 

post-filtering. (b) Down-scaling (9) is pre-filtering plus down-sampling. The filters of impulse 

response Ig.1 and {g'J are called scaling filters. 

Fig. 3. A flow-graph illustration of the fact that the approximation Ax of an original signal x at 

half the resolution is a projection. 

(a) Down-scaling, followed by up-scaling approximate x at half its resolution. 

(b) Re-approximating Ax by A leaves Ax unchanged. This is équivalent to (22), i.e., to the 

condition that up-scaling, followed by down-scaling, is the identity operator. 

Fig. 4. Flow graph implementation of the Pyramid Transform. 

(a) One step of decomposition; the original signal x is decomposed into a version of x at half its 

scale, and a residue signal at the same scale and half the resolution, the latter being obtained by 

différence. 

(b) The reconstruction part uses (27). Hère, one simply adds back what hâve been substracted. 

(c) The elementary cell of Figs. (a), (b) is iteratedJ times to provide a full Pyramid Transform on 

J "octaves" (hère J=3). 

Fig. 5. Flow graph implementation of the Discrète Wavelet Transform (DWT).. 

(a) One step of decomposition/reconstruction. The original signal x is decomposed into a version 

of x at half its scale and resolution, and a residue signal also at half its scale and resolution. This is 

simply a two-band perfect reconstruction filter bank; the decomposition (analysis) part uses the low- 

pass "scaling" filter {g'J and the high-pass "wavelet" filter {h'J. The reconstruction (synthesis) 

part uses the low-pass "scaling" filter (g.) and the high-pass "wavelet" filter (h.1 

(b) The elementary cell of Fig. (a) is iterated J times to provide a full DWT on] "octaves." 
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Fig. 6. Plots of iterated wavelet séquences {Z»11.}, plotted against n2'', for four différents 

choices of the scaling filter {gJ. 

(a) 8o = 8i = .7, 92 = ~8i ~ .1, 8H =0 otherwise. This example satisfies orthonormality (25), and 

can therefore be used in a perfect reconstruction paraunitary filter bank (see section VI). However, 

the obtained curve is a highly irregular, fractal function. In fact this curve rapidely diverges as j 

increases indefinitely. 

(b) Daubechies wavelet oflength 4: go 
= (1+V3)/4V2 , gl 

= (3+V3)/4V2 , 92 
= 

= (1-V3)/4V2. (after [ll]).The regularity order is r = 0.5500... The obtained curve rapidely 

converges, as y increases indefinitely, to a continuous, but not differentiable, function. 

(c) Daubechies "closest to linear phase" wavelet oflength 12 (after [12]). The regularity order, as 

determined in [28] is at least 2.102. 

(d) This example corresponds to the 8-tap scaling filter designed by Smith and Barnwell [30]. 

Mathematically speaking, the obtained curve is irregular: due to small, but rapid, oscillations présent 

in the wavelet, the curves slowly diverges as j increases indefinitely. However the obtained curves 

look "reasonably regular" for small /s, due to the fact that the scaling filter's transfert function is 

strongly attenuated in the stop band (see section VTfl). This behavior cannot be predicted by the 

mathematical model of regularity. 



Fig. 1. Two successive up-scalings (by a factor 2) of an original discrete-time signal (top of 

figure). Up-scaling is performed by first-order interpolation (7). Up-scaled signais are stretched in 

time, but no resolution is added (sec section III). 



Fig. 2. Flow graphs of up and down scaling operators. (a) Up-scaling (8) is up-sampling plus 

post-filtering. (b) Down-scaling (9) is pre-filtering plus down-sampling. The filters of impulse 

response {gJ and fg.1 arecalled scaling filters. 
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Fig. 3. A flow-graph illustration of the fact that the approximation Ax of an original signal x at 

half the resolution is a projection. 



Fig. 4. Flow graph implementation of the Pyramid Transform. 



Fig. 5. Flow graph implementation of the Discrète Wavelet Transform (DWT).. 



Fig. 6. Plots of iterated wavelet séquences {h11,,}, plotted against nV, for four différents 

choices of the scaling filter {g J. 
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Abstract. Convergence of dyadic up-scaling schemes to limit functions arises in several fields of 

applied mathematics and signal processing, to construct special curves and surfaces, fractals, and compactly 

supported wavelets. In this paper, we use a polynomial description to study existence and HOlder regularity of 

such limit fonctions. Sharp regularity estimâtes are derived, and optimality is proven in most cases. They 

can be easily implemented on a computer, and simulations show that the exact regularity order is accurately 

determined after a few itérations. Connection is made to regularity estimâtes of solutions to lanice two-scale 

différence équations derived by Daubechies and Lagarias, and to other known Fourier-based esdmates. The 

former are generally optimal, while the latter are optimal only for a subclass of symmetric limit fonctions. 
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Introduction and définitions. 

This paper focuses on real-valued discrète séquences u[n] (ne Z) of finite length, and 

on their behavior under repetitive action of a dyadic up-scaling operator G, defined as 

(1) G: u[n] � v[n] = 2 u[k] g[n - 2k]. 
kmZ 

The terminology "dyadic up-scaling" will be justified later. The fixed séquence g[n] that 

parameterizes G is called the scaling sequence. It plays a central rôle in the following. 

Starting from the initial "impulse" séquence Õ[n] = 1 if n=0, 0 otherwise, a dyadic up- 

scaling scheme is an infinité collection of 
sequences gin] (jeN), defined as shown. 

gl[n]=G{8[n]}=g[n], 

g2[n] 
= 
Gigl[n])t 

(2) g,,, [n] 
= 
G{^.M}, 

The gj[n]'s are fully determined when the scaling séquence g[n] is given. Of course other 

inital séquences can be considered. 

The aim of this paper is to find the necessary and sufficient conditions on the scaling 

séquence g[n] for the existence and regularity of a function of a continuous variable gjx), 

obtained as a limit of (2) as j indefinitely increases. More precisely, we use the following 

definition. 

(3) g- (x) = lirn g, [x, 21 

where x. is any séquence of dyadic rationals (of the form n2-j, neZ) converging to x asy 

tends to infinity. For example, x. could be L 2j x 2-j, where [vj dénotes the largest integer 

not exceeding y. Fig. 1 shows that the limit function gjx) can be thought as a limit of the 

discrète curves g[n], when plotted against n2-j. By abuse of notations we say that the 
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séquences g.[n] converge to gjx) asy'-H-». The regularity is estimated using Hôlder spaces 

Cr(reR). 

In this paper, we first describe (2) using the very convenient polynomial notation 

(section 1) and dérive a basic necessary condition for (3) to hold (section 2). We then show 

how limit functions can be computed exactly on a computer (section 3). This leads us to 

define "ordinary" limit functions, to which the results of this paper fully apply (section 4). 

Fortunately, almost ail limit functions are "ordinary." 

To tackle the regularity problem, we characterize regularity properties of limit functions 

in terms of discrète séquences: continuity is connected to uniform convergence of the g[n]'s 

(section 5), Hôlder regularity Ca (0�a^l) is expressed by a very similar property of the 

g.[n]'s (section 6), finite differences of the g,[n]'s play the rôle of derivatives (section 7), and 

N-times continuously differentiable limit functions are therefore characterized by uniform 

convergence of fmite différences (section 8). From thèse équivalences a full characterization 

of Hôlder regularity Cr (for ail r�O) naturally émerges in terms of discrète séquences 

(sections 9 and 10). The main resuit of this paper is an easily implementable, optimal 

regularity estimate derived in section 11. This estimate is then compared to related previous 

work [3]-[12]. 

The purpose of this paper is close to the one of Daubechies and Lagarias' [5]-[6] that 

studies the existence and regularity of solutions of two-scale différence equations. In fact 

we shall see in section 3 that the limit function gjx) satisfies the following Patrice two-scale 

différence équation." 

(4) gjx) = £ «M gj2x-k). 
t 

Although it can be shown [6] that solutions of (4) are not necessarily limit functions (3), 

both approaches are closely related. In fact, it can be shown [2] that the study of regularity 

of solutions of (4) can be reduced, after suitable transformation, to that of limit functions 
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(3). However, the contents, formulations and proofs of this paper differ notably from [5]- 

[6]; Daubechies and Lagarias dérive conditions for the existence of L'-solutions of (4) and 

estimate global and local regularity of solutions that are in fact limit functions. This paper 

concentrâtes on the détermination of optimal estimâtes for global regularity of limit 

functions, with interpretation in terms of discrète séquences and comparison with Fourier- 

based techniques. 

Dyadic up-scaling schemes and two-scale différence equations arise in several fields of 

applied mathematics. They hâve been used for curve fitting and to generate fractal curves or 

surfaces numerically [8]-[12]. They also play an important rôle in wavelet theory [1], [3]- 

[4], [13]-[15], a newly born theory in functional analysis closely realted to filter banks in 

signal processing [13], [15]. Whether limit functions gjx) are regular or notmay be 

relevant for image coding applications using wavelets [1], and this has motivated the work 

presented in this paper. 

1. Polynomial notation. 

Dyadic up-scaling schemes hâve been mostly described using Fourier transforms or 

matrices [3], [5]-[6], [8]-[10]. Throughout this paper we often use the polynomial 

description 

U(X) féu[n]X' 

of any causal séquence u[n] of length L (u[n] = 0 for n�O and n�L). Séquences of finite 

length can always be made causal by shifting; we therefore assume ail séquences causal in 

the following. 

In polynomial notation, the up-scaling operator (1) reads 

(5) U(X) -� V(X) = G(X) U(X2) 



101 

DYADIC UP.SCALING SCHEMES OLIVIER RIOUL 5 

This shows that it can be seen as resulting from two opérations. 

1) change X toX2 in U(X), i.e., insert zéros between every two samples of u[n]. 

2) multiply by G(X), i.e., convolve the resuit with the scaling séquence g[n]. 

In other words the operator (1), (5) smooths u[n] at twice its scale; this justifies the 

terminology "up-scaling." Equation (5) can therefore be seen as a discrète version of a 

dilation by two: flx) -�/(x/2). 

Iterating (5) gives the polynomial G.(X) associated to the séquence g[n] (2). 

(6a) GJX) 
= G(X) G(X2) G(X4) - G(X2'" ). 

Of course, when the initial séquence in (2) is différent from 5[n], say h[n], (6) is simply 

multipliedby//(X2'). 

(6b) H.(X) = GjÇX)H(X2'). 

Therefore the iterated séquence h.[n] is not g[n] in this case, but h.[n] - ^ h[k] g.[n-2Jk]. 
t 

From definition (3), it follows that the limit function is hjx) = L h[k] gjx-k) instead of 
k 

gjx) itself. Since the convergence and regularity properties of hjx) and gjx) are the same, 

we can restrict to the study of the gin]' and gjx). 

One easily finds that the length of g [n] is (2M)(L-1)+1 (where L is the length of g [n]) 

by estimating the polynomial degree of (6a). Therefore gjx), if it exists, has compact 

support [0, L-l]. As a resuit, ail functions considered in this paper are compactly supported. 

Equation (6a) fully describes dyadic up-scaling schemes in terms of polynomials. It 

can be rewritten in recursive form in two ways. 

(7a) G^{X) 
= G(X) GfX2), i.e., gM[n] = £ gj[k] g[n-2k]. 

k 

(7b) G^{X) 
= G.(X) G(X2i ), i.e., g.Jn] = £ g[k] g.[n-2Ïk]. 

t 

Both are useful in the sequel. We also consider (6) for other polynomials than the fixed 

scaling polynomial G(X): given any polynomial U(X), U. i (X) (with a subscript index f) is 
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(8) UJX) = U(X)U(X2)U(X4)- U(X2M). 

We shall use Il and T norms of discrète séquences in terms of polynomials, 

\\UQC)\\j= max \u[k]\ 

IIU(K)II, = L lu[k]l, 
k 

and the following well-known inequality. 

(9) IIU(X) V(X)\\_� \\V(X)\ UU(X)\\_. 

For polynomials with real coefficients, the following useful inequality holds whenever V(X) 

has no roots on the unit circle. 

(10) \\UQlJL * �llf/W W-. 

where cv is a constant depending only on V(X). This is trivially true for infinité séquences 

when the roots of V(X) lie outside the unit circle; the constant cris then the converging /'- 

norm of the Laurent séries' coefficients of 1/V(X), which is analytic in the complex-domain 

région IXtél. Hère since v[n] is a séquence of finite length L, the index reversai n «-» L-l-n 

in v[/t] transforms roots of V(X) inside the unit circle into roots outside the unit circle. Hence 

(10) holds when V(X) has no roots on the unit circle. 

2. A necessary condition for existence of limit functions. 

In order that gjx) is well defined or does not vanish for ail x's, the dyadic up-scaling 

séquences g[n] should neither diverge nor tend to zéro asy'-^-H». This requires spécifie 

conditions to be fulfilled by the scaling séquence g[n]. 

PROPOSITION 2.1. IfgJx)*Q exists for some xe R, then 

(11) £ «[24] £ *[2Jh-l] = 1, i.e.,G(l) = 2 and G(-I) =0. 
* j: 
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Proof. The key point is to consider the even and odd-indexed séquences g [2n] and 

g.[2n+l] separately. On one hand, from définition (3), their common limit for j-*+�*� is 

gJ2x). On the other hand, from (7a) we also hâve 

gprïl^gVQg.tn-k] 

g,[2n+ll = Yk g[2k+ll g¡)n-k]. 

Applying (3) to the right-hand sides of thèse équations, we easily obtain that their respective 

limits asy-�-H» are (L. t g[2k]) gJ2x) and (Xt g[2k+l]) gJ2x). By identification we hâve 

gJ2x) = (Lkg[2k]) gJ2x) = �kg[2k+l]) gJ2x), hence condition (11). a 

Condition (11) may be interpreted as follows. On one hand, G(l)=2 is just a 

normalization condition that ensures that the order of magnitude of the g[n]'s is preserved 

when On the other hand, the fact that G(X) must hâve at least one zéro atX=-l is a 

"local" requirement. It ensures that the g[n]'s, for large y, do not rapidly oscillate in n 

between two différent limits (Lk g[2k]) gJ2x) and (Zt g[2k+l]) gJ2x) (see Fig.2). 

Note that (11) is not sufficient to ensure continuity of the limit. For example, the choice 

G(X) =1+X, for which g.[n]=l for 0�ai�2' and 0 elsewhere, gives the non-continuous limit 

gjx)=l for 0�x�l, g�Cc)=0 for x�O and x� 1. 

In fact, (11) does not even ensure convergence. Consider for example G(X) = 1+X3: 

GpC) is a polynomial in X3, therefore g.[n] vanishes for n=Ok+l)2'' and (3k+2)2'J whereas 

gI3k2*]=l. It therefore cannot converge to a limit function. 

3. Exact computation of limit functions. 

Using (7b) and definition (3) one obtains the following two-scale différence equation 

[5]-[6] satisfied by gjx), which is the same as (4). 
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gjx) = E g[k]gJ2x-k). 

This équation can bc used to dérive a method for computating exactly the limit function at 

dyadic rationals gjn2-Í), neZ, with a finite number of opérations. 

Let G i(X) be the polynomial associated to the séquence gjn2'i). Letting x=2'tl in the 

two-scale différence équation yields gJn2M) = £ g[k] g_(2-j(n-2jk», i.e., GJ+1(X) = 

GjX) G(XzJ ). By itération we therefore hâve 

(12) G i(X) = GjQO G/X), 

where 

(13) G_°Q0=Y, sSn)X*. 

This means that the exact values of g_(n2-Í) can be computed directly from the g[n]'s by 

convolving them with the séquence g_(n), provided that this latter can be precomputed. 

There are several methods for precomputing gjn), which is, by définition, the limit of 

g.[ni] as y� �-h». First note that one has, from (7b), 

k 

where G* is the following "down-scaling operator," a transposed form of G (1) [12]: 

G':u[n] �v[n] = 
^g[k]u[2n-k]. 
ktZ 

Therefore gjn) can be determined as the limit of (G*y{5[/i]} when y� �-h». Another method 

stems from the resulting equality gjn) = G"[gjn)}. The séquence {gjn)}, n=O,... L-1, is 

hère determined, up to normalization, as the eigenvector of the operator G* associated to the 

eigenvalue 1. Since we hâve, by proposition 2.1, G(l)=2 and G(-1)=0, it follows that G* 

préserves the sum of the coefficients of séquences. Therefore the gjn)'s are normalized 

accordingto 

(14) Gjd)^ g_(n) = 1. 
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4. Ordinary limit functions. 

There are exceptional classes of limit functions gjx) for which the regularity estimates 

derived in this paper will not be proven to be optimal. Optimality, as well as some other 

results of this paper will hold only if gjx) is "ordinary," in the sensé of the following 

definition. 

DEFINITION. The limit function gjx) is ordinary if no roots of GJQO (13) lie on the 

unit circle, i.e., 

�gJn) �* 0, forallcoeR. 

This condition slightly restricts the choice of the scaling séquence g[n]. For example, if the 

scaling sequence's length is L=4, non-ordinary ̂(jc)'s are such that g[0]=g[3] and 

g[1]=g[2]. Ail (real-valued) limit functions are ordinary for lengths up to 3. 

5. Continuous limit functions. 

In this section we show that any ordinary continuous limit function gjx) of a dyadic 

up-scaling scheme {g{rt]} is a uniform limit, i.e., that the "discrète curves" g[n] of Fig. 1 

converge "as a whole" to the limit curve gjx). 

THEOREM 5.1. If g. [n] uniformly converges to the limit function gjx), i.e., 

(15) .limsup|^U)-^.[x;2�]| = 0 

then gjx) is continous for allxsR. The converse is true whenever gjx) is ordinary. 
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Proof. Let e�0 be an arbitrary small number. To prove that gjx) is continuous at 

x=xo' consider the inequality 

(16) IgJfrgJty * \gJx)-gJ{x2f]\+ Igj[XJ2Í]-gii'J2Í]1 
+ 
\gjx^x°pt]\t 

where x. and xo. are dyadic rationals of the form ni'1 converging to x and x0, respectively. 

Assume for example that x. = \2' x\ 2-i and jc°. 
= 
[2;x0J V. For y large enough, the first 

and third terms in the right-hand side of (16) are bounded by e/2 because of (15). Now fix 

such a j and assume that x is close enough to x0 so that both x and x0 belong to the same 

interval [n2-j; (n+l)2"/|. Then x. i = Xo. and the second term in the right-hand side of (16) 

vanishes. Therefore \gJx)-gJXt)\ � e/2 + e/2 = e, which shows that gjx) is continuous. 

(�=) We hâve sup\gjx)-g{x2r\\ £ suplg-(x)-g-(x,.)1 
+ 
suplg-(x,)-g,[x,2jl, where x. is a 

séquence of dyadic rational x¡=nli converging to x. Since gjx) is compactly supported and 

continuous, it is uniformly continuous. Therefore sup\gjx)-gjx)\ tends to zéro. The other 

term can be written supx \gjx}-g[x2']\ 
= \\Gj(X) - G.(X)\\_. From (12) we have 

OOJX) (G JQO - GjQO) 
= (G°JX)-\) GjÇX). Since (14) holds, X-l divides Gj(X)-l and 

we can write, using (9), IIG°..(X) (G J(X) - Gj(X))\\m � c ll(X-l) Gj(X)\\m 
= 

c sUP:Illg_(x{2-j)-gjx)1. This tends to zéro asy-»+°o because gjx) is uniformly 

continuous. Now we can use (10) with V(X) = G°JX) because gjx) is ordinary. This yields 

IIG J(X) - GjQOK-* 0 as y'-»-H~, which ends the proof. 8 

The framework of uniform convergence is shown to be very convenient in the 

following. Note that uniform convergence fails for the choice G(X)=1+X seen in section 2 

because sup \gjx) - g[x2i]\ 
= 1. This was to be expected since we hâve seen that the 

corresponding limit function is not condnuous. 



107 

DYADIC UP.SCALING SCHEMES OLIVIER RIOUL 1 

6. Lipschitz limit functions. 

In this section we want to characterize Lipschitz limit functions gjx) e Ca (0�a.S1). 

Recall that gjx) is said to be Lipschitz of order a (0�a�l) if one has, for ail x and h e R, 

(17) \gjx+h)-gjx)\ £ c\h\a, 

where c is a constant. Hère, since gjx) is compactly supported, (17) only needs to be 

satisfied for small h's. Since the spaces C°, for O�a.Sl, interpolate between C° and C', a 

Ca-function will be said to be regular of order a There is a slight irritation in that C' and C1 

do not coincide; for example a linear spline funcdon is C1 but not differentiable at its knots. 

THEOREM 6.1.//G(1)=2, G(-1)=0, and 

(18) inaxteJn+ll-^MlScï* 

for some 0�cc�l, then gjx) is Ca. The converse is true if gjx) is ordinary. In addition, 

the more regular the limit, the f aster the convergence to this limit. 

(19) sup\gJx)-gIx2f}\Zc2*, 

for any sequence x. of dyadic rationals of theform ni' such that \x-xl £ c V. 

Proof. (=» Let us first prove equation (19). Let x. satisfying the conditions of the 

theorem. One has sup \gj+l[x.^2j*1] - g.[x2i]1 
= 

max\gj+l[2n+m] - gj[n]\, where m 
= 

(x^-x^T1 is a bounded integer. From (7a) we can write ghp.n+m] = L g[2k+m] gln-k]. 
t 

Therefore the séquence g.+l[2n+m] - g[n] is a convolved version of g.[n], hence its 

associated polynomial can be written in the form U(X) G(X). But from (11), we hâve 

] £ g[2k+m] 
= 1 (for ail m) and therefore U(1)=1. Using (9) it follows that 

k 

maxl £ ;+.[2/i+m] - g.[n]\ 
= IIU(X) G.(X)\\ � c ll(l-X) G,.(X)II , where c is a constant 
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indépendant of j since m is bounded. Now from (18) the latter norm is bounded by c' 2-ja. 

We therefore end up with sup \g.^[x.^2j*1] - g[x2J]\ ^ c 2-ia. Iterating this inequality we 

obtain, for /�0, 

sup \g^xh2hl\ - gfxpt\\ �. c 2-°'+'-1�0 +... + c 2-tf*,)a + c 2-ja � c" 2-ja. 

Letting /-»+�» gives (19). 

We now prove that gjx) is Ca. Let x. as before and h, 21 
= 
Lh2jj. Consider the 

inequality svp\gjx+h) - gjx)\ � 
sup\gJx+h)-gj[x2J+hX]\ 

+ 
sup\gj[xpf+hpf]-g.[xp/]\ 

+ 

saplg [x2*]-g (x)\. By (19), the first and third terms in the right-hand side are bounded by 

c 2-ja. Now assume for example that 0�/t�l and let j be such that 2-js h £ 2"y+1. Then 

I K21 1=1 and supIgM+l h2' \[-g{x2ï\\ 
= 
maxlg.[n+l] - g.[n]\ � c Xja. Putting ail together 

this yields sup\gjx+h) - gJx)1 S c' 2-ja S c Ihla, i.e., gjx) is Ca. 

(�) G(l)=2, G(-1)=0 results from proposition 2.1. Since gjx) is Ca, we hâve 

l*..((n+l)2-0-*_(»2-/)l £ cX*, i.e., II(1-X)GJ(X)II.. = IIG^X) {l-X)G/X)\\m ZcX* (see 

(12)). Because gjx) is ordinary, (10) applies to give ll(l-X) Gj(X) II, �, c'2-ia, which is 

(18). a 

This theorem provides an intuitive interprétation of regularity of order 0�a�l for 

dyadic up-scaling itération schemes: regularity Ca holds if and only if the absolute values of 

the "slopes" (g } .[n+ l]-g } .[nD/2-j of the discrète curves g } .[n]'s (see next section) grow less than 

2/a"a) when y indefinitely increases. For example, if the slopes of g. [ri] are always bounded 

for aliys, then gjx) is C1. On the contrary, less regularity allows slopes to increase 

indefinitely and the resulting limit function, although continuous, may présent a "fractal" 

structure as shown in Fig. 3. Note that in this case, (19) means that uniform convergence of 

the curves g [ri] is slower as slopes increase faster. 
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Since we hâve a characterization of regularity for ordinary gjx)'s, it is easy to find a 

condition on the scaling séquence g[n] that states an exact regularity order 0�oc�l. 

COROLLARY 6.2. Assume G(l)=2, G(-1)=0, and that gjx) is ordinary. If, for 

0�a�l, 

(20) maxlg.[/i+l] - g.[n]\ decreases as 2-ja when j-�+�*�, 

then gjx) is Ca but is not Ca**,for any e�0. 

Proof. This is an immédiate conséquence of Theorem 6.1: If gjx) were Ca-K (with 

e�0 small enough so that a+e�l), we would hâve maxlg T/t+1] - g [ri]\ � c 2v(a+e�, which is 

in contradiction with (20). a 

Corollary 6.2 does not hold if a=l, since max\g.[n+l] - g[ri]\ cannot decrease faster 

than 2-j asy-4+�» when gjx) is more regular than C ' (sec section 9). Otherwise, intuitively 

the derivative of gjx) would vanish identically, which would imply gjx) = 0 since gjx) is 

compactly supported. 

7. Finite différences. 

We now turn to the definition of finite differences of the g[ri]'s as a prerequisite to 

study derivatives of the limit function gjx). The first finite différence is 

(21) Agj[n] 
= 
(g]Ln] - g.[n-1]) I V, i.e., AG.(X) 

= 21 (1-X) G(X) 

In other words, the Ag.[ri]'s are the slopes of the "discrète curve" g. [ri] plotted against n2-j 

(see Fig. 2). Finite différences Akg.[ri] of order k are simply obtained by applying k times the 

différence operator A. 

(22) A*G (X) = 2/i( 1 -X)* G/X) 
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In order to study finite différences Akg{n] similarly 
as for the g^ri], it is convenient to 

express them as dyadic up-scaling séquences as well, associated to other scaling séquences 

than g[n]. The following lemma shows that this is possible when G(X) has enough zéros at 

X=-l. 

LEMMA 7.1. Assume G(X) has at least k zeros at X=-l. Define GI:(X) by 

(23) G(X) = (¥ t GI:(X). 

Then the finite differences Akg [n]'s follow a dyadic up-scaling scheme with initial 

sequence's polynomial (1-X)* and scaling sequence's polynomial G*(X). 

Proof. From (22), (23), we hâve A*G.(X) 
= 2*(1-X)* nHr") GkfX), where 

GkpO 
= 
(G*)/X) is defined by (8). Using the identity (1-K)(1+10=1-^ for y =X,X2, ... 

we therefore obtain A*G.(X) = G*.(X) (1-XZj )\ which from (6b) proves the lemrna. a 

8. iV-times continously differentiable limit functions. 

Using the preceding sections we are ready to extend the results of section 5 to higher 

order regularity CN (N-times continously differentiable functions). 

THEOREM 8.1. If finite differences A* g. [n] uniformly converge for k=O, ..., N, 

then gjx) is CN. The converse is true whenever gjx)*0 is ordinary. In addition: 

(24) G(X) has at least N+ zeros at X=-l, 

(25) Akgj[ri] uniformly converges to gjk)(x), the kth derivative of gjx), for k=O, ..., N. 
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Proof. Let us first prove (25) by backward induction on k. We hâve to show that 

ifAMg[n] converges uniformly to some (continuous) functionftx), then Akg[n] converges 

uniformly to the compactly supported primitive of f(x), called F(x). For simplicity we 

assume k=O, the proof being identical for k�O. 

Since F(x) is compactly supported and C', it is uniformly continuously differentiable 

and therefore sup 1 Ag[x2j] - (F(x)-F(x.-2~'))I2'' 1 tends to zéro as y-»+�», where x. are 

dyadic rationals n2v"converging to x. This can be written 112i(1-X)(GiX)-Fj_(X»II- 0, 

where F�(X) is the polynomial associated to the séquence f{n2'i). Now for any polynomial 

U(X) we hâve lltf(X)IL= max \u[k]\ �. �lu[*]-u[*-l]l � d ll(l-JQtf(Y)ll_, where d is the 

degree of U(X). Applying this to U(X) = Gj(X) - F'JX) of degree (L-l)(2/-l), where L is the 

length of g[n], we obtain \\(GfiCyFmÇC))\\m Z (L-l) H2'(l-J0(Gi.(X)-/!!L(X))IL, which tends to 

zéro. Therefore sup I gfxpf] - F(xp\ 
= II(G.(X)-Fj (X)II tends to zero. This proves that g,[n] 

converges uniformly to F(x) = gm(x), hence Ag[n] converges uniformly to F(x) 
= gj(x), 

and by induction (25) holds. 

It follows from (25) that the continuous uniform limit of ANg[n] is gj^ix), therefore 

gjx) is CN. By forward induction on the derivative order k, (24) follows as a conséquence 

of proposition 2.1 and lemma 7.1. 

«--) We prove (25) from the assumption that gjx) is ordinary and CN by forward 

induction on k. For £ =0, (25) is true by theorem 5.1. It remains to prove that this implies 

lim sup \gj^(x) - ôkgIx2i]1 =0 for k=l, ..., N, where x. where x. are dyadic rationals ni'1 
y-»-f«» * Il J 1 

converging to x. For simplicity assume £ =l.The proof is identical for larger k's when one 

replaces A by A*. Define AG*m(X) = 2(1-X)G/..(X) or Agjx) 
= 2i (gjxp - gj?.-!*)). We 

hâve 

sup, Ig_'(x)-L\gj[xl.'i]1 � supx\gJ(x)-gJ(Xj)\ 
+ 
sup)g-'(x)-L\gjx)1 

(26) +suvx\AgJxp-Agj[xZ}\, 
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The first term in the right-hand side of tends to zéro x asy-H-°° because g_'(x) is continuous 

and compactly supported, therefore uniformly continuous. The second term also tends to 

zéro because gjx) is uniformly continuously differentiable on a compact support. Note that 

this implies 

(27) supJAgJx)-A^(x-20l 
= II(I-X)L\G jX)lI.. -+ 0. 

The third term in the right-hand side of (26) can be written \\AG'JX)-AG.(X)\\m. From (12) 

we hâve G"o(X) (AGJJX)-AGj(X)) 
= 
(G"0(X)-l)AGJJX). Since (14) holds, X-l divides 

G"o(X)-1 and we can write, using (9), \\G~JX) (AGJmm(X)-AGj(X))\\tm Z c \\(X-l) AGiJX)\\^m 

which tends to zéro by (27). Now we can use (10) with V(X) = G'JX) because gjx) is 

ordinary. This yields \\AGiJX)-AG.(X)\\tm 
-� 0 as; -�+*�, which ends the proof. a 

This theorem is useful because it allows to estimate regularity of the derivatives of an 

ordinary limit function gjx) the same way as for gjx) itself: since G(X) has at least (N+l) 

zéros at X=-l, the finite différences of the g [n]'s, which converge to the derivatives of 

gjx), ail follow dyadic up-scaling schemes. 

Theorem also provides an upper bound for regularity. Since it is necessary that G(X) 

has N+l zéros at X=-l to obtain C" ordinary limit functions gjx), the regularity order of 

g.(x) is always bounded by the number of zéros at X=-1 in G(X). We shall see that this 

upper bound may be attained. However, it is important to note that imposing zéros atX=-l 

in G(X) does not ensure any regularity in general. It does not even ensure convergence, as 

in the example G(X) = (1+X3)"+1. Hère there is N+l zéros at X=-l, but g[n] does not 

converge for the same reason as for the choice G(X) = 1+X3 treated in section 2. 
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9. Checking a given Hôlder regularity order. 

Recall the définition of Hôlder regularity. The limit function gjx) is regular of order 

r=N+a (Cka^l), gjx) e Cr, if it is CN and its Nth derivative g�w(x) is Lipschitz of order 

a, g�w(x) E C°, as defined earlier by (17). Hôlder spaces Cr well interpolate the spaces C" 

of N-times continuously differentiable functions. As already mentionned for N=1, CN 

contains functions that are not CN, such as spline functions of degree N. In fact "gjx) is 

CN" can be thought of "gjx) is almost C," since if gjx) is CN*Z, for some e�0, then gjx) 

is truly CN. Other spaces, based on the Fourier transform of gjx), are sometimes used to 

define a regularity order re R as well. They will be considered later in section 17. 

Using the results of the preceding sections, we can extend the characterization of 

Lipschitz limit functions Ca (Oca^l), derived in section 6, to any Hôlder regularity order r. 

THEOREM 9.1. If G(1)=2, G(X) has at least N+l zeros atX=-l and 

(28) maxIAVfn+ll-AVt/illScr*, 

for some cc�0, then gjx) is CN*a. The converse is true whenever gJx)*Q is ordinary. 

Moreover, (28) implies a £ l (ifgjx)*0). In addition, 

(29) maxlAy[n+l] - L\Ngj[n]1 = \Kl-X)AsG.(X)\\ 

can be replaced in (28) by any of the following. 

(30) maxlfln+1] - g"ln]\ 
= \Kl-X)GN.(X)\\m 

(31) maxl/%»]l = ll/*XX)IL 

(32) max Y \f.[2jn+m]\, 

where we have noted G(X) = (^-)NGN(X) = (^)N (l+X)FN(X), and where the iterated 

polynomials and sequences Gffj(X), gfjin], F*pC),f[n] are defined by (8). 
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Proof. (�) Assume for the moment that a £ l. Since (28) implies, by theorem 6.1, that 

ANg[n] converges uniformly to a Ca function, it follows from the proof of 
theorem 8.1 that 

ail finite différences Akg[n] converge uniformly to gjk)(x), for k=O, .., N. Hence gjx) 
is 

(�=) If gjx) is ordinary and CN, then by theorem 8.1, ep [n] converges uniformly to 

gj* e Ca. Therefore by theorem 6.1, (28) holds. 

It remains to be proved that (29)-(32) are "équivalent" in the following sensé. Two 

séquences u. and v. are équivalent if there are two constants CI and c2, independent of j, such 

that CI v. �, u. 5 c v.. From lemma 7.1, we hâve ANG.(X) 
= (1 - X 2J) NG Ni(X). Using (9) 

we therefore hâve ll(l-X)AwG;(X)ll- 
�2N 

\\(l-X)GN £ X)\\_. Now, since the degree of 

(1-XXjw.(X) is less than 2/L, where L is the length of the séquence g"[n], we also hâve 

\\(l-X)GNjQ0\l=m-X2'L)N(l-X)GNj(X)\\mm=\\ il t (l-X)ANGfX)\\_ 
Il X ) 

This proves that (29) and (30) are équivalent The proof of (30) �=� (31) is very similar, 

based on the relation (1-X) GN.(X) = (1 -X2' )Fsj(X), which cornes from lemma 7.1. The 

équivalence (31) �=� (32) is obvious. 

We now prove that (28) implies a�l. Since G(l)=2, we hâve FN(l)=FN.(l)=l. 

Therefore \\FN.(X)\\_ £ V IIF^/X)!!, � 
2-j 

\FNfl)\ =V, 
which shows, from (28) written with 

(31), that oLg 1. a 

Ail the above équivalent séquences (29)-(32) will be useful in the following. As in 

section 6, the following corollary immediately results from theorem 9.1. 

COROLLARY 9.2. Assume G(l)=2 and G(X) has at least N+l zeros at X=-l. If, 

for 0�a £ l, 
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(33) max\ANg.[n+l] - ANg[n]\ - 2-ja as j^�+~, 

then gjx) is C"**, but is not CN*a+e,for any e�0. 

This does not hold for a=l, since by theorem 9.1, (28) implies a £ l. Of course in (33) 

one can choose either (29), (30), (31) or (32). 

Note that the characterization (28), or the criterion (33) dépends on the choice of N. 

Theorem 9.1 (or corollary 9.2) therefore allows to check whether the exact regularity order r 

(that is, the number such that gjx) is CT but not C"', for any e�0) falls in the range 

N �,r�N+l. 

Assume for example that (33) is tested for some N=No larger than the unknown exact 

regularity order r. This test necessarily fails, and that only ensures that gjx) is not CNo. On 

the other hand, if the value of N is too small, i.e. N=Nl � r-1, then necessarily (33) is 

satisfied with a=l. This shows that gjx) is CNI+\ but does not tell whether gjx) is actually 

more regular or not. In both cases (under or over-estimated N's), the criterion (33) has to be 

checked ail over again for other values of N to détermine r. It is only when it tums out that 

N�r�N+l that the criterion is really optimal and provides N+a=r. 

Therefore, the exact regularity order cannot be determined in gênerai unless ail possible 

values of N are tried. This problem is addressed and solved in the next section. 

10. Determining the exact Hôlder regularity order. 

In the preceding section we hâve seen that (28) or (33), for a given N truly détermines 

the exact regularity order of the limit function gjx) only if this regularity order does not 

exceed N by one. This value of N is a priori unknown. However, if (28) can be extended to 

négative values of a, then the exact regularity order r is determined even if N is "too large," 

i.e., N+l £ r. That is, even if the criterion (28) for regularity r�N fails, it could be used to 
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characterize lower regularity 0� r �N. In particular, if one uses ail zéros at X=-l in G(X), 

(i.e., if G(X) has no more than N+l such zéros), then the characterization (28), extended to 

any 0�1, necessarily provides the exact regularity order r. This extension is provided by the 

following theorem. 

THEOREM 10.1. Theorem 9.1 and corollary 9.2 hold for -N � a � 1, with the 

following slight restriction. 

If (28) holds for a=-n, n=0, 1, .... AM, then gjx) is only "almost" CN", i.e., its 

(N-n-l)th derivative satisfies 

(34) ïgJP^ix+h) - gj"*l)(x)\ � CM Ilog I Ail for ail x, he R. 

This theorem will be proven if we can simultaneously increase a and decrease N by 1 

in (28). We therefore need the following lemma. 

LEMMA 10.2. Assume G(l) =2, and G(X) has at least N+l zeros at X=-l. The 

condition 

(35) max I A*1* [n+ 1 ] - A^g [n]\ �, c XJla*l), 

implies (28). The converse implication holdsfor a�0 only. When oM), (28) implies 

(36) max \ANxg\n+l] - ANAg\n]\ �,cj 2-j. 

Proof of lemma. From theorem 9.1 we know that both (28) and (35) can be written 

under several forms, using one of the séquences (29)-(32). Using (31), condition (35) is 

IIFw-1.(X)ll^c2^a+1). But since FNol(X)=GN(X)I2, we hâve FN-Ij(X)=2-jGNiX), hence (35) 

can be written \\GN (X)\\_�,c2''a. Now (28), using the équivalent form (30), is 

Wil-XyGPpCflJcX1*. Since using (9), we hâve ll(l-X)GA,�(X)ll#.�2IIG"/.(X)lla., (35) implies 

(28). 
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Assume cce. To prove the converse implication, rewrite (28) and (35) using (31), 

knowing that F*1pQ=2'41j!!r\FNJ�X) by 
lemma 7.1. We therefore hâve to prove that 

(28): WF^pC^Jcl* implies (35): \\bMFH.ÇQ\\Jc2*'. 
There is a problem atX = 1; we 

therefore subtract FW.(1)=FW(1)=1 to FN.(X) as shown. 

W^F^X)^ Wfê-) (FNj(X)-l) IL + n(^)il 
The second term in the right-hand side equals 1. Dénote the first one by ll//.(X)ll-. From 

(7a), we hâve FNiX)-1 
= 

(FN.JX2)-l) 
+ (FN(X)-1)FNjol(X2), where (X-l) divides 

(FN(X)-I) since F"(l)=l. Therefore HiX) = H. l (X2 p^Jc^'-lJF^X2) 

and ll//.(X)ll..�ll//,1(X)IL+c2^1)a. By induction on y, for a�0, \\H/X)Wm ^ c'Tia follows, 

which implies (35). When a=O, we hâve \\H.(X)\\mÊi � c'j, which implies (36). N 

Proof of theorem 10.1. If a is not a negative integer, the generalization of theorem 9.1 

to -N�a30 follows from several applications of lemma 10.2. When a=-n, n=O, ..., N-l, 

by n successive applications of lemma 10.2, (28) implies max \AN"g. [n+l] - AN'mg [n]\ £ c. 

Applying lemma 10.2 again we only obtain max lA""""1^ [n+l] - AN'*'1 g [n]\ �, cj2'j. By 

theorem 9.1 this only implies that gjx) is C N-' (for any e�0), but we hâve a little more: 

mimicing the proof of the direct part of theorem 6.1, we hâve suplgJ"""1)(x+«) - g.(N-.I)(x)1 

�^cy2-y'for2-^n^2/+1,whichis(34). � 

11. A practical, optimal Hôlder regularity estimate. 

Theorem 10.1 already provides an optimal regularity criterion (28) (with -N�a�A). 

However, it is not implementable on a computer as written since it needs to be verified for 

ail /s and since the order of magnitude of the constant c in (28) is unknown. The aim of this 
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section is to transform this criterion into an easily implementable estimate for Hôlder 

regularity, computable with a finite number of operations. 

The following theorem assumes some properties and notations we hâve already met: 

- G(l)=2, 

- G(X) has at least N+l zéros at X=-l, 

- F"(X) (corresponding to the sequencel'[nD is, as defined in theorem 9.1., G(X) without 

its N+ 1 zeros at X=-l, i.e., 

G(X) = (W(l+X)FN(X) 

It générâtes iterated polynomials FN.(X) and sequencesf [n] by (8). 

THEOREM 11.1. With the above notations and assumptions, define the Hôlder 

regularity estimate N+a!* by 

(37) 2-¡a7 max }f.[2Jn+m]\ 

and let 0 = sup. aN �. 1. 

If there exists j such that N+a" � 0, then gjx) is (almost ifaNe- 

N, see (34)). Therefore gjx) is C ""*"'' for any e�0. 

In addition, if gjx) is ordinary then a." tends to aN as y-�+«�, with 

(38) feaT-af^c/j, 

and the regularity estimate is optimal: If CLN :# 1, or if aN = 1 and G(X) kas no more 

thon N+l 1 zeros atX=-l, then gjx) is CN+a"~t but is not CN+a"�,for any e�0. 

Proof. From (37), the condition (28), rewritten with (32) is satisfied only when 

a^liminf a.^a*. From theorem 9.1 we also hâve a"�l for all j, hence o/^l. Now if 

gjx) were ordinary and CN+a +e, where a"�l and e�0, (28) would hold with a=a"+e, 

which contradicts a�oc*. Therefore if gjx) is ordinary, aN�l implies that gjx) is not 
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CA,+a*+e for any e�0. In addition, gjx) cannot be Cs*ut if G(X) has no more than N+l 

zéros atX=-l because of theorem 8.1. 

We now prove that theorem 10.1 holds when 01=0:*, for any fixedy�0 such that 

aN� -N. Let GN(X)=(l+X)FN(X) and GNfX) as in theorem 9.1. By lemma 7.1, the 

séquence S,[n] 
= 
g"[n+l]-g"[n] follows a dyadic up-scaling scheme with scaling sequence 

f[n]. Therefore by iterating (7b) for FN(X) we hâve A/+.(X) 
= 
F."(X) At(X2'), i.e., 

5/+yM=X 8,[k]0[n-2¡k]. Now write n=2'p+m with 0�m�2J-l. We obtain 21 convolutions 
k 

indexed by m, Ô,+y.[2'p+m] = £ �l[k]fj[2i(p-k)+m]. Therefore l8,+/.[2�p+m]l £ 
* 

(� fpn+m]\ ) maxl5,[n]l for ail m. This gives maxl8^.[/i]l � 2~ia"i maxl8;[n]l, which by 

itération implies, forl^j+l^ maxl5,[n]l 
= 
11(1 -JQC?'VJCX)II-^ c. 2-07, where c. dépends only 

on j. This équation is exactly (28), written with (30), where 0=0^, Therefore theorem 10.1 

applies for any a=a". such that a." � -N. The limit function is thus C ' (with the 

restriction (34)), and therefore gjx) is C for any e�0. Uniform convergence of finite 

différences to derivatives is a conséquence of theorem 8.1. 

We finally prove (38). When gjx) is ordinary and C*+a*"e, by theorem 10.1, (28), 

written with (32), holds for a=a"-e. By définition of a". (37), we thus hâve 

2--'OJ' 5 c 2-;(a"-e) for any e�0, which implies (38). * 

Let us précise the practical outcomes of theorem 11.1. For a given number of iterations 

j, and a given N, the computation of N+aN. with a finite number of opérations by (37) 

always gives a Hôlder regularity estimate for gjx). Of course the estimate is likely to be 

improved when the number of iterations increases. Note that from theorem 8.1, finite 

différences Akgj[n] converge uniformly to the derivatives of gjx) whenever these derivatives 

exist 
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Fig. 3 shows that N must be chosen large enough because the estimate N+aN. is 

bounded by N+l, whereas the exact regularity order of gjx) might be greater than N+l. It 

is therefore recommanded that N whould be chosen maximal (i.e., such that G(X) has 

exacdy N+l zéros at X=-l). In this case theorem 11.1 ensures that the regularity estimâtes 

N+a?. are close to the exact regularity order of gjx). Besides, it was numerically found that 

the accuracy of the regularity estimâtes N+of. generally increases with N. 

In most cases, gjx) is ordinary and the regularity estimâtes N+as. (where N is large 

enough) tend to exact regularity order of gjx) as j-++oo. Note that if N is not large enough, 

iV+ce". necessarily converges to 
N+ (see Fig. 4). The rate of convergence of the estimate 

to the exact regularity order is at least proportional to l/j by (38). In practice, Fig. 4 shows 

that this convergence rate is fairly high. When the scaling séquence length L is not too large 

(e.g. L^IO), the exact regularity order is numerically determined with précision 0.1 after a 

few dozens of iterations j. 

Theorem 11.1 is the main resuit of this paper. It permits to (sharply) estimate Hôlder 

regularity in most cases of interest. The remainder of this paper is devoted various 

connections of this resuit to related work on Hôlder regularity estimates, and illustrâtes 

results with examples. 

12. Connection with Daubechies and Lagarias' estimâtes. 

In [6], Daubechies and Lagarias hâve determined sharp conditions for Hôlder 

regularity based on matrix products. Although the approach in [6] relies on two-scale 

différence equations (4) rather than on limit functions (3), the above results of this paper, 

which were derived independently, are closely related to what can be found in [6]. In fact, 

(29) reads, in matrix notation: 
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(39) 
niax. 

where the matrices F" and Ft of size (L-l)x(L-l) (where L is the length of the séquence 

f[n]) are defined as shown. 

fN[2] fN[l] fN[O] 0 

Fo"= A4] A3] A2] AU - 

A6] fN[5] fN[4] fN[3] ... 

(40) L : = : �.. 

"Ai] Ao] 0 0 

A3] A2] Au fN[O] ... 

Fliv fN[5] fN[4] A3] A2] - 

f N[71 fN[6] fN[5] f N [41 ... 

(41) L : : : : 
�� J , 

and where 11.11 dénotes the ll-norm of a square matrix A = (ai), i.e., IIAIIj = max]^ U J. 
j 

To prove (30), one may notice, using some polynomial algebra, that/'.[2yn+m], seen as a 

vector indexed by n, is equal to the first column of J^F^" , where m 
= e,e2 ... e. in base 2. 

It can be shown that the /'-norm of the this column dominâtes the others and is therefore 

equal to the ll-norm of the whole matrix. 

Using (39) one may easily recover the results conceming global Hôlder regularity in 

[6] from the results of this paper. The formulation (39) and that used in [6] differ only by 

some minor differences: Daubechies and Lagarias use P-norms rather than /'-norms, and the 

matrices they consider are a bit larger than (40)-(41), because they correspond to G(X) = 

fi+xY (1+X) F"(X) rather than to F"(X). Although regularity estimates are not proven 
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optimal in gênerai in [6], Daubechies and Lagarias prove optimality for several examples, 

such as those of section 14. 

Working with matrices is useful when one wants to find optimal estimâtes of regularity 

"by hand," [6] without implementing (37). Unfortunately, it seems difficult to dérive a 

gênerai method for determining the optimal regularity by matrix manipulation. As a resuit, 

unlike an implementation of (37) on a computer, each example has to be investigated 

separately and requires fastidious treatment. We hère recall for completeness the basic 

method used in [6]. 

DAUBECHIES AND LAGARIAS' METHOD [6]. 

1. Write out the matrices F t and F" and compute their eigenvalues. 

2. Diagonalize the matrix that has the largest module of eigenvalue (spectral 

radius) p. Assume for example that this matrix is F". Define the matrix B, whose 

columns are proportional to the eigenvectors ofF" (that is, B-I Ft B is diagonal and 

its P-norm is p). B is parameterized byL-l numbers, one for each column. 

3. Compute B-I F" B. If one can find a parameterization ofB such that 

(42) Il B-' Fil, B Il � p, 

(where 11.11 is any matrix norm) then the optimal Hôlder regularity (for ordinary limit 

functions gjx)) is N - 1092 p. 

Proof. First we have 2'*' = max 
[nF^"! ^ 

"(F/yïl by specifying e,.=0 for ail i. 

Let 1 be an eigenvalue of F" and v an associated nonzero eigenvector. We hâve, on one 

hand, ll(F0*y.vltell(F0"y'll.llvll, and on the other hand, II(FoNY.vll=IÂ.Ji llvll. It follows that 

p/=suplX.I' £ ll(F0*yïl ^ 2 - ia.4 Secondly, with the change of basis B we hâve 2";a" = 
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If i \ B 

c max 
J « 

But one has IIBolF oNBII = p and 

(42), therefore 2^' �, c çf follows. We therefore have proven p7 £ 2 ^' £ c çr1, which 

implies that a"=lim. a." = -loup.. 

Note that this method is only optimal if (42) is met for at least one matrix norm, and it 

is not clear whether this holds for a large class of scaling séquences g[n] [6]. 

13. A sharp upper bound for regularity. 

So far we hâve seen two types of Hôlder regularity estimâtes: One is optimal in 

(almost) ail cases (section 11), but many itérations (performed on a computer) are required 

to accurately détermine the regularity order. The other (section 12) requires only the 

calculation of two spectral radii of matrices, but is likely to be sometimes suboptimal. Based 

on the latter, it is nevertheless possible to obtain a (possibly sharp) upper bound for 

regularity which only requires the computation of one spectral radius. This upper bound is 

derived as follows. 

Using the notations of the preceding section we hâve 2 = max F, k 

max (ll(F0*yil, As seen in section 12, this is greater than max (p(F0N), pflF/ty", 

where p(Ft) ( p(F") ) is the spectral radius of Ft ( Ft). Therefore an upper bound for 

the Hôlder regularity of the limit funcion gjx) is W-logjinax (p(F0w), p(FjW)). In fact (42) 

ensures that this upper bound is attained for ordinary limit functions. 

The computation of this upper bound can be simplified to the search of the spectral 

radius of only one matrix F", defined as the common sub-matrix of F,," and F,". 
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7W[0]|0 - 0 : 

f 'v[41 FN 
andF'- 

fN[L-2] 

: [o - q f "[L- 1]j* 

We have max (p(F0w), p(F,w)) 
= max(!f'[O]I, f[L-\]\, p(F")). Therefore 

(43) The regularity order of gjx) is at most W-k^maxQ/^O]!, \f[L-l]\, p(F*)). 

This resuit, used in conjonction with theorem 11.1, can be used to compute sharp lower and 

upper bounds of Hôlder regularity of gjx). Table 1 provides thèse bounds for the examples 

presented in the next section. 

14. Examples: Daubechies' orthonormal wavelets. 

Daubechies has derived orthonormal bases of compactly supported wavelets using 

dyadic up-scaling schemes [3]. The "basic wavelet" is defined as the limit function hjx) of 

the scheme (2) or (6), with scaling séquence g[n] of length L, and with initial séquence 

h[n]=(-l)'g[L-l-n]. She shows [3] that regular basis functions 2inhJX'x-k), defined for 

ail integers j and k, form an orthonormal basis of L 2 (R) if L is even and 

(44) G(X) G (X) - G(-X) G (-X) = 4 X^ , 

where G (X) is the polynomial associated to the séquence g[L-l-n\. In [3], G(X) is moreover 

required to hâve as many zéros at X=-l as possible. This results in several possible 

solutions for G(X) that hâve exactly L/2 zéros at X=-l [3]-[4]. Examples of G(X) in [3] hâve 

ail zéros outside the unit circle ("minimum phase" choice in the signal processing 

terminology, since X corresponds to a delay). In [6], the optimal regularities of "minimum 

phase" wavelets hjx) for L=4, 6, 8 are obtained using the method described in the 

preceding section. It tums out that (42) holds for thèse lengths: the upper bound (43) is 

attained and actually equals \f[0]\, where N=I/2-l. The estimated regularity of Daubechies 

"minimum phase" wavelets derived in [4] is therefore -logj lg[0]l for lengths L=4, 6, 8. This 
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estimate is optimal as can bc checked directly from theorem 10.1 by noting that the first 

"slope" of 
A"g.[n] 

is \2g[0]V=2Kla) where a=-log2 lg[0]1. Table 1 lists thèse optimal 

regularities and upper bounds (43), as well as the corresponding program outputs 

implementing (37). 

There are other solutions g[n], derived for L £ 8 in [4], which, unlike "minimum phase 

solutions" are close to being symmetric. Table 1 shows that the regularity estimâtes for thèse 

wavelets, based on theorem 11.1, are lower than those of "minimum phase" wavelets. 

15. "Strictly linear phase" symmetric limit functions. 

In this section we apply the above results to a subclass of scaling séquences which is 

often encountered. This section is also a prerequiste to study the différences between Hôlder 

regularity estimates and those determined using Fourier techniques (section 17). The 

subclass considered hère consists of scaling séquences for which either G(X) or G(X)/(l+X) 

is "stricdy linear phase," in the following sensé. 

DEFINITION. A polynomial U(X) (or its associated séquence u[n] of finite length L) is 

strictly linear phase if it is symmetric: u[n] =u[L-l-n] and if (/(e"") e 2 does not change 

sign for any 0) � R. 

Symmetry of u[n] implies U(�") e * e R. This condition is called "linear phase" in 

signal processing [5]. The above definition requires more, namely that no discontinuities of 

the phase due to a change of sign in U(d") e J occur. Therefore, complex zéros of the 

symmetric polynomial U(X) occur in pairs (z, l/z') not only for lzl*l, but also on the unit 

circle. That is, roots on the unit circle hâve even order. It follows that U(X) has an even 

number of roots, hence L is odd. 
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If cither G(X) or G(X)l(l+X) is strictly linear phase, then for N odd (even, 

respectively), the séquence f[n] in (37) is strictly linear phase. The following theorem 

shows that in this case the détermination of the exact regularity order of the limit function 

gjx) only requires the computation of the spectral radius of one matrix. This is to be 

compared with sections 12 and 13, where it is shown that two matrices are involved in the 

general case, and that the computation of one matrix's spectral radius only provides an upper 

bound for regularity. 

The following regularity estimate has been derived independently, by other means, and 

on particular examples of strictly linear phase scaling séquences, in [3] and [8] (see sections 

16 and 17). 

THEOREM 15.1. Assume G(1)=2, G(X) has at least N+l zeros at X=-l: G(X) = 

(lj2S-)N(l+X)FN(X), and F"(X) is strictly linear phase. Define the ^x^ matrix FN by 

folding thefollowing ^ x(L-2) matrix: 

"... 
A3] fN[2] Au Au] AU jN[2] jN[3] 

-' 

- 
Ai] Ao] Ai] A2] A3] A4] A5] - 

- 
Al] A2] A3] A4] A3 A6] A7] - 

(where f"[n] =/r[ifI±n] ) around its middle column: 

"Aoi 2A1] 2A2] 

¥s=fN[2] 
Al] + A3] A��] + A4] - 

A4] A3] + A5] A2] + A6] - 

(45) � � ï 

Let p be its spectral radius. One has p�l/2. If p � 2N, then the limit function gjx) is 

é g-42 (almost £ 
M-1092 

in the sense (34) if a�.N). jn addition, if gjx) is ordinary, 
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and if either p�l/2 or p=l/2 and G(X) has no more than N+l zeros atX=-l, then gjx) 

is not for any e�O. 

Proof. Define fN[n] =/v.[2/",(L-l)+n]. This non-causal, symmetric séquence is 

strictly linear phase. We first prove that IIF*.(X)II 
= max l/".[n]l 

= 
l/".[0]l. Using Fourier 

coefficients, we hâve fN. [ n ] = 
k\l%FJ'(eUù)e-i*ùd(ù where 

F: (eial) 
= 
£ /yAr[i»]«i" = |F/(e*°)|. 

Therefore max, l/"y{n]l £ £ J02*I F/fc*")! d(ù 
= 
lÎe ji 011. 

The theorem therefore results from theorem 10.1 1 if we prove that I.Í/[O]I is équivalent 

to py, asy'-�+oo. From (7b) written for FN(X), we hâve, for 0�m�2M, 

fj+l[2J*ln+m+2J]=^ f[k+l] fj[2i(2n-k)+m]. This means, in matrix notation, 
k 

(fjJ2*ln+m+2J])m = F*, (fpln+m])^ where FNX is defined by (41). Let m=2J~^ (for 

sufficiently large j's to ensure mèO.) The above équation is then rewritten, in terms of the 

//[»], as (f"M[2»l(n-*?)])m = F", �J" p!(n-W\\. By symmetry this equation can be 

restricted to n=0, ..., �, in which case the action of FNI is exactly that of F". It follows 

by induction onj that \fjN [0]l is équivalent to IKF^yïl.., hence to pi, when j-++°°. m 

16. Examples: Deslauriers and Dubuc's interpolation schemes. 

Deslauriers and Dubuc hâve studied regularity of limit functions of particular dyadic 

up-scaling schemes [9]-[10]. In such schemes, the iterated séquence is left unchanged at 

each iteration, and one simply inserts between the coefficients g [n]=g.+1[2n] and 

g;[n+l]=g/+1[2n+2] the value g^[2n+l] of the Lagrangian polynomial interpolation of the K 

consécutive values g;.[n+ l-Af/2], ..., gj[n], g .[n+l], ..., g.[n+K/2], where K is even. This 

reduces to a dyadic up-scaling scheme (2), where the scaling séquence g[n], of length 

L=2K-l, when made causal by shifting, is defined by 
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g[2n] = ô[n] = 1 if n=0, 0 elsewhere. 

(46) g[2n+l] = L,%(xil), 

where L.(X) is the Lagrangian polynomial L.(X) 
= 
ri( X-k) 

associated to the 

interpolation points k=O, ..., K-l. 

We hâve to show that theorem 15.1 applies in this case. It tums out [14] that G(X) of 

length L=2K-l is exactly GW(X) GWÇC), where GW(X) is the scaling polynomial of 

Daubechies' wavelets of length K (see section 14. - this fact will be useful in section 17). 

From section 14 it follows that G(X) has exactly K zéros at X=-l. Moreover it is strictly 

linear phase because G(ei, = Gw(ei�0) Gw(eiB) = IGW(OI2 £ 0. Thus theorem 15.1 applies 

with N=K-l. 

In addition, since g..[2n] = gin], we hâve gjn) = lim g.[2jn] = g[2n] = 5[n], 

therefore the limit function gjx) is ordinary: theorem 15.1 gives the exact regularity order 

of g.(x). 

The computation of the matrices FIC-I (45) needed by theorem 15.1 can be easily donc 

using the formula 

f-\n\=c\ 
J^i-m . 

which results from (46) after some calculation. Détermination of their spectral radii yields to 

the optimal regularities of Table H. 

In [8], Deslauriers and Dubuc extended the study of the previous scaling séquence for 

L=7 (i.e., K=A) to the following scaling séquence (hère defined for n=-3, ..., 3). 

g[O]=l, g[±l]=l/2-a, g[±3]=a, and 0 elsewhere, 

where aeR. The case a=-l/16 correspond to the previous example, which from Table 2 

yields regularity C2. 
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The simplicity and usefulness oftheorem 15.1 is well illustrated through this example. 

Note that since g[2n]=Ô[n], the limit function is ordinary asabove for ail aeR. This scaling 

séquence is easily seen to be stricdy linear phase for -1/16^2^1/2, therefore theorem 15.1 

applies in this case (for other values of a one has to use more general theorems such as 

theorem 11.1). Hère (for a*- 1/16) G(X) has exactly two zéros at X=-l, and we can 

therefore apply theorem 15.1 with W=l. We hâve /1[0]=l+4a, fl[±l]=4a, and fl[±2]=2a, 

hence 

2a -4a 

Its spectral radius is p=-j(l + Vl + 16aj. From theorem 15.1, the exact regularity order of 

gjx) is r = 2 - logj (l+Vl + lôa), which decreases from 2 to 0 when a increases from 

-1/16 to 1/2 (see Fig. 5). 

17. Comparison with Fourier-based regularity estimâtes. 

This paper has developped a direct approach based on the définition of Hôlder 

regularity to estimate regularity of limit functions gjx) of dyadic up-scaling schemes. But 

various other approaches for estimating regularity were also published. Some of them 

estimate the decay of the Fourier Transform gj(û) of the (compactly supported) limit 

function gjx) when lcol-�+«�. One has easy access to gj(û) from the scaling séquence g[n] 

by[3] 

(47) iim Gj(eib). 

Hère other spaces than the C" are used to interpolate the spaces C" of N-times continuously 

differentiable functions. One generally considers one of the following spaces: H{, H2, HJ, 

defined by the conditions IcuT gj(ù)� L', L2, L", respectively. Estimations of parameters r 

for thèse spaces guarantees some Hôlder regularity, since we hâve, for any e�0, 
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(48) ff.."1** c Htln.+e c Hlr C 

Most of thèse inclusions are easily proven. The second one uses the Cauchy-Schwarz 

inequality and [9] contains a proof of the last one. 

In [3], Daubechies has derived an estimate for gjx) e C^e based on HJ*1*'. This 

estimate is easily deduced from the above results of this paper. We hâve, using the notations 

of theorem 9.1, 

IIF".(X)II_ = max, \fjji\\ �£ J*%\FN(ek0)\d(ù � rnax 1 Fv (ea 

Define the number B. such that 2 ' = max OIER 1 Fv (e" Y. Then by theorem 10.1 and 11.1, g (x) 

is C"+M, where = hmsup p, in fact, A.Cohen has shown [7] that this method gives the 

best number � such that gjx) e Hj****1. This estimate is therefore optimal "in the Fourier 

sensé." 

But is this estimate optimal for Hôlder regularity? The following theorem shows that 

the answer is no. The basic reason for this is that the exact Hôlder regularity order of gjx) 

dépends on the phase of gj(ù), i.e., on the phase of G(ekB) by (47), whereas Fourier-based 

regularity estimâtes only dépend on the module of gj(û) . This theorem also shows that in 

the framework of section 15 (the "strictly linear phase" case), optimal Fourier-based 

estimâtes are also optimal for Hôlder regularity. Note that the strictly linear phase case 

corresponds to limit functions that can be made zero-phase by shifting, i.e., gJ(ù)2.Q. 

THEOREM 17.1. Fourier-based regularity estimates, i.e., based on either H,, 

H2r, or Hmr, are not optimal for Hôlder regularity in general. They are nonetheless off by 

less than 1 compared to optimal Hôlder regularity estimates. 

For strictly linear phase sequences, based regularity estimates based on H' are 

optimal for Hôlder regularity. 
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Proof. We first prove optimality in the strictly linear phase case. From (47), the 

framework of section 15 can easily be reduced to the case g�((ù)20. Optimality for spaces 

Ht and Cr coïncide if we prove that in this case gjx) e Ca implies gm(x) e Hi a-- £ , for any 

e�0. We may restrict to 0�0�1, otherwise just consider a derivative of gJX). The intégral 

/(co) = JR sin(cohI2) l/rl"1"0*** dh absolutely converges for 0�æ;;1; making a change of variable 

yields/(cû) = lû�Te/(l). Therefore 1�.(cù) lcola-e dco = c II £ .(©) sin(9/j/2) \MM dh dco 

= c J (gJ�h/2)-8J(-h/2)) \h\'x'a+t dh absolutely converges because gjx) is compactly 

supported and Ca. This proves gjx) e H�. 

When g[n] is not strictly linear phase, however, Fourier-based regularity estimâtes are 

not optimal. This is the case for Daubechies' wavelets seen in section 14. In fact, Table 1 

shows that the regularity estimates of "more symmetric" Daubechies' wavelets are 

numerically found to be less than those of "minimum phase" Daubechies' wavelets. Thèse 

two families differ only in the phase of G(é*), therefore by (47) Hôlder regularity dépends 

on the phase of g- (co) .Let us explain this point precisely. 

As previously mentionned in section 16, the scaling polynomial G(X) of a Daubechies' 

wavelet is such that G(X)G(X) is the scaling polynomial of a Deslauriers and Dubuc 

scheme. We hâve G(e?*)G{e*) = IG(OI2, thefore from (47) the Fourier Transform of the 

limit function of a Deslauriers and Dubuc scheme is Ig_(co)lz, where g-(co) is the Fourier 

Transform of the limit function of the corresponding wavelet. Since the Deslauriers and 

Dubuc limit functions are strictly linear phase, their optimal Hôlder regularity estimates r, 

listed in Table II, are optimal for H^. This implies gjx) E H2, therefore gjx) � C . 

Table 1 shows that these regularities (r-l)/2, first derived in [3], are not optimal for Hôlder 

regularity although they are for H2 rf2 spaces. 

It remains to be proved that optimal Fourier-based estimates are greater than r-1, where 

r is the exact Hôlder regularity estimate. This results from CT c Hr^, which is certainly 

known in the literature, although 1 was unable to find a référence about it A proof is as 
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follows. If gjx) is Ca for O�aSl (for a� on just has to consider derivatives of gjx)), 

then l £ .(©)(è** -1)1 £ J \gjx+h)-gjx)\ dx S 2Lclhla where L is the length of gjx). 

Specifying h=l/co for co^O yields gjx) e //J\ a 
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FIGURE LEGENDS 

Fig. 1. A dyadic up-scaling scheme converging to a limit function (after [3]). The 

discrète séquences g[n] are plotted as puises, against n2-j for/=l, 2, 3, and 6. At each 

itération step the up-scaling operator (1) is applied, which approximatively doubles the 

number of coefficients while preserving a global shape. Wneny-H-*», thèse discrète curves 

converge to a "nice-looking," regular limit function, compactly supported on [0, 13]. 

Fig. 2. Two examples of diverging dyadic up-scaling schemes. Figures (a), (c) show 

six plots of the discrète séquences gin] (j=l, ..., 6), represented as coefficients joined by 

segments and plotted against n2'J. Figures (b), (d) show the obtained curve after 9 itérations. 

(a), (b) g[0]=g[l]=g[2]=2/3, g[n]=O elsewhere. Hère G(-l)=2/3 *0. Note that up- 

scaling follows a fractal law. 

(c), (d) g[0]=g[4]=0.5, £ [1]=$[3]=0.99, g[2]=l, g[n]=0 elsewhere, renormalized such 

that G(l)=2. Hère G(-l)=0.01 is so small that divergence is not obvious at the level of the 

figure. Divergence is hère due to very small oscillations that occur in the graph of g.[n]. 

Although very small, thèse oscillations are so rapid that they preclude convergence. 

Fig. 3. Two examples of converging dyadic up-scaling schemes (after [3]). The 

g;.[/z]'s are plotted against n2-j for j=l, ..., 6, with coefficients joined by segments, so that 

the behavior of the "slopes" can be observed. 

(a) The limit function is C0-5500"- and not C'. Therefore slopes are allowed to increase 

indefinitely near the peaks of the limit function. 

(b) The limit function is C1 087'", therefore C1. Slopes are constrained to be bounded, 

especially near the apparent "peaks" of the limit function. 
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Fig. 4. Program output of regularity estimates N + a". (37) with AM), 1, 2, fory'=l 

to 20 iterations. The corresponding limit function is the Daubechies "minimum phase" 

wavelet of length 5 (see section 14), whose exact regularity order is r=1.0878.... For AM), 

the estimate is bounded by 1 and therefore does not converge to r. For N=2 the estimate 

converges fairly rapidly to r. After 20 iterations one finds 2+a220 
= 1.0831.... 

Fig. 5. Plots of Deslauriers and Dubuc limit functions corresponding to #[0]=1, 

g[±\]=0.5-a, g[±3]=a, g[n]=O elsewhere. The successive values of a are a=-l/16 (regularity 

order 2), a=0 (regularity order 1), a=l/4 (regularity order log2(V5-l)=0.305...) and a=0.4 

(regularity order 0.104...). 
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TABLE 1 

REGULARITY ESTIMATES OF DAUBECHIES' 

ORTHONORMAL COMPACTLY SUPPORTED WAVELETS [3]-[4] 

TABLE H. 

REGULARITY ESTIMATES 

FOR DYADIC LAGRANGIAN INTERPOLATION 

SCHEMES OF DESLAURIERS AND DUBUC [8]-[10] 
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Abstract - This paper first dérives the précise conditions under which the Wavelet Transforms of 

analog signais are computed exactly using discrète algorithms. Implementation issues for the Discrète 

Wavelet Transform, Wavelet Séries, and the Continuous Wavelet Transform are addressed. Fast 

algorithms, either FFT-based or Fast-FIR-based are then derived. Thèse algorithms reduce the 

arithmetic complexity of wavelet transforms in any practical case of interest. 
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INTRODUCTION 

Wavelet Transforms are becoming of increasing interest for various tasks in Signal Processing. 

Their continous version, known as the Continuous Wavelet Transform [12], [13], [18], [36] 

provides an alternative [10], [27], [29] to classical time-frequency représentations of signais such as 

the Short-Time Fourier Transform. Their semi-discrète version (Wavelet Séries), as well as their fully 

discrète version (Discrète Wavelet Transform) hâve been recently used in various signal coding 

schemes, including image compression [1], [21] and in various tasks in computer vision [19], [20]. 

This paper intends to provide efficient algorithms for computing thèse various wavelet transforms, 

hence concentrâtes on their computational structure rather than on their properties. 

The computational structure of the Discrète Wavelet Transform (DWT) was soon recognized to be 

an octave-band filter bank [4], [19], [28], [34]. The primary purpose of this paper is to show that 

filter banks also arise naturally when implementing Wavelet Séries and Continuous Wavelet 

Transforms, thereby precising the strong links existing between the différent types of wavelet 

transforms. 

As far as implementation issues are concemed, filter banks hâve the interesting property that they 

are easily implemented by repetitive application of identical cells: they hâve a regular structure. In this 

paper, we dérive fast algorithms by applying various computational techniques on thèse elementary 

cells. 

Wavelet Transforms can be seen as an inner product of the signal with various analysing 

functions, named wavelets. The wavelets to be used at scale a and around time b are deduced from a 

basic prototype \|/(f) (which can be thought of as any band-pass function) by 

where a is a dilation/contraction factor, b a time-shift, and 1/Va a factor that ensures energy 

preservation. Roughly speaking, ail wavelet tranforms compute the coefficients representing the 

signal x(t) in a basis of wavelets (1). Various discretization schemes are possible, yielding various 

types of wavelet transforms. More precisely, we use the following terminology that parallels the 

classical one used for Fourier Transforms: 

Continuous Wavelet Transform (CWT): continuous time (t) and time-scale parameters (b/i). 

Wavelet Séries' Transform (WST): continuous time, but discrète time-scale parameters. 

Discrete Wavelet Transform (DWT): Both time and time-scale parameters are discrète, 

(the WST is sometimes called DWT in the littérature [11], [20]). 

This paper is organized as follows: Section II addresses the links existing between the WST and 

the DWT, and shows that the WST can be computed as a DWT on a prefiltered version of the signal, 

at least when scale is sampled as a='lJ. Denser sampling in scale is also discussed. Section HI then 
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provides fast versions of the DWT. The first one, based on FFTs, is most efficient for large wavelet 

prototypes (corresponding to filter lengths lkl6), while the second one is of greater interest for 

short-length ones. Note that the set of algorithms provided hère allows for a réduction of the 

arithmetic complexity in any case of interest. Section IV shows that successive WST computations 

provides a full CWT, and dérives a modification of the basic DWT computational cell, suitable for the 

CWT computation (the organization of the computation is slightly changed because a denser set of 

outputs is required). Tables of the required number of operations are provided for ail algorithms 

presented in this paper. 

The material of this paper develops and extends previous papers [25], [26]. A brief comparison 

with some previously published algorithms [2], [9], [11], [17], [19], [30], [32], [34] is made. 

I. IMPLEMENTING WAVELET SERIES 

Before deriving précise algorithms for implementing Wavelet Séries, we first outline some 

properties of the WST and the DWT. 

A. The Wavelet Séries' Transform (WST). 

Wavelet séries 

x(t) X £ cMvM(f) (2) 
jtZUZ 

décompose an analog signal x(t) into a basis of analog wavelets yjk(t). Thèse wavelets usually 

correpond to discretized parameters a=?! (an "octave-by-octave" computation), and b=K)j in (1): 

VM(r) = 2-�n\f{2-'t- k), j, keZ. (3) 

Other choices are sometimes considered [5] (see section LD). 
The Wavelet Séries' Transform (WST) computes the wavelet séries' coefficients c. � as 

WSTWO; a='li, b=k2'} = c.k 
= 
\x{t)\f'^{t)dt, (4) 

where the "analysis wavelets" 

V,t(0 
= 2-j'2,q(2-it - k), j,keZ (5) 

are chosen to guarantee perfect reconstruction in the synthesis process (2), and are not necessarily the 

same ones as the "synthesis wavelets" YM(0- Equation (2) is therefore the expression of the Inverse 

Wavelet Séries' Transform (IWST) 

IWST{c.t} = £ XcMV;.t(0. (6) 
/eZteZ 
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The perfect reconstruction requirement: rWST{WST{x(f)} = x(t), can be met by many choices of 

wavelet prototypes V(t) and \j/(r). Thèse choices either fall in the theory of "wavelet frames" [5], 

[14], [15] or in the theory of "biorthonormal" or "orthonormal" wavelets [4], [19], [20], [28], [35], 

[36]. The resulting constraints on the shape of wavelets can sometimes be used to (slightly) reduce 

the computational load of the WST. Nevertheless, we focus hère on implementation issues, not on 

the wavelet design. Therefore, to be as general as possible, the constraints on y(r) and \j/(r) will not 

be taken into account. 

Various data compression schemes, although fully discrète in nature, hâve been described using 

the WST formalism, because wavelet coefficients are indexed by a (relatively sparse) discrète set of 

numbers (j,k). A two-dimensional version was successfully used for image compression [1], [20], 

[21]. Wavelet séries are also closely related to octave-band filter banks used in speech coding [32] 

via the Discrète Wavelet Transform. 

B. The Discrete Wavelet Transform (DWT) 

The DWT formalism closely follows the Wavelet Séries' formalism, the main différence being 

that one deals with discrete-time signais x[n], neZ. The DWT coefficients are (compare with (4), (5)) 

DWT{x[ny, 2j, k2/) = c. = � x[n] h..[n-'1!k], jïl, j, ke Z, (7) 
09 

and the inverse transform (IDWT) reconstructs the signal by (compare with (2), (3)) 

IDWT{C.t} £ XcM^«-2^] 
j-1 kcz 

This latter expression equals x[n] only if both h.[n] and hj[n] satisfy spécifie constraints [4]. Since 

we use hère both DWT and IDWT as intermediate computation steps to compute various wavelet 

transforms, thèse constraints do not always hold in the context of this paper and, unless mentioned, 

are not considered. 

Note that the octave parameter j is hère restricted tojèl so that the sampling rate of c. � in k, 

which is V, is less than or equal to half the sampling rate of x[n]. Therefore, from a set of N input 

points, the DWT computes about N(112 + 1/4 +... + 27j + ...) = N wavelet coefficients. 

The discrète "analysis wavelets" h[n-2jk] and synthesis "wavelets" hj[n-2Jk] are discrète 

substitutes for 
y. Jt-2'k) 

= 
y,t(0 and V. J. 0(t-2ik) = V. J." k(t), respectively. They are stretched (or 

dilated) versions of two prototypes h[n] and h[n], as in the continuous-time case. In constrast with 

continuous-time wavelets, however, a dilation by 2i is not so easily expressed as 

\K0 �2^v(2^)=¥/(,(0 
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since the h.[n]'� and hj[n]'s are discrète séquences. We therefore define the discrète équivalent of a 

dilation (by a factor two) as the following interpolation processes {28], [29], [35]: 

hjin] -� h^[n] 
= 
L hik] g[n-2k] 
t 

hj[n] -» ÂMW-] £ hj[k] g[n-2k]. (9) 

This defmes the wavelets hjjt] and h, [n] by induction starting from h, [n] 
= h[n] and hx[n] = h [n]. 

This "dilation" operators use a "scaling séquence" g[n] (or g[n]), which is the impulse response of a 

low-pass interpolation filter. 

The DWT and the IDWT can always be seen as an analysis and synthesis octave-band filter 

bank [23], [32], depicted in Fig.l. In this filter bank the basic filters are precisely g[n], h[n], g[n] 

and À [n]. It can be shown that DWT and IDWT are true inverse transforms of eachother if and only if 

this filter bank allows perfect reconstruction [3], [23], [28], [31], [32], [35]. 

C. DWT Computation of the WST. 

1. Basic Assumptions. The whole paper is centered around the computation of wavelet 

transforms of a continuous-time signal x(t) by means of the DWT, which is the only wavelet 

transform we can compute exactly on a computer anyway. Since the DWT acts on discrete-time 

signais, we need a précise writing of continuous-time signais in terms of their discrète counterparts. 

This requires some knowledge about x(t). Once thèse assumptions hold with sufficient accuracy, the 

rest of the computations will be exact. 

Assume that x(t) is related to its discrète version x[n] by a (possibly non-perfect) D/A converter of 

theform 

x(t) = L x[n] X(r-«). (10) 

Throughout the paper we assume that the sampling rate of x(t) is 1. A typical choice is the zero-order 

holder, for which X(t) = 1 for 0�/�l, 0 elsewhere. This choice corresponds to approximating a 

continuous curve by a piecewise constant one. 

Also assume a similar correspondance for ail the wavelets used in the WST: 

2-jti xj,^,) = L hj[n] (j)(f.n)� y^lf 

where cp(t) is some interpolating function of time. The séquences {/i[n]} are seen as the discrète 

versions of the wavelets Va '¥(2-¡t), therefore they must follow, as in the DWT, the "discrète 

dilation" scheme (9). 



152 

RIOUL AND DUHAMEL: FAST WAVELET TRANSFORM ALGORITHMS 6 

Although (10), (11) are assumed to hold exactly in the following, when met with sufficiently high 

accuracy, the resulting.DWT computation is a good approximation of the WST. 

Since (11) must be met for all j' k 1, it is not usable as such, and it is more practical to replace this 

set of équations by a single one on the basic wavelet (j=l), plus a writing of the équivalence of the 

continuous and discrète dilations. This is obtained by writing (11) in two équivalent forms, 

2-c/+iv2xj,(2-«*or) =..fiL h.[n] cp(t/2-n) 

= E ( 2��w An-m \ ��('-»)� 

By identification, cp(t) satisfies a "two-scale différence equation" [6] 

cp(t) = V2"X g[n] cp(2t-n). (12) 

Now clearly (11) is équivalent to (12), plus (11) written for 7=1: 

1/V2 W2) = X h[n] W-n). (13) 

We shall see that the DWT computation of the WST is exact once (12) and (13) are assumed to hold. 

It is therefore crucial to choose a good interpolating function cp(t) satisfying (12) such that the basic 

wavelet y(t) can be accurately approximated by (13). 

2. Examples of interpolating functions. Thèse are two simple examples of cp(t): 

Assume that y(f/2) is band-limited to [-1/2; 1/2]. By Nyquist's sampling theorem, cp(t)= 
sin nt fat is a solution that ensures h in] 

= 27*2 V(2-in) in (11). Equation (12) hère holds with g[n] = 

1/V2 �|�(n/2). However, this scheme involves an infinité, idéal low-pass filter g[n], with slow decay 

as n-Hoo, which makes this choice impractical. 

Another solution for cp(t) is the basic spline interpolating function of some degree k, whose 

Fourier Transform is [3] 

v v ) 
In this case (13) reduces to a classical curve fitting problem. Rewriting (12) in the Fourier 

domain, one finds, within time-shifting, 

g[n] = -k\ 
n=0, ...,k+ 1, 

which is refered to as a (FIR) binomial filter [3], [32]. 
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3. Derivation of the basic algorithm. Expand (10), (11) into the expression of the WST (4). 

Oneobtains 

WSTWf); 2i, k2i = 

J| X4m]x(f-m)Ï £ /»/[n](|�(r-2^-n) ] dt 

= X £ 4m]Jx(r-m)�j�*(r-n)^ h'[n-2Jk] 

This immediately gives the following WST algorithm. 

WST{;c(0; 2i, k2J) = DWT{x'[n], 2f, k2j] , (14) 

where x'[n] is a corrected version of x[n], namely the discrète convolution 

x'[n] =x[n] * ffn], where /[/z] = 
J%(/)�J�*(r- n)dt. (15) 

Note that in the case of a perfect sampling, we hâve hjn] 
= 2~'a V(2-in), and (14) reduces to a simple 

discretization of the intégral defining the WST (4). Compared to the perfect sampling case, our 

approach allows a greater flexibility in the curve fitting (13) of the wavelets, hence on the accuracy of 

the computation (14). 

Using (10), equation (15) can be rewritten as 

x'[n] = jxm\t-n)dt. (16) 

If X(t) = cp(t) in (10) and if the family of functions §(t-n) (ne Z) is orthonormal, then prefiltering is 

avoided: x'[n] = x[n] and (14) reduces to the Mallat algorithm [4], [19], which was specifically 
derived for orthonormal wavelets \|f. k(t). In [19], [22], equation (16) has been further interpreted in 

terms of multiresolution spaces as being the approximation coefficients of x(t) at the Oth octave 

0=0). Similarly the synthesis Mallat algorithm is a spécial case of the IWST computation derived in 

section I.E. 

As a resuit of (14), a filter bank implementation of the WST via a DWT is possible within a much 

broader framework than the orthonormal case treated by Mallat, provided that a pre-filtering (15) is 

performed on the data. This resuit is used throughout this paper to dérive various efficient wavelet 

transform algorithms based on DWT. The DWT is therefore the basic computational structure. 

However, it may be necessary to compute a WST on a set of points denser than the octave grid in the 

scale axis a=2/. This is the aim of the following section, which extends (14) to obtain other points in 

scale. 

D. Finer Sampling in Scale. 

So far Wavelet Séries' coefficients were computed on a dyadic grid in the time-scale plane 

[b=k2\ a=2'} (see Fig.l). In applications such as signal analysis, it may be desirable to 
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"oversample" this discretization, i.e. to compute a denser set of wavelet coefficients along the scale 

axis (computation on "M voices per octave" [5]). This means that a = 2* is replaced by 

a = 2�m/", m=0, ..., M-l ("voices"). 

Now, for each m, replace V(t) by the slightly stretched version 2-1 y(2'm"4t) in the expression 

of y. k(t) 
= 2'ia y(2*'r-it). The wavelets basis becomes: 

2^miMV2 V(2-(j+lfl/M)(t-k2Í), y, ke Z, m=0, ..., M -1. 

The obtained points in scale (a) and time-shift (b) parameters are shown in Fig. 2: this corresponds 

exactly to the desired WST computation on M voices per octave. Since this full set of wavelets is 

derived from M différent (slightly stretched) wavelet prototypes, a WST computation on M voices 

per octave results from M successive applications of the octave-by-octave algorithm (14), each one 

corresponding the following prototype 

2-mi2M ¥(2-«^f), m=0, ..., M -1. (17) 

Of course (13) must be satisfied for each of these M basic wavelets (17), which means that the 

coefficients of each discrète wavelet must be derived again for each m using the same procédure as 

explained in section I.C. Clearly, the whole algorithm requires about M times the computational load 

of the octave-by-octave algorithm (14). 

Note that the separate computation of several WSTs based on prototype wavelets (17) is not the 

best possible algorithm for an "M voices per octave" WST computation, because these prototype 

wavelets are related in a simple manner. However, we could not find a method that takes advantage 

of both time redundancy and scale redundancy when a=2i*mM. This paper uses mostly time 

redundancy, while the algorithm derived in [2] is mostly based on scale redundancy (see section 

IILD). 

E. IDWT Computation of the IWST. 

Just as the WST can be computed using a DWT, its inverse transform can be computed using an 

inverse DWT (8), under the same assumption (11) expressed on synthesis wavelets \fjJt(t) farjèl: 

2-^v(2-/r) = XÂ�[«]^-«). (18) 

Let c... = WST{x(/), 2y, kilo Expand (18) into the expression of an IWST (6) (for;�l). One 

obtains 

where 

y[n]=IDWT{cM} (19b) 
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The IWST thus results from the IDWT followed by a D/A converter (interpolation) associated to 

(t). The overall analysis/synthesis WST procédure is depicted in Fig.3: First the analog signal x(t) 

is "sampled" (A/D converted) according to (10) to provide the discrète signal x[n]. This latter is then 

pre-filtered by f[n] (15) to give the discrète signal x'[n] which feeds the DWT algorithm (the analysis 

octave-band filter bank of Fig. 1). The synthesis part is obtained by an IDWT, followed the 

interpolation (D/A conversion) (19a). 

Note that in this WST/TWST computation, the analysis and synthesis discrète wavelets do not 

necessarily form a perfect reconstruction filter bank pair. If by any chance the DWT/BDWT tums out 

to be a perfect reconstruction filter bank, i.e., if y[n] =x'[n] (16), then it can be shown [3] that 

analysis and synthesis wavelets are "biorthonormal" [3] (at least for FIR filters g[n], h[n], g [ri] and 

h[ri]) and we hâve 

J�Kr-/04�*«-m)�fc=8B�)l (20) 

Since y[n] = x'[ri], it follows that 

IWST{WSTU(f)}} = 
Z(jx(uW(u-m)du)$(t-n) (21) 
* 

The right-hand side of (21) is a projection of x(t) onto the subspace V spanned by linear 

combinations of the$(t-ri): indeed if x(t) belongs to V, i.e., if x(u) y £ /ck$(t-k), then using 

(20), equation (21) reduces to x(t). 

Therefore, any general signal x(t) which does not a priori belong to V is not exactly recovered in 

a WST/IWST computation using a DWT/IDWT. Only its projected approximation onto V is 

recovered. This loss of information is due to the "sampling" operation x(t) --� x[n] (accordingly the 

DWT/IDWT is performed for jkl only). The only way to reconstruct x(t) is to ensure that x(t) 

belongs to V from the start (e.g. choose X(t) = �(t) in (10), in which case x'[n] = x[n]). 

This précises the fact stated above: the only approximation in our algorithm is in the "sampling", 

and in the way the continuous-time signal and wavelets are recovered from the discrète samples. 

H. FAST ALGORITHMS FOR THE WST AND THE DWT 

A. Preliminaries on Filter Bank Implementations of the DWT. 

The aim of the following sections is to dérive fast algorithms for the DWT/IDWT, and therefore 

for the WST/IWST via (14), (19). We assume real data and wavelets. The complex case can be 

handled without difficulty (it can be shown that fast algorithms presented in sections II.B-D require 

about twice more complexity in the complex case than in the real case). We also assume that the basic 
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filters involved in a DWT/IDWT implementation (Fig.l) are FIR and hâve same even length L. We 

may always restrict to this case, padding impulse responses with zéros if necessary (which does not 

gready influence the efficiency of the algorithm because the involved filters are of comparable length). 

In the following, we restrict to the dérivation of fast algorithms for the DWT only. Algorithms 

implementing the IDWT are easily deduced from any DWT algorithm as follows. If the wavelets form 

an orthogonal basis, the exact inverse algorithm is obtained by taking the Hermitian transpose of the 

DWT flowgraph. Otherwise only the structure of the inverse algorithm is found that way, the filter 

coefficients g[n], h[n] hâve to be replaced by g[n], h[ri]. In both cases, any DWT algorithm, once 

transposed, can be used to implement an IDWT, with exactly the same number of operadons 

(multiplications and additions) per point. 

The derivation of fast algorithms is primarily based on the reduction of arithmetic complexity. By 

"(arithmetic) complexity" we mean the total number of real multiplications and real additions required 

by the algorithm, per input point. For the DWT/IDWT, this is also the complexity per output point 

since the input and output rate in a DWT/IDWT are the same (see section Lfl). Of course, complexity 

is not the only relevant criterion. For example, regular computational structures (i.e. repetitive 

application of identical basic computational cells) is also important for implementation issues. 

A straightforward computation of the DWT implements (7) exactly as written, ail discrète 

wavelets h [ri] being precomputed using (9). This method does not take advantage of the dilation 

property of wavelets (9) inside the algorithm, and therefore does not use the filter bank structure of 

Fig.l. Since the length of h.[n] is (L-1)(2M)+1, we end up, at each octave;', with (L-l)(2'-l)+l real 

multiplications and (L-1)(2M) real additions for each set of Y inputs. Assuming the DWT is 

computed on J octaves 0=1. ���» «/). this yields 

J(L-1) + 1 mults/point 

/(L-l) adds/point. (22) 

This complexity increases linearly with the number of octaves /. 

A better implementation uses the DWT filter bank implementation of Fig.l. Owing to the 

décomposition of the computation into elementary cells and to subséquent subsampling operations at 

each stage, it can be shown that the complexity is significantly reduced compared to the "naive" 

method above. More precisely, the set of operations to be performed for one elementary cell at theyth 

octave (Fig. l(a)) is, on one hand, the "wavelet filtering" by h[n] which directly provides the wavelet 

coefficients at the considered octave y, and on the other hand, the down-scaling operation (filtering 

by g[n] plus decimating) which is necessary to address the next cell. A direct implementation of the 

filters g[n] and h[n] plus decimation requires 2L multiplications and 2(L-1) additions for every set of 

two inputs, i.e., 
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L mults/point/cell 

L-1 addslpoint/cell (23) 

for each elementary cell. Since the cell corresponding to the/th octave has input subsampled by ']fI, 

the total complexity required by a filter bank implementation of the DWT on J octaves is (1+ 1/2 + 1/4 

+ ... + 112'-1) = 2(1-2) times the complexity (23), i.e., 

2L(1-2V) mults/point 

2(L-1)(1-2J) adds/point (24) 

This is significantly better than (22): the DWT is hère roughly équivalent, in terms of complexity, to 

one filter of length 2L. The complexity remains bounded when / increases. 

The fact that the total complexity of the DWT equals 2(1-2-/) times the complexity of one 

elementary cell is gênerai: it occurs in any filter bank implementation of the DWT, provided that each 

cell requires the same complexity. In order to dérive faster algorithms, it is therefore sufficicent to 

apply fast computational techniques to one elementary cell only. In the next few sections we propose 

two classes of fast algorithms: the first one is based on the FFT and the other one is based on short- 

length FIR filtering algorithms. 

Note that in the elementary DWT cell of Fig. 1 (a), filters do not appear as a whole: they are always 

followed fcy subsampling, that discards one output out of two. However it is well known that 

reducing the arithmetic complexity of an FIR filter implementation is obtained by grouping the 

computation of several successive outputs [24]. Since thèse successive outputs do not appear in 

subsampled filters, it is necessary to rewrite the computations in such a way that "true" filters appear. 

To do that, it is convenient to use z-transform notation 

X(z) = £ x[ri] z\ 

for any séquence x[n]. The "biphasé decomposition" [32], [35] of X(z) consists in considering 

separately the odd and even terms of X(z), Le., the odd and even-indexed samples of x[n]: 

Xo(z) 
= 
L x[2n] z.. and^(z) = L x[2n+l] z", i.e., 

X(z)=X0(z2) + z1X1(z2). (25) 

Apply the biphasé décomposition (25) to the input X(z) of one cell, and to both filters G(z) and H(z) 

involved in the computation. The output Y(z) of the elementary cell resulting from the down-scaling 

operation is obtained by first filtering by G(z), then subsampling. Since we hâve 

G(z) X(z) = G o(Z2)XO(Z2) + Z-2 GtfW^z2) + odd terms, 

selecting the even terms of this expression gives Y(z) = G0(z)X0(z) + Zl G1(Z)X1(Z). In other words, 

Y(z) is now obtained as follows. First extract the even and odd-indexed input samples Xo(z) and z" 

'Xj(z) as theyflow (hence the delay factor z-1 for odd-indexed samples). Then filter by Z/2-tap filters 
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Go(z) and Gt(z), respectively, and finally add the results. The other output of the elementary cell (the 

one corresponding to the filter H(z» is similarly obtained from H,(z) and Hl (z). 

The resulting flow graph of the basic cell is depicted in Fig. 4 (the corresponding IDWT cell is 

simply obtained by flow graph transposition). Compare with Fig. l(a): there are now four "true" 

filters of length L/2, whose impulse responses are the decimated initial filters G(z) and H(z). 

B. An FFT-Based WSTIDWT Algorithm. 

This method simply computes the four L/2-tap filters of Fig. 4 using FFTs. The cell input is 

blocked B samples by B samples, hence the filters' inputs, being decimated by two, are blocked on 

5/2 samples. The filter convolutions are performed in a classical way as the IFFT of a product of the 

input FFT by the filter FFT. Since the latter can be precomputed once and for ail during the 

algorithm, only one IFFT and one FFT are required per filter, for each input block. However this 

does not give a true filter convolution, but a cyclic convolution [24]. Therefore some dme-processing 

must be done in order to avoid wrap-around effects. There are two well-known methods for this, 

called overlap-add and overlap-save methods [24]. Both are transposed of eachother and require 

exactly the same complexity. For one filter of length L/2, with input block length B/2, wrap-around 

effects are avoided if the FFT-Iength N satisfies 

NZL/2+B/2-1. (26) 

Therefore the block length is determined according to (26) as 

B = 2N-(L-2). (27) 

From now on we use the "split-radix" FFT algorithm [8] which has, among practical FFT 

algorithms, the best known complexity for lengths N=2* [8]. For real data, it requires (for both 

FFTs and TFFTs) 

2"1(n-3) + 2 (real) mults 

2"-1(3n-5) +4 (real) adds. (28) 

Each elementary cell is performed with an identical structure shown in Fig.5. The input is first 

divided into even and odd-indexed séquences. Then a length-N FFT is performed on each decimated 

input, and four frequency-domain convolutions are performed by multiplying the (Hermitian 

symmetric) input FFT by the (Hermitian symmetric) filters' FFT. This requires 4N/2 complex 

multiplications for the four filters. Finally two blocks are added (2/V/2 additions) and two TFFTs are 

performed. Assuming that a complex multiplication is done with three real multiplications and three 

real additions [24], this gives 
2 FFT, + 4.3JV/2 mults + 4.3 JV/2 adds + 2JV/2 adds + 2 TFFT, 

per cell, for B inputs, i.e., 



159 

RIOUL AND DUHAMEL: FAST WAVELET TRANSFORM ALGORITHMS 13 

n2*+1 + 8 
ultslpo. fol Il 

2n+l - (L - 2) 

(3n-l)2"+1+16 
addsl intlcell 

2-'-(L-2) 
po 

For a given length L there is an optimal value of B=2N-(L-2), i.e., an optimal value ofN=2* that 

minimizes (29). Table 1 and II show the resulting minimized complexities for différent lengths L. 

After one cell is computed, wrap-around effects are eliminated in the time-domain. To enter the 

next cell, one could immediately feed the previous cell's outputs, whose number would bc halved at 

each stage. But we hâve seen that FFT-based schemes are most efficient for an optimized value of the 

block length B (at fixed filter length L). It is therefore advisable to work with the same, optimized 

degree of efficiency at each cell. This can bc donc by waiting for another block before entering the 

next cell, so that each cell has the same input block length B and FFT length N (not only cells hâve 

the same structure of computations, but they also are exactly identical!). The resulting total 

complexity of the DWT is, as shown in section UA, 2(1 -2V) times (29). 

Table 1 and Il show that this FFT-based DWT computation is efficient only for médium and large 

filter lengths (1216) compared to the direct method (23), if we choose the criterion to bc the total 

number of operations (multiplications + additions) needed by the algorithm. With today's technology, 

this criterion is generally more useful than the sole number of multiplications [23], at least for 

implementations on general purpose computers. A more précise comparison with (23) can bc donc 

for large filter lengths by minimizing the criterion (mults+adds) of (29) 

C(N) = (41092 N - 1)N + 12 
//-(L/2-1) 

with respect to N. The minimal value of C(N) is obtained for N = N* such that the first derivative of 

C(N) vanishes. One has 

CQf)=minN C(N) = 4 logp* + (4/ln2 -1), 

where N* satisfies N* = (U2-1)(1.ntr + 1 -ln2/4) + 31n2. For large filter lengths L this gives IniV* = 

InL + 0(ln In L), hence 

minw C(N) = 4 log/, + 0(log log L). 

This is to be compared with (23), for which the total number of operations (mults+adds) is 2L-1. The 

FFT-based DWT algorithm therefore a significantly improves the direct method (23) for large lengths 
L, the gain being about U(210gzL). 
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C. A Generalization: Vetterli's Algorithm. 

The FFT-based DWT algorithm presented in the preceding section can be generalized by gathering 

J. consecutive stages, using a method due to Vetterli (initially in the filter-bank context [34], and then 

applied to the Wavelet Transform computation [32]). The idea is to avoid subséquent TFFTs and 

FFTs by performing the subsampling operation in the frequency domain. This is donc by inverting 

the last stage of a decimation-in-time radix-2 FFT Algorithm [32], [34]. The FFT length is then 

necessarily halved at each DWT stage, whereas the filter lengths remain constant = L/2. Therefore, 

thèses schemes hâve two disadvantages. First, the structure of computations is less regular than for 

the simple FFT algorithm of the preceding section because FFTs hâve différent lengths. Secondly, 

the relative efficiency of an FFT scheme per computed point decreases at each stage. The difficulties 

brought by this method are easily understood even by evaluating its arithmetic complexity... One 

finds, assuming the DWT is computed on a multiple of J. octaves, an average of 

2J'-1 2'(2n + 5-10.2-/4) + 2(/0 + 3) mults/po. int/cell 
2'. - 2"+1 - (2j- - 1)(L - 2) 

2/'-' 2A (6n + 5-14.2-J') + 4(Jo + 3) 
akLVpoint/cell (30) 

2j- -1 2m*l-(2J*-l)(L-2) 
po 

per elementary cell. This complexity was derived such that the total complexity of the DWT algorithm 

is exactly 2(1 -2~J) times the average complexity per cell (30), so as to permit a précise comparison 
with (29). Note that (30) reduces to (29) when 70 

= 1. Table 1 shows the resulting complexities for 

70 
= 2, 3, 4, when minimized against N=2". Vetterli's algorithms are efficient only when the filter 

lengths are large (L £ 32) and efficiency is lost in any practical case whenever Jo is greater than 3. 

D. Short-Length WSTIIWST Algorithms. 

For short filter lengths L, the complexity of the DWT can be significantly reduced compared to 

direct or FFT-based algorithms, by applying short-Iength "fast running FIR" algorithms derived in 

[23], [33]. The class of "fast running FIR algorithms" is interesting because the multiply/accumulate 

structure of computations is partially retained. Thèse algorithms are in fact very easily implemented 

[23], [33]. 

A global description of thèse short-length algorithms, applied to the computation of one filter of 

length / is as follows (see [23] for more détails). The involved séquences (input, output, and filters) 

are divided into sub-sequences, decimated with some integer ratio R. Assuming the filter length / is a 

multiple of R, filtering is done in three steps: 
1. The input is decimated and the resulting R séquences are somehow combined, with A. 

additions per point to provide M subsampled séquences. 
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2. Thèse séquences serve as inputs to M decimated sub-filters of length IIR. 

. 3. The outputs are recombined, involving A additions per point, to give the exact decimated filter 

outputs. 

Fig. 6 provides an example for R=2, A.=2, M =3. In this paper we also make use of other 

algorithms derived in [23], with R=3, A.=4, M=6, A =6, and with R=5, A.=14, M=12, A =26. 

Further application of the initial algorithm is feasible, since the sub-filters are still amenable to 

further décomposition. For example, to implement a filter of length 15, one may use either a fast 

running FIR algorithm with /?=3, or with R=5. Another solution is to décompose this filter by a 3x5 

algorithm which performs one elementary fast running FIR algorithm with /?=3, the subfilters (of 

length 5) being themselves decomposed using fast running FIR algorithms corresponding to R=5. 

Similarly, the initial filter can be also decomposed by a 5x3 algorithm. Ail the above algorithms yield 

to différent complexities, which are treated with some détail in [23]. 

In this paper we restrict ourselves to at most two successive application of fast running FIR 

algorithms (as in the above example), in order to retain as much as possible the simplicity of thèse 

schemes, even at the cost of a slight loss of efficiency. 

To dérive a short-length DWT algorithm, we apply fast running FIR algorithms to the four filters 

of length / = L/2 in the elementary cell of the DWT (Fig. 4). Hère since two pairs of filters share the 

same input, ail pre-additions (A) can be combined together on a single input. 

Table II lists the resulting complexities, using the decomposition of fast running FIR algorithms 

that minimizes the total number of operations (multiplications + additions). When two différent 

decompositions yield the same total number of operations, we hâve chosen the one that minimizes the 

number of multiplications. Another choice would hâve been to minimize the number of multiplication- 

accumulations. Table Il shows that short-length algorithms are more efficient than the FFT-based 

algorithms for lengths up to L=18. Since DWTs are generally computed with short filter lengths to 

maintain the complexity at a reasonable level [1], short-length algorithms give the best practical 

alternative we could find. Compared to the straightforward filter bank implementation, thèse schemes 

provide noticeable savings: for example, a DWT cell with filter length L=18 requires a total of 25 

operations per output point instead of 35 for the filter-bank scheme (23). 

Tfl. IMPLEMENTING CONTINUOUS WAVELET TRANSFORMS 

A. The Continuous Wavelet Transform (CWT) 

In the previous section, we derived a filter bank implementation and various fast algorithms for 

the computation of Wavelet Séries coefficients. The same ideas and techniques can be readily used to 

implement the Continuous Wavelet Transform (CWT) [10], [12], [13], [18], [29], [36], defined as 
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CWTWO; a, bl = jx(t) -fey'ffidt. (31) 

In contrast with the WST (4) for which time-scale parameters were discretized according to a=2f, 

b=k'i (j, keZ), hère a, beR vary continuously. Roughly speaking, the basic wavelet prototype V(t) 

can be any regular, band-pass function of t, and it is generally assumed J y(t)dt=0 
for 

reconstruction purposes [12], [13], [36]. Note that a can clearly be restricted to positives values a�0 

when both signal x(t) and wavelet V(t) are either both real-valued or both complex analytic (i.e., their 

Fourier Transforms vanish for negative frequencies). As a two-dimensional time-scale representation 

of analog signais x(t), the CWT has many applications in Signal Analysis [10], [12], [18], [29], 

[36]. 

Inverse CWT. Since the CWT brings a lot of redundancy into the representation of the signal (we 

represent a 1-D signal into a 2-D plane), there are several possibilities to reconstruct the signal x(t) 

from its CWT coefficients (31): 

-One can use the classical, but computationally expensive inversion formula [12], [13] 

x(t) = c \\ CWTMO; a, b] a ^, 

where c is a constant depending only on y(f). 

-More efficient is to use an Inverse WST on the coefficients WST{*(r); 2i, k2J] = 

CWT{x(0; 2i, k'i}, when y(r) is carefully chosen [5]. 

-Still another way is to use Morlet's formula [12], [13], [18] 

x(b) = c' JCWTMO; a, b]$r 

which requires a single integration. This computation is performed from available CWT coefficients, 

which should be known for enough values of a in orner to give an accurate reconstruction. 

The above reconstruction methods are straightforward to implement. In the sequel we focus on 

the computation of CWT coefficients for signal analysis purposes. 

B. DWT Computation of the CWT. 

The aim of this section is to use the DWT (7) as an intermediate step to compute the CWT (31) on 

a fine, regular sampling grid in the time-scale plane (b, a), i.e., 

a = aj 

b = kT (32) 

where a. � 1 is reasonably close to 1, and where T is the sampling period of the discretized signal 

(we assume T=l in the following). With discretization (32), one obtains a large number of 

coefficients, and therefore a nearly continuous representation in the time-scale plane for analysis 

purposes. 
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Note that the WST computation we studied in section 1 and II is nothing but part of the 

computation required hère: 

CWTWO; 21, kl) = WST{x(0; 2j, k'll} (33) 

We shall therefore heavily use the results of section I.C (WST computation) for implementing the 

CWT. In particular, we always assume, from now on, the basic assumptions (12), (13). We also 

assume that the input signal has been pre-filtered in a sui table manner, as explained in section I.C. 

Thèse assumptions ensure that the équivalence between discrète computations and continuous ones 

hold with sufficient accuracy. 

From (33) it is likely to obtain a CWT algorithm by combining several WST computations in a 

suitable manner. Nevertheless, the algorithm thus obtained would not be the most efficient one. To 

understand the différences between the WST and the CWT, let us first concentrate on an octave by 

octave computation, as was donc in the WST case. 

Octave by octave computation of the CWT (a=20. Consider the WST computation via a filter 

bank scheme depicted in Fig. 1. More specifically consider the computation performed at the first 

octave y=l. Half the wavelet coefficients required for the CWT at this octave are computed: the 

missing ones are the outputs of H(z) that are discarded by the decimation process in Fig. l(a). It is 

therefore sufficient to remove the subsampling on H(z) to obtain the required wavelet coefficients of 

the first octave. 

The filter G(z) performs the down-scaling part: as explained above (section TLA), the output fed 

into the next cell corresponds to a down-scaled signal, which is used to compute the wavelet 

coefficients for j=2 with even time-shift parameters. The séquence that allows to obtain the 

coefficients with odd time-shift parameters is nothing but the discarded subsampled séquence. 

The organization of the resulting (octave-by-octave) CWT cell is provided in Fig.7.(b). Ail 

outputs of both filters hâve to be computed, the outputs of G(z) being used to build two interleaved 

séquences. However the basic computational cells of the fast DWT algorithms were specifically 

designed for subsampled outputs. Their structure is therefore not adapted to this new situation, and 

the operation counts have to bc re-worked. This is done in section IV. 

At the next octave j=2, each of the outputs corresponding to a down-scaled signal has to be 

processed by the same basic cell: the "even output" provides the same points as in the WST 

computation (round dots in Fig. 7(a)), while the "odd output" allows to start a new computation of 

the same type, shifted in time, and beginning at the next scale (e.g. squared dots in Fig.7(a)). The 

whole process is iterated as shown in Fig.7(a). 
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C. Finer Sampling in Scale. 

For Signal Analysis purposes an octave by octave computation of the CWT is generally not 

enough. It is désirable to obtain more wavelet coefficients, with finer sampling in the scale parameter 

a, namely a=2y/M, where M is the number of "voices per octave" [5], [13],[18]. 

To do that we apply the same trick as in section II.D. An "M voices per octave" CWT 

computation results from M successive applications of the octave-by-octave algorithm, each 

correponding to a différent basic wavelet prototype: 

The approximation (13) must be satisfied for each of thèse slightly stretched wavelet prototypes 

(34), and the whole algorithm requires about M rimes the computational load of the octave-by-octave 

algorithm of Fig.7. 

D. Comparison with other algorithms. 

The "à trous" algorithm of Holschneider et al. [9], [17], [30] appears as a spécial case of the 

octave by octave CWT filter bank implementation of Fig. 7. The authors hâve derived the octave-by- 

octave CWT algorithm using similar assumptions (12), (13), in the case where discrète signais and 

wavelets are obtained by perfect sampling of their analog counterparts. 

x[n] = x(t=ri) 

hjn] 
= 2-e V(2-in). (35) 

It can be shown that in this case one actually computes a sampled version of the intégral defining 

CWT{jr(f); 2J, k). This condition strongly restricts the choice the interpolating function �(t) (12), 

since we must hâve g[n] = �j)(n/2), which from (12) implies 

g[2n] = 5.0 (36) 

This latter condition is referred to as the "à trous" [with holes] property in [17]. The simple high 

order spline interpolating functions (sce section I.C.2) are not usable under the "à trous" restriction. 

Some examples of 0(t) meeting (36) are described in [7], and cannot be written in closed form. 

Therefore the curve fitting problem (13) (the solution on which the CWT algorithm crucially dépends) 

is more fastidious to solve in the "à trous" case. 

Another CWT algorithm using DWTs has been proposed recently by Gopinath and Burrus [11], 

which differs notably from ours. They assume that the signal is completely determined from its WST 

coefficients, hence the CWT can be computed using only thèse coefficients by some reproducing 

kemel equation [11], similar to an interpolation procédure described in [16]. In this paper we 

"oversample" the discretization a=')}, b=k2i by computing more coefficients, namely the octave-by- 

octave CWT coefficients, directly from the signal and not from the sole wavelet coefficients 
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corresponding to a=2J, b=k'2!. This should resuit in a faster implementation compared to [11] which 

uses a computationally expensive kemel expansion. 

An original CWT algorithm has also been proposed by the Bertrands and Ovarlez [2], which uses 

the scaling property of wavelets V(t) -» dm V(tla) rather than the convolutional form of (31) (which 

is x(t) convolved with a'm \|/(r/a)). Let us outline the dérivation of this algorithm. Write (31) in the 

frequency domain, assuming that the signal x(t) and wavelet y(f) are complex analytic. This gives 

CWT{jt(r); a, b) = [x^e2** Ja'yiaf) àf (37) 
0 

where X(f) = \x{t)e~2i*ft dt 
and y(/) are the Fourier transforms of x(t) and \|/(r), respectively. Then 

perform the change of variable cp = Inf. A correlation form in a = In a appears in the intégral. 

C'WT lx(t); a, b) = jx(e')e"2 
elil \|/(ea+,)e^ dy (38) 

R 

After suitable discretization, this correlation can be performed using FFTs. As stated in [2], the 

Mellin Transform Mx(p) of x(t) plays a central rôle, since it tums out to be exactly the Inverse 

Fourier Transform of -JfX(f) in the variable (p = hif. 

M. (9) = \X{J) rul+2i* df^e^X^e2** d�p 
/�o 

As a resuit, the FFTs involved in the computation of (38) are "Discrète Mellin Transforms," which 

are defined in [2]. 

This algorithm requires the pre-computation of the entire Fourier Transform of x(t), which makes 

a running implementation (in case of infinité duration signais) cumbersome. To overcome this 

difficulty we présent a variation of the Bertrands/Ovarlez algorithm, which focuses on the time- 

domain rather than on the frequency domain. Assuming signais and wavelets are causal (i.e., 

supported by r�0), (31) is rewritten using the change of variable x = In t, as a convolution in a=ln a. 

CWT{x(f); a, bl = f e*'2x(e* + b) 
e�'2 Y*(e^) dx (39) 

The CWT coefficients are obtained, for a given b, by discretizing the convolution (39), resulting in a 

discrète filtering operation that can be implemented for running data. 

Both algorithms (38), (39) hâve common characteristics: 

Some of them can be considered as drawbacks: first, they involve a geometric sampling of either 

the input X(f) (38) or x(t) itself (39). Also, the approximation error made by discretizing (38) or (39) 

is not easily controlled. Finally, in contrast with the ocatve-by-octave CWT implementation proposed 

in this paper, the regular structure of time-shifts b has completely disappeared, and one has to 
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recompute the input for each value of b. As a result, the complexity of such algorithms (about two 

FFTs of length 2/M per input point, where J is the number of octaves and M is the number of 

voices per octave) is found higher than the one obtained for the fast octave by octave CWT algorithms 

presented in the next sections. 

On the other hand, for both algorithms (38), (39), the CWT coefficients are computed for ail 

desired values of In a at the same time (for given value of b). This is much more straightforward than 

in the CWT algorithm described in the preceding sections. This property makes the Bertrands/Ovarlez 

algorithms very useful if e.g. a "zoom", or a refinement of the wavelet analysis is desired in a short 

extent around some time location b. 

IV. FAST ALGORITHMS FOR THE CONTINUOUS WAVELET TRANSFORM 

A. Filter Bank Implementation of the CWT. 

We hâve seen that when the discrète filters g[n], h[n] hâve been determined according to (12), 

(13), the general computation of the CWT reduces to several octave by octave CWTs, whose 

computational flow graph is depicted in Fig.7. This computation is obtained by combining several 

identical cells, as was the case for the WST. As in section II, we assume that both filters g[n] and 

h[n] are FIR filters and hâve same length L. 

Assuming that the filters are directly implemented by an inner product, the octave-by-octave CWT 

algorithm requires 

2L mults/input point/cell 

2(L-l)addsAnputpoint/cell. (40) 

In contrast to the DWT filter bank of Fig. 1, there are T1 elementary cells at thejth octave in Fig. 

7. Thèse cells are identical but "work" at a différent rate: a cell at the y'th octave is fed by an input 

which is subsampled by 2TX compared to the original input x(t). Therefore, the total complexity 

required by an octave-by-octave CWT algorithm on J octaves, is exactly 2^rpc 
= J times the 

y-i 

complexity of one cell. The complexity of any filter bank implementation of a CWT therefore grows 

linearly with the number of octaves. In case of a direct implementation (40), the total complexity 

required by a CWT on / octaves is simply 

2U mults/input point 

2(L- 1 )J adds/input point. (41) 
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This is of course a significant improvement compared to the "naive method" which would consist in 

directly implementing (31) without taking the dilation property of. wavelets into account. (This would 

require a complexity exponentially increasing with J ). 

Since the basic cell involves only FIR filters, it is amenable to a reduction of the arithmetic 

complexity by the same techniques described in sections TLA-C for the WST. Moreover in the CWT 

case, for a given wavelet prototype, filter lengths are larger than in the WST case. We shall see that 

compared to the WST case, this increases the efficiency of the fast algorithms described below. 

B. An FFT-Based CWT Algorithm. 

As in section II.B, FFTs can be used to accelerate the two filter computations in the elementary 

cell of the octave-by-ocatve CWT. The method has been shortly explained in section II.B. In the 

CWT case, wrap-around effects are avoided if the FFT-length N is such that 

NZL+B-l, (42) 

where B is the input block length, and where L is the filters' length. The block length is therefore 

chosen according to (42) as B = N - (L-l). Each elementary cell is therefore computed by first 

performing an FFT of length N on the input, then performing two frequency-domain convolutions by 

multiplying (Hermitian symmetric) length-N FFTs of g[n] and h[n], and finally applying two inverse 

FFTs on the results. This requires 
2 FFTjy + 2 N12 complex mults + TFFT,, 

per cell (for B input points). Assuming, as in section TI.B, that a complex multiplication requires 

three real multiplications and three real additions, and that "split-radix" FFT algorithms with 

complexity (28) are used for real data and filters, we end up with 

3.2~\n-l) + 6 ... , � 

Â � ^ �" La ""H 1 adds/input point/cell (43) 

for each elementary cell. As in the WST case, once a cell is computed, wrap-around effects are 

eliminated in the time-domain and one waits for one block before entering the next stage, so that each 

cell has the same input block length B and the same FFT length N. From the discussion of section 

TV A, the whole CWT algorithm computed on J octaves requires J times this complexity, therefore 

(43) is also the total complexity per input point per octave. Hence it is also the total complexity per 

output point. Table TA shows the obtained complexities, when minimized against N for différent 

filter lengths. Since ail cells are computed with FFTs of the same length N, once N is optimized for 

one cell, it is optimal for the whole algorithm. 
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Table ni shows that compared to the direct implementation (40), the FFT computation becomes 

more efficient for L £ 9, in terms of total number of opérations (multiplications + additions). By 

deriving this number with respect to N, one finds that the optimal FFT length satisfies N = 

(0.69 n + 0.3 1)(L- 1). For large L the corresponding minimized total number of operations per input 

point is 

6n + 2.65 = 6 log/, + 0(log log L). 

This is a significant improvement compared to (40), for which the total number of opérations per 

input point is about 4L. The gain of the FFT computation is therefore asymptotically 2L/31ogjL for 

large filter lengths L. This gain is asymptotically larger than in the WST case (section ILB). 

C. A Generalization: Application of the Vetterli's Algorithm 

The method shortly presented in section II. C, that Vetterli derived for DWT algorithms, can also 

be used for the octave-by-ocatve CWT computation. The discussion of section ILC could hâve been 

made hère as welL 

We provide an example, when two octaves are gathered together. Three elementary cells of Fig. 7 

are therefore merged into one 1-input, 7-output cell that covers two octaves. Hère the FFT length 

N=2* must be greater than or equal to B + 3(L-1) to avoid wrap-around effects (compare with (42)). 

This results in an average of 

2"-,(2n-l) + 6 .. 
2" - 3L + 3 

6.2je-1 (n - 1) + 12 
addsIi 

point 

per octave (more precisely, twice this complexity per cell). Table m shows that the resulting 

complexities, when minimized against N, are significantly better than (43) for large lengths only, 

although they slightly reduce the complexity as soon as Ibe price to be paid is a more involved 

implementation, with much larger FFT lengths. 

D. Short-Length CWT Algorithms. 

Fast running FIR algorithms for decimation ratios R=2, 3, 5, described in section TLD, can bc 

easily applied in the CWT case. As in the WST case, in one elementary cell of Fig. 7(b), one input 

feeds both filters and pre-additions can therefore be combined on the single input 

Table III lists the resulting complexities, using the fast FIR decomposition (of depth at most 2) 

that minimizes the total number of operations (multiplications + additions). When two différent 
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décompositions yield the same number of opérations, we hâve chosen the one that minimizes the 

number of multiplications. 

Table ni shows that short-length CWT algorithms are more efficient than the FFT-based 

algorithm of section TVjB for lengths up to 20. It even remains more efficient than the generalized 

algorithm of section IV.C (which gathers two octaves) for lengths up to 12. If the CWT is computed 

with médium filter lengths so as to maintain the complexity as a reasonable level, short-length 

algorithms may be a good trade-off both in terms of structure and complexity. 

CONCLUSION 

This paper has provided fast algorithms for computing various kinds of Wavelet Transforms, 

from the fully discrète version to the fully continuous one, and for any type of wavelet. Prefiltering 

the signal allows DWT schemes to be used as an intermediate computation for any type of Wavelet 

Transform. We hâve given indications on how the pre-filter can be designed, together with examples. 

This pre-filter is avoided in the orthonormal case. 

The remainder of this paper is devoted to the derivation of fast algorithms to be applied on the 

prefiltered version of the signal 

The WST is computable by means of a DWT, for which two différent fast algorithms have been 

derived: the first one is based on FFTs: it is efficient for médium to large wavelet prototypes (D!16). 

The second one is based on short-length fast FIR algorithms: it is efficient for small to médium size 

filters. Compared to the situation encountered for fixed coefficient filtering [23], [24], thèse fast 

algorithms are useful for shorter filters, while the reduction of the arithmetic complexity, although 

substancial, is lower. 

We hâve finally modified thèse algorithms for use in the computation of the CWT. The resulting 

algorithms are efficient for even shorter wavelet prototypes than in the WST case, with an 

improvement which is asymptotically greater. 

The availability of both FFT-based and Fast-FIR-based algorithms allows computational 

efficiency in any case of interest. 
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FIGURE CAPTIONS 

Fig. 1. Basic computational cell of the DWT (a) and the IDWT (b). The organization of cells 

shown in (c) provides the wavelet coefficients corresponding to a dyadic grid in the time-scale plane 

(d). The signal may be reconstructed using the scheme (e). 

Fig. 2. A "three voices per octave" WST output in the time-scale plane (b,a), showing the 

imbrication of the computation. Points labelled by circles, squares and crosses are computed 

separately by a DWT-based algorithm. 

Fig. 3. A full analysis/synthesis WST scheme. Under suitable assumptions on x(t), this scheme 

may hâve exact reconstruction, Le. y(t) = x(t). (sec text). 

Fig. 4. A rearrangement of the DWT cell of Fig. l(a) which avoids subsampling, thereby 

allowing the application of fast algorithms. 

Fig. 5. FFT-based implementation of the DWT cell of Fig. 4. The overlap-add (or overlap-save) 

procédure is not explicidy shown. 

Fig. 6. A simple example of fast FIR algorithm with decimation ratio R=2. Subscripts 0 and 1 

indicate biphasé decomposition (25). 

Fig. 7. Basic computational cell (a) for computing ocatve by octave a CWT. (b) shows the 

connection of the cells and the corresponding position of the outputs in the time-scale plane. 
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TABLE CAPTIONS. 

TABLE. I. ARITHMETIC COMPLEXITY PER OUTPUT (OR INPUT) POINT PER OCTAVE OF FFT- 

BASED WST ALGORITHMS. Each entry gives the number of operations in the form mults+adds, and 

the corresponding initial FFT length. 

TABLE. H. ARITHMETIC COMPLEXITY PER OUTPUT (OR INPUT) POINT PER OCTAVE OF 

VARIOUS WST ALGORITHMS. Each entry gives the number of opérations in the form mults+adds, 

and either the FFT size or the type of fast running FIR algorithm used (see text). 

TABLE. m. ARITHMETIC COMPLEXITY PER INPUT POINT PER OCTAVE (OR: PER COMPUTED 

POINT) OF VARIOUS CWT ALGORITHMS. Each entry gives the number of opérations in the form 

mults+adds, and either the FFT size or the type of fast running FIR algorithm used (see text). 
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