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INTRODUCTION

Le groupe "Traitement du Signal" du Département ETP publie réguliérement en
note technique les articles soumis a des revues de comité de lecture, afin d'une part de
diffuser l'information en interne au CNET, et d'autre part de disposer d'une référence
interne permettant de dater le travail. En effet, le délai de parution des articles dans les
revues A comité de lecture comme IEEE Transactions on Acoustics, Speech and Signal

Processing est trés long (2 2 3 ans d'attente de la soumission a la parution).

Cette note technique regroupe plus particuli¢rement les articles consacrés aux
transformées en Ondelettes. La plupart de ces travaux ont été réalisés dans le cadre d'une
thése ENST suivie par O. Rioul et dirigée par P. Duhamel. L'article 1 est un article de
vulgarisation destinés aux traiteurs de signaux. L'article 2 unifie la présentation de la
version discéte de la transformée en ondelettes et fait le lien avec d'autres transformées
(pyramidales, banc de filtres). L'article 3 se consacre a la nouvelle propriété de
“régularit€” apportée par la théorie des Ondelettes. Enfin, l'article 4 traite les problemes

d'implantation et de réduction de charge de calcul.
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Wavelet Transforms in Signal Processing

- OLIVIER RIOUL® AND MARTIN VETTERLI'

*Centre National d’Erudes 'Department of Electrical Engineering

des Télécommunications and Center for Telecommunications
CNET/PAB/RPE Research
3840 rue du Général Leclerc Columbia Universiry
92131 Issy-Les-Moulineaux New York, NY 10027-6699
France USA.
INTRODUCTION

Wavelets have recently attracted artention in several fields 6f applied mathematics and engineering
(WAV89]. In particular, they are of | interest for the analysis of non-stationary signals, a central
problem in signal processing; the Wavelet Transform (WT) provides an alternative to the Gabor or
Shon-Tim-e\ Fourier Transform (STFT) [ALL77], [GAB46] and is related to the Wigner-Ville
distribution [BOU8S], [CL.A80}, [FLA90] as well.

Like these techniques, the WT is invertible and can be applied to gcﬁeral signals, since no apriori
assumptions are made on them. In constrast to the STFT, the WT performs a constant relative
bandwidth analysis, providing a different tiling of the time-frequency plane. In fact, the notion of
scale is introduced as an alternative to Fourier frequency, leading to a so-called time-scale
representation.

Wavelet analysis and synthesis may also be seen as a signal expansion into particular bases. The
wavelets are defined as the corresponding basis functions; they are generated by time-shifts and
dilations/contractions from a single prototype, which can be though of as a bandpass filter.

Similar to other transforms common in signal processing, the WT, which maps a signal into a
time-scale plane, can be defined as a continuous [GRO89] or discrete [DAUSS], [DAU90a],

[MEY89] representation of continuous-time signals, or can be defined for discrete-time signals as
well [DAU88], [RIO90b], [VET90a], [VET90b].
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The idea of looking at a signal at various scales and analysing it with various resolutions has
emerged independently in many different fields of mathematics, physics and engineering. Although
similar ideas and constructions took place as soon as the beginning of the century [HAA10Q],
(FRA28], [LIT37], [CAL64], [YOU78], wavelet theory has been developped as a unifying
framework in the mid-eighties by researchers of the "French school,” under the impulsion of a
geophysicist, a theoretical physicist and a mathematician (namely, J. Morlet, A. Grossmann, and Y.
Meyer.) They built strong mathematical foundations around the subject and labelled their work by the
naﬁmc of "Ondelettes” (Wavelets.) They also considerably interacted with other fields. In this context,
L. Daubechies and S. Mallat soon caught the attention of the signal processing community on the
subject of wavelets [DAU88), [MAL89a]. Since then, a number of theoretical, as well as practical
contributions have been made on various aspects of WT's, and the subject of wavelets is growing
rapidly. There remains, however, a large number of open questions and still-unclear points that are
amenable to a specific decision, depending on the application (e.g. the choice of the "wavelet
prototype”.)

This review covers the main definitions and properties of wavelet transforms, while focusing on
signal processing applications. Its purpose is to present a simple, synthetic view of the subject. Non-
specialists interested in rcading further on a particular advanced problem are referred to the
- bibliography.

There have been different ways of considering wavelets. Some see them as a very promising
brand ‘—ncw theory [CIP90]. Others doubt that they could truly be a major breakthrough in signal
processing, since depending on the field one works in, WTs can be seen either as constant-Q analysis
[YOU78], wide-band cross-ambiguity functions [SPE67], affine coherent states' expansions
[DAU90a), [PAUS8S), Frazier-Jawerth transform [FRA86], perfect reconstruction octave-band filter
banks [EST77], [MIN8S], [SMI86], [SMI87], or a variation of Laplacian pyramid decomposition
[BURS3], [BUR89]! We think that the interest and merit of wavelet theory is to unify all this into a

common framework, thereby allowing new ideas and developments.
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L. NONSTATIONNARY SIGNAL ANALYSIS

The aim of signal analysis is’ to extract some kind of mlév.ant information from a signal, by
transforming it. "Parametric" methods include a priori assumptions on the signal in the analysis; this
may yield sharp estimations if these assumptions are valid, but is obviously not of general
applicability. In ‘his paper we focus on "non-parametric” methods applicable to any general signal
[FLAS89]. In addition, we shall consider invertible analysis transformations: the analysis thus
unambiguously represents the signal, and more involved functions such as parameters' estimation,
coding, pattern recognition can be performed on the "transform side," where relevant properties have
been exhibited. | ,

Our approach is to consider a general signal as being a non-stationary signal; we shall therefore
first give indications on which type of lincar analysis is adapted for stationary signals and then extend
it to non-stationary signals.

Intuitively, stationarity means that the properties of the signal do not evolve in time. This notion is
formalized when e.g. the signal is modelized as a stationary statistical process. For such signals x(z),
the natural "stationary transform" is the well-known Fourier transform [FOU88]:

XN = [_x() e de M)
The analysis coefficients X(f) which define the notion of global frequency fin a signal, are computed
as inner products of the signal with sinewave basis functions of infinite duration. As a result, Fourier
analysis works well if the (deterministic) signal is composed of a few stationary (e.g., sinewaves)
components. However, any abrupt change in time in a non-stationary signal is spread out over the
whole frequency axis in X(f); therefore an analysis adapted to non-stationary signals requires more
than the Fourier Transform.

Two different views of the same extension of the Fourier Transform are here possible, with one
common purpose: introduce time dependency in the analysis (while preserving linearity):

1) Define a local frequency parameter by adapting the Fourier Transform to occurences of limited

duration (over which stationarity is assumed). This is the aim of the next section.
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2) Modify the sinewave basis functions used in the Fourier Transform to functions more
concentrated in time (at the expense of loss of Fourier frequency resolution.) We shall see that this

approach leads to the same methods as in 1).

I. SCALE VS. FREQUENCY

I1.1. The Short-Time Fourier Transform: Analysis with Fixed Resolution.

One way to introduce a frequency depending on time is to define th: instantaneous frequency as
proportional to the time-derivative of the phase of the ahalyﬁc signal |FLLA89]. If the signal is not
narrow-band, however, the instantaneous frequency averages different spectral components in time.
To become accurate in time, we therefore need one more dimension, that is a two-dimensional time-
frequency representation S(1f) of the signal x(r) composed of spectral characteristics depending on
time. That kind of representation is similar to the notation used in a musical score. The local
frequency f is defined through an appropriate definition of S(¢).

A straightforward adaptation of the Fourier Transform to define 5(z,f) was first used by Gabor
[GAB46] and is as follows: consider a signal, and assume it is stationary when seen through a
window g of limited extent, centered at time location ©

x(r)g(t - 1)
then do Fourier analysis: this yields the Short-Time Fourier Transform (STFT)
STFT(%.f) = [x()g(t - 1) ™" ds o)

which maps the signal into a two-dimensional function in a time-frequency plane (t,). Note that,
although the local frequency f is still very close to the Fourier frequency (the Fourier Transform
properties remain built in the definition of the STFT), it crucially depends on the choice of the
window g(#). The time-frequency plane is, by definition, filled "column by column”, i.e. Fourier
Transform after Fourier Transform when the window g(r) "slides” in time through the signal
evolutions. However, as shown in Fig. 1, the STFT may be interpreted "line by line" as well: for a

fixed analysed frequency, as t varies, the STFT is the output of some filter whose impulse response
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is the modulated window g(s) ¢¥® (within a phase factor). In other words, the STFT may also be
seen as a modulated filter bank [ALL77].

From these two dual interpretations a fundamental drawback o.f the STFT, related to the so-called
time and frequency resolution, can be shown. Frequency (or time) resolution means power of
discrimination in the analysis. From what has just been said it is easy to find the conditions under
which two pure sinwaves (two short .bursts, respective.y) can be distinguished by the analysis in
frequency (in time, respectively:) the difference of the two frequency (time, respectively) locations
must be smaller than the extent of the Fourier Transform of g(#): G(f) (g(2), respectively). These
extents can be formally defined as |

& =[rI6fe A= [l s 3)
A small Af (As, respectively) contributes for a good frequency (time, respectively) resolution in the
analysis. The fundamental drawback concerning Az and Af is two-fold:

1) Increasing time resolution (i.c., narrowing the window) is done necessarily at the expense of
decreasing frequency resolution, and vice versa. This is due to the so-called uncertainty principle, or
Heisenberg's inequality

Time - Bandwidth Product = AsAf 2 L
Gaussian windows are often used [GAB46], [ALL77], [DAU90a] since they reach the lower bound.

2) Fig. 2.(a) shows that once a window is chosen (i.e., once the STFT, or the analysis, is
chosen), the resolution capabilities in ime and frequency of the STFT remain fixed all over the time-
frequency plane, i.e. for all analysed points (tf). Consequently, if 2 more accurate representation (in
time of frequency) around a particular pattern in the time frequency plane is needed, the STFT has to
be recomputed all over again.

Therefore, since the STFT has limited resolution capabilities, it is only adapted to signals with
limited variations and dynamics in time and frequency. For example, if the signal is composed of
small bursts associated to long, quasi-stationary components, each type of component can be

analysed with good time or frequency resolution, but not both.
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11.2. The Continuous Wavelet T;an.sform: a Mulriresolution Analysis.
“To overcome the resolution limitation of the STFT (that is point 2) above), one can imagine to let
the resolution At, Af vary in the time-frequency plane, hence to obtain a multiresolution analysis.
Intuitively, when the analysis is viewed "line by line" as a filter bank, the time resolution must

increase with the central frequency of the analysis filters. We therefore impose that At is inversely

proportional to f, or:
% = Cst. 4)

The filter bank is then composed of band-pass filters with constant relative bandwidth (so-called
"constant-Q" analysis). Another way to say this is that instead of being regularly spread over the
frequency axxs (as for the STFT case), the frequency responses of the analysis filters are regularly
spread in a logarithmic scale over the frequency axis (see Fig. 3). This kind of filter bank is used for
modelizing frequency responses of the cochlea situated in the inner ear and is therefore adapted to
auditory perception, e.g. of music: filters satisfying (4) are naturally distributed into octaves.

Since (4) is satisfied, the analysis filters no longer limit the resolution in time or frequency. For
example, two very close short bursts can always be eventually separated in the analysis by going up
to higher analyzed frequencies to increase time resolution (see Fig.2.(b)). This kind of analysis of
course works best if the signal is composed of high frequency components of short duration plus low
frequency components of long duration.

The Continuous Wavelet Transform (CWT) exactly follows these ideas while adding a
simplification: all impulse responses of the f-iltcr bank are defined as scaled (i.e. stretched or
compressed) versions of the same prototype h(z):

hy()) = 4= h(D)
where a is a scale factor (the constant ]3: is there for energy normalization.) This results in the

definition of the CWT:

CWT, (1.0) = 4= [ x(9) h('—;—‘-) dt )

Since the same prototype h(t), called basic wavelet, is used for all filter impulse responses, no
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specific scale is privileged, i.c. wavelet analysis is self-similar at all scales. Moreover this
simplification is useful to derive mathematical properties of the CWT.
in connection with thc modulated window used in the STFT, the basic wavelet could be chosen as
a modulated window [GOU84], [GRO89]:
h(t) = g(s)e™ 7
Then the frequency responses of the analysis filters indeed satisfy (4) with the identification

ik

But more generally h() can be any band-pass function and the scheme still works. In particular one
can dispense with complex-valued transforms and deal only with a fully real-valued definition.

It is important to note that the notation f for local frequency in this section has nothing to do with
that described for the STFT: indeed, it is associated to the scaling scheme (see Box 1.) As a result,
this local frequency (whose definition depends on the basic wavelet) is no longer adapted to
modulations (as was the case for the STFT) but is now well adapted to dilations/contractions, i.e.,
scaling a signal scales its CWT accordingly. This is the reason why the terminology "scale” is often
preferred to "frequency” for the CWT, the word "frequency” being reserved for the STFT.

III. WAVELET ANALYSIS AND SYNTHESIS

Another way to introduce CWTs is to define wavelets as basis functions. Indeed basis funétions
already appear in the preceding definition (5) when one sees it as an inner product:
CWT,(t,0) = [x(r) b, (r) dt
which measures the "similarity” between the signal and the basis functions k() = & 4"(5t) called

wavelets. The wavelets are scaled and translated versions of the basic wavelet prototype h(r) (see
Fig.2.(c)-(d)). A similar point of view exists for the STFT; for both transforms, the sinewaves basis
functions of the Fourier Transform are replaced by more localized reference signals (such as
modulated windows or wavelets) labclléd by time and frequency (or scale) parameters. In fact both
transforms may be interpreted as ambiguity functions used in radar or sonar processing (see Box 2.)
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Since wavelet analysis is defined as wavelet basis coefficients, we expect that any general signal
can be represented as a decomposition into wavelets, i.e. that the original waveform is synthesized by

adding elementary building blocks supported by the wavelets, of constant shape but different size and
amplitude. Another way to say this is that we want the continuously labelled wavelets h, (1) to behave

just like an orthonormal basis [MEY90]: the analysis is done by inner products, and the synthesis

consists in summing up all the orthogonal projections of the signal onto the wavelets:
x(t) = Cst [[ CWT(5,0) b, (1) % )
>0

The measure in this integration is formally equivalen: to dr df [GOU84]. We have assumed here that
both signal and wavelets are either real-valued or complex analytic so that only positive dilations a0

have to be taken into account. Otherwise (6) is more complicated.
Of course the A, (1) are certainly not orthogonal since they are very redundant (they are defined

for continuously varying a and t) but this reconstruction formula is indeed satisfied whenever h(z) is
of finite energy and band pass (which implies that it oscillates in time like a short wave, hence the
name "wavelet"). More precisely, if () is assumed sufficiently regular, the reconstruction condition
is [h(r) dr =0.

Note that the reconstruction takes place only in the energetic sense: for example, a signal may

reconstructed only with zero mean since Ih(t) dt = 0. In fact the type of convergence of (6) may be
straightened and is related to the numerical robustness of the reconstruction [DAU90a]. Another
reconstruction formula, due to Morlet [GOU84], [GRO89]

x() = Cst [ CWT(s, a):—:-

is often preferred in actual implementation since it requires only one integration.
Similar considerations can be done for the STFT, and the similarity is remarkable [DAU90a],
- [FLA90], [RIO%0a). However in the STFT case, the reconstruction condition is less restrictive: only

finite energy of the window is required.
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IV. SCALOGRAMS

Since the CWT behaves like an orthonormal basis dccomﬁc;sidon, it can be shown that it is
isometric [GRO84], i.c. it preserves energy:

H |CWT(t,a)}’ £~ = Energy of signal x = le(t)lzdx €)

.2
Therefore, the scal»gram, that is the squared modulus of the CWT, appears to be a distribution of the

signal's energy in 1he time-scale plane (associated with measure "—.,‘-'-, and thus expressed in power
per frequency unit.)

The main advaniage of the energetic representation is that it produces an easily interpretable visual
2D representation of signals [GRO89]; each time-scale pattern in the time-scale plane contributes for
the global energy of the signal. However an energetic representation has some disadvantages, too.
The scalogram cannot be, in general, inverted: phase information is necessary to reconstruct the
signal. Moreover it has been shown on some examples [GRO89] that the phase representation more
accurately reveals isolated, local bursts in a Signa] than the energy representation does (see Box 3.)
Also, since the scalogram is bilinear in the analysed signal, cross-terms appear as interferences
between patterns in the time-scale plane and this may be undesirable. For example, the basic wavelet
is generally chosen to be complex analytic so as to avoid interferences between negative and positive
frequencies.

Of course similar derivations can be done for the STFT, leading to the well known spectrogram
(square modulus of the STFT.) Note that\in the wavelet case, the energy of the signal is distributed

with different resolutions according to Fig. 2.(b).

In particular, Fig. 4.(a) shows that the influence of the signal’s behavior around ¢ =1, on the
analysis is limited to a cone in the time-scale plane; it is therefore very "localized” around ¢, for small
scales. In the STFT case, the corresponding region of influence would be as large as the extent of the

analysing window, whatever the analyzed frequency (see Fig. 4.(b).) Moreover, the time-scale

analysis being logarithmic in frequency, the area of influence of some pure frequency f, in the

analyzed signal will narrow as f, increases (see Fig. 4.(c)-(d).)
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Fig. 5 show some examples of spectrograms and scalograms for synthetic and speech signals (see

Box 3.) Also, more involved energy representations can be developped for both time-frequency and

time-scale (see Box 4.)

V. WAVELET FRAMES AND ORTHONORMAL BASES

V. 1. Discretization of Time-Scale Parameters.

In section ITI we have seen that the continuously labelled basis functions (wavelets) h_ (1) behave
in the wavelet analysis and synthesis just like an orthonormal basis. A natural question arises
[MEY89]: if we suitably discretize the time-scale parameters a, T, and for suitable choices of the basic

wavelet h(1), can we obtain a rrue orthonormal basis?

There is a natural way of discretizing the time-scale parameters a, T [DAU90a]: since two scales a,
< a, roughly correspond to two frequencies f, > f,, the wavelet coefficients at scale g, can be
subsampled at (/'(,lfl)th the rate of the coefficients at scale a,, according to Nyquist's rule. We

therefore choose to discretize the time-scale parameters on the sampling grid drawn in Fig. 7, that is,

we have a =a/ and b=k a/ T, where j and k are integers. The corresponding wavelets and wavelet
coefficients are h;,(?) = a,™"*h(a,™1-kT) and ¢;, = I x(t) h;,'(t) dt, respectively.

An analogy is the following: assume your wavelet analysis is like a microscope. First you choose

the magnification, that is, ao". Then you move to the location of your choice. Now, obviously, if the

magnification is large (that is, you are looking at small details), you want to move by small steps ao’ T

in order to catch details.

The problem is to find a,, T, and A(f) such that the sum of projections

;zcu h; s (1) ®

reasonably reconstructs the signal x(r). Evidently when a,is close enough to 1 (and if T is small

enough) the wavelet functions are overcomplete, signal reconstruction by (8) is still very close to (6)

and will take place within non-restrictive conditions on (). On the other hand, if the sampling is
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sparse, ¢.g. the computation is done octave by octave (g, = 2) a true orthonormal basis will be

obtained only for very special h(1)'s [DAU90a}, [MEY90].

V. 2. Wavelet Frames.

The theory of wavelet frames was derived by Daubeéhics [DAU90a]. It provides a general
framework which covers the two extreme situations just mentionned. It therefore permits to balance
1) redundancy, i.e. sampling density in Fig. 7, and 2) restrictions on h(t) for the reconstruction
scheme to work. The less redundancy, the tighter these restrictions but the fewer computed wavelet
coefficents, which is more adapted to coding schemes.

The theory of frames [DUF52] is based on the assumption that the linear correspondance x(f) —
Cix is bounded, with bounded inverse. The family of wavelet functions is then called a frame and is
such that the energy of the wavelet coefficients (sum of the square modules) relative to that of the
signal lies between two positive "frames bounds™ A and B. These frame bounds can be computed
from a,, T and h(#) using Daubechies’ formulae [DAU90a]. What is interesting is that they govern

the accurateness of signal reconstruction by (8). More precisely, we have
20 =25 Y 6 @)
it

with relative SNR greater than (B/A+1)/(B/A-1) (see Fig.8.) The closer B/A is to one, the more
accurate the reconstruction. It may happen that A=B ("tight frame™), in which case the wavelets
behaves exactly like an orthonormal basis, although they may not even be linearly independent! The
rcc‘onstrucn'on formula can also be made exact in the general case if one uses different synthesis

functions h’li (which constitute the dual frame of the h"s [DAU90a).)

V. 3. Introduction o orthogonal wavelet bases.

If a tight frame is such that all wavelets k,, are necessary to reconstruct the signal (i.c., if one is
removed, a general signal cannot be synthesized), then the wavelets form an orthonormal basis of the
space of signals with finite energy [HEI90]. Orthonormality, of course, means



s

O. RIOUL AND M. VETTERLL: WAVELET TRANSFORMS 12

l1ifj=jk=k
0 otherwise

[ha®) K@ ds = {
Again this can be extended o synthesis functions &', # h,, leading'to so-called biorthogonal wavelet

bases [COH90], [VET 90a], [VET90b] Such schemes are best understood when one turns to the

discrete-time cas=. This is the subject of the next section, which focuses on the orthogonal case.
V1. THE DISCRETE TIME CASE

In the discrete time case, two methods were developed independently in the late seventies and early
cightes which lead naturally to discrete wavelet transforms, namely subband coding [CRI76},
[CRO76]), [EST77] and pyramidal coding or multiresolution signal analysis [BUR83]}. The methods
were proposed for coding, and thus, the notion of critical sampling (of requiring a minimum number
of samples) was of importance. Pyramid coding actually uses some oversampling, but because it has

an easier intuitive explanation, we will describe it first.

V1.1 The Multiresolution Pyramid

Given an original sequence x(n), n € Z, we derive a lower resolution approximation at a lower
scale y(n) by lowpass filtering (with a filter having impulse response h(n) and subsampling by two
(that is, dropping every other sample):

y&y= 3 g(k) x(n-26)

The resolution change is obtained by the lowpass filter (loss of high frequency detail). The scale
change is due to the subsampling by two, since a shift by two in the original signal x(n) results in a
shift by one in y(n).

Now, based on this lowpass and subsampled version of x(n), we try to find an approximation
a(n) to the original. This is done by first upsampling y(n) by two (that is, inserting a zero between
every sample) since we need a signal at the original scale for comparison.

y'@2n)=y(n), y'2n+1)=0

Then, y'(n) is interpolated with a filter with impulse response g'(n) to obtain the approximation a(n):
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amy= 3 gk yn-k)

im—

No'te that if g(n) and g"(n) were perfect halfband filters (having transmission 1 from -n/2 to 7/2 and 0
elsewhere), then the Fourier transform of a(n) would be equal to the one of x(n) over the range (-n/2,
®/2) while being zero elsewhere. That is, a(n) would be a perfect halfband lowpass approximation to
x(n).

Of course, in general a(n) :s not going to be equal to x(n) (in the previous example, x(n) would
have to be a halfband signal). Therefore, we compute the difference between a(n) (our approximation
based on y(n)) and x(n):

d(n) = x(n) - a(n)
It is obvious that x(n) can be reconstructed based on d(n) and a(n) (that is, y(n)) by simply adding
them, and the whole process is shown in Fig. 9. However, there has to be some redundancy, since a
signal with sampling rate f, is mapped into two signals d(n) and y(n) with sampling rates f, and f/2,
respectively.

However, the separation of the original signal x(n) into a coarse approximation a(n) plus some
additional detail contained in d(n) is conceptually important. Because of the resolution change
involved (lowpass filtering followed by subsampling by two produces a signal with half the
resolution at half the scale of the original), the above method and related ones are part of what is
called muldresolution signal analysis [ROS84] in computer vision.

The scheme can be iterated on y(n), creating a hierarchy of lower resolution signals at lower
scales. Because of that hierarchy and the fact that signals become shorter and shorter (or images

smaller and smaller), such schemes are called signal or image pyramids [BUR83].

V1.2 Subband Coding Schemes

We have seen that the above system creates a redundant set of samples. This redundancy can be
removed if the filters g(n) and g'(n) meet certain conditions (see Box 5), but we will look at a
different scheme instead, where no such redundancy appears. It is the so-called subband coding
scheme first popularized in speech compression. The lowpass, subsampled approximation is obtained

exactly as explained above, but, instead of a difference signal, we compute the "added detail” as a
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highpass filtered version of x(n) (using a filter with impulse response k(n)), followed by
~ subsampling by two. Intuitively, it is clear that the "added detail” to the lowpass approximation has to
be a highpass signal, ahd it is obvious that if g(n) is an ideal halfband lowpass filter, then an ideal
halfband highpass filter h(n) will lead to a perfect representation of the original signal into two
subsampled versions.

This is exactly one step of a wavelet decomposition using sin(x)/x filters, since the original signal
is mapped into a lowpass approximation (at half the scale) and an added detail signal (also at half the
scale.) In particular, using these ideal filters, the discrete version is identical to the continuous wavelet
transform.

What is more interesting is that it is not necessary to use ideal (that is, impractical) filters, and yet

x(n) can be recovered from its two filtered and subsampled versions which we now call y,(n) and
,(n). To do so, both are upsampled and filtered by g'(n) and h'(n) respectively, and finally added
together, as shown in Fig. 10. Now, unlike the pyramid case, the reconstructed signal (which we
now call x(n)) is not identical to x(n), unless the filters meet some specific constraints, which are
referred to as the perfect reconstruction property.

The easiest case to analyze appears when the analysis and synthesis filters in Fig. 10 are identical
(within time-reversal) and that perfect reconstruction is achieved (that is, X(n) = x(n), maybe within a
shift ) Then it can be shown that the subband analysis/synthesis corresponds to a decomposition onto
an orthonormal basis, followed by a reconstruction which amounts to summing up the orthogonal
projections. We will assume FIR filters in the following. Then, it turns out that the highpass and
lowpass filters are related by: -

h(L-1-n)=(-1)"g(n) &)
where L is the filter length (which has to be even). Note that the modulation by (-1)* transforms
indeed the lowpass filter into a highpass one.

Now, the filter bank in Fig. 10, which computes convolutions followed by subsampling by two,
evaluates inner products of the sequence x(n) and the sequences {g(-n+2k), h(-n+2[)} (the time

reversal comes from the convolution, which reverses one of the sequences). Thus:

Yo(k) = (g(-n+2k) I x(n))
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N (k) = (h(-=n+2D1x(n))

Because the filter impulse responses form an orthonormal set, it is very simple to reconstruct x(n) as:
x(n)= Y [yo(k) h(=n+2k) + y,(k) g(=n + 2Kk))] (10)
km—e-

that is, as a weighted sum of the orthogonal impulse responses, where the weights are the inner
products of the signal with the impulse responses. This is of course the standard expansion of a
signal into an orthonormal basis, where the resynthesis is the sum of the orthogonal projections.

From (10), it is also clear that the synthesis filters are identical to the analysis ﬁltefs within time
reversal.

‘Such perfect reconstruction filter banks have been studied in the digital signal processing literature,
and the orthonormal decomposition we just indicated is usually referred to as a "paraunitary” or
"lossless"” filter bank [VAI89). An interesting property of such filter banks is that they can be written
in lattice form [VAI88], and that the structure and properties can be extended to more than two

channels [VAI89], [VET89].

VI3 The Discrete Wavelet Transform

We have shown how to decompose a sequence x(n) into two subsequences at half rate, or half
resolution, and this by means of "orthogonal” filters (orthogonal with respect to even shifts).
Obviously, this process can be iterated on either or both subsequences. In particular, to achieve finer
frequency resolution at lower frequencies (as obtained in the continuous wavelet transform), we
iterate the scheme on the lower band only. If g(n) is a good halfband iowpass, h(n) is a good .
halfband highpass (by (9)), and one iteration of the scheme creates a lowband that corresponds to the
lower quarter of the frequency spectrum. Each further iteration halves the width of the lowband
(increases its frequency resolution by two), but due to the subsampling by two, its time resolution is
halved as well. At each iteration, the current high band corresponds to the difference between the
previous lowband and the current one, that is a passband. Schematically, this is equivalent to Fig. 11,
and the frequency resolution is as in Fig. 2.(b).

An important feature of this discrete algorithm is its relatively low complexity. Actually, the
following somewhat surprising result holds: independently of the depth of the tree in Fig. 11, the
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complexity is linear in the number of input samples, with a constant factor that depends on the length

of the filter. The proof is straightforward. Assume the computation of the first filter bank requires C,
operations per input Qmplc (G is typically of the order of L). Then, the second stage requires also
C, operations per sample of its input, but, because of the subsampling by two, this amounts to G2

operations per sample of the input si mal. Therefore, the total complexity is bounded by:
Ciotal = Co +%+£4Q+... <2¢

which demonstrates the efficiency of the discrete wavelet transform algorithm and shows that it is

independent of the number of octaves that one computes [RIO90c].

V1.4 Iterated Filters and Regularity

There is a major difference between the discrete scheme we just saw and the continuous time
Qavclct transform. In the discrete time case, the role of the wavelet is played by the highpass filter
h(n) and the cascade of subsampled lowpass filters followed by a highpass filter (which amounts to a
bandpass filter). These filters, which correspond roughly to octave band filters, unlike in the
continuous wavelet transform, are not exact scaled versions of each other. In particular, since we are
in discrete time, scaling is not as easily defined, since it involves interpolation as well as time
expansion.

Nonetheless, under certain conditions, the discrete system convcrécs (after a certain number of
iterations ) to a system were subsequent filters are scaled versions of each other. Actually, this
convergence is the basis for the construction of continuous time compactly supported wavelet bases

[(DAUSS].

It will be convenient to use z-transforms of filters, e.g. G(z) = 2 8(n) ™" in the following.

Now, we would like to find the equivalent filter that corresponds to the lower branch in Fig. 11,
that is the iterated lowpass filter. It can be easily checked that subsampling by two followed by
filtering with G(z) is equivalent to filtering with G(z%) followed by the subsampling (2 inserts zeros
between samples ot the impulse response, which are removed by the subsampling). That is, the first
two steps of lowpass filtering can be replaced by a filter with z-tranform G(z).G(zz), followed by
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subsampling by 4. More generally, calling G'(z) the equivalent filter to i stages of lowpass filtering
and subsampling by two (that is, a total subsampling by 2, we get
¢m=[lce") (1)
=
Call its impulse response gi(n).

As i infinitely increases, this filter becomes infinitely long. Instead, consider a function £
which is piecewise constant on intervals of length 1/2 and has value 272 gi(n) in the interval [n/2',
(n+1)/2i]. That is, f(x) is a staircase function with the value given by the samples of gi(n) and
intervals which decrease as 2. It can be verified that the function is supporid on the interval
[0, L-1). Now, for i going to infinity, f(x) can converge to & continuous function, or a function with
finitely many discontinuities or even a fractal function. Fig. 12 shows two examples, one where
f~(x) is continuous and another where f~(x) has fractal behavior.

L. Daubechies gave a sufficient condition so that the iterated function converges to a continuous
function. In essence, the filter G(2) must have a sufficient number of zeros at z = -1, or half sampling
frequency, so as to attenuate repeat spectras. Based on this sufficient condition, one can construct
filters which are both orthogonal and converge to a continuous function. Such filters are called

regular, and examples can be found in [DAU88], (DAUS0b], [RIO90b], [VET90] (see Box 6.)

VIS Scaling Functions and Wavelets Obtained from Iterated Filters
Call the final function to which f(x) converges g (x). Because it is the product of lowpass filters, it

is itself lowpass and is called a "scaling function" because it is used to go from a fine scale to a

coarser scale. Because of the product (11) from which the scaling function is derived, g (x) satisfies

the following two scale difference equation:

2= 3 gn) g.2x-n) 12)

and Fig. 13 shows two such examples. The second one is based on a filter which is regular and

orthogonal to its even translates and was designed by L Daubechies [DAU88].
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So far, we have only discussed the iterated lowpass and its associated scaling function. However,
from Fig. 10, it is clear that a bandpass filter is obtained in the same way, except for a final highpass
filter. Therefore, similarly to (12), the wavelet A (x) is obtained as:

h = 3 hn) g, 2x—n)

that is, it satisfies also a two scale equation. Now, if the filters h(n) and g(n) form an orthonormal set
with respect to even shifts, then the functions g (x-/) and A (x-k) form an orthonormal set (sec Box
7)

Because they also satisfy two scale difference equations, it can be shown [DAU88] that the set
h‘(Z'ix-k), ik € Z, forms an orthonormal basis for the set of square integrable functions LZ(R). We
have shown how regular filters can be used to generate continuous wavelet bases. The converse is
also true, that is, orthonormal sets of scaling functions and wavelets can be used to generate perfect

reconstruction filter banks.
CONCLUSION

We have seen that Short-Time Fourier Transforms and Wavelet Transforms represent alternative
slicings of the time-frequency (or time-scale) plane. Two major advantages of the Wavelet
Transforms are that they can zoom in to time discontinuities and that orthonormal bases can be
constructed. -

In the discrete case, the Wavelet Transform is equivalent to a logirilhmic filter bank, with the
added constraint of regularity on the lowpass filter. .

The theory of wavelets can be seen as a common framework for techniques that had been
developped independently in various fields. This conceptual unification furthers the understanding of

the mechanisms involved, quantifies trade-offs, and points to new potential applications.
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BOX 1: THE SCALE AND RESOLUTION NOTIONS

In order to understand what tﬁc CWT does in connection Aw'ith the scale and time-resolution

notions, consider the following dilation/contraction operation acting on the analysed signal x(z):
x(t)—> x(at)

When a decreases, the signal is progressively dilated so that we are able to see more and more details
in its temporal waveform. This means that the fime-resolution of the signal we see increases as a
decreases (because the eye basically low-passes the signal x(az).)

As a result, the new information that comes into the eye when resolution increases is something
like a band-pass filtering of x(ar). But by making a change of variables in the definition (5) of the
CWT, we indeed obtain a band-pass filtering of x(ar):

CWT(t,a) = y[d|[ x(ar) h(t- i) dr

The CWT, as a function of t, may therefore be interpreted as the infinitesimal novelry of
informarion between two (very close) time-resolutions.

When the signal is dilated enough (for small a), no further new information comes into the eye and
dilating is no more useful: the highest time-resolution of the signal itself has then been attained, and
that corresponds to the lowest scale @ of interest for analysing the signal.

Note that here the scalc' parameter g is not associated to the analysed signal , but rather to the
wavelet h(t/a) which analyses the signal at scale a in equation (5). The scale parameter is of course
similar to the notion of scale used for maps: decreasing the scale means compressing the wavelet,
which thereby analyses thin details on the signal. On the contrary, for very large scales, the wavelet
is so stretched that it can see a large portion of the signal. In the above description, the pr;)pcr scale of

the signal x(ar) is in fact 1/a.
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BOX 2: STFTS AND CWTS AS AMBIGUITY FUNCTIONS

.Thc inner product is often used as a similarity measurement, and because both STFT's and CWT's
are inner products, they appear in several detection/estimation problem. Consider, for example, the
problem of estimating the location and velocity of some target in radar or sonar applications. The
estimation procedure consists in first ¢ metting a known signal h(#). In presence of a target, this signal
will return to the source (received sigral x(¢)) with a certain delay €, due to the target's location, and a
certain distortion (Doppler effect) , due to the target's velocity.

For narrow-band signals, the Doppler effects amounts in a single frequency shift £, and the
characteristics of the target will be determined by maximizing the cross correlation function (called
"narrow-band ambiguity function™) [WOOQ53]

[x()h(e - 1) e dr = STFT(x, f)

For wide-band signals, however, the Doppler frequency shift varies in the signal's spectrum,

causing a streching or a compression in the signal. The estimator thus becomes the "wide-band

ambiguity function” [SPE6T), [AUS90)
T

4 x® h(%—) dt = CWT,(1,a)

As a result, in both cases, the "maximum likehood” estimator takes the form of a STFT or a CWT,
i.e. of an inner product between the received signal and either STFT or wavelet basis functons. The
basis function which best fits the signal is used to estimate the parameters.

Note that, although the wide-band ambiguity function is a CWT, for physical reasons, the dilation
parameter a stays in the order of magnitude of 1, whereas it may cover several octaves when used in

signal analysis.
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BOX 3: SPECTROGRAMS AND SCALOGRAMS

We present spectrograms and scalograms for some synthetic and a real signal. The signals are of
length 384, the STFT uses a Gaussian-like window of length L = /2§ and the scalogram is obtained
with a Morlet wavelet (a complex sinusoid windov/ed with a Gaussian) of length from 23 to 363.
First, Fig. 5.1 shows the analysis of two Diracs and two sinusoids with Short-Time Fourier
Transform and Wavelet Transform. Note how the Diracs are well time-localized at high frequencies in
the scalogram. Fig. 5.2 shows the analysis of three starting sinusoids, and Fig. 5.3. shows the
transforms of a chirp signal. Again, the transitions are well resolved at high frequencies in the
scalogram. Finally, Fig. 5.4 shows the analysis of a stretch of speech signal, where the onset of

voicing is clearly seen in both representations.



O. RIOUL AND M. VETTERLL: WAVELET TRANSFORMS 24 : 2
BOX 4: INCORPORATING THE STFT, CWT AND WIGNER-VILLE DISTRIBUTION INTO A COMMON
CLASS OF TIMEFREQUENCY OR TIME-SCALE ENERGY REPRESENTATIONS

There has been considerable work in extending the spectrogram into more general time-frequency
energy distributions TF(t, f), which all have the basic property of distributing the signal's energy all
over the time-frequency plane:

[[TF(e. 1) dvdr =[lx(ef as

Among them, an alternative to the spectrogram for nonstationary signal analysis is the Wigner-

Ville distribution [CLLA80], [BOUS8S]: ‘ t

W(mN)=[3a4 D G- D™ ar
which has been widely adressed in the literature. More generally, the whole class of time-frequency
energy distributions have been fully described by Cohen [COH66): they can all be seen as smoothed
(or, more precisely, correlated) versions of the Wigner-Ville distribution. The spectrogram is itself
recovered when the "smoothing" function is the Wigner-Ville distribution of the analysing window!

A similar situation appears for time-scale energy distributions. For example, the scalogram can be
written as [FLA90}, [RIO90a] |

IcwT(na)f = [[W. () ‘V.(ii-‘-,av) didv
i.e. as some 2D "affine” correlation (some say correlation on the affine group [GRO84]) between the
signal and "basic” wavelet 's Wigner-Ville distributions. This remarkable formula tells us that there
exists strong links between Wavelet transforms and Wigner-Ville distributions. And, as a matter of
fact, it can be generalized to define the most general class of time-scale energy distributions [FLA90],
[RIO90a], just as in the time-frequency case.

By progressively controlling gaussian smoothing functions, Fig. 6 shows that it is even possible
to go continuously from the spectrogram of a given signal to its scalogram, provided that one passes
by its Wigner-Ville distribution at the middle [FLLA90], [RIO%0a). This property may allow us to
decide whether or not we should choose time-scale analysis tools, rather than time-frequency ones for

a given problem.
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BOX 5: CRITICALLY SAMPLED PYRAMID

Because one stage of a pyramid Vdecomposition leads to both 3 half rate low resolution signal and a
full rate difference signal, we have an increase in the number of samples by 50%. This oversampling
can be avoided, in which case the systera reduces to a subband coding system.

To see this, note that the upper branc 1 of the pyramid system of Fig. 9 is equivalent to the lowpass
branch (analysis and synthesis) of the subband system of Fig. 10. If the lowpass filter is part of a
perfect reconstruction filter bank, the difference signal is equal to the highpass branch of a subband
system (since added to the lowpass brarch, it would yield perfect reconstruction). That is, using the
notation H (resp. G) to denote the operator corresponding to lowpass filtering with h(n) (resp. g(n))
followed by subsampling by two, and H®,G" their conjugate transposes (which correspond to
upsampling by two and interpolating with the conjugate filter), we have (see Fig. 10):

d=(1-G'GXx)=HH(x) (1)
Because the filter impulse responses form an orthonormal set with respect to even shifts when we
have an orthogonal filter bank, we have:

HH =1
Thus, filtering d by A;(n) and subsampling by two leads to:
H(d) = HH'H(x) = H(x)

that is, exactly equal to the highpass analysis output of a subband coder. From this subsampled
version of x, we can recover d by (1) and thus perfectly reconstruct the input, showing that a
critically sampled pyramid scheme is just a subband coding system. Note that we assume linear
processing throughout. If non-linear processing is involved (like quantization), the oversampled

nature of the pyramid can actually lead to greater robustness.
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BOX 6: REGULAR SCALING FILTERS

;I'hc regularity propcrty of wavelet filters (see section IV. 4) has recently attracted attention to the
digital signal processing community, especially for image coding applications [ANI90], [MAL89b].
In fact, it is well known that the structure of computations in a Discrete Wavelet Transform and in an
octave-band filter b.nk are identical. Therefore, besides the different views and interpretations that
have been given on them, the main difference lies in the filter design: wavelet filters are chosen so as
to be regular. Recall that this means, with the notation of section IV.4 and 5, that the piecewise
- constant function associated to the discrete wavelet sequence hj(n) of z-transform G/(z) H(z")
converges (c.g. pointwise), as j indefinitely increases, to a regular limit function A (x). By "regular”
we mean that h (x) is at least continuous, or better, once or twice continuously differentiable. The
regularity order is the number of times A (x) is continuously differentiable.

In practise the convergence is very fast (the discrete wavelets are almost undistinguishable from
their analog counterparts after 3 to 7 iterations - it can be shown that the more regular the limit

function, the faster the convergence to this limit [DAU%0], [R1090d]). This justifies the study of the

limit h(x) which is, in practice, attained after a few octaves. Since an error in a wavelet coefficient
results, after reconstruction, in an overall error proportional to a discrete wavelet hl(n). regularity
seems a nice property ¢.g. to avoid visible distortion on a reconstructed image [ANI90].

From equation (9) and (11), the knowledge of g(n) suffices to determine the limit A (x). Several
methods have been developped to estimate the regularity order of the limit knowing the coefficients
2(n), most of which being based on Fourier transform techniques. Recently, a time-domain technique
has been developped which provides optimal estimates [DAU90c], [RI090d]. |

It can be shown that in order the limit to be N times continuously differentiable, the z-transform
G(z) must have at least N+1 zeros at z=-1. This can be interpretated as a flatness condition on the
spectrum at half sampling frequency. As a result, maximally regular wavelet filters are very close to,
but different from [DAU9S0b] maximally flat filters [HER71]. It is still not clear whether maximally
flat or maximally regular filters are most adapted to coding schemes [AKA90], [ANI90). The minimal
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regularity order necessary for good coding performance of discrete wavelet transform schemes, if

needed at all, is also not known and remains a topic for future investigation.
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BOX 7: MULTIRESOLUTION ANALYSIS

The concept of mﬁltircsolution approximation of functions was introduced by Y.Meyer and
S.Mallat and provides a powerful framework to understand wavelet decompositions. The basic idea
is that of successive approximation, together with that of "added detail” as one goes from one
approximation to the next, finer one. A formal definition can be found in [MAL89a], [MAL89c],
[(MEY90], and we will only give the intuition behind the construction.

Assume we have a ladder of spaces such that:

wcV,cVcy,cV, cV,c--
with the property that if fix) € V;, then f(x-2’ik) € Vike Z, and f(2x) € V;_ ;. Call W, the
onhogonél complement of V; in V; ;. Therefore:
V=V, é W _ Q)

Thus, W; contains the “added detail” necessary to go from the resolution V; to V ;. lterating (1), it is
clear that:

V., =W,0W, 6W,,6W,,6. @
that is, a given resolution can be attained by a sum of added details.

Now, assume we have an orthonormal basis for Vy made up of a function g (x) and its vintcger

translates. Because Vjy € V_1» 8(x) can be written in terms of the basisin V.

£(0=2c, g.2x-n)

Then it can be verified that the function:

h(x)= E(—-l)' Cout &, (2x-n)
and its integer translates form an orthonormal basis for W,. Because of (2), it can be shown that A (x)
and its scaled and translated versions form a wavelet basis of LZ(R) {MALS89a], [MALS89c],
[MEY90].

The multiresolution idea is now very intuitive. Assume we have an approximation of a signal at a

resolution corresponding to V. Then a better approximation is obtained by adding the details

corresponding to Wy, that is, the projection of the signal in W, which amounts to a weighted sum of
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wavelets at that scale. Thus, by iterating this idea, a signal in Lz(R) can be seen as the successive

approximation or weighted sum of wavelets at finer and finer scale.



30
O. RIOUL AND M. VETTERLL: WAVELET TRANSFORMS 28

REFERENCES

[AKA90] A.N. Akansu, R.A. Haddad, and H. Caglar, "The Binomial QbﬁiWavclet Transform for Multiresolution
Signal Decomposition,” submitted /EEE Trans. Signal Proc., 1990.

[ALL77] 1.B. Allen and L.R. Rabiner, "A Unified Approach to Short-Time Fourier Analysis and Synthesis," Proc.
IEEE, Vol. 65, No. 11, pp. 1558-1564, 1977.

[ANI9O] M. Antonini, M. Barlaud, P. Mathicu and 1. Daubechies, "Image Coding Using Vector Quantization in the
Wavelet Transform Domain,” in Proc. 1990 JEEE Int. Conf. Acoust., Speech, Signal Proc., Albuquerque,
NM, Apr.3-6, 1990, pp. 2297-2300.

[AUS90] L. Auslander and 1. Gertner, "Wide-Band Ambiguity Function and a_x+b group,” in Signal Processing, Part
I: Signal Processing Theory, L. Auslander, T. Kailath, S. Mitter eds., Institute for Mathematics and its
Applications, Vol. 22, Springer Verlag, New York, pp.1-12, 1990.

[BOUSS] G. F. Boudreaux-Bartels, "Time-Varying Signal Processing Using the Wigner Distribution Time-Frequency
Signal Representation,” in Adv. in Geophysical Data Proc., Vol. 2, pp. 33-79, Jai Press Inc., 1985.

{BURS3] PJ.Burt and E.H.Adelson, "The Laplacian Pyramid as a Compact Image Code," JEEE Trans. on Com., Vol.
31, No4, pp.532-540, April 1983.

[BURS9] PJ. Burt, "Multiresolution Techniques for Image Represeatation, Analysis, and ‘Smart’ Transmission,"
Proc. SPIE Conf. on Visual Communication and Image Processing., pp. 2-15, Philadelphia, PA, Nov. 1989.

[CAL64] A. Caldertn, "Intermediate Spaces and Interpolation, the Complex Method,” Studia Math., Vol. 24, pp. 113-
190, 1964.

[CTP90] B.A. Cipra, "A New Wave in Applied Mathematics,” Science, Research News, Vol. 249, August 24, 1990.

[CLAS0] T.A.C.M. Claasen, W.F.G. Mecklenbriuker, "The Wigner Distribution - A Tool for 'I"unc-l-‘reﬁucncy Signal
Analysis. Part I: Continuous-Time Signals,” Philips J. Res., Vol. 35, No. 3, pp217-250, 1980.

[COH66) L. Cohen, "Generalized Phase-Space Distribution Functions,” J. Math. Phys., Vol. 7, No. §, pp. 781-;186,
1966.

[COH90} A. Cohen, 1. Daubechies and J.C. Feauvean, "Biorthogonal Bases of Compactly Supported Wavelets,”
preprint, 1990. )

[CRI76] A.Croisier, D Esteban, and C.Galand, “Perfect Channel Splitting by Use of Interpolation, Decimation, Tree
Decomposition Techniques,” Int. Conf. on Information Sciences/Systems, Patras, pp. 443-446, Aug. 1976,

[CRO76] R.E.Crochicre, S.A.-Weber, and J.L Flanagan, "Digital Coding of Speech in Subbands," Bell Syst. Tech. J.,
Vol.5S, pp.1069-1085, Oct.1976.

[CRO83] R.E.Crochiere, and L.R Rabiner, Multirate Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ,
1983.

[DAUSS] 1.Daubechies, “Orthonormal Bases of Compactly Supported Wavelets,” Comm. in Pure and Applied Math.,
Vol.41, No.7, pp.909-996, 1988.

[DAU%0a] 1. Daubechies, “The Wavelet Transform, Time-Frequency Localization and Signal Analysis,” JEEE Trans.
on Info. Theory, Vol. 36, No.S, pp.961-100S, Sept. 1990.



31
O. RIOUL AND M. VETTERLL: WAVELET TRANSFORMS Y-}

[DAUSOb] 1. Daubechies, *Orthonormal Bases of Compacity Supported Wavelets II. Variations on a Theme,”
preprint AT&T, 1990.

(DAUYGK] 1. Daubechies and J.C. Lagarias, "Two-Scale Difference Equations II. Local Regularity, Infinite Products
of Matrices and Fractals,” submitted SJAM J. Math. Anal, 1990.

[DUFS52]) RJ. Duffin and A.C. Schacffer, “A Class of Nonharmonic Fourier Series,” Trans. Am. Math. Soc., Vol. 72,
Pp. 341-366, 1952.

(EST77) D. Esteban and C. Galand, "Application of Quadrature Mirror Filters to Split-Band Voice Codir g Schemes,”
Ins. Conf. Acoust., Speech, Signal Proc., Hartford, Connecticut, pp. 191-195, May 1977.

[FLAS89] P.Flandrin, "Some Aspects of Non-Stationary Signal Processing with Emphasis on Time-Fiequency and
Time-Scale Methods,” in [WAV89], pp.68-98, 1989.

[FLA9(Q] P. Flandrin and O. Rioul, "Wavelets and Affine Smoothing of the Wigner-Ville Distribution,” in Proc. 1990
IEEE Int. Conf. Acoust., Speech, Signal Proc., Albuquerque, NM, April 3-6, 1990, pp. 2455-2<58.

[FOUS8S8] J.Fourier, "Théorie Analytique de la Chaleur,” [in French], in Oeuvres de Fourier, iome premier,
G.Darboux, Ed., Paris: Gauthiers-Villars, 1888,

(FRA28] PFranklin, "A Set of Continuous Orthogonal Functions,” Math. Annal., Vol.100, pp.522-529, 1928.

[FRAB86] M. Frazier and B. Jawerth, "The ¢-Transforrn and Decomposition of Distributions,” Proc. Conf. Function
Spaces and Appl., Lund 1986, Lect. Notes Math., Springer.

[GAB46] D.Gabor, "Theory of Communication,” J. of the IEE, Vo0l.93, pp.429-457, 1946.

[GOUB4) P.Goupillaud, A.Grossmann and J.Morlet, "Cycle-Octave and Related Transforms in Seismic Signal
Analysis,” Geoexploration, Vol.23, pp.85-102, Elsevier Science Publishers, B.V. Amsterdam, Netherlands,
1984/8S.

[GRO84] A.Grossmann and J.Morlet, "Decomposition of Hardy Functions into Square Integrable Wavelets of Constant
Shape,” SIAM J Math Anal., Vol.15, No4, pp.723-736, July 1984,

[GRO89] A. Grossmann, R. Kronland-Martinet, and J. Morlet, "Reading and Understanding Continuous Wavelet
Transforms,” in [WAV89), pp.2-20, 1989.

[(HAA10] A.Haar, "Zur Theorie der Orthogonalen Funktionensysteme,” (in German] Marh. Ann., Vol. 69, pp. 331-
371, 1910. .

[HEIS0] C.E. Heil, "Wavelets and Frames,” in Signal Processing, Part I: Signal Processing Theory, L. Auslander, T,
Kailath, S. Mitter eds., Institute for Mathematics and its Applications, Vol. 22, Springer Verlag, New York,
PP.147-160, 1990.

{HER71] O. Herrmann, "On the Approximation Probem in NonRecursive Digital Filter Design,” JEEE Trans. Circuit
Theory, Vol. CT-18, No. 3, pp. 411413, May 1971.

{LIT37] J. Litlewood and R. Paley, _'Tbeorems on Fourier Series and Power Series,” Proc. London Mash. Soc.,
Vol 42, pp. 52-89, 1937.

[MALS9a] S.Mallat, “A Theory for Multiresolution Signal Decomposition: the Wavelet Representation,” /EEE
Trans. on Pattern Analysis and Machine Intell, Vol.11, No. 7, pp.674-693, July 1989.

[MALS89b] S.Mallat, "Multifrequency Channel Decompositioas of Images and Wavelet Models,” /EEE Trans.
Acoust., Speech, Signal Proc., Vol. 37, No.12, pp.2091-2110, December 1989.



24
O. RIOUL AND M. VETTERLI: WAVELET TRANSFORMS k 1]

[MAL89c]  $.Mallat, "Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R),", Trans. Amer.
Math. Soc., Vol.315, No.1, pp.69-87, Sepitember 1989.

[MEY89] Y. Meyer, "Ortionormal Wavelets,” in [WAV89], pp. 21-37, 1989..

(MEY90] Y Meyer, Ondelettes et Opératewrs, Tome I, [in French) Herrmann ed., Paris, 1990.

[MIN85] F.Mintzer, “Filters for Distortion-Free Two-Band Multirate Filter Banks,” /EEE Trans. on Acoust., Speech,
Signal Proc., Vol.33, pp.626-630, June 198S.

[PAUSS] T.Paul, "Affine Coherent States and the Radial Schridinger Equation 1. Radial Harmonic Oscillator and the
Hydrogen Atom,” 10 appear in Ann. Inst. H Poincaré .

[RIO9Ca) O. Rioul and P. Flandrin, "Time-Scale Energy Distributions: A General Class Extending Wavelet
Transforms,” submitted to JEEE Trans. Signal Proc., May 1990. Rapport ICPI TS-8910, URA 346 CNRS,
25, rue du Plat, 69288 Lyon Cedex 02.

[RIO90b] ORioul, "A Unifying Multiresolution Theory for the Discrete Wavelet Transform, Regular Filter Banks and
Pyramid Transforms,” submitted to /EEE Trans. Signal Proc., June 1990.

[RIOS0c] O. Rioul and P. Duhamel, "Structures and Fast Algorithms for Implementing Wavelet Transforms,” preprint.

(RI090d] O. Rioul, "A Simple, Optimal Regularity Estimate for Wavelets,” preprint.

[ROS84] A Rosenfeld, Ed, Multiresolution Techniques in Computer Vision, Springer-Verlag, New York 1984,

(SMI86) M.J.T.Smith and T.P.Barnwell, "Exact Reconstruction for Tree-Structured Subband Coders,” JEEE Trans. on
Acoust., Speech and Signal Proc., Vol. ASSP-34, pp. 434441, June 1986.

{SMI87) MJ.T.Smith and T.P.Bamnwell, "A New Filter Bank Theory for Time-Frequency chrwentaéion," IEEE
Trans. on Acoust., Speeck and Signal Proc., Vol. ASSP-35, No.3, March 1987, pp. 314-327.

[SPE67] JM. Speiser, “Wide-Band Ambiguity Functions,” JEEE Trans. on Info. Theory, pp. 122-123, 1967.

(VAIS8] PP.Vaidyanathan and P.-Q. Hoang, "Lattice Structures for Optimal Design and Robust Implementation of
Two-Band Perfect Reconstruction QMF Banks,” JEEE Trans. on Acoust., Speech and Signal Proc., Vol.
ASSP-36, No. 1, pp.81-94, Jan. 1988.

[VAIB9] P.P. Vaidyanathan and Z. Doganata, "The Role of Lossless Systems in Modem Digital Signal Processing,”
IEEE Trans. Education, Special issue on Circuits and Systems, Vol. 32, NoS. Aug. 1989, pp.181-197.

[VET89] M.Veuerli and D. Le Gall, "Perfect Reconstruction FIR Filter Banks: Some Properties and Factorizations,”
IEEE Trans. on Acoust., Speech Signal Prpe., Vol.37, No.7, pp.1057-1071, July 1989.

[VET90a] M.Veuerli and C.Hesrley "Wavelets and Filter Banks: Relationships and New Results,” in Proc. 1990 IEEE
Int. Conf. Acoust., Speech, Signal Proc.. Albuquerque, NM, pp. 1723-1726, Apr. 3-6, 1990.

[VET90b] M. Vettedli and C. Herley, "Wavelets and Filter Banks: Theory and Design,” submitted /EEE Trans. on
Signal Proc., Aug. 1990.

[WAV89] Wavelets, Time-Frequency Methods and Phase Space, Proc. Int. Conf. Marseille, France, Dec. 14-18,
1987, J.M. Combes, A. Grossmann, P. Tchamitchian eds., Inverse Problems and Theoretical Imaging,
Springer Verlag Berlin Heidelberg, 315 p., 1989.

[WOOS53] PM. Woodward, Probability and Information Theory with Application to Radar, Pergamon Press, London,
1953.



33
O. RIOUL AND M. VETTERLL: WAVELET TRANSFORMS : 3

[YOUT8] J.E. Younberg, S.F. Boll, "Constant-Q Signal Analysis and Synthesis,” JEEE Int. Conf. on Acoust.,
Speech, and Signal Proc., ICASSP-78, Tulsa, OK, pp. 375-378, 1978.

EXTENDED REFERENCES
History of Wavelets. see [HAA09], [FRAZ8], [LIT37], [CAL&4], [YOUT8], [GOU84), [GRO84).

Books on Wavelets: see [WAV89], [MEYSJ] and
1. Daubechies, Wavelets, Lectun- Notes, Lowell University, CBMS, SIAM publ., to appear.
Wavelets and their Applications, R.R. Coifman, 1. Daubechies, S. Mallat, Y. Meyer scientific eds., L.A.

Raphael, M.B. Ruskai managing eds., Academic Press, to appear.

Tworials on Wavelets (sce also [FLA89], [GRO89], [MALS8%b])
R.R. Coifman, "Wavelet Analysis and Signal Processing,” in Signal Proces:ihg. Part I: Signal Processing
Theory, L. Auslander, T. Kailath, S. Mitter eds., Institute for Mathematics and its Applications, Vol. 22,
Springer Verlag, New York, 1990.
C.E. Heil and D.F. Walnut, "Continuous and Discrete Wavelet Transforms,” SJAM Review, Vol. 31, No. 4,
pp 628-666, Dec. 1989.
Y. Meyer, S. Jaffard, O. Rioul, "L'Analyse par Ondelettes,” (in French)Powr La Science, No.119, pp.28-37,
Sept 1987.
G.Strang, "Wavelets and Dilation Equations: A Brief Introduction,” SIAM Review, Vol. 31, No. 4, pp. 614-
627, Dec. 1989.

Mathematics, Mathematical Physics (see also [GRO84], (DAUS8S]), [MEY90])
P.G. Lemarié and Y. Meyer, "Ondelettes et Bases Hilbertiennes,” (in French) Revista Matematica
Iberoamericana, Vol 2, No.1&2, pp.1-18, 1986.
G.Battle, "A Block Spin Construction of Ondelettes, II. The Quantum Field Theory (QFT) Connection,”
Comm. Math. Phys., Vol. 114, pp. 93-102, 1988.

Regular Scaling Filters (see also [DAUSS], [DAU9SGb], [DAU90c], [RI090c])
S.Dubuc, "Interpolation Through an Iterative Scheme,” J. Math. Analysis Appl., Vol.114, pp.185-204,
1986.

Numerical Analysis



O. RIOUL AND M. VETTERLL: WAVELET TRANSFORMS 34 2

G .Beylkkin, R.Coifman and V.Rokhlin, "Fast Wavelet Transforms and Numerical Algorithms. I,” submitted,
Dec. 1989. *

R.R. Coifman, “Muldresolution Analysis in Nonhomogeneous Media,” in (WA V89], pp. 259-262, 1989.
V.Permrier, "Towarﬁ a Method to Solve Partial Differential Equations Using Wavelet Bases,” in [WAV89], pp.
269-283, 1989.

Quantum Mechanics: see e.g. [PAUSS]

Fracials, Turbulance
A.Améodo, G.Grasseau, and M.Holschneider, "Wavelet Transform of Multifractals,” Phys. Re view Letters,
Vol.61, No.20, pp.2281-2284, 1988.
F.Argoul, A.Améodo, G.Grasseau, Y.Gagne, EJ Hopfinger, and U Frisch, "Wavelet Analysis o Turbulence
Reveals the Multifractal Nature of the Richardson Cascade,” Matwre, Vol 338, pp.51-53, March 1989.

Radar/Sonar, Ambuguity Functions: see e.g. [WOOS53], [SPE67), [AUS90]
Time-Scale Representations: see [FLA89], [FLASO], [RIO9Ca).

Filter Bank Theory (see also [CRI76}, [CRO76), [EST77], [MIN8S], [SMI86], [SMI87], [VAISS8], [VAIS9),
[VETSS)
J.D. Johnston, "A Filter Family Designed for Use in Quadrature Mirror Filter Banks,” Proc. ICASSP-80,
Pp-291-294, April 1980.
T.Q.Nguyen and P.P.Vaidyanathan, “Two-Channel Perfect-Reconstruction FIR QMF Structures Which Yield
Linear-Phase Analysis and Synthesis Filters," JEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-
37, No. S, pp.676-690, May 1989. '
P.P.Vaidyanathan, "Quadrature Mirror Filter Banks, M-band Extensions and Perfect-Reconstruction
Techniques,” /EEE ASSP Magazine, Vol. 4, No. 3, pp.4-20, July 1987.
M.Vetterli, *Multi-Dimensional Subband Coding: Some Theory and Algorithms,” Signal Processing, Vol.
6, No.2, pp. 97-112, Feb. 1984,
M.Veterli, "Filter Banks Allowing Perfect Reconstruction,” Signal Processing, Vol.10, No.3, April 1986,
pp219-244.

One-Dimensional Signal Analysis
C.D'Alessandro and J.S Lienard, "Decomposition of the Speech Signal into Short-Time Waveforms Using
Spectral Segmentation,” in Proc. 1988 IEEE Int. Conf. Acoust., Speech, Signal Proc., New York, Apr.11-
14, 1988, pp.351-354.
J L.Larsonneur and J Morlet, "Wavelets and Seismic Interpretation,” in [WAV89], pp.126-131, 1989,



35
O. RIOUL AND M. VETTERLL: WAVELET TRANSFORMS k)

F. B. Tuteur, "Wavelet Transformations in Signal Detection,” in Proc. 1988 IEEE Int. Conf. Acoust.,
Speech, Signal Proc., New York, NY, Apr. 11-14, 1988, pp.1435-1438. Also in [WAV89], pp. 132-138,
1989. -

M.V. Wickerhauser, "Acoustic Signal Compression with Wave Packets,” preprint Yale University, 1989.

Pyramid Transforms: sce [BURS3), (BUR89], [ROS84].

Wavelet Image Coding and Processing (see also [ANI9O], [MALS89a}, [MAL8Sb], [MALSSc).)
1.C. Feauveau, "Analyse Multirésolution pour les Images avec un Facteur de Résolution ¥2," {in French],
Traitement du Signal, Vol. 7, No. 2, pp. 117-128, July 1990.
S Mallat and S.Zhong, "Complete Signal Representation with Multiscale Edges,” submitted to /EEE Trans.
Pautern Analysis and Machine Intell, 1989.



-\

O. RIOUL AND M. VETTERLL: WAVELET TRANSFORMS K

FIGURES CAPTIONS

Fig. 1. Time-frequency plane corresponding to the Short-Time Fourier Trransform. It can either
be seen as successive Fourier Transforms (column by column) or as a modulated filter bank (line by
line).

Fig. 2. Basis functicns and time-frequency resolution of the Short-Time Fourier Transform
(STFT) and the Wavele! Transform (WT). (a) Coverage of the time-frequency plane for the STFT,
(b) for the WT. (c) Corresponding basis functions for the STFT, (d) for the WT ("wavelets".)

Fig. 3. Tiling of the frquency domain (a) for the STFT (uniform coverage) and (b) for the WT
(logarithmic coverage.)

Fig. 4. Regions of influence in time (a),(b) or frequency (c),(d) drawn as shaded areas in the
time-scale (a), (¢) and time-frequency (b), (d) plane (see text.)

Fig. 5. Spectrograms and scalograms. Analysis of the sum of two Dirac pulses and two
sinusoids (Fig. 5.1), of three starting sinusoids (Fig. 5.2.), of a chirp signal (Fig. 5.3.), and of a
stretch of speech signal (Fig. 5.4.) |

(a) Amplitude of the STFT. (b) Phase of the STFT. (c) Amplitude of the WT (d) Phase of the WT.

Fig. 6. From spectrograms to scalograms viga Wigner-Ville. By controlling only one prameter y,
it is possible to make a full transition between time-scale and time-frequency analyses. Here seven
analyses of the same signal (composed of three Gaissian packets) are shown. Note that the best joi;n
tim-frequency resolution is attained for the Wigner-Ville distribution, while both spectrogram and
scalogram (which can be thought of smoothed versions of Wigner-Ville) provide reduces cross-term
effects compared to Wigner-Ville. (after [FLA90], [RIO90a].)

Fig. 7. Dyadic sampling grid in the time-scale plane. Each node corresponds to a wavelet basis
function hj ,(0) (see text.)

Fig. 8. Reconstruction Signal/Noise Ratio (SNR) error after frame decomposition for different
sampling densities a, = 2'" (N = number of voices per octave), b=a/ k b,. The basic wavelet is the

Morlet wavelet (modulated Gaussian) used in [GRO89]. The accurateness of the reconstruction
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grows as N increases and b, decreases, i.¢. as the density of the sampling grid of Fig. 7 increases. In

other words, redundancy refines reconstruction. (after [DAU9%0a].)

Fig. 9. Pyaramid Scheme. Derivation of a lowpass, subsamplc;d approximation y(n), from which
an approximation a(n) to x(n) is derived by up-sampling and interpolation.

Fig. 10. Subband Coding Scheme. Two subsampled approximations, one corresponding to low
and the other to high frequencies, are computed. The reconstructed signa. is obtained by re-
interpolating the approximations and summing them. The filters on the left form an analysis filter
bank, while on the right is a synthesis filter bank.

Fig. 11. Block diagram of the Discrete Wavelet Transform implemented with discrete-time filters
and subsampling by two.

Fig. 12. Iterated low-pass filter. (a) h(n) = (1,3,3,1) converges to a regular, smoothed function.
(b) h(n) =(-1,3,3,-1) converges to a fractal function (see text.)

Fig. 13. Scaling functions satisfying two-scale difference equations. (a) the hat function. (b) the
D, wavelet obtained from a length-4 regular filter by Daubechies. -
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Fig. 5. Spectrograms and scalograms. Analysis of the sum of two Dirac pulses and two
sinusoids (Fig. 5.1), of three starting sinusoids (Fig. 5.2.), of a chirp signal (Fig. 5.3.), and of 2

saech of speech signal (Fig. 5.4.) _
(a) Amplitude of the STFT. (b) Phase of the STFT. (¢) Amplitude of the WT (d) Phase of the WT.



42




43

//—7%;/5 5.3
Nt S f g /i /M/J//:y - J‘//ﬁrr/ /



44

I E U B S N b U 2 0 |

lp-o b

Jlllllllljl

4 =025
ASwY

L & & A 2 & A 4 4t At

u=Q25
SPWV

ﬁ,
A

A
v
A

. g
A

Ty rryyyvryrry --- Py
¥
o
p < 4

L SN AN SEID NAE S SN L RN 4 ) SER SER SO BEA SER SR SR SER SN SN
A A & A & A a A A A A i

4
Pt sl -, .‘ u=026 ; ‘l
\
\
\

D ASWV

L 4 2 A 2 2 A 1 2 2 A 2 8 ¢ & 2 4 4. 2 2 A 4

he=1

N JED N BEn Sun S san SEn S San Sun o

v vrrirvyvyvruyr g3 ¢ vR

/_"i E‘\

T r I rTyyz]yYT.zfwvyvrvv

|STFT| Specvogram - SP.W.V.. Smoothed Pseudo- wcgrm -Ville
WVD: Wigner-Ville - A.S.W.V.. Alfine Smoothed Wigner-Ville - | WTl Scalogram
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it is possible to make a full transition between time-scale and time-frequency analyses. Here seven
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tim-frequency resolution is attained for the Wigner-Ville distribution, while both spectrogram and
scalogram (which can be thought of smoothed versions of Wigner-Ville) pmﬁdc reduces cross-term
effects compared to Wigner-Ville. (after [FLA90], [RIO90a).)
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other words, redundancy refines reconstruction. (after [DAU9%0a].)
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France

Abstract — A global formalism for the analysis and synthesis of discrete-time signals at
different resolutions is presented in this paper. It uses precise definitions of scale and resolution to
unify the Discrete Wavelet Transform (DWT), octave-band perfect reconstruction Filter Banks, and
Pyramid Transforms in a common framework. These schemes are described as a decomposition of
an original signal into multiresolution "details": in a DWT, these details are supported by discrete
wavelets.

Although close to analog models such as wavelet series decomposition, this approach is purely
discrete-time-based, and is therefore readily applicable to practical Digital Signal Processing tasks.
In addition, it has the same mathematical richness than the corresponding analog models, including
several properties or filter design criteria such as biorthonormality, orthonormality and regularity.
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INTRODUCTION.

Wavelet Transforms, Octave-Band Filter Banks and Pyramid Transforms, which have been used
for different purposes in various fields-of Electrical Engineering and Mathematics, have been
recognized recently as different views of a common theory. This theory is hereafter referred to as
Multiresolution Analysis and Synthesis.

The aim of this paper is not to provide a complete state-of-the-art in Multiresolution Theory or
Wavelet Theory (see, e.g., [6], [8], [29]) — nor is this paper intended to paraphrase mathematical
concepts [22], [23]. Rather, this paper intends to enlighten various links between Filter Banks [31],
Pyramid Transforms [S] and Wavelets [8], while deliberately focusing on discrete-time signals.

Before stating in more detail the motivations that lead to this paper, it is necessary to briefly
outline the basic properties of Wavelet Transforms and review their connections to Filter Banks.

The Continuous Wavelet Transform has been first introduced by Goupillaud, Morlet and
Grossmann [15], [16]. It maps a one-dimensional signal x(#) into a two-dimensional representation
in a time-scale plane (b, a), as follows.

CWT(a, b) =a™ [x()y" () dt )

The functions of time: y(!32), called wavelets, are used to band-pass filter the signal. This is a
sort of time-varying spectral analysis, where the scale parameter a plays the role of a local
frequency: for large a, stretched wavelets analyze low frequencies; for small a, short, contracted
wavelets analyze high frequencies. It is a multiresolution analysis, because the time-frequency
extent of wavelets varies in the time-scale plane (b, a) according to a constant-Q analysis [36] —
this feature is not provided by e.g. Short-Time Fourier Transforms [3]. As one would expect, the
Continuous Wavelet Transform is mostly used in Signal Analysis.

For coding or compression purposes, it is wise to economically represent the signal in terms of
wavelet coefficients (1), hence to discretize time-scale parameters (b,a). Scale is often discretized
octave by octave [8],i.e.,a =2, j € Z, and wavelets are shifted in direct proportion to their extent,
i.e., b =k 2. Then, wavelet coefficients become inner products of the signal against analyzing
wavelets A (0

W= [x()v}, () ar, 2)

where Y, (0 = 22 y(27 1 - k). 3)
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This model still applies to analog (continuous-time) signals. A rich, mathematical theory has been
developped by several mathematicians (including Meyer [23], Mallat [21], [22]), which is
commonly referred to as "Multiresolution Analysis." It is based on a description of approximated
versions of signals at different resolutions using so-called "Multiresolution Spaces." Some of these
ideas previously occured in image coding [5], [1].

Meyer's theory of Multiresolution Analysis allowed several authors [7], [11], [20], {23], to
construct special wavelet prototypes () for which perfect reconstruction of the signal x(z) is
possible via a Wavelet Series,

FOEDIDIRA O )
jeZ kel
where synthesis wavelets ‘I’,-, (1) are defined similarly as (3), possibly with a different prototype
W (£) # (1), closely related to y(r) [7].

We now turn to the connection with Filter Banks. In order that wavelet series coefficients (2) be
computed efficiently, Mallat [21] has derived a recursive algorithm that iteratively computes (2)
octave by octave. This algorithm can easily be transposed to provide an inverse algorithm for the
reconstruction part. Mallat's direct and inverse algorithms turn out to be exactly an analysis and
synthesis Octave-Band Filter Bank [30].

Wavelet theory is therefore closely related to Filter Bank theory. The latter, which has been
previously developped for applications such as subband coding of speech [10], has greatly
influenced the former; known FIR filter design techniques [17], [30] were independently used by
Daubechies [11] to construct orthonormal wavelets of finite length satisfying (2), (4) with y (1) =
y(#). Other FIR filter designs were recently used [7], [34], [35] to construct linear phase,
"biorthonormal" wavelets for which y (¢) # y(¢).

The connection between wavelet series and filter banks has thus been extensively studied
already. However, the "discrete-time side" of wavelet series has not been fully exploited yet. It has
been mainly used as a technical necessity to either derive fast algorithms (which simply rely on the
filter bank structure itself — for further developments see [26], [27]) or construct analog wavelet
bases (via filter design). Very little multiresolution wavelet theory has been developped, if not at
all, in the sole framework of discrete-time signals: according to what can be found in the literature,
analog wavelets are the interesting objects that underly discrete-time computational tools.

This situation is similar to the one formerly observed in Signal Processing for linear filters and
Fourier transforms. Discrete filters, as well as the Discrete Fourier Transform, were once
exclusively considered as discretized versions of their analog counterparts, rather than interesting
objects of their own. Since the mid-sixties, however, Discrete-Time Signal Processing has emerged
as an independent theory [25], that has subsequently allowed new developments.
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- Very likely, a fuily discrete-time presentation of Multiresolution Theory would be more
appropriate for most practical situations in Digital Signal Processing; as a matter of fact, one often
processes digital signals as the interesting objects. For example, an image is generally thought of as
a nxm-pixel 8-bit data array, not as basis coefficients of a two-dimensional square integrable
function of L%(R?). Various image compression schemes have been derived, based on the wavelet
model for analog signals [4], [37], but they are essentially discrete in nature.

For this reason, this paper focuses on discrete-time signals. Its primary purpose is to develop a
discrete-time multiresolution theory that e.g. permits to define a Discrete Wavelet Transform
(DWT) in its own right — that acts on one-dimensional discrete-time signals. In a DWT, the
interesting objects are the discrete wavelets. Extension to two-dimensional signals can be
straightforward: a wavelet decomposition of an image can be simply obtained by processing rows
and columns separately [4], [21]. Other methods exist [33], but the underlying ideas are the same as
in one dimension, which is the framework considered in this paper.

This paper is for most part self-contained: in writing the paper, care has been taken that the
reader need not previous knowledge on wavelet basics (although some rudimentary knowledge of
z-transforms and vector spaces is assumed). As a result, since the discrete-time and continuous-time
approaches have many things in common, most developments and ideas presented in this paper are
known to wavelet experts — yet they may not appear as presented in the literature.

NOTATIONS
xor {x]} Original signal: a discrete, complex-valued sequence.
X, Its nth sample.
3 Impulse signal: 8 =0 if n#0, §; = 1.
I | Identity operator: Ix = x.
G, H Low-pass (high-pass) filtering operator, with impulse response {g } ({4} ).
Gx Low-pass filtered signal, i.e., the discrete convolution g * x.
(Gx), Its nth sample. When needed, the input sample index is shown, as in (Gx,).
Tr, x Up-sampled and down-sampled signal: (Tx)h=xl, (Tx),m=0, and (ix)n =X,

GTx, 4G'x Up-scaled and down-scaled signal (see section I).

(x;y)or{x;y) Inner product of signals {x } and (y,}: (x; y) = Z x ¥y
Hx Norm of signal {x,}: IxI®=(5x)=) Ix P
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I. DISCRETE-TIME SCALING

The aim of this section is to define precisely the concept of scale for discrete-time signals. This
notion is inspired from the commonly used scale of road maps: given a "real” object, the scale of a
representation of this object is the ratio of the length unit of the representation to the corresponding
real length. Here the "real object" is an original discrete-time signal {x_}, which is at scale 1 by
definition. In this paper, scale refers to discrete time: a scaled version of {x } is either

- up-scaled: a discrete-time signal similar to {x }, but sampled at a higher rate, or

- down-scaled: a discrete-time signal similar to {x_}, but sampled at a lower rate.

Since scale is a relative notion, we focus on the description of operators that change the scale,
i.e., map a signal into a scaled version of it. Throughout the paper we restrict to changes of scale by
an integer power of two (but other scale factors are sometimes used [18]). We therefore study two
basic scaling operators:

- up-scaling operator (by a factor 2): a discrete equivalent to the dilation x(¢) — x(#/2).

- down-scaling operator (by a factor 2): a discrete equivalent to the contraction x(¢) — x(2f).

Examples. Obviously the scale notion is related to multirate systems. For example, a down-
scaled version of {x } could be {x } itself, down-sampled.

(x) =x,. (5)

However, up-sampling: -
T < X,/ N EVEn 6
(9.21 0, nodd (©)

is not a good candidate for up-scaling, since it inserts a zero between every other sample of (x };
hence x and Tx do not have similar evolutions in time. This can be corrected by further interpolating
the samples, as in the following example, illustrated in Fig. 1.

Xy s n even

(7
%(x(u—l)lz + x(u»l)/z), n odd

Up-scaled version of x, = {

We now determine general expression for up and down-scaling operators. We need some basic
assumptions:
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" (a) Scaling operators are linear.
(b) When scaling a signal, time-shifts are scaled accordmgly

If y_ = up-scaled version of x, theny_,, = up-scaled version of x_,.

If y_ = down-scaled version of x, then y,_, = down-scaled version of x_,,.
(c) Shape preservation: Scaled versions have similar time evolutions (similar shapes).

The third point is difficult to be properly expressed. Therefore it is not considered until section
VIII, where it is connected to the "regularity" property.
Assumptions (a) and (b) result in the following characterizations, proven in Appendix A:
The up-scaled version of x is of the form G Tx, where GT denotes up-sampling (6) followed
by filtering with some impulse response {g_}:

GT0, =Y, g.ux,- (8)
k

The down-scaled version of x is of the form $G'x, where 4G' denotes filtering with some
impulse response {g’ }, followed by down-sampling (5):
(Gx) = g 8yi Xy 9)
The impulse responses {g,} and (g',} are not necessarily equal. They are assumed low-pass in the
sequel; intuitively this is required by assumption (c) above — section VIII gives a theoretical
justification. The example (7) corresponds to a 3-tap up-scaling filter g, = .5, g,=1.

The corresponding flow graphs of up and down scaling operators are shown in Fig. 2. They
turn out to be usual building blocks of analysis and synthesis Filter Banks [31]! Note that the
operator notation used here is very easily connected to flow-graph implementation: for example,
GT!G'x means that the input x successively encounters a filter of impulse response g', a down-
sampler, an up-sampler, and finally a filter of impulse response g.

Using only two operators (8), (9), one can compute scaled versions of the original signal {x } at
all dyadic scales s = 27, where ie Z. Simply, the up-scaling operator (8) doubles the scale, while
the down-scaling operator (9) halves it. Scaling filters g , g’ remain fixed at all scales, i.e., all scale
transitions are performed the same way, and no particular scale is privileged.

However, a scaled version of a given signal {x } at a given scale s is not unique. For example,
x, GTYW{AGYx, and (GTY G (G (LG"Y x are all "scaled" versions of x at scale 1!
To characterize scaled versions of x we need another parameter than scale, namely, resolution. This
will be discussed in section IIL
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II. HERMITIAN TRANSPOSITION AND INNER PRODUCTS

Before introducing the notion of resolution, it is convenient to say a few words about Hermitian
transposition of operators, and inner products.
In matrix notation, the up-scaling operator is

( : A\ YRR
8 82 8 82 84 | Xa (10)
GTx=|-- & 8 & 84 8 || X
> 8 8 82 &0 82 |l X\
k : A

Its Hermitian transpose is, by definition, the operator obtained by transposing and complex
conjugating the matrix (10), i.e.,

( : )
8 8 & 8 &
g1 8 & & &

& 82 81 & &

This is exactly the matrix form of a down-scaling operator (9), whose scaling filter is {g"_}.
Following the Filter Bank terminology {31], { g'_'} is called the paraconjugate sequence of {g }
(the connection with filter banks will be explained in section VI). Paraconjugation will be denoted in
this paper with a tilde symbol:

§ .= paraconjugate of g =g" (11)

We have thus shown that the Hermitian Transpose of the up-scaling operator GT is the
paraconjugate down-scaling operator 1G. Similarly, the Hermitian Transpose of the down-
scaling operator L G' is the paraconjugate up-scaling operator G'T .

Hermitian transposition is useful for several reasons. First, it has a flow-graph interpretation. In
fact, it is well known [9], [25] that transposing a linear operator amounts to transposing its flow
graph: the Hermitian transposed flow graph is obtained by reversing the directions of all arrows —
hence summing nodes become branching nodes and vice versa — and by complex conjugating the
multipliers' coefficients. From the discussion above, it follows that the flow graphs of Fig. 2 are
eachother's Hermitian transpose if and only if the scaling filters {g } and {g' } are eachother's




58

RIOUL: DISCRETE-TIME MULTIRESOLUTION THEORY -7-

paraconjugate (11). In any case, the flow-graph computational.structures of up and down-scaling
operators are always tranpose of eachother. This has useful implications for e.g. deriving
algorithms [26], [27]: for example, once an algorithm has been derived to compute down-scaling,
the transposed algorithm computes up-scaling (and vice versa), at the same computational cost if
both scaling filters have same length. The situation is the same for direct and inverse Wavelet
Transforms (see section VI).

Another characterization of Hermitian transposition uses inner products and will be useful in the
sequel. By definition, the inner product of two discrete-time signals {x } and {y,} is the number

(1)
¥ (12)
= xy.= (- x; x x )|
n y;
\ )
This definition requires that signals have finite energy, i.e.,
NxiP=(x)=Y Ix, <+, (13)

which is assumed throughout this paper. The inner product {x; y) measures the "similarity" between
x and y. It also permits to interpret signals as geometrical vectors: for example, the signals x and y
are said to be orthogonal if (x; y) = 0. They are orthonormal if they moreover have norm unity,
ie,lxll=lyl=1.

Using the definition (12), it is easy to show that the Hermitian transpose O' of some operator O
can be alternatively defined as satisfying

(x; 0y)=(0%; y), (14a)
or, equivalently,

(x; O')=(0x; y), (14b)
for any signals x and y. These equations do not introduce a new concept: only notations are new.
They are useful when dealing with inner products because of their conciseness: any operator on the
left side of an inner product can be brought to the right side after Hermitian transposition, and vice
versa. For scaling operators we can thus write '
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(x; GTy)=({Gx; y) - (152)
(x; 4Gy )=(G'Tx; y), (15b)

whic;h stand for

Zx(g 8uz Vi ) = 2(2;, Brns xk)y:

and }u:x,.(;g'z,_,, )’kj‘ = 2(;?.-2& xk))’,‘. :

III. DISCRETE-TIME RESOLUTION AND
BIORTHONORMALITY

In this section we define the resolution notion for characterizing different versions of an original
signal {x_} at the same scale. Intuitively, the more information is present in a scaled version of
{x,}, the higher the resolution. More precisely, we define the resolution parameter r as follows.

A scaled version of {x,}, obtained by action of up and/or down-scaling operators on {x }, is az
resolution r=27 (j20) if it is characterized by one sample every other r'=2/ sampling periods of
{x}.

For example, x itself is at resolution 1. Its down-scaled version $G'x (9), which is at scale
s=1/2, is also at resolution 1/2, because the down-scaling operator throws away half of the
samples. Note that in general, the resolution of a signal cannot exceed its scale, otherwise it would
be characterized by more samples than actually present in the signal! Therefore, we always have

resolution < scale, (16)
and because we start from an original signal {x,} at resolution 1, all resolutions considered in this
paper are negative powers of two: r=27, j20.

How is affected resolution by up and down-scaling operators? We have seen that down-scaling,
when applied to the original signal {x_}, cuts both scale and resolution by two. As for up-scaling,
since an up-scaled signal is computed directly from the signal coefficients, no resolution is added.
That is, up-scaling "magnifies” a signal but does not add new details. In addition, despite low-pass
filtering present in up-scaling (8), it is not necessary that information is lost when up-scaling a
signal. This is clear from the example (7). We therefore assume in this paper that the up-scaling
operator GT is one-to-one:

Ifx#y then GTx=GTy (17)
This can be proven if e.g. the scaling filter{g,} is FIR, by noting that G Tx = 0 implies, from (8),
8, %%, =8,. *x =0,hencex=0.
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- To summarize, there are two important rules concerning changes of scale and resolution:
— When replacing the original signal x by its down-scaled version LG'x, both scale and
resolution are halved. (18a)
— Up-scaling any signal via GT doubles its scale but leaves resolution unchanged. (18b)

Another example permits to halve the resolution while leaving the scale unchanged. It plays a
central role in the following. Consider
Ax=GTlG'x, (19)
obtained by first down-scaling x, then up-scaling the result. From (18), this signal is at scale 1 and
resolution 1/2. The operator A is therefore called the approximation operator at half the
resolution. Note that A does not reduce to a filter because it is not shift-invariant. Its flow graph is
depicted in Fig. 3.

Characterization of scaled signals. It remains to be found under which conditions the scale and
resolution parameter uniquely determine the scaled versions of the original signal {x }. That is,
among all possible scaled versions of {x_} obtained using up and/or down-scaling operators, there
should be only one scaled version at a given scale s and resolution r. We give several equivalent
conditions.

It is proven in Appendix B that each of the following statements implies the others:

(i) A scaled version of {x_} at scale s = 2 and resolution = 27 is unique. It is given by

GTY Gy x (20)
(i) The approximation operator at half the resolution (19) is a projector, i.e.,
AZ=A. (21)
(iii) Up-scaling followed by down-scaling leaves the signal unchanged, i.e.,
lG'GT =1L (22)

(iv) The two families of shifted scaling impulse responses {g_,, } and {(g', ,, }, indexed by %,
are mutually biorthonormal. (Recall that g' is the paraconjugate (11) of g'.) This means that

. 1 if k=1
g' { (23)

<g.-u;§',-zz)=§n:gu-zk 8 n-u = 0 if k!

Besides being equivalent to (i), conditions (ii)-(iv) can be interpreted as follows. First, (21)
states that there is no use in re-approximating the approximation Ax of x at resolution 1/2. Equation
(22) means that A2= GTIG' GTLG' indeed reduces to GTLG' = A by simplification of the
middle term {G' GT = L. This is illustrated using flow graphs in Fig. 3 (b).
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- In addition, (20); (22) implies that the down-scaling operator 1G' halves both scale and
resolution only if it applies to signals such as x itself (18a), which have same scale and resolution;
however, for "over-scaled" signals —such as Ax— which have higher scales than resolutions, the
operator 4G' only halves scale and leaves resolution unchanged.

The biorthonormality property (23) deserves attention. First, note that "biorthonormality" is just
a short-hand for: "scaled versions of the original signal {x_} are uniquely determined by their scale
and resolution parameters.” Therefore, biorthonormality is not something optional: it should always
hold in "coherent" multiresolution systems, for which multiresolution approximations are unique. It
will be therefore generally assumed in this paper. What is optional is orthonormality, a special case
of biorthonormality for which one further imposes
8.8 > (24)
so that the family of shifted signals {g_,, } form an orthonormal set (see (23))

1 if k=1

} (g,..y, > 8o )= ;gn-Zk g:—ZI = {0 kel (25)

Note that from (24) and the discussion of section II, orthogonality is again a shorthand for the
combination of two properties: biorthogonality, plus "up and down scaling operators are Hermitian
transpose of eachother."

IV. MULTIRESOLUTION RESIDUE SIGNALS AND PYRAMID
TRANSFORMS

The aim of this section is to give a precise idea of what a mutiresolution signal decomposition
can be, based on the definitions and properties of scale and resolution discussed in the preceding
sections. We assume that scale and resolution characterizes scaled signals as discussed in the last
section (conditions (21)-(23)). Intuitively, in a multiresolution analysis, the original signal {x } is
decomposed into several multiresolution components associated to different resolutions. During
synthesis, the signal is reconstructed from its multiresolution components.

From (20), (22), a signal at some resolution r contains all the necessary information to obtain
versions at lower resolutions < r. Therefore, to avoid redundancy of information in a
multiresolution analysis, the signal is decomposed into residue signals that catch "details" from one
resolution to the next finer one. These residue signals are defined by difference as follows.

Assuming that



RIOUL: DISCRETE-TIME MULTIRESOLUTION THEORY -11-

§22r, . (26)
the residue signal of {x} at scale s and resolution r is the signal that doubles the resolution (i.e.,
increases resolution from r to 2r) when added to the scaled version of {x_} at scale s and resolution
r.
scaled signal +  residue signal = scaled signal @7
(scale s, resolution r)  (scale s, resolution r)  (scale s, resolution 2r)

Note that, from (26), the right-hand side of (27) is well defined according to (16).

Therefore, a multiresolution decomposition of an original signal {x } is a collection of residue
signals at sucessive resolutions 1/2, 1/4, 1/8, ... . These residue signals are computed during
multiresolution analysis. During multiresolution synthesis, the signal {x } is reconstructed
starting from a low resolution scaled version of {x.}, by applying (27) iteratively to increase
resolution until resolution 1 is reached. Note that with this definition, a multiresolution
decomposition differs from another only by the scales of multiresolution components.

The Pyramid Transform is a direct application of these ideas. It was first introduced by Burt and
Adelson [5] for image coding purposes; we describe here pyramid decompositions for one-
dimensional signals in the framework of this paper. A Pyramid Transform onJ "octaves"
decomposes the signal {x_} into the collection of residues signals at scale 2" and resolution 27,
where j=1, ..., J, plus a low resolution version of {x }, namely the scaled signal at scale and
resolution 2”. This description is sufficient to fully describe a Pyramid Transform.

It is easy to connect this to the well-known, original description of Burt and Adleson [5], by
deriving a computational tree-structure for its implementation: Start with one step of decomposition,
i.e., let J=1. From the above definition, the original signal x is decomposed into two components:
its residue signal at scale 1 and resolution 1/2, which from (19), (27) is

x-Ax=x-GTlG', (28)
plus its scaled version at scale and resolution 1/2, i.e., dG'x. The corresponding flow graph is
depicted in Fig. 4 (a). To reconstruct x, +G'x is brought back to scale 1 and (27) is applied, i.e.,

GT{dG%) + x-GTIGY) = x. (29)
In other words, one simply adds what has been previously substracted! The corresponding flow
graph is depicted in Fig. 4 (b). This decomposition readily extends to a full computation of a
Pyramid Transform on J octaves. Simply note that from the definition above, both scale and
resolution parameters of multiresolution residue signals are halved at each stage (octave). Now,
since any residue signal is a difference of scaled versions of x, the rules (18) apply for residue
signals as well. Therefore, scale and resolution parameters of a multiresolution residue signal are
halved when replacing x by 4G'x. This amounts to iterate the basic computational structure (one
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step decomposition) of Fig. 4 (a), (b) on (L G'Yx at each step {octave) j=0, ..., J-1. This gives the
flow graph of Fig. 4 (c).

In Burt and Adelson's terminology (5], the above multiresolution residue signals form a
Laplacian Pyramid, while the set of versions of {x} at scales 2% (i=0, ..., J) is called a Gaussian
Pyramid. The terminology "pyramid"” comes from the fact that muitiresolution components are
computed at successive scales, from scale 1 ("base" of pyramid”) to scale 2" ("top" of pyramid).
"Gaussian" and "Laplacian" were named after the type of scaling filters used in [5].

Note that from the discussion above, perfect reconstruction is always vouched since one adds
backs what has been substracted (see (29)). Therefore there is no constraint at all on scaling filters
g.and g' . Even the basic biorthonormality constraint (23), which ensures uniqueness of scaled
versions of x at a given scale, is not necessary for the scheme to work !

There is a price to pay, however: the multiresolution residue signals live at scales s=2" (i=0, ...,
J-1) that are always twice their resolution. Therefore the transform is overcomplete: starting from
an original signal sampled at rate 1/7, the multiresolution components of a Pyramid Transform are

J=-1
sampled at rate llT(z 27 4277 ] =2 /T . This means that there are about twice as many transform

i=0
coefficients than the original signal samples! (In two dimensions this factor becomes 4/3 [1], [6],
[11].) :
In contrast with the Pyramid Transform, the Discrete Wavelet Transform, presented next, is not
overcomplete (there are as many wavelet coefficients as signal samples) but requires design
constraints on scaling filters.

Y. THE DISCRETE WAVELET TRANSFORM AND PERFECT
RECONSTRUCTION FILTER BANKS

We have seen in the preceding section that a potential drawback of the Pyramid Transform is its
overcompleteness, due to the fact that residue signals involved are "over-scaled", i.e., their scale
parameter is always twice the resolution parameter. In a Discrete Wavelet Transform (DWT), each
residue signal is "critically sampled,"” i.e., its resulting scale and resolution parameters are equal. To
describe the DWT we therefore need to extend the basic definition of residue signals (27) to the case
where scale and resolution parameters are equal (thus violating the previous restriction (26)).
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- This can be easily done by considering a perfect reconstruction two-band filter bank [24], [30],
[32] depicted in Fig. 5 (a), in which the approximation operator at half the resolution (see Fig. 3
(a)) explicitly appears. The perfect reconstruction condition can be rewritten in operator's notation
as

x-GTlG'x = HT lH'x, (30)
where HT ($H', respectively) is defined similarly as GT ({G', respectively), but with different
filter impulse responses k_ (h',, respectively). It is a well-known fact [24], [30], [32] that these
filters should be high-pass, since the scaling filters g_and g', are assumed low-pass.

Now, (30) is recognized as the residue signal of {x_} at scale 1 and resolution 1/2 (28). We can
therefore define $H'x as the residue signal of {x )} at scale 1/2 and resolution 1/2. It is brought
back to scale 1 by applying HT to give (30). This definition is immediately extended to residue
signals at other common values of scale and resolution by application of the rules (18) as in the
preceding section. This gives

‘ JH'G'Yx | (31)
as the residue signal at scale and resolution 27 (j>0).

Using this extended definition of multiresolution residue signals, we are now ready to define the
Discrete Wavelet Transform (DWT): A DWT of a signal {x_} onJ "octaves" decomposes it into
"wavelet coefficients" {w/,}, which are precisely the residue signals (31) at scale and resolution 27,
for j=1, ..., J, plus a low resolution version of {x_}, namely, the scaled signal at scale and
resolution 2” called {v’_}. To reconstruct the signal {x_}, residue signals are first up-scaled by
means of HT (as in (30)), then the basic definition (27) is applied to iteratively increase the
resolution until resolution 1 is reached, i.e., until the original signal {x,} is recovered. This is
performed by the Inverse DWT (IDWT).

This definition easily recognized as an octave-band filter bank [30] of Fig. 5(b), since in order to
halve both resolution and scale parameters of residues signals at each step j, one just iterates the
basic computational cell of Fig. 5 (a) to the scaled version ({G'Y x, according to the rule (18a). In
Fig. 5 (b), the analysis filter bank computes the DWT, whereas the synthesis filter bank computes
the IDWT. Note that since this filter bank is critically sampled, there are as many computed wavelet
coefficients as the signal samples. This can be considered as an improvement compared to the
situation encountered in the last section for the Pyramid Transform. However, the four low-pass
{g,), {g',), and high-pass {A_}, {h'} filters are constrained to satisfy the perfect reconstruction
property (30). :

Since a DWT and an octave-band perfect reconstruction Filter Bank share the same
computational structure, it can be argued that nothing is new with the DWT. However, one interest
of the DWT is that it provides an alternative formalism, which focuses on temporal multiresolution
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decomposition rather than on subband frequency decomposition. This formalism can be developped
as a signal decomposition using temporal basis functions called wavelets, as follows.

Define the basic analysis (synthesis) scaling sequence to be g' (g , respectively). Also define
the basic analysis (synthesis) wavelet to be the corresponding high pass impulse responses, i.e.,
’?. (h, respectively). The whole set of scaling sequences and wavelets is obtained from the basic
scaling sequences and wavelets by successive up-scalings:

analysis scaling sequences: 3" = (G'TY" g’
analysis wavelets: hY = (G'TY' k'
(32)
synthesis scaling sequences: ¢ = (GTY'g
synthesis wavelets: ¥ = (GTY' h

Then we have the following, proven in Appendix C: The wavelet coefficients w/, of the original
signal {x } at octave j (j=1, ..., J), that is the residue signal at scale and resolution 27, are inner
products (12) of x with the corresponding analysis wavelets:

“’ik =<xg; il"ju—zjk )= le (ﬁ'£—2ik ).’ j=1’ hah J (338.)

Similarly the low resolution component is .
Ve=(x,3 8", ) (33b)
Thus, the DWT on J octaves computes the inner products (33). Then, the Inverse DWT (IDWT)
reconstructs the signal as a linear combination of shifted synthesis wavelets weighted by the
corresponding wavelet coefficients, plus a very low resolution approximation of x, which is
obtained similarly:

J

=YY W H YV (34)

j=l & k
Equations (33)-(34), proven in Appendix C, are simply a rewriting of the previous definition of the
D