N

N

Exploitation du logiciel HELP sous Multics: mode
d’emploi des commandes principales
Patrick Robert

» To cite this version:

Patrick Robert. Exploitation du logiciel HELP sous Multics: mode d’emploi des commandes prin-
cipales. [Rapport de recherche] Centre de recherches en physique de l’environnement terrestre et
planétaire (CRPE). 1984, 391 p., tableaux. hal-02191514

HAL Id: hal-02191514
https://hal-lara.archives-ouvertes.fr/hal-02191514
Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02191514
https://hal.archives-ouvertes.fr

EXPLOITATION DU LOGICIEL
HELP SOUS MULTICS

MODE D’EMPLOI
DES COMMANDES PRINCIPALES

Par

P. ROBERT CRPE / OPN / CNET
92131 Issy - les - Moulineaux

CENTRE NATIONAL D'ETUDES CENTRE NATIONAL DE LA
DES TELECOMMUNICATIONS RECHERCHE SCIENTIFIQUE

Centre PARIS B Departement TOAE

CENTRE DE RECHERCHE EN PHYSIQUE DE
L ENVIRONNEMENT TERRESTRE ET PLANETAIRE

NOTE TECHNIQUE CRPE/131

EXPLOITATION DU LOGICIEL HELP SOUS MULTICS
MODE D'EMPLOI DES COMMANDES PRINCIPALES

par

Patrick ROBERT

RPE/OPN

38-40 rue du géenéral Leclerc
92131 ISSY-LES-MOULINEAUX, FRANCE

Le Directeur Le Directeur Adjoint
vu Vu
I. REVAH P. BAUER

Février 1984

EXPLOITATION DU LOGICIEL HELP SOUS MULTICS
MODE D’ EMPLOI DES COMMANDES PRINCIPALES

RESUME

Dans ce document les segments d'information relatifs aux principales
commandes MULTICS, disponibles individuellement par le systéme de documentation
en ligne "help", sont organisés par catégorie, mis en forme et listeés.

Les commandes exploitées (200 environ) dont on a ainsi le mode d'emploi
complet sont extraites du "Guide de poche MULTICS, Commandes et fonctions
actives" (CII-HB,68F2AW17) et du cours de C. Davoust (NT/PAA/ATR/PIT6E69).

Ce document est compléte en derniere partie par une table donnant pour
toutes les commandes exploitables par "help" la liste de leur abréviation et/ou
synonymes, le nombre de lignes du segment d'information correspondant, et
l'information indiquant si la commande est également une fonction active.

Document édité sur 1'imprimante a laser XEROX 9700 de PIT

EXPLOITATION DU LOGICIEL HELP SOUS MULTICS
MODE D'EMPLOI DES COMMANDES PRINCIPALES

PLAN

I~ INTRODUCTION

1= LiSfElPAR CATEGORIE DES COMMANDES PRINCIPALES

[11- LISTE ALPHABETIQUE DES COMMANDES PRINCIPALES

IV- LIBELLE,SYNTAXE,FONCTION ET MODE D'EMPLOI DES COMMANDES PRINCIPALES
V- LISTE ALPHABETIQUE DE TOUTES LES COMMANDES D'INFORMATION GENERALES

VI- LISTE ALPHABETIQUE DE TOUTES LES COMMANDES EXPLOITABLES PAR HELP

AVEC LEURS SYNONYMES ET INDICATION DE FONCTION ACTIVE

I- INTRODUCT ION

Ce document est le resultat de l'exploitation du systeme de documentation
en ligne "help" disponible sous le systeme MULTICS.

I1 a été mis en oeuvre sur le DPS8 de CII HONEYWELL BULL implanté au CNET
a Issy les Moulineaux.

L'exploitation de ce systeme de documentation se fait par 1l'intermediaire
d'un programme Fortran créant un fichier de commandes spécifigques dont
l'execution en processus absentee effectue les reglietes successives au logiciel
interactif "help".Les resultats sont ensuite mis en forme au moyen d'un autre
programme approprie.

Cet ensemble de manoeuvres est lui meme automatisé en un seul fichier de
commandes.

L'entrée de ce systéme est un fichier de données ocu sont rangeéees les
commandes dont on désire le libellé complet et le mode d'emploi.

La sortie de ce systéme est un fichier dont le contenu est ce propre
document.

Ce document est lui méme édité directement par le listage de ce fichier sur
l'imprimante a laser du CNET, selon des critéres standards d'impression.

La liste des commandes reféerenciees dans le fichier d'entrée est celle du
"guide de poche MULTICS,commandes et fonctions actives" (CII-HB,68F2AW17)
complétée d'autres commandes utiles extraites du cours de C.Davoust (NT/PAA/
ATR/PIT669). '

Elle n'est pas exhaustive,mais regroupe néanmoins les 200 commandes et/ou
fonctions actives les plus utilisées parmi les quelques 1000 disponibles.

Elle a volontairement été limitée afin de garder une taille convenable a ce
document qui se veut une version plus légere et sensiblement différente du
"Multics Programmers' Manual - Commandes and Active Functions" (Doc.CII-HB
68RA2AG92).

Ce document est complété en dernieére partie par une table donnant la liste
alphabétique compléte de toutes les commandes MULTICS exploitables par "help",
avec,pour chaque commande,la liste de ses abreviations ou synonymes,le nombre
de lignes du segment d'information correspondant,et l'information indiquant
si cette commande est egalement une fonction active.

II- LISTE PAR CATEGORIE DES COMMANDES PRINCIPALES

manipulation de segments et de directories

. pages
add_name (an) 23
adjust_bit_count (abc) 27
archive (ac) ’ 30
archive_sort (as) 33
archive_table (act) [act. func.] 34
bind (bd) 50
change_default_wdir (cdawd) 66
change_wdir (cwd) 67
compare [act. func.] 74
compare_ascii (cpa) 75
compare_object (cob) 77
contents [act. func.] 81
copy (cp) 82
copy_cards {ccd) 85
copy_dir (cpd) 86
copy_file (cpf) 88
create (cr) 92
create_data_segment (cds) 93
create_dir (cd) 94
default_wdir (dwd) [act. func.] 102
delete (dl) 104
delete_dir (d4d4) 107
delete_name (dn) 112
home_dir (hd) [act. func.] 167
hunt [act. func.] 170
list (1s) 184
merge_ascii (ma) 218
move (mv) 225
move_dir (mvd) 231
print (pr) 238
print_default_wdir (pdwd) 242
print_wdir (pwd) 253
rename (rn) 275
reorder_archive (ra) 276
sort (merge)) 317
sort_seg (ss) 321
status (st) [act. func.] 324
switch_off 327
switch_on 328
tape_archive (ta) 329
truncate (tc) 354
walk_subtree (ws) 357
where (wh) [act. func.] 358

working_dir (wd) [act. func.] 363

Acces au systéme,environnement ,documentation

. pages
abbrev (ab) 13
answer 28
check_info_segs (cis) [act. func.] 69
do [act. func.] 120
exec_com (ec) : [act. func.] 143
general_ready (gr) [act. func.] 157
help 161
how_many_users (hmu) 169

- line_length (11) 182
list_help (1nh) [act. func.] 194
locnet 203
login (1) . 205
logout 210
memo [act. func.] 214
modules 222
new_proc 234
no_save_on_disconnect . 235
on [act. func.] 236
print_terminal_types (ptt) 252
process_dir (pd) [act. func.] 256
ready (rdy) 270
ready_off (raf) 271

. ready_on (rdn) 272
release (ril) 273
save_on_disconnect 292
set_tty (stty) 311
set_tty.gi (stty.gi) 314
start (sr) 323
topics 350
trace_stack (ts) 353

who [act. func.] 361

compilation et exécution fortran

pages

debug (db) 100
fortran (new_fortran, ft) 154
fortran_abs (fa) 156
probe (pb) 254
probe.gi 255
process_list (pls) 257
profile (pf) 259
program_interrupt (pi) 263

run 283

set_fortran_common (sfc) 304

controle d’acceés et réegles de recherche

pages
acl_matching 20
add_search_paths (asp) 24
add_search_rules (asr) 26
check_iacl 68
copy_acl B84
copy_iacl_d4ir 90
copy_iacl_seg 91
delete_acl (da) ’ 106
delete_iacl_dir (did) 109
delete_iacl_seg (dis) 110
delete_search_paths (dsp) 113
delete_search_rules (dsr) 114
initiate (in) 172
link (1k) 183
list_accessible (lac) 190
list_acl (1la) [act. func.] 191
list_iacl_dir (1id) [act. func.] 195
list_iacl_seg (lis) [act. func.] 196
list_not_accessible (1lnac) . 197
list_ref_names (1lrn) 198
print_search_paths (psp) [act. func.] 250
print_search_rules (psr) 251
set_acl (sa) 302
set_iacl_dir (sid) . 305
set_jacl_seg (sis) 306
set_search_paths (ssp) 309
set_search_rules (ssr) 310
terminate_refname (tmr) 346
where_search_paths (wsp) [act. func.] 360
messagerie
pages
accept_messages (am) 18
defer_messages (dm) 103
delete_message (dlm) 111
executive_mail (xmail) 152
have_mail [act. func.] 160
immediate_messages (im) 171
last_message (1m) [act. func.] 179
last_message_sender (1lms) [act. func.] 180
last_message_time (1lmt) [act. func.] 181
long_message_format (1mf) 212
mail (ml) 213
print_mail (prm) 243
print_messages (pm) 246
print_motd (pmotd) 248
read_mail (rdm) 266
send_mail (sdm) 293
send_message (sm) 298

send_message_acknowledge (sma) 299

send_message_express (smx) 300
send_message_silent (sms) 301
short_message_format (smf) 316

systeme absentee

pages
absentee (abs) 15
cancel_abs_request (car) 59
enter_abs_request (ear) 139
list._abs_requests (lar) 187

input et output

pages

attach_audit (ata) 38
audit_ 39
audit_.gi 42
close_file (cf) 72
collate fact. func.] 73
detach_audit (dta) 115
discard_output (dco) 116
display_audit_file (daf) 117
dpl 122
dprint (dp) 125
dpunch (dpn) , 127
dump_segment (ds) 129
file_output (fo) 153
io_call (io) [act. func.] 173
laser 178
move_abs_request (mar) 227
print_attach_table (pat) [act. func.] 241
revert_output (ro) 282
tape_in ’ 336
tape_control_language.gi (tcl.gi) 332
tape_out 337
total_output_requests (tor) [act. func.] 351
vfile_adjust (vfa) 355
vfile_status (vfs) 356

controle des ressources

pages

acquire_resource {agr) 21
assign_resource (ar) 35
cancel_resource (cnr) 63
clear_resource (cir) 71

get_gquota (ggq) 159

éditeurs

list_resources (1lr)]
move_quota (mqg)
print_pdt
release_resource (rilr)
reserve_resource (rsr)
resource_status (rst)]
resource_usage (ru)
set_resource (setr)

et traitement de texte

dates et

audit_editor

compose (comp)
create_wordlist (cwl)
ed

ed.gi

edm

emacs

gedx (gx)

runoff (rf)
runoff_abs (rfa)
runoff_compose.differences (rf_comp.diffs)
teco

ted

texto

temps

calendar

calendrier

date [act.
date_time [act.
day [act.
day_name [act.
hour [act.
long_date [act.
minute [act.
month [act.
month_name [act.
time [act.
year [act.

func.]
func.]
func.]
func.]
func.]
func.]
func.]
func.]
func.]
func.]
func.]

200
233
249
274
277
279
281
307

pages

46

78

95
132
133
136
138
264
284
287
289
338
340
347

pages
54
57
S6
97
o8
99
168
211
221
223
224
349
364

démons

cancel_daemon_request (cdr)
list_daemon_requests (1ldr)
move_daemon_request (mdr)

demandes de restauration

cancel_retrieval_request (crr)
enter_retrieval_request (err)
list_retrieval_requests (1lrr)

pages
61
192
229

pages
64
141
202

III- LISTE ALPHABETIQUE DES COMMANDES PRINCIPALES

pages
abbrev {(ab) 13
absentee (abs) 15
accept_messages (am) i8
acl_matching 20
acquire_resource (aqr) 21
add_name (an) 23
add_search_paths (asp) 24
add_search_rules (asr) 26
adjust_bit_count (abc) 27
answer 28
archive (ac) 30
archive_sort (as) 33
archive_table (act) [act. func.] 34
assign_resource (ar) 35
attach_audit (ata) 38
audit_ 39
audit_.gi 42
audit_editor 46
pind (bd) 50
calendar 54
calendrier 57
cancel_abs_request (car) 59
cancel_daemon_request (cdr) 61
cancel_resource (cnr) 63
cancel_retrieval_request (crr) 64
change_default_wdir (cdawd) 66
change_wdir (cwgd) . 67
check_iacl 68
check_info_segs (cis) [act. func.] 69
clear_resource (clr) 71
close_file (cf) 72
collate [act. func.] 73
compare ‘ [act. func.] 74
compare_ascii (cpa) 75
compare_object (cob) ’ 77
compose (comp) 78
contents [act. func.] 81
copy (cp) 82
copy_acl 84
copy_cards (ccd) 85
copy_dir (cpd) 86
copy_file (cpf) 88
copy_iacl_dir 90
copy_iacl_seg S1
create (cr) 92
create_data_segment (cds) 93
create_dir (cd) 94
create_wordlist (cwl) 95
date [act. func.] 96
date_time [act. func.] g7
day [act. func.] gs
day_name [act. func.] 99

debug (db) 100

10

default_wdir (dwd) [act. func.]
defer_messages (dm)

delete (dl)

delete_acl (da)

delete_dir (d4d)

delete_iacl_dir (d4id)

delete_iacl_seg (dis)

delete_message (dlm)

delete_name (dn)

delete_search_paths (dsp)

delete_search_rules (dsr)

detach_audit (dta)

discard_output (dco)

display_audit_file (daf)

do [act. func.]
dpl :

dprint (dp)

dpunch (dpn)

dump_segment (ds)

ed

ed.gi

edm

emacs

enter_abs_request (ear)

enter_retrieval_request (err))

exec_com (ec) [act. func.]
executive_mail (xmail)

file_output (fo)

fortran (new_fortran,ft)

fortran_abs (fa)

general_ready (gr) [act. func.]
get_quota (gq)

have_mail [act. func.]
help

home_dir (hd) [act. func.]
hour i [act. func.]
how_many_users (hmu) ’

hunt [act. func.]

immediate_messages (im)
initiate (in)

io_call (io) [act. func.]
laser

last_message (1m) [act. func.]
last_message_sender (1lms) [act. func.]
last_message_time (1lmt) [act. func.]
line_length (11)

link (1k)

list (1s)

list_abs_requests (lar)
list_accessible (lac)

list_acl (1la) [act. func.]
list_daemon_requests (1ldr)

list_help (1h) [act. func.]
list_iacl_dir (1id) [act. func.]
list_iacl_seg (1lis) [act. func.]

list_not_accessible (1lnac)
list_ref_names (1lrn)
list_resources (1r)]
list_retrieval_requests (1lrr)
locnet

102
103
104
106
107
109
110
111
112
113
114
115
116

-117

120
122
125
127
129
132
133
136
138
139
141
143
152
153
154
156
157
159
160
161
167
168
169
170
171
172
173
178
179
180
181
182
183
184
187
190
191
192
194
195
196
197
198
200
202
203

login (1)
logout
long_date

long_message_format (1mf)

mail (ml)

memo

merge_ascii (ma)
minute

modules

month

month_name

move {(mv)
move_abs_request (mar)

move_daemon_request (mdr)

move_dir (mvad)
move_quota (mq)
new_proc
no_save_on_disconnect
on

print (pr)

print_attach_table (pat)
print_default_wdir (pdwd)

print_mail (prm)
print_messages (pm)
print_motd (pmotd)
print_pdt

print_search_paths (psp)
print_search_rules (psr)
print_terminal_types (ptt)

print_wdir (pwd)

probe (pb)

probe.gi

process_dir (pd)
process_list (pls)
profile (pf)
program_interrupt (pi)
gedx (gx)

read_mail (rdm)

ready (rdy)

ready_off (radaf)
ready_on (rdn)

release (rl)
release_resource (rilr)
rename (rn)
reorder_archive (ra)
reserve_resource (rsr)
resource_status (rst)]
resource_usage (ru)
revert_output (ro)

run

runoff (rf)

runoff_abs (rfa)

[act.

[act.

[act.

[act.

runoff_compose.differences (rf_comp.diffs)

save_on_disconnect
send_mail (sdm)
send_message (sm)

send_message_acknowledge (sma)
send_message_express (smx)
send_message_silent (sms)

set_acl (sa)

func.]

func.]
func.]

func.]
func.]

func.]

func.]

func.]

func.]

205
210
211
212
213
214
218
221
222
223
224
225
227
229
231
233
234
235
236
238
241
242
243
246
248
249
250
251
252
253
254
255
256
257
259
263
264
266
270
271
272
273
274
275
276
277
279
281
282
283
284
287
289
292
283
298
299
300
301
302

12

set_fortran_common (sfc)
set_iacl_dir (sid)

set_iacl_seg (sis)

set_resource (setr)
set_search_paths (ssp)
set_search_rules (ssr)

set_tty (stty)

set_tty.gi (stty.gi)
short_message_format (smf)

sort (merge)

sort_seg (ss)

start (sr)

status (st) [act. func.]
switch_off

switch_on

tape_archive (ta)
tape_control_language.gi (tcl.gi)
tape_in

tape_out

teco

ted

terminate_refname (tmr)

texto

time [act. func.]
topics

total_output_requests (tor) [act. func.]
trace_stack (ts)

truncate (tc)

vfile_adjust (vfa)

vfile_status (vfs)

walk_subtree (ws)

where (wh) [act. func.]
where_search_paths (wsp) [act. func.]
who [act. func.]
working_dir (wd) [act. func.]

year [act. func.]

304
305
306
307
309
310
311
314
316
317
321
323
324
327
328
329
332
336
337
338
340
346
347
349
350
351
353
354
355
356
357
358
360
361
363
364

13

IV- LIBELLE ,SYNTAXE ,FONCTION ET MODE D'EMPLOI DES COMMANDES PRINCIPALES

abbrev

03/04/76 abbrev, ab

Syntax: ab -

Function: expands abbreviations in command lines. Each command
line typed to the system is broken up into substrings between
break characters. Substrings found in the user's abbreviation
profile in the home directory are replaced by their expansions.
Substrings within double quotes are not expanded.

List of requests: In the descriptions below, an abbreviation
<abbr> can be a maximum of 8 characters and cannot contain any
break characters. See "Break characters”.
.a <abbr> <rest of line> i
add an abbreviation that is .
expanded regardless of line position; if already defined,
query user.
.ab <abbr> <rest of line>
add an abbreviation that is
expanded only when at beginning of line or following a semicolon.
.af <abbr> <(rest of line>
same as .a without user query.
.abf <abbr> <rest of line>
same as .ab without user query.

.4 <abbrl>...cabbrhN>
delete abbreviations.
.1 <abbrl>...<abbrN>
list definitions of
abbreviations; if none specified, list all.
.la <letterl>...(letterN>
list all abbreviationss beginning with
letter(s); each letter argument can only be a single character.
-g
quit expanding abbreviations.
. <rest of line>
do not expand abbreviations in this line.
-P
print out profile segment being used.

.u path
use the profile segment specified by path;
profile suffix must be given.
.r
enter mode that remembers command line after expansion.

.f

14

enter mode that forgets command line after expansion.

.5 <rest of line>

show <rest of line> exXpanded but do not

execute. If in remember mode and <(rest of line> is not

specified, the last line expanded is shown.

Break characters:
horizontal tab
vertical tab
newline
space
quote
dollar sign
apostrophe
grave accent
period

Abbreviations cannot contain

semicolon
formfeed
vertical bar
parentheses
less than
greater than
brackets
braces

other abbreviations;

see the

do command.

15

absentee

10/01/80 BAbsentee facility

A facility for requesting absentee processes is available to users.
A user can request that a process be created which executes commands from a
segment and places its output into a segment.

To reguest an absentee computation, one first constructs an absentee
control segment which is similar in syntax to an exec_com segment.
The absentee process (when it is created for the user) will read from
this control segment. The suffix of the control segment must be
".absin". Then a command (enter_abs_request) is issued that actually
requests that an absentee process be created on behalf of the user.
The output of this absentee process goes into an absentee output
segment. The name of this output segment can be specified in the
enter_abs_request command. If the name is not specified, then the
pathname of the control segment is used, exXcept that its suffix is
.absout. The user can delay the creation of the absentee process
until after a specified time by means of the "-time" control argument
to the ear command. If this option is not selected, at an arbitrary
time in the future an absentee process is created for the requestor.
Type "help enter_abs_request" or "help ear" for further discussion of
this command. ‘

The resulting process is identical to an interactive process except that:
1) read operations from user_input are done from the absentee
input segment.
2) write operations to user_output are directed to the absentee
output segment.
3) special condition handlers are established for record_gquota_overflow
and cput.
4) any error intercepted by the standard unclaimed signal handler,
except for command_error and command_gquestion, logs out the
absentee process.

Two other commands are installed as part of the absentee facility:

1) list_abs_requests (lar) - a command that gives the user information
on the requests for absentee processes that the user has made.
Type "help list_abs_requests" or "help lar" for more information.

2) cancel_abs_request (car) - a command that can be used to delete a
request for an absentee process. For further details, type "help
cancel_abs_request" or "help car".

Examples:

Suppose that a user wants to request an absentee computation to
perform an off-line compilation. The user creates a control segment
called absentee_pll.absin containing:

cwd current
P11l X -table -source -symbols
dp -4l x.list

16

logout
The command line:
enter_abs_request absentee_pll.absin

causes an absentee process to be created (some time in the future) that:
1) sets the working directory to a directory named current
inferior to the users's default working directory.
2) compiles a pll program named X.pll with three control arguments
3) dprints 1 copy of the list segment.
4) logs out.

The output of these tasks appears in the same directory as
absentee_pll.absin in a segment called absentee_pll.absout.

Notes:

1) The enter_abs_request command checks for the existence of the
absentee control segment and refuses the request if it is not
present.

2) An absentee process can be requested only for the Person_id and
Project_id of the user submitting the request.

3) The facility is designed so that more than one absentee process
can run at one time. The user should take care, when submitting
several requests that use the same control segment, that the output
of each request is directed to a different output segment (see
enter_abs_request -output_file).

4) There can be both an interactive and an absentee process for the
same user at the same time.

5) The who command denotes absentee users by placing an asterisk
directly after person.project, for example "Green.Multics=".

6) The cancel_abs_request command can cancel a request for an absentee
process that is already logged in.

7) The user can ask operations to bump or to cancel an absentee process.
The difference is as follows. Bumping destroys the absentee process
but allows the computation to begin again. Cancelling an absentee
process prevents it from ever being restarted. This distinction is
relevant only if the absentee computation was declared to be
restartable via the "-restart™ ("-rt") control argument of the ear
command. The user who contacts operations to destroy an absentee
process should be sure to specify which function is wanted.

8) The new_proc command is an undefined command in an absentee process.
It results in the termination of the absentee process.

9) For an absentee process to end properly, logout should be the last
command encountered in the absentee control segment. If this condition
is not met, an error message {(indicating that the input is exhausted)
is printed.

10) The absentee control segment should not be edited or its bit count
changed during the course of the absentee process. This action causes
unpredictable results.

11) Since the syntax of the absentee control segment is the same as an
exec_com segment, the user should be aware of a few deviations.
Certain exec_com requests are ignored in an absentee environment.
Currently these are:

17

1) &attach
2) &detach
3) &command_line-
4) &ready

The reasons for these differences are:

12)

13)

14)

15)

16)

17)

18)

1 & 2) Input is already attached to the absentee input segment.

3) In an absentee process, command lines cannot be distinguished
from input lines.

4) Unlike exec_com, control of the ready message can be achieved
only by the ready_on and ready_off commands. All other control
requests work normally.

The absentee facility provides a number of priority Qqueues.

The absentee commands (ear, lar, car) have a "-queue" control argument
that allows the user to specify the particular queue desired.

There are four queues. Site administrators can control the default
queue used to submit requests when the "-dqueue" control argument

isn't given to ear, pll_abs, etc., the cost of using each queue,
scheduling parameters for absentee processes in each queue, and

the lowest priority queue serviced on each shift.

The answering service enforces a limit stop (defined by the
installation) on the cpu time that can be used by an absentee process.
A user is able to specify a per-job time limit less than or equal. to
this maximum. Specification of a time limit causes a cpu timer to be
established in the absentee process. Resetting all cpu timers makes
the 1limit ineffective.

A user cannot convert his interactive process to an absentee process,
nor his absentee process to an interactive one.

If a record quota overflow occurs during the execution of an absentee
process, in some cases the end of the absentee output segment can be
overwritten with a short message.

In an absentee process, cu_$set_cl_intermediary is invoked to set

the procedure called by the standard unclaimed signal handler after
outputting diagnostics. Thus, after getting a signalled error
(except "command_error™ or "command_gquestion"), the standard
unclaimed signal handler passes control to a procedure eguivalent

to logout.

An argument is passed to start_up.ec to indicate which type of
process is being created. Type "help start_up" for further details.
A resetread on user_input results in the termination of the
absentee process. Procedures currently performing a resetread when
handling errors include the following:

basic

debug

edm

gedx

18

accept_messages

09/17/81 accept_messages, am

Syntax: am address —-control_args

Function: initializes or reinitializes the user's process for
accepting both messages that are sent by the send_message command and
notifications of the form "You have mail." +that are sent by the
send_mail command.

Arguments:
address
is the address of a mailbox. If no address is specified, the user's
default mailbox is assumed. The mailboxX must be specified in one of
the following forms:
STR
is any argument that does not begin with a minus sign (-). If it
contains either of the characters > or < it is interpreted as a
mailbox pathname (the .mbx suffix is added if not present);
otherwise it is interpreted as a User_id.
-pathname PATH, -pn PATH
specifies the pathname of the mailbox. The .mbx suffix is
assumed if it is not present.

Control arguments:
-brief, -bf
prevents accept_messages from informing the user that it is creating
a mailbox, and prints messages in short format.
-call cmdline
when the message is received, instead of printing it in the default
format, accept_messages calls the command processor with a string of
the form:
cmdline number sender time message path
where:
cmdline
is any Multics command line; cmdline must be enclosed in
quotation marks if it contains blanks or other command language
characters.

number
is the sequence number of the message, assigned when the -hold
control argument is used; otherwise, number is O.
sender :
is the User_id of the person who sent the message.
time
is the date-time the message was sent.
message
is the actual message sent.
path
is the pathname of the mailbox to which the message was sent. If
the message was sent to the default mailbox, path is omitted.

1%

To reverse the effect of a previously specified -call control
argument, the user can specify the -call control argument with no
cmdline argument.

—flush DT
discards messages sent before the specified date-time, where DT is a
string acceptable to the convert_date_to_binary_ subroutine
(described in the MPM Subroutines). This controcl argument is
intended to be used by operators and consultants.

-hold, -hd
holds messages until explicitly deleted by the delete_message
command. Messages printed when the -hold control argument is in
effect are preceded by an identifying number.

-long, -1g .
precedes every message printed by the sender's Person_id and
Project_id. This is the default.

-no_hold, -nhd
reverts the -hold control argument.

-prefix STR
places STR in front of all messages printed as they are received.
STR can be up to 12 characters long and can contain the ioa_ control
strings A/, A| and A- if desired.

-print, -pr
prints all messages that were received since the last time the user
was accepting messages.

-short, =-sh
precedes consecutive messages from the same sender by "=:" instead
of the Person_id and Project_id.

-time N, -tm N
prints undeleted messages every N minutes, preceded by a message of
the form "You have X messages" where X is the number of undeleted
messages. If N equals 0, time mode is reset.

Notes: The user should not give conflicting control arguments in the
same invocation of the command (i.e., -long and -short or =-long and
-brief).

20

acl_matching

02/27/76 acl_matching

The strategy for matching an access control name argument is defined by three
rules:

A literal component, including "=x", matches only a component of the same
name.

A missing component not delimited by a period is treated the same as a
literal "*" (e.g., "*.Multics" is treated as "*x.Multics.=x").
Missing components on the left must be delimited by periods.

A missing component delimited by a period matches any component.

Examples:
,x, matches only the literal ACL entry "=x.=x, %",
Multics matches only the ACL entry "Multics.x.x",
(The absence of a leading period makes Multics the
first component.)
JRSmith.. matches any ACL entry with a first component of JRSmith.
.. matches any ACL entry.
. matches any ACL entry with a last component of x.
"" (null string) matches any ACL entry ending in ".=x.x",

21

acquinre_resource

06/17/81 acquire_resource, agr

Syntax: aqr type STR1 ... STRn -control_args
or: aqr type -number N -control_args

.

Function: selects a resource of a given type from a free pool of all
such resources, and makes the user the accounting owner of the
resource. The accounting owner is given full control over the access
rights for all users of the resource, as well as cecntrol over many
parameters of the resource. Ownership of the resource is terminated
via the release_resource command.

Arguments:

type
is a resource type defined in the resource type description table
(RTDT).

STRi
is the unique identifying name of the particular resource being
acquired. If STR looks like a contrel argument (i.e., if it is
preceded by a hyphen), then it must be preceded by -name or -nm. If
name is not supplied, a resource is chosen to satisfy the
constraints imposed by the control arguments given (if any).

Control arguments:

-access_class accr, —acc accr
sets the initial AIM access class parameters where accr is an access
class range. Users at any authorization within the access class
range inclusive are allowed to read and write to the resource
(provided they also meet other access requirements).

-acs_path path
specifies the pathname of the access control segment (ACS) for this
resource. The ACS is not created by this command, but must be
created by the owner, and the desired access control 1list set. If
the ACS does not exist or is not specified, the default access is
rew to the accounting owner, and null to all others.

-alloc STR
sets the allocation state of the resource to free or allocated,
where STR must be either "on" or "off". If this control argument is
not given, the allocation state is free. on sets the allocation
state to allocated; off sets the allocation state to free.

-attributes STR, -attr STR
specifies that the resource chosen must possess the potential
attributes specified in STR. When a satisfactory resource is
located, the current attributes are set to a proper combination of
these attributes (see "Notes" below).

~comment STR, -com STR
specifies the desired value of the comment string for this resource.
STR can be either "on" or "off". on resources may only be released
by privileged process. off resources may be released by owner.

22

-lock STR)
locks or unlocks the resource, preventing or allowing use of that
resource, where STR must be either "on" or "off". on prevents any
of the resource; off allows use of the resource (off is the
default).

-number N, -nb N
specifies that the number of such resources to be acquired is N. If
this control argument is not given, 1 is assumed. This control
argument may only be specified if a name is not given.

-owner STR, -ow STR
specifies that this is an acquisition on behalf of the user
specified by STR. If STR is given as "system", then the resource is
assigned to the system pool. If STR is given as "free", then the
resource is acquired to the free pool (effectively the same as no
-owner). If S8TR is of the form Person_id.Project_id (where neither
Person_id nor Project_id may be a star), the user specified has all
the rights of ownership to the resource as if he had acquired it
personally, except that if ~-release_lock on is specified, the owner
may not release (give up ownership of) the resource voluntarily.

-priv . o
specifies that a privileged call is to be made to obtain the status
of this resource (see "Access Restrictions" below).

-release_lock STR, -rll STR
specifies whether this resource may be released by the owner, or may
only be released by a privileged process (see "Access Restrictions"
below), where STR must be either "on" or "off". If this control
argument is not specified, the resource may be released by the owner
(does not require special privilege).

Notes: This command acquires a resource for either the user issuing
it (requestor) or the user specified by the -owner control argument.
If the requestor is registered on more than one project and needs
corresponding access, or other users (on any project) need access to
acquire a resource, the requestor must create or modify the access
control segment (ACS). The requestor must then specify the
new/modified ACS by issuing this command using the -acs_path control
argument. The User_id, a Person_id.Project_id pair, specifies the
user to be added to or deleted from the ACS.

Access Restrictions: The use of the -owner, -release_lock, Or
—access_class control arguments requires execute access to the
rcp_admin_ gate.

23

add_name

01/15/76 add_name, an

Syntax: an path names

Function: adds an alternate name to an entry.

Arguments:
path
pathname of an entry. The star convention is allowed.
names ‘
additional names to be added. The equals convention is allowed.

24

add_search_paths

12/03/80 add_search_paths, asp

Syntax:
asp search_list search_pathl -control_args ...
search_pathN -control_args

Function: adds one or more search paths to the specified search list.

Arguments:

search_list
is the name of the search list to which the new search paths are
added.

search_pathi
specifies a new search path, where search_pathl is a relative or
absolute pathname or a keyword (see "List of keywords" below).

Control arguments: are used only after the search_path argument. Only
one is allowed for each search_path. '

-after STR, -af STR
specifies that the new search path is positioned after the
search path denoted by STR.

-before STR, -be STR
specifies that the new search path is positioned before the
search path denoted by STR.

-first, -ft
specifies that the new search path is positioned as the first search
path in the search list.

-last, -1t
specifies that the new search path is positioned as the last search
path in the search list. This is the default.

List of keywords: The following are keywords accepted as search paths
in place of absolute or relative pathnames.

-home_dir, -hd

-process_dir, -pd

-referencing_d4ir, -rd

-working_dir, -wd

Notes: 1In addition, a pathname can be specified with the Multics
active function [user name] or [user project]. A search path enclosed
in quotes is not expanded when placed in the search list. It is
expanded when referenced in a user's process. This feature allows
search paths to be defined that identify the process directory or home
directory of any user.

If a 1link target does not exist, the search facility continues to
search for a matching entryname.

25

List of related search facility commands:
delete_search_paths, dsp
print_search_path, psp
set_search_paths, ssp
where_search_paths, wsp

26

add_search_rules

05/22/81 add_search_rules, asr

Syntax: asr pathl -control_args ... pathN -—control_args

Function: Adds pathnames and keywords to the search rules for object
segments.

Arguments:

pathd
is the absolute or relative pathname of a directory, or one of the
keywords listed below under "List of keywords".

Control arguments:

-after PATH, -af PATH
appends the previous path argument after the existing search rule
named by PATH.

-before PATH, -be PATH
inserts the previous path argument before the existing search rule
named by PATH.

-force, -fc
deletes any o0ld occurrence of path in the search rules before adding
the new rule. The default is to fail and print an error message if
the rule to be added already exists in a different position.

-no_force, -nfc
fails and prints an error message if a rule to be added already
exists in a different position. (Default)

List of keywords:
Both pathJ and PATH arguments can be either pathnames or keywords.
The defined keywords are--—

initiated_segments

referencing_dir

working_dir

In addition, PATH in control args can be:
home_dir
process_4ir
any site-defined keywords

Notes: No warning is printed if a rule to be added already exists in
the same position as that for which it is intended.

27

adjust_bhit_count

10/16/79 adijust_bit_count, abc

Syntax: adjust_bit_count paths -control_args
Function: sets the bit count of segments by examining the contents.

Arguments:
paths
are the pathnames of segments; star convention is allowed.

Control arguments:

-character, -ch
set to the last nonzero character (default is last nonzero word).

-chase .
chase links when using the star convention. The default is to chase links
only when specified without the star convention.

~long, -1lg
print a message when the bit count of a segmenf is changed, giving the old
and new values.

-no_chase .
do not chase links when using the star convention. (Default)

Notes: This command should not be used on segments in structured files.

28

answer

07/13/81 answer

Syntax: answer STR -control_args command_line

Function: provides preset answers to questions asked by another
command.

Arguments: *

STR
is the desired answer to any question. If the answer is more than
one word, it must be enclosed in quotes. If STR is -query, the
question is passed on to the user. The -query control argument is
the only one that can be used in place of STR.

command_line
is any Multics command line. It can contain any number of separate
arguments (i.e., have spaces within it) and need not be enclosed in
qguotes.

Control arguments:

-brief, -bf
suppresses printing (on the user's terminal) of both the question
and the answer.

—call STR
evaluates the active function string STR to obtain the next answer
in a sequence. STR must be quoted if it contains command language
characters. The surrounding brackets must be omitted, as in "segs
x.pll". The return value "true" is translated to "yes", and "false"
to "no". All other return values are passed as is.

-match STR
answers only questions whose text matches STR. If STR is surrounded
by slashes (/), it is interpreted as a gedx regular expression.
Otherwise, answer tests whether STR is literally contained in the
text of the gquestion. Multiple occurrences of -—-match and -exclude
are allowed (see Notes below). They apply to the entire command
line.

-exclude STR, -ex STR
passes on, to the user or other handler, questions whose text
matches STR. If STR is surrounded by slashes (/), it is interpreted
as a gedx regular expression. Otherwise, answer tests whether STR
is literally contained in the text of the question. Multiple
occurrences of -match and -exclude are allowed (see Notes below).
They apply to the entire command line.

—-query
skips the next answer in a sequence, passing on the gquestion to the
user. The answer is read read from the user_io I/0 switch.

-then STR
supplies the next answer in a sequence.

-times N
gives the previous answer (STR, -then STR, or -guery) N times only

29
(where N is an integer).

Notes: Answer provides preset responses to questions by establishing
an on unit for the condition command_gquestion, and then executing the
designated command. If the designated command calls the command_guery_
subroutine (described in the MPM Subroutines) to ask a question, the on
unit is invoked to supply the answer. The on unit is reverted when the
answer command returns to command level. See "List of System
Conditions and Default Handlers" in the MPM Reference Guide for a
discussion of the command_question condition.

If a question is asked that requires a yes or no answer, and the preset
answer is neither "yes" nor "no", the on unit is not invoked.

The last answer specified is issued as many times as necessary, unless
followed by the -times N control argument.

The —-match and -exclude control arguments are applied in the order
specified. Each -match causes a given question to be answered if it
matches STR, each —-exclude causes it to be passed on if it matches STR.
A question that has been excluded by -exclude is reconsidered if it
matches a —match later in the command line. For example, the command
line: :

answer yes -match /fortran/ -exclude /fortran_io/ -match /Afortran_io/
answers questions containing the string "fortran", except that it does

not answer questions containing "fortran_io", except that it DOES
answer questions BEGINNING with "fortran_io".

AR

30

anchive

01/12/81 archive, ac

Syntax: ac key archive_path paths

Function: combines an arbitrary number of separate segments into one
single segment.

Arguments:

key
is one of the functions listed below under "List of Keywords." The
key functions are listed according to their operation.

archive_path
is the pathname of the archive segment to be created or used. The
archive suffix is added if the user does not supply it. The star
convention can be used with extraction and table of contents
operations.

paths
are the components to be operated on by table of contents and delete
operations. The star and equal conventions cannot be used.

List of keywords:
key functions are listed below according to their operation.

Table of Contents Operation--

print the entire table of contents if no components are named by the
path arguments; otherwise print information about the named
components only. Title and column headings are printed at the top.
t1
print the table of contents in long form; operates like t, printing
more information for each component.
tb
print the table of contents, briefly; operates like t, except that
the title and column headings are suppressegd.
tlb
print the table of contents in long form, briefly; operates like tl,
except that the title and column headings are suppressed.

Append Operation--

a
append named components to the archive segment. If a named
component is already in the archive, a diagnostic is issued and
the component is not replaced. At least one component must be
named by the path arguments.

ad
append and delete; operates like a and then deletes all segments
that have been appended to the archive.

adf

append and force deletion; operates like a and then forces deletion
of all segments that have been appended to the archive.

31

ca
copy and append; operates like a, appending components to a copy of
the new archive segment created in the user's working directory.
cad
copy, append, and delete; operates like ad, appending components to
a copy of the archive segment and deleting the appended segments.
cadf
copy, append, and force deletion; operates like adf, appending
components to a copy of the archive segment and forcibly deleting
the segments requested for appending.

Replace Operation--

replace components in, or add components tc the archive segment.
When no components are named in the command line, all components of
the archive for which segments by the same name are found in the
user's working directory are replaced. When a component is namedq,
it is either replaced or added.

rd
replace and delete; operates like r, replacing or adding components,
then deletes all segments that have been replaced or added.

rdf
replace and force deletion; operates like r and forces deletion of
all replaced or added segments.

cr
copy and replace; operates like r, placing an updated copy of the
archive segment in the user's working directory instead of changing
the original archive segment.

crd
copy, replace and delete; operates like rd, placing an updated copy
of the archive segment in the user's working directory.

crdf
copy, replace, and force deletion; operates like rdf, placing an
updated copy of the archive segment in the user's working directory.

Update Operation--

u
update; operates like r except that it replaces only those
components for which the corresponding segment has a date-time
modified later than that associated with the component in the
archive.

ud

update and delete; operates like u and deletes all updated segments
after the archive has been updated.

udf
update and force deletion; operates like u and forces deletion of
all updated segments.

cu
copy and update; operates like u, placing an updated copy of the
archive segment in the user's working directory.

cud
copy, update, and delete; operates like ud, placing an updated copy

32

of the archive segment in the user's working directory.
cudf -
copy, update, and delete force; operates like udf, placing an
updated copy of the archive segment in the user's working directory.

Delete Operation--

d
delete from the archive those components named by the path
arguments.

cd
copy and delete; operates like d, placing an updated copy of the
archive segment in the working directory.
Extract Operation--

X
extract from the archive those components named by the path
arguments, placing them in segments in the storage system. The
directory where a segment is placed is the directory portion of the
path argument. The access mode stored with the archive component is
placed on the segment for the user performing extraction. If no
component names are given, all components are extracted and placed
in segments in the working directory. The archive segment is not
modified.

xf

extract and delete force; operates like X, forcing deletion of any
duplicate names or segments found where the new segment is to be
created.

Notes: The table of contents operation and the extract operation use
the existing contents of an archive segment; the other operations
change the contents of an archive segment. A new archive segment can
be created with either the append or replace operation. In each of
the operations that add to or replace components of the archive, the
original segment is copied and the copy is written into the archive,
leaving the original segment untouched unless deletion is specified
as part of the operation.

The star convention can be used in the archive segment pathname
during extract and table of contents operations; it cannot be used
during append, replace, update, and delete operations.

Each component of an archive segment retains certain attributes of
the segment from which it was copied. These consist of one name, the
effective mode of the user who placed the component in the archive,
the date-time last modified, the bit count, and the date-time placed
in the archive.

33

archive_sort

06/03/76 archive_sort, as

Syntax: as paths

Function: sorts components of an archive segment into ascending order by name
using standard ASCII collating sequence.

Arguments:
paths .
are pathnames of archive segments; archive suffix need not be given.

Notes: The original archive segment is overwritten by the sorted archive
segment.

34

archive_table

02/06/81 archive_table, act

Syntax: act archive_path starnames -control_args

Function: returns the names of specified archive components in a
specified archive segment. Names are returned separated by single
spaces.

Arguments:

archive_path
is the pathname of an archive segment, with or without the archive
suffix. The star convention is NOT allowed.

starnames
are optional component names to be matched against names of archive
components. The star convention IS allowed.

Control arguments:

~absolute_pathname, -absp
returns full pathnames of archive components, of the form
ARCHIVE_DIR>ARCHIVE_NAME: : COMPONENT_NAME, rather than just the
comporient names.

Notes: 1Invoked as an active function, names are returned requoted and
separated by single spaces. Invoked as a command, archive_table prints
one component name per line.

Syntax as active function:
[act archive_path starnames -control_args |

35

assign_resource

03/13/80 assign_resource, (ar)

Syntax: ar resource_type -control_args

Function: calls the resource control package (RCP) to assign a
resource to the user's process.

Arguments:
resource_type
specifies the type of resource to be assigned. Currently, only
device types can be specified. The -device control argument is used
to name a specific device to assign. Other control arguments are
used to specify characteristics of the device to be assigned. The
following device type keywords are supported:
tape_drive
disk_drive
console
printer
punch
reader
special

Control arguments:

-device STR, -dv STR
specifies the name of the device to be assigned. If this control
argument is specified, other control arguments that specify device
characteristics are ignored. (See "Examples" below.) If the -long
control argument (see below) is used in conjunction with this
control argument, a message containing the name of the assigned
device is printed on the user's terminal; otherwise, no message is
printed.

-model N
specifies the device model number characteristic. Only a device
that has this model number is assigned. In order to find the model
numbers that are acceptable, use the print_configuration_deck
command described in System Tools, Order No. AZO03.

-track N, -tk N
specifies the track characteristic of a tape drive. The value can
be either 9 or 7. If this control argument is not specified and if
the -volume control argument is not specified, a track value of 9 is
used when assigning a tape device.

—-density N, -den N
specifies the density capability characteristic of a tape drive.
There can be more than one instance of this argument. A tape drive
is assigned that is capable of being set to all of the specified
densities. Note that the values permitted depend on the particular
hardware on the system. The acceptable values for this argument
are:

200

36

- 556
800
1600
6250

-train N, -tn N
specifies the print train characteristic of a printer.

-line_length N, -11 N
specifies the line length of a printer. Its value must be one that
is found in the "line length" field of a printer PRPH configuration
card. If this field is not specified on a printer PRPH
configuration card, this device characteristic is ignored for this
printer.

-volume STR, -vol STR
specifies the name of a volume. If possible, the device assigned is
one on which this volume has already been placed. If this is not
possible (e.g., the volume is on a device assigned to a process) any
available, appropriate, and accessible device will be assigned.

-number N, -nb N
specifies the number of resources to assign. All of the resources
assigned have the device characteristics specified by any other
arguments passed to this command. - If this control argument is not
specified, one resource is assigned.

-comment STR, -com STR N
is a comment string that is displayed to the operator when the
resource is assigned. If more than one string is required, the
entire string must be in quotes. Only printable ASCII characters
are allowed. Any unprintable characters (also tabs or new lines)
found in this string are converted to blanks.

-long, -1g
specifies that all of the device characteristics of the assigned
device should be printed. If this argument is not supplied, only
the name of the assigned device is printed.

-system, -sys
specifies that the user wants to be treated as a system process
during this assignment. If this argument is not specified OR if the
user does not have the appropriate access, then the RCP assumes that
this assignment is for a nonsystem process.

-wait N, -wt N
specifies that the user wants to wait if the assignment cannot be
made at this time because the resources are assigned to some other
process. The value N specifies the maximum number of minutes to
wait. If N minutes elapse and a resource is not yet assigned, an
error message is printed. If N is not specified, it is assumed that
the user wants to wait indefinitely.

-speed N
specifies the speed of a tape drive. The acceptable values depend
on the particular hardware on the system and can be the following:

75

125

200

37

Notes: Currently, only device resources can be assigned. An assigned
device still must be attached by a call to some I/0 module. If a
device 1is successfully assigned, the name of the device is printed.

(If the user requests a specific device that is successfully assigned,
the name of the device is not printed unless the user asks for it. See
the -device and -long control arguments above.)

Examples: In the example below, the user issues the assign_resource
command with the "tape_drive" keyword and the -model control argument.
The system responds with the name of the assigned device.

! assign_resource tape_drive -model 500

Device tape_04 assigned

In the next example, the user issues the assign_resource command with

the "tape_drive" keyword and the —device and -long control arguments.

The system responds with the name of the assigned device and the model
number, track, density and speed characteristics.

assign_resource tape_drive -device tape_05 -long

Device tape_05 assigned
Model = 500

Tracks = 9

Densities = 200 556 800 1600
Speed = 125

38

attach_audit

06/17/81 attach_audit, ata

Syntax: ata o0ld_switch new_switch -control_args

Function: starts auditing. Moves the attachment of the specified
switch to another switch. Attaches the first switch via audit_ to the
second.

Arguments:

0ld_switch
is the switch to be audited. (DEFAULT -- user_i/o)

new_switch
is the dummy switch to receive 0ld_switch's previous attachment.
(DEFAULT -- audit_i/oc.time)

Control arguments:
-pathname STR, -pn STR
use STR as the audit file. (DEFAULT -- [homedir]>[date].audit)
-truncate, -tc
truncate the audit file, if it already exists.
(DEFAULT -- extend it.)
-modes STR
set the modes on user_i/o using STR as the mode string.

Notes: If no arguments or control arguments are given, auditing is set
up for user_i/oc with a default audit file of [date].audit. Multiple
uses on the same day are all logged, one after the other, in the same
audit file. The attach_audit command sets the safety_switch "on" for
the audit file, detach_audit turns the safety_switch off.

For more information on the audit facility, type:
help audit_
help audit_.gi
help detach_audit
help audit_editor
help display_audit_file
help new_audit.gi

39

audit_

03/20/81 - audit_ I/0 module

~ The audit_ I/0 module intercepts I/0 activity on a given switch, allowing
one to log and or edit this data.

Attach description:

. audit_ switch_name -control_args

Arguments:

switch_name
is the name of an I/0O switch to inserted between the existing
switeh and its I/0 module.

Control arguments:

-truncate, -tc
truncate the o0ld audit file, if it has the same name as the new
one. .

-pathname, -pn
use this pathname as the audit file. The default pathname is
[homedir]>[date].audit .

Modes operation:

audit_input
audit input lines. (DEFAULT -- on)

audit_output
audit output lines. (DEFAULT -- on)

audit_edit
enable audit editing. Does not put the user in the audit editor, it
only makes it possible to enter the editor. (DEFAULT - on)

audit_meter
write a metering stamp before each entry in the file. The stamp
consists of the actual time of the metering, incremental cpu time
since the last stamp, and the incremental page faults since the
last stamp.

audit_file_size=n
set the maximum number of records for the audit file to n. The
file is treated as a circular buffer of n records. A file size of
"unlimited" allows the audit file to grow indefinitely.

audit_trigger=x
set the audit request trigger character to X.

40

audit_trace
trace all control and mode calls tc the module. Mode trace entries
are idntified by a TM tag, control trace entries are identified by
a TC tag.

audit_truncate
truncate the audit file.

audit_transparent
turn off auditing of audit and audit edit requests, as well as
their output.

audit_suspend
turn off all modes.

audit_use_editor_prompt
turn on prompting in the audit editor.

audit_editor_prompt_string=STR, audit_epstr=STR
set the audit editor prompt string to STR. The audit editor

prompt has the default appearance "audit editor: " ,or if the
number of recursive invocations of the editor is greater than 1,
"audit editor(level N): ", where N is the depth of the current

invocation. This string is used as an ioa_ control string, with
the arguments being: a bit which is on if the level is greater
than 1; and, the level. The default string is

"a/audit editoral[(ad)al:na2x".

The audit file:

The default audit file pathname is [homedir]}>[date].audit . The default
file_size is unlimited. If one has sufficient data logged, the audit file may
become a multi-segment file. The first 10 bytes of the file contains the

header, which is used by both the audit_ I/0 module and the audit_editor.

The entry type identifiers are:

EL
edit line, returned from audit editor.
IC)
result of a get_chars.
IL
result of a get_line.
M
metering data.
oc
result of a put_chars.
TC .
control request trace.
™)

mode request trace.

41

Notes:

For information about the audit editor see audit_editor.info .

Audit reguests:

The audit requests are always recognized when auditing is on. The three
character regquest sequence is the trigger character followed by the desired
request followed by a new line. The default trigger character is an
exclamation mark ("!"). The requests are:

print "audit" and which of input and output is being audited.

print a brief description of available audit regquests.

te
enter the audit editor.

E
enter the audit editor, with the input line processed as edit
requests.

ta
abbrev expand the input line. See the MPM documentation on abbrev
for more information.

ir
replay the input line. That is, display the input line without a
new line. Further input up to the next new line is appended to the
redisplayed input. This is the input line which is passed through
the audit_ I/0 module.

't
instructs the audit_ module not to log the input line, i.e. to make
it transparent.

td

delete the line. It prevents the input line from ever being seen.
n

no operation. The input line to which this is appended is simply
passed through the audit_ module.

42

audit_.gi

03/20/81 - Auditing and editing I/0:

Auditing allows one to Keep a record or log of activity on a
particular I/0 switch. Also, it allows editing of input. The
simplest use of auditing is:

! attach_audit

This will set up auditing of input and output and enable audit
editing. An audit file will be placed in the user's home directory
with a two component entry name. The first component of the name is
the date and the second component is the suffix ".audit".

Audit requests:
The audit requests are always recognized when auditing is on.
The three character request sequence is the trigger character followed

by the desired request followed by a new line. The default trigger
character is an exclamation mark ("!"™). The requests are:

print "audit" and which of input and output is -being
audited.

print a brief description of available audit redquests.

le
enter the audit editor.

'E
enter the audit editor, with the input line processed as
edit requests.

la
abbrev expand the input line. See the MPM documentation
on abbrev for more information.

ir
replay the input line. That is, display the input line
without a new line. Further input up to the next new line
is appended to the redisplayed input. This is the input
line which is passed through the audit_ I/0 module.

't
instructs the audit_ module not to log the input line,
i.e. to make
it transparent.

tn
no operation. The input line to which this is appended is
simply passed through the audit_ module.

'd

delete the line. It prevents the input line from ever
being seen by the system.

43

Editor requests:

The audit editor requests are presented in two categories,
familiar requests and special requests. The editor syntax is
basically that of gedx. Any number of requests may be on the same
line and spaces are ignored. Addressing, where appropriate, is done
the same as in gedx with two notable exceptions. First, the "." is a
request for self-identification rather than an indicator for the
current address. Second, addresses are in terms of entries in the
audit file rather than lines in a buffer. If the default search tag
is in use, as is the case unless specifically defeated, the absolute
entry number refers to the number of entries with the default search
tag from the beginning of the file. Similarly, a relative entry
address refers to the number of entries with the default search tag
before or after the current address.

Familiar requests:

[[ADR1,]ADR2]p print
print the addressed entries.

s/REGEXP/STRING/ substitute

replace occurrences of REGEXP in the edit buffer with
STRING.

ADR location

locate the addressed entry. If ADR is not followed by a
request the edit buffer is printed. An ADR can contain an
absolute entry reference at its beginning, relative
addresses in any portion, and regular expressions in any
portion. An absolute address is either a number or the
dollar-sign (to indicate the last entry in the audit file.

. .STRING ‘ execute

pass STRING to command processor and return to the audit
editor.
= print current entry number
print the current entry number. This value is dependent
on the current default search tag. If the default search
tag changes, the current entry may also change.
q quit
quit from the editor wiﬁhout doing anything (i.e.,

returning any characters).

Special requests:

44

expand expand abbrev

abbrev expand the edit buffer.
off audit off

don't audit input and output in the editor.
on audit on

audit the editor.

1 last returned line
address the last line returned by the audit editor.
r[STRING] return line

return the rest of the request line, if non-null.
Otherwise, return the edit buffer (without trigger
sequence).

n return new-line

returns a new-line character.

type print type
print the audit entry type of the current position.
exec execute

pass the edit buffer to the command processor and return
to the audit editor.

d/STRING/ default search tag

set the default search tag to STRING. If STRING is only
one character, then only the first character of the tag is
used to determine if an entry is seen (in counting entries
and doing searches). If STRING is two characters, the
match is done one both characters of the tag.

Request syntax and processing:

The square brackets in the request syntax above are to indicate
the contained item is optional. The square brackets are not typed
when entering the request. If execution of a request, in the audit
editor, should fail for any reason, the processing of that request
line is aborted, the user is informed of the failure, and a new
request is prompted for. Note that this means the user is left in the
editor when a problem is encountered executing a request line
associated with a E audit request.

The audit editor may be entered recursively, and each level of
the editor has its own memory for the last returned line from its
level.

45

Examples:

To

To

To

To

To

set up with default audit file in homedir;
attach_audit

set up with an audit file in the process_d4ir;
attach_audit -pn [pd]l>my_audit_file

set the audit file to be a circular file of 5 records;
jo modes user_i/o audit_file_size=5

re—-execute the last use of the pll command;
</ApPll/r!'E

execute the above command line again;
ir!E

46

audit_editor

11/18/80 The audit_ editor.

The audit_ editor is invoked by typing the edit request when
auditing. The edit request comprising a three character
sequence;

trigger character || "e" or "E" || new-line

The default trigger character is "!".

Editor request list:

[[ADR,]ADR]p print

s/REGEXP/STRING/ substitute

ADR location

. . STRING execute

g quit

: defeat default search tag
? (or .7) list editor requests
expand (or .expand) expand abbrev

off (or .off)) audit off

on (or .on) audit on

1 (or .1) last returned line

r[STRING] (or .r[STRING]) return line

n (or .n) return newline

type (or .type) print type

exec (or .exec) execute edit line

d/STRING/ (or .d/STRING/) default search tag
= print current entry number

Explanation of editor requests:

The audit editor requests are presented in two categories,
familiar requests and special requests. The editor syntax is
basically that of gedx. Any number of requests may be on the
same line and spaces are ignored.

Addressing, where appropriate, is done the same as in gedx
with two notable exceptions. First, the "." is a request for
self-identification rather than an indicator for the current
address. Second, addresses are in terms of entries in the audit
file rather than lines in a buffer.

If the default search tag is in use, as is the case unless
specifically defeated, the absolute entry number refers to the
number of entries with the default search tag from the beginning
of the file. Similarly, & relative entry address refers to the
number of entries with the default search tag before or after
the current address.

Addressing:

47

An address can consist of one or more of the following three
types of address, the relative address, the absolute address, and
the search address.

An absolute address refers to an entry by its entry number.
This entry number is determined by counting, from the beginning
of the file, the number of entries which match the default search
tag. The use of a colon (":") means every entry is counted.

A relative address is a number preceded by either a "+" or a
"-n, It refers to the entry which is the specified number of
entries with the default search tag before , "-", or after, "+",
the entry currently in the edit buffer.

A search address is a regular expression which may be
preceded by a less~than (™ "). A regular expression is a
character string beginning and ending with a slash ("/"). &
search address which is a regular expression alone refers to the
next entry in the file after the one currently in the edit
buffer, which contains a match for the regular expression.

A search address which comprises a regular expression
preceded by a less-than, ' ", does a backward search for the
first entry previous to the current entry containing a match for
the regular expression. N is a positive integer, and /REGEXP/
is a regular expression. The three types of addresses and their
variations are: N -N +N /REGEXP/ < /REGEXP/

Familiar Requests:
[[ADR1,]JADR2]p print
print the addressed entries.

s/REGEXP/STRING/ substitute

replace occurrences of REGEXP in the edit buffer with
STRING.

ADR location

locate the addressed entry. If ADR is not followed
by a request the edit buffer is printed. An ADR can
contain an absolute entry reference at its beginning,
relative addresses in any portion, and regular
expressions in any portion. An absolute address is
either a number or the dollar-sign (to indicate the
last entry in the audit file.

. . STRING execute

pass STRING to command processor and return to the
audit editor.

q quit

return the current line with the trigger sequence
appended.

48

print current entry number

print the entry number associated with the current
position in the audit file. The value of the entry
number for the current position can change with
different default search tags. See the ":" ang "d"
requests below.

Special requests:

defeat default search tag

look at every entry, regardless of entry class (or
tag). only effective for requests following it and
on the same regquest line.

? (or .?) 1list editor requests

list the editor requests and a brief description of
their function.

expand (or .expand) expand abbrev
abbrev expand the edit buffer.
off (or .off) audit off
don't audit input and output in the editor.
on (or .on) audit on
audit the editor.
1l (or .1) 1last returned line
address the last line returned by the audit editor.
r[STRING] (or .r[STRING]) return line
return the rest of the request line, if non-null.
Otherwise, return the edit buffer (without trigger
sequence).
n (or .n) return new-line
returns a new-line character.
type (or .type) print type
print the audit entry type of the current position.
exec (or .exec) execute

pass the edit buffer to the command processor and
return to the audit editor.

d/STRING/ (or .d/STRING/) default search tag

49

set the default search tag to STRING. If STRING is
only one character, then only the first character of
the tag is used to determine if an entry is seen (in
counting entries and doing searches). If STRING is
two characters, the match is done one both characters
of the tag.

Notes: .

The audit_ editor may be invoked while in the audit_ editor,
if the editor is Dbeing audited. For every level of the editor,
there is a remembered last returned line distinct from all other
remembered last returned lines.

There is also a position in the audit file associated with
the last returned line. This position is the location that the
last returned line was recorded (this position exists since last
returned lines are audited). The "1" request sets the current
position to be this associated position. It is important to
note that this position (or entry) is distinct from wherever the
original copy of the last returned line(the one which was edited
to produce the last returned line) was located. -

50

bind

07/25/81 bind, bd

Syntax: bd paths -contreol_args

Function: produces a single bound object segment from one or more
unbound object segments, stored in archive segments, which are called
the components of the bound segment.

Arguments:

paths
are the pathnames of archive segments containing one or more
component object segments to be bound. The archive suffix is
assumed. Up to 16 input archive segments can be specified. They
are logically concatenated in a left-to-right order to produce a
single sequence of input component object segments.

Control arguments:

-brief, -bf
suppresses printing of warning messages.

-force_order, -fco .
is equivalent to including a Force_Order statement in the bindfile.
Since the need to use Force_Order is often temporary, and caused by
update archives which have had components deleted, this is

preferable to using the Force_Order statement, since it need only be

used while the temporary condition exists.
~-force_update, -fud

is similar in function to -update, except that the archive specified

following —-force_update need not exist. Any archive which does

exist is treated the same way as for -update, and any which does not

is simply ignored. This is useful for constructing abbrevs which
bind archives which may or may not have update archives in various
locations.

-list, -1s
produces a listing segment whose name is derived from the name of

the bound object segment plus a suffix of list. The listing segment

is generated for the purpose of dprinting; it contains the bound
segment's bind control segment (see "Notes on bindfile" below), its

bind map, and that information from the bound object segment printed

by the print_link_info command. This control argument cannot be
invoked with -map. In the absence of the -list or -map control
arguments, no listing segment is generated.

-map
produces a listing segment (with the suffixes list and map) that
contains only the bind map information. This control argument is
incompatible with -list. In the absence of the -list or -map
control arguments, no listing segment is generated.

-update paths, -ud paths

51

indicates that the following list of archive segments (paths)
specifies update rather than -input object segments. The archive
suffix is assumed in paths. Up to a combined total of 16 input and
update segments can be specified. The contained update object
segments are matched against the input object segments by object
segment name. Matching update object segments replace the
corresponding input object segments; unmatched ones are appended to
the sequence of input object segments. If several update object
segments have the same name, only the last one encountered is bound
into the bound segment.

Notes: Compilers and the assembler produce unbound object segments.
Binding has three benefits: the reduction of storage fragmentation,
the prelinking of external references between the components, and the
reduction of size of address space necessary to execute the components.

Notes on output: The binder produces as its output two segments: an
executable bound object segment and an optional, printable ASCII
listing segment. The name of the bound segment is, by default, derived
from the entryname of the first input archive segment encountered by
stripping the archive suffix from it. The name of the listing segment
is derived from the name of the bound segment by adding the list suffix
to it. Use of the Objectname master statement in the bindfile (see
"List of master keywords" below) allows the name of the bound segment
to be stated explicitly. In addition, use of the Addname master
statement in the binding instructions causes additional segment names
to be added to the bound segment. The primary name of the bound
segment must not be the same as the name of any component.

Notes on bindfile: The bindfile is a segment containing symbolic
instructions that control the operation of the binder. 1Its entryname
must contain the bind suffix and it must be archived into any one of
the input archive segments.

In case two bindfiles are specified, one in an input archive segment
and the other in an update archive segment, the latter takes precedence
and a warning message is printed to that effect.

The syntax of the bindfile statements consist of a keyword followed by
zero or more parameters and then delimited by a statement delimiter.
Master statements pertain to the entire bound object segment; normal
statements pertain to a single component object within the bound
segment. Master statements are identified by master keywords that
begin with a capital letter; normal keywords begin with a lowercase
letter. A keyword designates a certain action to be undertaken by the
binder pertaining to parameters following the keyword.

List of master keywords:
Objectname
the parameter is the segment name of the new bound object.
Order
the parameters are a list of objectnames in the desired binding
order. In the absence of an order statement, binding is done in the .
order of the input sequence. The order statement requires that
there be a one-to-one correspondence between its list of parameters

52

and the components of the input sequence.

Force_Order
same as Order, except that the list of parameters can be a subset of
the input sequence, allowing the archive segments to contain
additional segments that are not to be bound (e.g., source
programs).

Global
the parameters can be either retain, delete, or no_link. The
parameter selected pertains to all component object segments within
the bound segment. A global or explicit statement concerning a
single component object or a single external symbol of a component
object overrides the Global statement for that component object or
symbol.

Addname
the parameters are the symbolic names to be added to the bound
segment. If Addname has no parameters, it causes the segment names
and synonyms of those component objects for which at least a single
entrypoint was retained to be added to the bound segment.

No_Table
does not require parameters. It causes the symbol tables from all
the component symbol sections containing symbol tables to be omitted
from the bound segment. If this keyword is not given, all symbol
tables are kept.

Perprocess_Static
does not require parameters. It causes the perprocess_static flag
of the bound segment to be turned on, which prevents the internal
static storage from being reset during a run unit.

If no bindfile is specified, the binder assumes the following
default parameters:

Objectname: segment name of the first input archive file.
Global: retain; /*regenerate all definitionsx*/

List of normal keywords:

objectname
the single parameter is the name of a component object as it appears
in the archive segment. The objectname statement indicates that all
following normal statements (up to but not including the next
objectname statement) pertain to the component object whose name is
the parameter of the objectname statement.

synonym
the parameters are symbolic segment names declared to be synonymous
to the component object's objectname.

retain
the parameters are the names of entrypoints defined within the
component object segment that the user wishes to retain as
entrypoints of the bound object segment.

delete
the parameters are the names of entrypoints defined within the
component object segment that the user does not wish to be retained
as entrypoints of the new bound segment.

no_1link
the parameters are the names of entrypoints that are NOT to be

53

prelinked during binding. The no_link statement implies a retain
statement for the specified names.

global
the parameter can be either retain, delete, or no_link. The
parameter selected becomes effective for all entrypoints of the
component object. An explicit retain, delete, or no_link statement
concerning a given entrypoint of the component object overrides the
global statement for that specific entrypoint. A global no_link
causes all external references to the component object to be
regenerated as links to entrypoints; this allows execution-time
substitution of such a component by a free standing version of it,
for example for debugging purposes.

table
does not reguire parameters. It causes the symbol table for the
component to be retained and is needed to override the No_Table
master keyword, described above.

List of bindfile delimiters:

keyword delimiter used to identify a keyword followed by one or
more parameters. A keyword that is followed by no parameters is
delimited by a statement delimiter.

-

statement delimiter.

parameter delimiter. The last parameter is delimited by a statement
delimiter.
/*

begin comment.

end comment.

Notes on error messages: The binder produces three types of error
messages. Messages beginning with the word "Warning" do not
necessarily represent errors, but warn the user of possible
inconsistencies in the input components or bindfile. Messages
beginning with the word "binder_" normally represent errors in the
input components. Errors detected during the parsing of the bindfile
have the format--

Bindfile Error Line #N
where N is the line number of the erroneous statement. If an error is
detected during parsing, the binder aborts because it cannot bind
according to the user's specifications.

54

calendar

01/05/81 calendar

Syntax: calendar paths —-control_args

Function: prints a calendar page for one month. The preceding and
following months are also shown.

Arguments:

paths
are the pathnames of segments that contain a list of events in the
form of text to be inserted into the calendar.

Control arguments:

-date DATE, -4t DATE
identifies which month is printed. This argument must be a date
acceptable to the convert_date_to_binary_ subroutine (described in
the MPM Subroutines). If the -date control argument is not given,
the current month is printed.

—-fiscal_week, -fw
labels boxes with fiscal week numbers.

-wait, -wt
causes the command to wait for a single newline character from the
user before printing the calendar.

-stop, -sp
causes the command to wait for a single newline character from the
user before printing the calendar and after. printing it.

-force, -fc
causes a calendar to be printed regardless of errors in the input
files.

. =-box_height HEIGHT, -bht HEIGHT
changes the height of each calendar box from 7 lines to HEIGHT
lines. If HEIGHT < 7, calendars for previous and following months
do not appear in margin.

-julian, -jul
prints "julian dates" in bottom line of each box ~- the number
of days from the beginning of the year and the number of days
remaining in the year.

Notes on Output: Each box for a calendar day is 16 characters wide.
and 7 lines high unless otherwise determined by the -box_height
control argument. Each box in the calendar contains the number of
the day of the month; other information can also appear in the box,
at the user's option. The month preceding the specified month and
the month following it are also printed.

Notes on Input: Each segment contains lines that set up a string to
be inserted into the appropriate box of the calendar. The fields in

55

these lines are separated by commas and have the form--
opcode,dtfield,...,dtfield,text

The first field is the operation code (either date, rel, repeat,
easter or rename). The second and succeeding fields depend on which
operation code is used. Lines that produce a date not in the current
month are ignored.

List of operation codes:

date
has the following syntax-- date, DT, TEXT
DT is the date for which the following text is to be inserted.
TEXT is arbitrary text up to 16 characters long.

rel

allows a note to be inserted for a day which is calculated

relative to the beginning of a month. Its syntax is as follows—--

rel, MONTHNO, RELDT1, RELDT2, TEXT

MONTHNO is a one or two digit number from 1 to 12 indicating the
month from which the event is to be calculated, or can be -1,

0 or +1. -1 indicates the month previous to the printed month,
0 refers to the month being printed, and +1 indicates the month
after the printed month.

RELDT1 is a date converted relative to the day before the beginning
of the specified month.

RELDT2 is a date which is converted relative to the date indicated
by the RELDT1 of the third field. It specifies the date
selected for the insertion of the TEXT.

TEXT is arbitrary text.

repeat

inserts a note into the boxes for several days which are separated

by a constant interval of time. The syntax is as follows—-—

repeat, STARTDT, END_OR_COUNT, INTERVAL, TEXT

STARTDT is the date on which the series of events starts.

0 indicates that the series starts on the first day of
the printed month. '

END_OR_COUNT is the end date or 0, or a count of the number of
events in the series. 0 indicates that the series continues
throughout the entire month being printed. An integer number
gives the number of events in the series.

INTERVAL is any offset acceptable to the convert_date_to_binary_
subroutine, or 0. An offset is truncated to an integral number
of days; but if it is less than one day, it is treated as if it
were 1 day. 0 indicates an interval of 1 day.

TEXT is arbritrary text to be placed in the box of each day
in the series.

easter
calculates the date for Easter and inserts its text in that date
if it falls in the printed month. The syntax is—-—
easter, TEXT

rename
allows the user to change the names of days or months.

et e -

56

Its syntax is-—-

rename, OLDNAME, NEWNAME

OLDNAME gives the name of a day or month to be changed. If the name
of that day or month was previously changed in the current
invocation of the command, OLDNAME must be the current name.

NEWNAME gives the name to replace the OLDNAME.

Notes: All dates must be acceptable to the convert_date_to_binary
subroutine. See date_time_strings.gi.info for acceptable forms.

If the command finds errors in its arguments it reports the errors
and does not print a calendar. If it finds errors in an input file,
it stops after all errors have been reported, uniess the user gives
the —-force control argument to indicate that the calendar should be
printed in spite of errors.

For more information, refer to the MPM Commands and Active Funtions,
Order no. AGSZ2.

57

calendrier

05/13/83 calendrier

Syntaxe: calendar noms_de_chemin -arguments_de_controle
Fonction: Imprime une page de calendrier pour un mois donn' e.

Argument:

noms_de_chemin
sont des noms de segment contenant des donnees a inserer dans le calendrier.
Cet argument est facultatif. S'il n'est pas donn' e, le programme calendar
imprime un calendrier contenant les titres (noms des jours et des mois)
en anglais.

On a cree un segment permettant d'obtenir :
~ les noms des jours (Lundi, etc...) et des mois (Janvier, etc...) en
francais ; ,
- quelques dates importantes indiquees dans les cases correspondantes
(a savoir : les jours feries francais : Nouvel An, Paques, etc..., ainsi
gue les jours de passage a l'heure d'ete et a l'heure d4'hiver).
Ce segment est : >am>don>cal_fr .

Chaque utilisateur peut creer d'autres segments contenant les informations
qu'il desire inserer dans ses calendriers. On peut suivre les indications
du "help calendar", et prendre pour modele le segment indique ci-dessus
(on peut imprimer ce segment par un "print" ordinaire).

Arguments de controle:
Les principaux sont : -dt DATE ~-fw -sp
(Le "help calendar" donne d'autres arguments, qui semblent moins utiles)

Argument de date:

—-dt DATE
indique un jour quelcongque du mois desire, par exemple :
-dt 05/01/83 pour Mai 1983
-dt 08/01/83 pour Septembre 1983
-dt 12/01/84 pour Decembre 1984

Argument -fw:

-fw
L'option -fw permet d'avoir le numero de semaine indique dans chaque
case de lundi.

Argument -sp:

_sp
L'option -sp permet d'inserer une attente avant le debut de l'impression,
et apres la fin de l'impression ; ceci permet de degager le papier afin
de separer le calendrier proprement dit de ce qui precede (le texte de

58

la commande calendar), et de ce qui suit (le message "ready") ;
lorsqu'on est pret, on tape le caractere "return".

Exemple:

calendar >am>don>cal_fr -dt 12/01/83

donnera le calendrier du mois de decembre 1983.

On peut se creer une abreviation, par exemple :

.ab CAL calendar »>am>don>cal_fr
et commander :

CAL -4t 12/01/83 -fw

Longueur de ligne:

I1 faut une longueur de ligne au moins egale a 120 ;
donc, si necesaire, commander d'abord :

11 120
(ou une valeur superieure a 120).

Conseil:

La derniere ligne imprim' ee comporte quelques grigri indesirables (" 014"
et le message "ready"). Pour les eviter, on peut commander d'abord
stty -modes edited
rdaf

avant d'envoyer la commande calendar.
de revenir a :

Mais n'oubliez pas, ensuite,

rdén

stty -modes Aedited
si c'est votre mode habituel.

On peut, dans ce cas, utiliser des abreviations telles gue :

.ab CALE stty —-modes edited;rdf;calendar >am>don>cal_fr
.ab CALFIN rdn;stty -modes Aedited
(En fait, il est inutile de commander rdf

... rdn dans le cas ou l'on
empleoie l'option =-sp).

59

cancel_abs_request

10/01/80 cancel_abs_request, car

Syntax: car request_identifiers -—-control_args

Function: allows a user to delete a request for an absentee
computation that is no longer needed.

Arguments:
request_identifiers can be chosen from the following:

path
is the full or relative pathname for the absentee input segment of
requests to be cancelled. The star convention is allowed.

-entry STR, -et STR
identifies requests to be cancelled by STR, the entryname portion of
the absentee input segment pathname. The star convention is
allowed.

-id ID
identifies one or more requests to be cancelled by regquest
identifier. This identifier may be used to further define any path
or —entry identifier (see "Notes"). '

Control arguments:

-all, -a
indicates that all priority queues and the foreground queue are to
be searched starting with the foreground queue followed by the
highest priority queue and ending with the lowest priority queue.

-brief, -bf
suppfesses messages telling that a particular request identifier was
not found or that requests were cancelled when using star names or
the -all control argument.

-foreground, -fg
specifies that the foreground absentee queue contains the request(s)
to be cancelled.

-queue N, =g N .
specifies that absentee queue N contains the request to be
cancelled, where N is an integer specifying the number of the queue.
The default queue is defined by the system administrator. For
convenience in writing exec_coms and abbreviations, the word
foreground or fg following the -~queue control argument performs the
same function as the -foreground control argument. If the -queue,
-fg, and -all control arguments are omitted, only the default
priority queue is searched.

-sender STR
specifies that only requests from sender STR should be cancelled.
One or more request identifiers must also be specified. In most
cases, the sender is an RJE station identifier.

-user User_id

60

specifies the name of the submitter of the request to be cancelled,
if it is not the same as the group identifier of the process. The

User_id can be specified as Person_id.Project_id, Person_id, or

* ,Project_id. This control argument is primarily for operators and
administrators

Access required: The user must have o extended access to the queue to
cancel their own requests. The user must have r and d extended access
to cancel a request entered by another user.

Notes: If the absentee process has already logged in, the user is
given the choice of bumping the job and cancelling the request from the
gueue, or allowing the job to continue running and remain in the queue.
This allows the user to cancel a running absentee process.

When star names are not used and a single request identifier matches
more than one request in the gqueue(s) searched, none of the requests
are cancelled. However, a message is printed telling how many matching
requests were found.

If any path or -entry STR request identifiers are given, only one -id
ID request identifier will be accepted and it must match any requests
selected by path or entryname. :

Multiple -id ID identifiers can be specified in a single command
invocation only if NO path or entry request identifiers are given.

The -queue, -foreground, and -all control arguments are mutually
exclusive.

Normally, deletion can be made only by the user who originated the
request.

61

cancel_daemon_request

10/08/80 cancel_daemon_request, cdr

Syntax: cdr request_identifiers -control_args
Function: deletes an I/0 daemon request that is no longer needed.

Arguments: .
request_identifiers can be chosen from the following:
path
identifies a request to be cancelled by the full or relative
pathname of the input data segment. The star convention is allowed.
—-entry STR, -et STR
identifies a request to be cancelled by STR, the entryname portion
of the input data segment pathname. The star convention is allowed.
-id ID
identifies one or more requests to be cancelled by request
identifier. This identifier may be used to further define any path
or —entry identifier (see "Notes").

Control arguments:

-all, -a
searches all priority queues for the specified request type starting
with the highest priority queue and ending with the lowest priority
queue. This control argument is incompatible with the -queue
control argument.

~brief, -bf
suppresses messages telling that a particular request identifier was
not found or that requests were cancelled when using star names or
the —-all control argument.

-queue N, —-g N
specifies that queue N of the request type contains the request to
be cancelled, where N is a decimal integer specifying the number of
the queue. If this control argument is omitted, only the default
queue for the request type is searched. This control argument is
incompatible with the -all control argument.

-request_type STR, -rqt STR
indicates that the request to be cancelled is to be found in the
queue for the request type identified by the string STR. If this
control argument is not given, the default request type is
"printer". Request types can be listed by the print_request_types
command.

-user User_id
specifies the name of the submitter of the request to be cancelled,
if not the group identifier of the process. The User_id can be
equal to Person_id.Project_id, Person_id, or .Project_id. Both r
and 4 extended access to the queue are required. This control
argument is primarily for operators and administrators.

- 62

Access required: The user must have o extended access to the queue to
cancel their own requests. The user must have r and d extended access
to cancel a request entered by another user.

Notes: If the request is already running, the entry is still removed
from the gueue but the running request is not stopped. However, the
user is given a message stating that the request is running.

When a request has been removed from the queue after it has started
running and before it has finished, any user requested deletion of the
segment (done with the —-delete control argument to the dprint command)
will be ignored by the system.

Multiple -id ID identifiers can be specified in a single command
invocation only if NO path or entry request identifiers are given.

If any path or -entry STR request identifiers are given, only one -id
ID request identifier will be accepted and it must match any requests
selected by path or entryname.

When star names are not used and a single request identifier matches
more than one request in the queue(s) searched, none of the requests
are cancelled. However, a message is printed telling how many matching
requests there are.

Normally, deletion can be made only by the user who originated the
request.

See also the descriptions of the dprint and dpunch commands.

63

cancel_resource

01/18/79 cancel_resource, cnr

Syntax: cnr -id reservation_id -control_arg

Function: cancels reservations made with the reserve_resource command using
the reservation identifier obtainable from the list_resources command.

Arguments:

reservation_id
must be present and is the reservation identifier of the reservation to be
cancelled. It must be preceded by the -id control argument.

Control arguments:

-priv
allows a privileged cancellation to be done, such as, a cancellatijion of a
reservation belonging to another user. :

Access required: Use of the -priv control argument requires access to
rcp_sys_.

Notes: Reservation identifiers may be obtained by using the list_resources
command.

v

64

cancel_retrieval _request

10/08/80 cancel_retrieval_request, crr

Syntax: crr request_identifiers -control_args

Function: allows a user to delete a request for a volume retrieval
that is no longer needed.

Arguments:
request_identifiers can be chosen from the following:
path
is the full or relative pathname of the segment or subtree of the
retrieval request to be cancelled. The star convention is allowed.
—-entry STR, -et STR
identifies the request to be cancelled by STR, the entryname portion
of the segment or subtree pathname. The star convention is allowed.
-id ID
identifies the request to be cancelled specified by its request ID
number. This identifier may be used to further define any path or
-entry identifier (see "Notes").

Control arguments:

-all, -a
indicates that all retrieval queues are to be searched starting with
the highest priority queue and ending with the lowest priority
gueue. This control argument is incompatible with the -queue
control argument.

-brief, -bf
suppresses messages telling the user that a particular request
identifier was not found or that requests were cancelled when using
star names or the -all control argument.

-queue N, -g N
specifies that retrieval queue N contains the request to be
cancelled, where N is a decimal integer specifying the number of the
queue. If this control argument is omitted, only the default
priority queue is searched. This control argument is incompatible
with the -all control argument.

-user User_id
specifies the name of the submitter of the requests to be cancelleqd,
if not equal to the group identifier of the process. The User_id
can be Person_id.Project_id, Person_id, or .Project_id. Both r and
4 extended access to the queue are required. This control argument
is primarily for operatofs and administrators.

Access redquired: The user must have o extended access to the queue to
cancel their own requests. The user must have r and d extended access
to cancel a request entered by another user.

65

Notes: 1If any path or -entry STR request identifiers are given, only
one -id ID request identifier will be accepted and it must match any
requests selected by path or entryname.

Multiple -id ID identifiers can be specified in a single command
invocation only if NO path or entry request identifiers are given.

Normally, deletion can be made only by the user who originated the
request.

When star names are not used and a single request identifier matches
more than one request in the queue(s) searched, none of the requests
are cancelled. However, a message is printed telling how many matching
requests there are.

66

change_default_wdir

02/12/76 change_default_wdir, cdwd

Syntax: cdwd path

Function: sets a directory as the user's default working directory.

Arguments:

path
is the pathname of the directory; if omitted, the current working directory
becomes the default working directory.

Notes: The original default working directory is the user's home directory upon
logging in.

67

change_wdir

02/12/76 change_wdir, cwd

Syntax: cwd path

Function: changes the user's working directory.

Arguments:

path
is the pathname of a directory; if omitted, the default working directory is
assumed. (see change_default_wdir)

68

check_iacl

01/09/80 check_iacl

Syntax: check_iacl dirpath -control_args
Function: lists ACL terms that disagree with initial ACL.

Arguments:

dirpath
pathname of a directory to check. The star convention is allowed.
-working_directory or -wd specifies the working directory.
(Default if omitted: working directory)

Control arguments:
-all

lists changed and deleted ACL entries as well. (Default: added entries)
-exclude Pers.Proj, —ex Pers.Proj

excludes ACL entries with names matching Pers.Proj.

Notes: -
Unless -all is specified, only ACL terms that are ADDITIONS to the initial
ACL are listed.

Up to 10 -exXclude arguments are allowed.

69

check_info_segs

09/26/80 check_info_segs, cis

Syntax: cis =-control_args

Function: prints a list of info segments modified since a given time.

Control arguments:

-absolute_pathname, -absp
prints or returns absolute pathnames of segments rather than
entrynames.

-brief, -bf
does not print names of changed info segs and "No change" message.
For use with -call. -bf cannot be used with the cis active
function.

-call cmdline
calls the command processor with "cmdline path" for each changed
segment; path is the absolute pathname of a changed segment. If
cmdline contains blanks, it must be enclosed in quotes. This
control argument cannot be used with the cis active function.

-date DT, -dt DT
uses the date DT instead of the date in the user's profile. The
date in the profile is not updated.

-long, -1lg
prints the date-time-entry-modified as well as the segment name.
-1g cannot be used with the cis active function.

-no_update, -nud
does not update the date in the user's profile.

-pathname star_path, -pn star_path
star_path is a pathname with a star name in the entryname portion.
All segments that match star_path are checked. More than one
-pathname control argument can be given. If none are given, the
directories in the "info_segments" search list, which has synonyms
"info_segs" and "info" are used.

—time_checked, -tmck
prints the date_time that is stored in the user's profile indicating
from when checking of modified info segments would occur if the
-date control argument were not used. This control argument is
incompatible with all others when used with the cis active function.
It does not update the time in the user's profile when used as the
only control argument.

Notes: The first time cis is invoked by a user, it just sets the date
in the user's profile. A profile is created if one doesn't exist. The
date-time-entry-modified for link targets are checked, not the dtem of
the link.

Syntax as active function: [cis -control_args]

70

Notes on active function:

The cis active function returns entrynames of selected info segments
separated by spaces. If -absp is specified, it returns full pathnames
of info segments separated by spaces.

Wwarning:

Since cis active function also sets the date in the user profile, a
command line using [cis] sets this date before processing any of the
returned info seg names. As a result, segments can be unintentionally
skipped and not seen a second time if a command line containing [cis]
is interrupted.

clear_resource

01/29/79 clear_resource, clr

Syntax: clr type STRs

Function: Confirms that the contents of a released volume have been destroyed
so that it may be returned to the free pool of resources kept by RCP resource
management. :

Arguments:

type .
is a resource type defined in the RTDT. STR is the name of a resource to be
cleared. If it begins with a hyphen, it must be preceded by -name (-nm.)

Access required: Use of this command requires access to the rcp_sys_ gate.

Notes: If multiple resource names are given and one of the named resources
cannot be cleared, none of the resources will be cleared.

72

close_file

02/26/76 close_file, cf

Syntax: close_file -control_arg filenames

Function: closes FORTRAN and PL/I files.

Arguments:
filenames
are the names of open files.

Control arguments:
-all
closes all open files. In this case, no filename appears.

Notes: The format of a FORTRAN file name is fileNN where NN is a two-digit
number other than 00; e.g., file05. PL/I file names are selected by the user

and can have any format.

For each filename argument, all PL/I files of that name and, if applicable,

the FORTRAN file of that name are closed.

The command "close_file -all" does not affect I/0 switches that are not

associated with FORTRAN or PL/I files.

73

collate

09/23/80 collate

Syntax: col_late

Function: returns the 128 characters of the ASCII character set in
collating sequence.

Syntax as active function: [collate]

74

compare

03/12/80 compare

Syntax: compare pathl |offsetl path2 |offset2 -control_args
Function: compares two segments and lists their differences.

Arguments:
pathl, path2
pathnames of segments to be compared. path2 can be an equal name.
offsetl, offset2
octal offsets within the segments; if omitted, the entire contents are
compared.

Control arguments:
-brief, -bf . o
prints only the first and last words of each discrepancy.
-length N, -1n N
the comparison continues for no more than N (octal) words.
-long, -1lg
. prints all discrepancy words. (default)
-mask N
the octal mask N is used in the comparison. If N is less than 12 octal
digits, it is padded on the left with Zzeros.

Notes: The maximum number for words to be compared is the word count for the
first segment minus its offset or the word count of the second segment minus
its offset, whichever is greater. If the segments are of unequal length, the
remaining words for the longer segment are printed as discrepancies. {

Syntax as an active function:
[compare path1|offsetl path2|offset2 -control_args]
returns true if the compared portions are identical, false otherwise.

75

compare_ascii

05/12/81 compare_ascii, cpa

Syntax: cpa paths -control_args

Function: compares ASCII segments and prints any differences.

Arguments:

paths
are the pathnames of the segments to be compared. The egual and ::
conventions are allowed. Up to siX segments can be compared, in
addition to the original if one is supplied. The equal convention
can be used in any pathname except the first one on the command
line, which is assumed to be the original unless otherwise
specified.

Control arguments:

-header, -he
prints a heading, giving the full pathname and identifying letter of
each segment. This heading is not printed by default.

-minchars NN
specifies the minimum number of characters that must be identical
for compare_ascii to assume that it has found the end of a
difference. The default is 20 characters. See "Notes" below.

-minlines NN
specifies the minimum number of lines that must be identical for
compare_ascii to assume that it has found the end of a difference.
The default is two lines. See "Notes" below.

-no_original, -no_orig
indicates that no original segment is supplied. If neither
-no_original nor -original is given, the first pathname on the
command line is assumed to be the original.

-no_numbers, -nnb
does not print identifying letter and line numbers preceding the
lines from the segments being compared. The default is to print
them.

-no_totals, -ntt
does not print the totals line.

-original pathA, -orig pathhA
specifies the pathname pathA of the original segment of which the
others are modified versions.

-print_new_lines, -pnl
prints only new lines. New lines are lines found in one or more of
the modified versions but not in the original. An original must be
supplied if this argument is used.

-totals, -tt
prints only the totals line, giving the number of differences and
the number of changed lines. The default is to print discrepancies
and totals line.

76

Notes: The output is organized with the assumption that the pathA
segment was edited to produce pathB. This command prints lines that
were added, replaced, or deleted; it ijidentifies each line by line
number within the respective segment and also by the letter A or B to
indicate which segment the line is from (A for pathA and B for pathB).

Values for minchars and minlines can be specified without being
preceded by control arguments. The order is: minchars minlines.

The values of minchars and minlines control the size of displayed
differences. Large values for these parameters cause small,
closely-spaced differences to be displayed as one large difference,
while very small values (such as -minlines 1 -minchars 2) will cause
small changes to be displayed individually but might also cause large
differences to be broken down into small parts, thereby giving a
misleading picture of what was actually done to produce the modified
versions. The user should adjust these parameters to produce the most
useful results.

71

compare_object

06/30/75 compare_object, cob

Syntax: cob old_path new_path -control_args

Function: Compares two object segments and, optionally, prints out the changes
made to the segment specified by o0ld_path to yield the segment specified by
new_path. The old_path segment is assumed to be older than the new_path
segment, and they are assumed to have been produced from the same source
segment, by different versions of a language processor.

Arguments:
old_path

is the pathname of the old object segment. The star convention is allowed.
new_path

is the pathname of the new object segment. The equal convention is allowed.

Control arguments:

~-brief, -bf
suppresses detailed description of the discrepancies, instead

_ printing a summary.

-text
compares the text sections.

~defs
compares the definitions sections.

-link, -1k
compares the linkage sections.

-static
compares the static storage if they have separate static, otherwise compares
the linkage sections.

-all, -a
compares the text, definitions, static (if any), and linkage sections.
This is the default.

Notes: Control arguments must follow the two pathnames.
In comparing the lengths of the symbol sections, compare_object uses a

heuristic to determine whether a discrepancy is serious or trivial.
This heuristic is inaccurate for ALM, bound, or large pll segments.

78

compose

07/08/81 compose, comp (Vers 8.0)

Syntax: comp paths -control_args

Function: formats documents for production on various devices
including terminals and line printers.

Arguments:

paths
pathnames of input files to be formatted (up to 200 input files--
SSFs or MSFs—- can be specified) named < name>.compin. The suffix
need not be supplied in the command line. The star convention is
not supported.

Control arguments:

-arguments argl arg2 ...

-ag argl arg2 ...
all given arg's are made available as user variables; any that con-
tain blanks must be given as quoted strings. This control argument
must be the last one in the command line.

-brief

-bf
Show only the error list header (giving the count of errors) at nor-
mal termination or in response to the program_interrupt command.
~This control is effective only when errors are being accumulated for
later display, that is, when output is being sent to the user's ter-
minal. The default is to print the entire error 1list.

-change_bars Xx,p,1,r,d
-cb X,p,1,r,d
generates text change symbols (change bars) in the output according
to the parameters given.
X change level character (default is NUL)
p symbol placement key character (default is outside margin)
1 text change symbol to be placed at the left margin. Must be of
the form "n<string>", where <string> is any character string
(the change symbol) and n is the number of spaces between the
text and <(string> (Default is 2[). n may be given by itself to
change the space for the default symbol and must be given if
<string> is given.
r text change symbol to be placed to the right of text (same form
as 1 above)
d text deletion symbol (default same form as 1 above except
default <string> is asterisk)

-change_bars_art X,p.1,r,d

-cba Xx,p,1,r.,d
as for change_bars above except that "1", "r", and "d" fields (and
their defaults) are artwork constructs.

79

~-check

-ck
syntax check mode; no output is produced.

—-device name

-dev name

-dv name
prepare output for device "name". ‘'name".comp_dsm must exist and be
locatable with compose search list. Default is "ascii" for terminal
output and "printer" for -output_file.

-from n

~fm n
begin output at page "n". n must be an EXACT match for an -existing
page number. Default is the first page of the file, regardless of
its page number.

—galley nl ,n2

-gl nl ,n2
prepare galley mode (single column, no running headers or footers)
text for input lines "nl,n2". The default nl,n2 is the entire input
file.

~hyphenate n

-hyph n

-hph n
change default hyphenation mode to ON with a least word part of "n".
The default value for "n" is 3.

-indent n .

-ind n .
add "n" columns of white space at the left of each output line. The
default value is 0.

-input_file path

-if path
"path" is an input file pathname although it looks like a control
argument or numeric parameter. "path" is required; there is no
default.

~-linespace n

-ls n
set the minimum linespace value to "n" (1 = single, 2 = double,
etc.). The default value is 1.

-noart
-noa
disable artwork conversion replacing artwork constructs with blanks.
-nobell
-nob
suppress the BEL signal for pause events (see -stop and -wait
below).
-nofill
-nof
change the default fill mode to OFF.
-number
-nb
show input line numbers in the output; also show list of inserted
files for cross-reference.

-number_brief

80

-nbb
show input line numbers in the output without the list of inserted
files.

-output_file path

-of path

direct all output to the bulk collector file given by "path". The
default path is [wd]>"name".compout where "name".compin is the input
file.

-page n n,n ...

-pg n n,n ...
print only the individual pages given. At least one page must be
given; there is no default.

~pages_changed

-pgc
print only Addendum pages and pages with change-bars.

-parameter string

-pm string
assign "string" to the builtin variable Parameter. "string" is
required; there is no default.

-passes n

-pass n
make "n" processing passes over the input file(s). The default val-
ue is 1.

-stop

-sp
pause before first output page and after every page, giving a visual
and audible signal to the user.

-to n
end output with page "n". "n" must be an EXACT match for an exist-
ing page number. The default is the last page of the input file
regardless of its page number. .

-wait

~-wt
pause before first output page, giving a visual and audible signal
to the user.

Notes:
Type "help compose.controls"™ for a summary of compose controls and
"help compose.builtins" for a list of builtin variables.
Type "help convert_runoff" for information on converting runoff
input files.
Type "help compose.artwork.gi" for information on constructing
artwork.gi within compose.

The following terminals are supported for artwork:

Terminal name for -device option
ASCII (default) ascii
DTC3008 dtc300s

Diablo 1620 (HYTERM) hyterm

(END)

81

contents

09/12/80 contents

Syntax: contents path

Function: returns the contents of a segment as a character string.
Newline characters in the segment are changed to blanks in the string.

Syntax as active function: [contents path]

82

copy

07/17/81 copy, cp

Syntax: cp pathl pathZ2 ... pathlN path2N —control_args

Function: causes copies of specified segments and multisegment files
to be created in the specified directories with the specified names.
Access control lists (ACLs) and multiple names are optionally copied.

Arguments:
pathl
is the pathname of a segment or multisegment file to be copied.
The star convention is allowed. The default action of this command
when pathl specifies a link is given below in the "Notes" section.
path2
is the pathname of a copy to be created from pathl. If the last
path2 argument is not given, the copy is placed in the working
directory with the entryname of pathl. The equal convention is
allowed.

Control arguments:

-acl

copies the ACL.
-all, -a

copies multiple names and ACLs.
-brief, -bf

suppresses warning messages.
~chase

copies the targets of links that match pathl. See "Notes" for the
default action.
-long, -1lg
prints warning messages as necessary. This is the default.
-name, -nm
copies multiple names.

-no_acl
does not copy the ACL. This is the default.
-no_chase
does not copy the targets of links that match pathl. See "Notes"
for the default action.
-no_name, -nnm
does not copy multiple names. This is the default.

Access required: Read access is required for pathl. Status permission
is required for the directory containing pathl if the -name, -acl or
-all control argument is specified. Append permission is required for
the directory containing path2. Modify permission is required for the
directory containing path2 if the -name, -acl, or -all control
argument is specified.

83

Notes: The control arguments can appear once anywhere in the copy
command line after the command name and apply to the entire copy
command line.

The default for chasing links depends on pathl. If pathl is not a
starname, links are chased by default. If pathl is a starname, links
are not chased.

If the ACL of a segment or multisegment file is being copied, the
initial ACL of the target directory has no effect on the ACL of the
segment or multisegment file after it has been copied into that
directory. The ACL remains exactly as it was in the original
directory. The AIM access class of a segment is not copied by -acl.

Since two entries in a directory cannot have the same entryname,
special action is taken by this command if the name of the segment or
multisegment file being copied (specified by pathl) already exists in
the directory specified by path2. If the entry being copied has an
alternate name, the entryname that would have resulted in a duplicate
name is removed and the user is informed of this action; the copying
operation then takes place. If the entry being copied has only one
entryname, the entry that already exists in the directory must be
deleted to remove the name. The user is asked if the deletion should
be done; if the user answers "no", the copying operation does not take
place.

The copy command prints a warning message if the bit count of pathl is
less than its current length or if the current length is greater than
the number of records used. These warnings are suppressed by the use
of the -brief control argument.

84

copy_acl

08/04/80 copy_acl

Syntax: copy_acl pathlA path2A ... pathlN path2N

Function: copies the access control list (ACL) from one file or
directory to another, replacing the current ACL if necessary.

Arguments:

pathlA
is the pathname of a file or directory whose ACL is to be copied.
The star convention is allowed. Either -working_dir or -wd
specifies the working directory.

path2a
is the pathname of a file or directory onto which the initial ACL is
to be copied. The equal convention is allowed. Either -working_dir
or -wd specifies the working directory.

Access required: Status permission required for containing dir of
pathli. Modify permission required for containing dir of path2i.

Notes: The star and equal convention can be used.

85

copy_cards

03/01/76 copy_cards, ccd

Syntax: ccd deck_name new_deck_name

Function: copies specified card image segments from system pool storage into a
user's directory.

Arguments:

deck_name
name entered on the deck_id card.

new_deck_name
pathname of segment in which matching card image segment is placed.
If omitted, the working directory and deck_name are assumed.

Notes: The segments to be copied must have been created using the
Multics card input facility. When there are multiple copies of the same deck in
pool storage, all are copied.

The deck_name may use the star convention; path may use the equal convention.

When an attempt is made to read a card deck having the same name as some
previously read deck still in pool storage, a numeric suffix is added to the
name of the new deck, e.g., "deck_name.l"

Only those card decks having an access class equal to the user's current
authorization can be copied. Other decks will not be found.

86

copy_din

06/05/81 copy_dir, cpd

Syntax: cpd source_dir target_dir entry_type_keys -control_args

Function: copies a directory and its subtree to another point in the
hierarchy. The user can also specify that portions of the subtree be
copied and can control the processing of links.

Arguments:

source_dir
is the pathname of a directory to be copied. The star convention is
allowed to match directory names. Matching names associated with
other storage types are ignored. The source_dir can not be
contained in target_dir.

target_dir
is the pathname of the copy of the source_dir. The equal convention
is allowed. If target_dir is not specified, the copy is placed in
the working directory with the entryname of source_dir. If the
target_dir does not exist, it is created.

Control arguments:

-brief, -bf
suppresses the printing of warning messages.
-force

executes the command, when target_dir already exists, without asking
the user. If the —-force control argument is not specified, the user
is queried.

-replace, -rp
deletes the existing contents of target_dir before the copying
begins. If target_dir is non-existent or empty, this control
argument has no effect. The default is to append the contents of
source_dir to the existing contents of target_dir.

-acl
gives the ACL on the source_dir entry to its copy in target_dir.
Although initial ACLs are still copied, they are not used in setting
the ACL of the new entries when this control argument is specified.
-primary, -pri
copies only primary names. The default is to copy all names.
-no_link_translation, -nlt
copies links with no change. The default is to translate 1links
being copied. If there are references to the source directory in
the 1ink pathname of a link being copied, the link pathname is
changed to refer to the target directory.
-chase
copies the target of a link. The default is not to chase links.
Chasing the links eliminates link translation.

List of entry_type_keys: control what type of storage system entries

87

in the subtree are copied. If no entry_type_key is specified, all
entries are copied. The keys are--

-branch, -br

-directory, -dr

-file, -f

-link, -1k

-multisegment_file, -msf

-non_null_link, -nnlk

-segment, -sm
If one or more entry_type_keys are specified, but not the -directory
key, the subtree of source_dir is not walked.

Access required: Status permission is required for source_dir and all
of the directories in its tree. Status permission is required for the
directory containing source_dir. Read access is required on all files
under source_dir. Append and modify permission are required for the
directory containing target_dir if target_dir does not exist prior to
the invocation of the copy_dir command. Modify and append permission
are required on target_dir if it already exists. This command does not
force access.

If the -acl control argument is not specified, the system default ACLs
are added, then the initial ACL for the containing directory is applied
(which may change the system supplied ACL). 1Initial ACLs are always
copied for the current ring of execution.

Notes: If target_dir already exists and -force is not specified, the
user is so informed and asked if processing should continue. If
target_d4dir is contained in source_dir, an appropriate error message is
printed and contreol is returned to command level.

If name duplication occurs while appending the source_d4ir to the
target_dir and the name duplication is between directories, the user is
queried whether processing should continue. If the user answers yes,
the contents of the directory are copied (appended) but none of the
attributes of that directory are copied. If the answer is no, the
directory and its subtree is skipped. If name duplication should occur
between segments, the user is asked whether to delete the existing one
in target_dir. (See the copy command)

If the -replace control argument is specified or target_dir does not
exist, name duplication does not occur.

If part of the tree is not copied (by specifying a storage system entry
key), problems with link translation may occur. If the link target in
the source_dir tree was in the part of the tree not copied, there may
be no corresponding entry in the target_dir tree. Hence, translation
of the link causes the link to become null.

See also the copy, move and move_dir commands.

88

copy_file

04/24/81 copy_file, cpf

Syntax: cpf in_control_arg out_control_arg -control_args

Function: copies records from an input file to an output file that has
been restructured for maximum compactness. The input and output file
records must be structured. (See "Notes on unstructured files™ below).
The input file can be copied either partially or in its entirety.

Arguments:
in_control_arg
the input file from which records are read can be specified by
either of the following:
-input_switch STR, -isw STR
specifies the input file by means of an already attached I/0
switch name, where STR is the switch name.
-input_description STR, -ids STR
specifies the input file by means of an attach description STR.
STR must be enclosed in quotes if it contains spaces or other
command language characters.

out_control_arg

the output file to which the records are written can be specified by

either of the following:

-output_switch STR, -osw STR
specifies the output file by means of an already attached 1I/0
switch name, where STR is the switch name.

-output_description STR, -ods STR
specifies the output file by means of an attach description STR.
STR must be enclosed in quotes if it contains spaces or other
command language characters.

Control arguments:
-all, -a .
copies until the input file is exhausted. This is the default.
-brief, -Dbf
suppresses an informative message indicating the number of records
or lines actually copied.
-count N, -ct N
copies until N records have been copied or the input file is
exhausted, whichever occurs first, where N is a positive integer.
The default is to perform copying until the input file is exhausted.
~from N, -fm N
copies records beginning with the Nth record of the input file,
where N is a positive integer. The default is to begin copying with
the "next record." (See "Notes" below.)

-keyed
copies both records and keys from a keyed sequential input file to a

89

keyed sequential output file. The default is to copy records from
an input file (either keyed or not) to a sequential output file.
(See "Notes on Keyed Files" below.)

-long, -1g
prints an informative message indicating the number of records or
lines actually copied. This is the default.

-start STR, -sr STR
copies records beginning with the record whose key is STR, where STR
is 256 or fewer ASCII characters. The default is to begin copying
with the "next record.”

-stop STR, -sp STR
copies until the record whose key is STR has been copied or the
input file is exhausted, whichever occurs first, where STR is 256 or
fewer ASCII characters.

-to N
copies until the Nth record has been copied or the input file is
exhausted, whichever occurs first, where N is a positive integer
greater than or equal to the N given with the —-from control
argument. This control argument can only be specified if -from is
also specified.

Notes on unstructured files: The copy_file command operates by
performing record I/0 on structured files. If it is desired to copy
from/to an unstructured file, the record_stream_ I/0 module can be
used, e.g., by typing the command line:

cpf -ids "record_stream_ -target vfile_ pathname" -osw OUT

The effect is to take lines from the file specified by pathname via the
vfile_ I/0 module, transform them into records via the record_stream_
1/0 module, and then copy them to the I1/0 switch named OUT.

Notes on keyed files: The copy_file command can copy a keyed
sequential file to produce an output file that has_been restructured
for maximum compactness as a keyved file or as though it were purely
sequential. By default, the command copies only records and does not
place keys in the output file. To copy the keys, the -keyed control
argument must be used. When -keyed is used, the input file must be a
keyed sequential file. Whether keys are copied or not, control
arguments can be used to delimit the range of records to be copied
(i.e., -start, -stop, -from, -to, -count). Copying is always performed
in key order.

Notes: 1If either the input or output specification is an attach
description, it is used to attach a uniquely named I/0 switch to the
file. The switch is opened, the copy performed, and then the switch is
closed and detached. Alternately, the input or output file can be
specified by an I/0 switch name. Either the io_call command or iox_
subroutine can be used to attach the file prior to the invocation of
the copy_file command. (See the descriptions of the io_call command
and the iox_ subroutine.)

90

copy_iacl_dir

09/17/81 copy_iacl_dir

Syntax: copy_iacl_dir pathlA path2A ... pathlN path2N

Function: copies the initial access control list for directories
(directory initial ACL) of one directory to another, replacing the
current directory initial ACL if necessary.

Arguments:
pathli
is the pathname of a directory. The star convention is allowed.
Either -working_directory or -wd specifies the working directory.
pathz2i
is the pathname of the target directory. The equal convention is
allowed. Either -working_directory or -wd specifies the working
directory.

Access required:: Status permission is required on pathli. Modify
permission is required on path2i.

Notes: See the MPM Reference Guide for a description of initial ACL's.

91

copy_iacl_seg

09/17/81 copy_iacl_seg

Syntax: copy_iacl_seg pathlA path2A ... pathlN path2N

Function: copies a segment initial access control list (initial ACL)
from one directory to another, replacing the current initial ACL if
heCessary.

Arguments:

pathli
is the directory from which the initial ACL is to be copied. The
star convention is allowed. Either -working_directory or -wd
specifies the working directory.

path2i
is the directory into which the initial ACL is to be copied. The
equal convention is allowed. Either -working_directory or -wd
specifies the working directory.

Access required: Status permission is required on pathli. Modify
permission is required on path2i.

92

create

02/12/76 create, cr

Syntax: cr paths

Function: creates segments.

Arguments:
paths
are the pathnames of segments to be created.

Access required: append on the parent directory.

93

create_data_segment

10/24/77 create_data_segment, cds

Syntax: cds path -control_arg

Function: translates a create_data_segment source program (CDS program) into an
object segment.

Arguments:
path
is the pathname of a CDS segment; the cds suffix need not be given.

Control arguments:

-list, -1ls
produces a source listing of the CDS program followed by object segment
information.

Notes: Because of the invocation of the PL/I compiler, the CDS run is aborted
if a severity error greater than 2 occurs.

94

create_dir

09/17/81 create_dir, cd

Syntax: c¢d paths -control_args

Function: causes a specified directory branch to be created in a
specified directory, or in the working directory. That is, it creates
a storage system entry for an empty subdirectory. See the description
of the create command for information on the creation of segments.

Arguments:
paths
are pathnames of directories to be created.

Control arguments:

-access_class STR, -acc STR
applies to each pathi and causes each directory created to be
upgraded to the specified access class. The access class can be
specified with either long or short names.

-logical_volume VOL, -1v VOL
specifies that each directory created is to be a master directory
whose segments are to reside on the logical volume named VOL.

-name STR, -nm STR
specifies an entryname STR that begins with a minus sign, to
distinguish it from a control argument.

-quota N

- specifies the quota to be given to the directory when it is created.
This argument must be specified if either the -access_class or
-logical_volume control argument is specified. If omitted, the
directory is given zero quota. The value of N must be a positive
integer, and applies to each pathi.

Access required: The user must have append permission to a directory
in order to create a subdirectory in that directory.

Notes: 1If a quota is specified and the directory being created is not
a master directory, the containing directory must have sufficient quota
to move quota to the directory being created. (See the move_quota
command for additional information.)

95

create_wordlist

02/10/79 create_wordlist, cwl

Syntax: cwl path -control_args

Function: creates an alphabetized list of all distinct words found in a
specified text segment. The list is saved in a segment created in the working
directory and given the name of the text segment with the .wl suffix
appended.

Arguments:
path
is the pathname of the text segment.

Control arguments:
-brief, -bf
do not print the number of words.
-from N, -fm N
begin processing words starting from line number N.
-header, -he
print the pathname of the text segment.
-no_control_lines, -ncl
skip control lines, i.e., lines that begin with a period.
-no_exclude, -ne
do not exclude words containing no letters (e.g., words with only special
characters or punctuation).
-no_sort, -ns
omit alphabetical sorting of the word list; words are ordered as they
appeared in the text segment and duplications are not omitted.
-to N
stop processing words after line N.

Notes: Words are delimited by white space, i.e., space, horizontal tab,
vertical tab, newline, and new pade characters. Surrounding punctuation is
removed. Completely underlined words are de~-underlined. Words containing no
letters are ignored unless -no_exclude is specified.

96

date

12/30/80 date

Syntax: date A4t

Function: returns the date abbreviation for a specified date or the
current date.

Arguments:

dt
is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current date is returned.
See date_time_strings.gi.info for valid 4t arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [date dt]

97

date_time

03/19/81 date_time

Syntax: date_time dt

Function: returns a date and time value for a specified date-time or
the current date-time consisting of: a date, a time from 0000.0 to
2359.9, a time zone, and a day of the week. The date and time value is
returned as a single, quoted string of the form

"mm/dd/yy hhmm.m zzz www" (e.g., "08/17/76 0945.7 est Tue").

Arguments:

dat
is a date-time in a form acceptable to convert_date_to_binary_. If
no argument is specified, the current date-time is returned. See
date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [date_time dt]

98

day

12/30/80 day

Syntax: day 4t

Function: returns a one- or two-digit number of a day of the month,
from 1 to 31.

Arguments:

dt :
is a date-time in a form acceptable to convert_date_to_binary_. If
no argument is specified, the current day of the month is returned.
See date_time_strings.gi.info for valid 4t arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [day dt]

99

day_name

12/30/80 day_name

Syntax: day_name dt

Function: returns the full name of a day of the week for a specified
date or the current date.

Arguments:

at
is a date_time in a form acceptable to convert_date_to_binary_. If
no argument is specified, the name of the current day is returned.
See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [day_name 4t]

100

debug

02/02/79 debug, db

Syntax: db
Function: Interactive debugging aid. Type "help probe" for another.

Data requests: three fields with the following format--
<generalized address> <operator> <operands>

Generalized address—-
[/segment name/] [offset] [segment ID] [relative offset]

Operators—-

' print

= assign

< set a break

alter program control
call a procedure

o Vv

Segment IDs--

&a argument list &i internal static section
&1 linkage section &p parameters
&t text section &s stack frame

Operands:

, operand operand first operand is output mode;
second operand is how much to print. (See Output modes)
(See Output modes)

= operand new value to use; can be octal number,

decimal number, character string, register value, instruction
format input, floating point number, pointer, bit string, or
variable.

:= operand procedure_name (argument list).

Registers:

$a $exp
$q Str
$aq $ralr
$eaq $ppr
$x0 Stpr
. $even
. $odd
. $ind
$x7 $prs
$pro Sregs
. $scu
. . $all

S$pr7

101

Output modes:

o octal e floating point with exponent
h half-carriage octal f floating point

d decimal b Dbit string

a ASCII g graphic

i instruction comp—-5 COBOL

p pointer comp-6 COBOL

s source statement comp-7 COBOL

1l code for line number comp-8 COBOL

n no output

Control requests:

.ti,J trace stack from frame i for j frames
.+i or .—-i pop or push stack by i frames

.1 set stack to i'th frame '

. Multics command

.d or .D print default values

.C,1i continue after break fault (ignore next i break fault)
.Ct,1i continue, in temporary break mode
.cr,i continue, in normal mode

.q return from debug to caller

.bri reset break i

.br reset the breaks of the default object segment
.bgr reset all breaks

.bli 1list break i

.bl 1list the breaks of the default object segment
.bgl 1list all breaks

.bei <line> execution line for break i

.be <line> execution line for all breaks of the default
object segment

.bge <line> execution line for all breaks

.boi disable break i

.bo disable the break of the default object segment
.bgo disable all breaks

.bni enable break i

.bn enable the breaks of the default object segment

.bgn enable all breaks

.bgt <line> establish a temporary global command

.bci al -rel- a2 make conditional break i

.bc al -rel- a2 make conditional all breaks of default object
segment

.bsi n set skips of break i to n

.bd name/no. set (or print) default object segment

.bp print names of all segments with breaks

.ai,m print argument i in modes m (modes--o, p, d, a, b, 1, e, £, ?7)
.f use registers from last fault

.C use crawlout registers

.mb change to brief output mode

.ml change to long output mode

.81 identifies switch_name used for input

.50 identifies switch_name used for output

102

default_wdir

07/23/80 default_wdir, dwd

Syntax: dwd

Function: returns the pathname of the default working directory of the
process in which it is invoked, as set by the change_default_wdir
(cawd) command.

Syntax as active function: [dwd]

103

defer_messages

06/17/81 defer_messages, dm

Syntax: dm destination -control_arg
Function: suspends printing of messages.

Arguments:

destination
is of the form Person_id.Project_id to specify a mailbox.
Default is the user's default mailbox.

Control arguments:
-pathname path, -pn path
specifies a mailbox by pathname. The .mbx suffix is assumed.

Notes: Deferred messages stay in the user's mailbox until the user
issues the print_messages (pm) command. The immediate_messages (im)
command restores printing of messages as they are received.

For a description of the mailbox, see the accept_messages and
print_mail commands.

104

delete

12/22/80 delete, dl

Syntax: dl paths -control_args

Function: causes the specified segments and/or multisegment files to
be deleted. See also the delete_dir and unlink commands.

Arguments:

paths
are the pathnames of segments or multisegment files. The star
convention is allowed.

Control arguments:
-brief, -bf
inhibits the printing of an error messadge if a segment or
multisegment file to be deleted is not found.
—-chase
deletes targets of links specified by paths, as well as segments.
-force, -fc
deletes the specified entries whether or not they are protected,
without issuing a query.
-long, -1lg
prints a message of the form "Deleted file <(path>" for each entry
deleted.
-name STR, -nm STR
specifies a nonstandard entry name STR (e.g., invalid starname such
as *xx_.xx.compout or name containing <.)

-no_chase
does not delete targets of links. (Default)
-query_each, =-gye
issues a query for every entry to be deleted, whether of not it is
protected. Protected segments will be noted in the query.
-query_all, -gya
lists all segments to be deleted, and issues a query as to whether
they should all be deleted or not. Unless -force is given, an
individual query will be given for protected segments.

Access required: The user must have modify permission on the
containing directory.

Notes: At least one path, or -name STR, must be specified.

In order to delete a segment or multisegment file with the delete
command, the entry must have both its safety switch and its copy switch
off. If either is on, the user is interrogated whether to delete the
entry.

105

Use delete_d4dir to delete directories. Use unlink to delete links.

106

delete_acl

02/06/80 delete_acl, da

Syntax: da path User_ids -control_args

Function: removes entries from the ACLs of segments, multisegment files, and
directories.

Arguments:

path
péthname of a segment, multisegment file, or directory. If it is -wd
or -working_dir, the working directory is assumed. The star convention
is allowed.

User_ids
are access control names that must be of the form Person_id.Project_id.tag.
All ACL entries with matching names are deleted. If User_id is omitted, the
user's Person_id and current Project_id are assumed.

Control arguments:
-all, -a
deletes all ACL entries except for =».SysDaemon.=x.
-directory, -d4r
specifies that only directories are affected. The default is segments,
multisegment files, and directories.
-segment, -sm
specifies that only segments and multisegment files are affected.
-brief, -bf
suppresses the messages "User name not on ACL." and "Empty ACL."

Access required: modify on the containing directory.

Notes:
Type "help acl_matching" for an explanation of matching strategy used on
User_ids.

107

delete_dir

10/08/80 delete_dir, dd

Syntax: dd paths ~-control_args

Function: causes the specified directories and any segments, links,
and multisegment files they contain, to be deleted. All inferior
directories and their contents are also deleted.

Arguments:
paths
are pathnames of directories. The star convention is allowed.

Control arguments:
-brief, -bf
inhibits the printing of an error message if the directory to be
deleted is not found.
-force
deletes the specified directories without issuing a query.
-long, -1g
prints a message of the form "Deleted directory <path>" for each
directory deleted.
-name STR, -nm STR
specifies a nonstandard entry name STR {(e.g., invalid starname such
as =*x.xx,compout or name which contains <.)

-guery_each, -gye
issues a query for each directory being deleted. This is the
default.

-query_all, -gya
lists all directories to be deleted, and issues one query for all of
them.

Access required: The user must have modify permission on both the
directory and its superior directory.

Notes: At least one path or -name must be specified.

If the —-force control argument is not specified, delete_dir asks
the user whether to delete the specified directory. It is then
deleted only if the user types "yes".

When deleting a nonempty master directory, or a directory containing
inferior nonempty master directories, the user must have previously
mounted the logical volume(s). If a nonempty master directory for an
unmounted volume is encountered, no subtrees of that master directory
are deleted, even if they are mounted.

Use delete to delete segments. Use unlink to delete link entries.

108

WARNING: Protected segments in pathi or any of its subdirectories are
not deleted. Segments whose write bracket is less than the current

ring (except for mailboxes and message segments) are alsc not deleted.
Consequently, the subtree is not completely deleted if it contains any
such segments. For a discussion of protected segments, see the safety
switch attribute in the MPM Reference Guide. For a discussion of ring
brackets, see "Intraprocess Access Control" in the MPM Reference Guide.

109

delete_iacl_dir

10/08/80 delete_iacl_dir, did

Syntax: did path User_ids -control_args

Function: deletes entries from a directory's initial access control
list (initial ACL) in a specified directory. A directory initial ACL
contains the ACL entries to be placed on directories created in the
specified directory.

Arguments:

path
specifies a pathname of the directory whose directory initial ACL
should be changed. If path is -wd, -working_dir, or omitted, the
working directory is assumed. The star convention is allowed.

User_ids
are access control names that must be of the form
Person_id.Project_id.tag. All entries in the directory initial ACL
that match User_id are deleted. (For a description of the matching
strategy, refer to the set_acl command.) If no User_ids are
specified, the user's Person_id and current Project_id are assumed.

Control arguments:

-all, -a
deletes the entire directory initial ACL with the exception of an
entry for x.SysDaemon.x*.

-brief, -bf
causes the messages "User name not on ACL of path" and "Empty
initial ACLY to be suppressed.

-ring N, -rg N
identifies the ring number whose directory initial ACL should be
deleted.If it is present, it must be followed by N (where user's
ring < or = N< or = 7). It can appear anywhere on the line and
affects the whole line. 1If this argument is not given, then the
.user's ring is assumed.

Access required: The user must have modify (m) permission on the
directory.

110

~delete_ijacl_seg

10/08/80 delete_iacl_seg, dis

Syntax: dis path User_ids -control_args

Function: deletes entries from a segment initial access control list
(initial ACL) in a specified directory. A segment initial ACL contains
the ACL entries to be placed on segments created in the specified
directory. ’

Arguments:

path
specifies the pathname of a directory whose segment initial ACL
should be changed. 1If path is -wd, -working_dir, or omitted, the
working directory is assumed. The star convention is allowed.

User_ids
are access control names that must be of the form
Person_id.Project_id.tag. All entries in the directory initial ACL
that match the given User_ids are deleted. (For a description of
the matching strategy, refer to the set_acl command. If no User_ids
are specified, the user's Person_id and current Project_id are
assumed.

Control arguments:

-all, -a
deletes the entire initial ACL with the exception of an entry for
.SysDaemon..

~brief, -bf
causes the messages "User name not on ACL of path" and "Empty
initial ACL" to be suppressed.

-ring N, -rg N
identifies the ring number whose segment initial ACL should be
deleted. If it is present, it must be followed by N (where user's
ring < or = N < or = 7). It can appear anywhere on the line and
affects the whole line. If this control argument is not specified,
the user's ring is assumed.

Access required: The user must have modify (m) permission on the
directory.

111

delete_message

06/17/81 delete_message, dlm

Syntax: dlm destination numbers -control_args

Function: deletes a message sent by the send_message command and saved
in a mailbox with the -hold control argument to the accept_messages
command. (See the accept_messages command for more details.)

Arguments:

destination
can be of the form Person_id.Project_id to specify a mailbex. If
destination contains either < or >, it is assumed to be the pathname
of a majlbox. This argument and the -pathname control argument are
mutually exclusive.

numbers
are message numbers as printed by the print_message command when
accept_messages -hold is in effect.

Control arguments: .

-all, -a
deletes all messages from the mailbox.

-pathname path, -pn path
specifies a mailbox by pathname. The mbx suffix is assumed. This
control argument and the destination argument are mutually
exclusive.

Notes: If no mailbox is specified, the user's default mailbox is
assumed. For a description of the mailbox, refer to the
accept_messages and print_mail commands.

112

delete_name

09/17/81 delete_name, dn

syntax: dn paths -control_arg

Function: deletes specified names from segments, multisegment files,
links, or directories that have multiple names.

Arguments:
paths
are pathnames to be deleted. The star convention is allowed.

Ccontrol arguments:

-brief, -bf
suppresses error messages when entries are not found with specified
pathnames. The default is -long (-1g).

-long, -1lg
prints error messages when entries are not found. This is the
default.

-name STR, -nm STR
specifies a nonstandard entry name STR (e.g., a name which looks
like a starname such as *.compout or name containing <).

Access required: The user must have modify permission on the parent
directory.

Notes: At least one path or -name STR must be specified.

113

delete_search_paths

09/17/81 delete_search_paths, dsp

Syntax: dsp search_list search_paths -control_arg

Function: allows a user to delete one or more search paths from the
specified search list.

Arguments:

search_list
is the name of the search list from which the specified search paths
are deleted. It must be quoted if it contains spaces or other
command language characters.

search_pathi
specifies a search path to be deleted. The search path can be an
absolute or relative pathname or a keyword. It is necessary to use
the same name that appears when the print_search_paths command is
invoked.

Control arguments:

-all, -a
specifies that the search list itself is to be deleted. Any search
paths specified are ignored. This control argument must be used to
delete all the search paths in a search list.

Notes: For a complete list of the search facility commands, see the
the add_search_paths command.

1i4

delete_search_rules

01/22/76 delete_search_rules, dsr

Syntax: dsr paths
Function: deletes current search rules.

Arguments:

paths :
are pathnames to be deleted from the current search rules.
One of the paths can be the keyword working_dir.

Notes: Site-defined keywords and home_dir and process_dir are not accepted by
delete_search_rules although they are accepted by the add_search_rules commangd.
Deletion of the keywords ijinitiated_segments and referencing_dir is discouraged
and can lead to unpredictable results.

115

Hetach_audit

12/13/78 detach_audit, dta

Syntax: dta switchname

Function: stops auditing. This removes audit_ from the specified switch and
puts the switch back the way it was before audit_ was used.

Arguments:
switchname
is the switch from which audit_ is to be removed. (DEFAULT -- user_i/o).

Notes: For further information about the audit facility, type:
help audit_
help audit_.gi
help attach_audit
help audit_editor
help display_audit_file

o MTR

116

discard_output

09/17/81 discard_output, dco

Syntax: dco -control_arg command_line

Function: executes a command line while temporarily suppressing output
on specified I/0 switches.

Control arguments:

-output_switch STR, -osw STR
where STR is the name of an I/0 switch. If no control arguments are
specified, output on the user_output I/0O switch is suppressed. If
the control argument is specified, it must appear before
command_line.

Arguments:
command_line
is a command line. It need not be quoted.

Notes: 1If the command specified in command_line cannot be executed, an
error message is printed.

117

display_audit_file

03/20/81 - display_audit_file, daf

Syntax: daf path -control_args

Function: displays an audit file. What portion of which audit file, and
in what format, is determined from the argument (if any) and control
arguments.

Arguments:
path
is the pathname of an audit file to be displayed. The path argument
and the -switch control argument are incompatible. (DEFAULT --
The audit file in use by user_i/o, if user_i/o is being audited.
If not, another switch being audited is looked for.)

Control arguments:

-switch STR, -sw STR
use the audit file associated with switch STR. (DEFAULT -- user_i/o)

—-from STRX, -fm STRX
Begin displaying the audit file with the first entry satisfying
STRX. If STRX is an entry number, then it indicates the entry of
that number. If STRX is a time, then it indicates the first entry
having a time stamp greater than or equal to STRX. If STRX is a
string, then it indicates the first entry containing the string.
(DEFAULT -- beginning of the file.)

-to STRX
Stop displaying the audit file with the first entry indicated by
STRX. STRX has the same interpretation as for -from above.

-next STRX
Stop displaying the audit file with the entry indicated by STRX.
If STRX is an entry number, then it indicates the entry this number
of entries after the first entry displayed. If STRX is a time, then
it indicates the entry this period of time after the first entry
displayed. If STRX is a string, then it indicates the first entry
containing this string after the first entry displayed.

—-last STRX
Begin displaying the audit file with the entry indicated by STRX.
If STRX is an entry number, then it indicates the entry this number
before the last entry in the file. If STRX is a time, then it
indicates the entry this period of time before the last entry in the
file. If STRX is a string, then it indicates the first entry from
the bottom of the file which contains this string.

-match STRXs
display only those entries which contain one or more of the STRXs.

—~exclude STRXs, -ex STRXs
do not display any entry containing one or more of the STRXs.

—-class STRXs
display only those entries which have a class identifier which
matches one or more of the STRXs. The STRXs can be any mixture of upper
and lower case. They are translated into upper case internally by the
command.

118

-reverse, -rv
display the entries in reverse chronological order.

—line_length N, -11 N -
Set the output line length to N. Lines will be wrapped, if they are
too long, in such a way as to keep the header margin intact.
Any line which follows a newline not originally in the audit file
entry is preceded by an asterisk.

—entry_numbers, -etn
display the entries with their associated entry numbers in the left
margin.

-class_identifiers, -cli
display the entries with their associated class identifiers in the
left margin.

-metering, -mt
display the entries with their associated metering data, time of
entry, virtual cpu time, and page faults.

-append_nl, -anl
append new lines to the end of entries which don't end in a new
line. Overrides a —no_append_nl to the left in the command line.
(DEFAULT -- newlines are appended if a "leader generating" control
argument is present, i.e. —-etn -cli and -mt. Otherwise, newlines
aren't appended.)

-no_append_nl, -nanl
prevents the addition of new lines to entries which don't end in a
new line. This control argument overrides the appending of newlines
because of "leader generating" control arguments, oOr an occurence
(to the left in the command line) of the -append_nl control
argument. (DEFAULT -- newlines are not appended if a "leader
generating" control argument is not present.)

-insert_nl, -inl
insert new lines whenever an entry is over length (as determined by
the -11 control argument or the current line length for the switch).
(DEFAULT -- newlines are inserted.)

-no_insert_nl, -ninl
prevent new lines from being inserted. This is most useful for
overriding the default. (DEFAULT -- newlines are inserted when
entries are over length.)

-output_file PATH, -of PATH
display the audit file into the segment at PATH.

Access required:
Read access on the audit file.

Notes: -

The STRX referred to above is either an argument with no leading
w." or -string followed by any argument. In the former case, STRX is
interpreted as an entry number if it is a positive integer (with no
decimal point). It's interpreted as a time if it is a positive real
number {(with a decimal point). If it's neither a positive integer nor
a positive real number, then it's interpreted as a string. In the
second case, where STRX contains -string, the following argument is
taken as the value of STRX and is always interpreted as a string
argument.

For an entry to be displayed, it must satisfy all of the
constraints specified in the control arguments. Hence, it must be
within the range of entries given by any of -from, -to, -next, and

119

-last; and it must satisfy all of -match, -exclude, and -class.

Examples:
daf -match -string -last
displays all entries containing the string "-last".
daf -from -string 10
displays all entries from the first entry containing the string "1l0".

120

do

09/17/81 do

Syntax: do command_string args
or: do -control_args

Function: substitutes arguments into a command string. The expanded
command line is then passed to the current Multics command processor
for execution. As an active function, evaluates to the expanded
command line, without executing it.

Arguments:

command_string
is a command line enclosed in quotes.

args
are character string arguments that replace parameters in
command_string.

Control arguments:
set the mode of operation of the do command, and can only be
specified if neither a command_string nor args are given.
-absentee
establishes an on unit for the any_other condition during the
execution of the expanded command line.
-brief, -bf
suppresses printing of the expanded command line (default).
-go
passes the expanded command line to the command processor (default).
-interactive
does not catch any signals. This is the default.
-long, -1g
prints the expanded command line on error_output before it is
executed or passed back.
-nogo
does not pass the expanded command line to the command processor.

Notes: Each &i (where i is from 1 to 9) found in command_string is replaced by
the corresponding argi. &(nn) can be used for argument numbers greater than 9

(nn are digits). If any argi is not supplied, each instance of &i is replaced

by the null string. Each &! in command_string is replaced by a lb-character ID
unique to the particular invocation of the do command. Each instance of && is

replaced by an ampersand.

Syntax as an active function: [do command_string args]

List of parameters:

&gi .
(where i is from 1 to 9) requests quote-doubling in the argument
as it is substituted into the expanded command line.

121

&ri
(where i is from 1 to 9) requests that the argument be requoted and
have its quotes doubled during substitution.

&n
is replaced by the actual number of args supplied.

&fi
(where i is from 1 to 9) is replaced by the actual arguments argi
through argN.

&f&n

is replaced by the last argument supplied.
&gfi

is replaced by arguments argi through argN with quotes doubled.
&rfi

is replaced by arguments argi through argN, requoted.

122

11 jan 84 dprint_laser, dpl

Syntaxe: dpl -control_args » path

Fonction: creation d'une requete d'impression 4'un segment ou d'un
fichier multisegment. Cette commande ne travaille pas directement
sur les segments- objets standards.

Argument:

path
est le pathname du segment ou du fichier multisegment; la convention
star n'est pas permise.

Arguments de controle:
Sont acceptes tous les arguments de controle de la commande
'dprint' sauf ceux indiques ci-dessous :

-header, -he
-request_type, rqt

Arguments de controle changes:
-copy N, -cp N
Le segment ou multisegment-file sera imprime en N exemplaires.
N vaut 1 par defaut et aura une valeur maximum de 9
-forms FOND
l'impression sera faite sur le fond de page designe par FOND.
I1 faut gque ce fond de page soit enregistre dans la Xerox, sinon
un message d'erreur est edite par la commande 'dpl'. En l'absence
d'argument -forms, le fond de page est blanc. On peut donner le
nom du fond de page soit en majuscules, soit en minuscules.
-line_length N, =11 N
cet argument a meme role que pour dprint a la seule difference que la
requete est rejetee tout de suite des que N > 136 (auparavant, elle
restait bloquee en queue d'attente). En outre, si N depasse le maximum
correspondant au format utilise (cf. commande laser), ce fait est
signale a l'utilisateur et il lui est demande s'il veut continuer.
-page_length N, -pl N
meme role que dans dprint. La seule difference reside dans le fait que
tout depassement de N 4du maximum correspondant au format utilise est
signale: il est alors demande a l'utilisateur s'il veut continuer. :

Arguments nouveaux:

-format XXX, -fmt XXX
l'impression sera faite suivant le format XXX, XXX etant une
chaine de 1 a 6 caracteres. Un format designe un ensemble de
parametres tels que police de caracteres, cadrage vertical ou
horizontal (c'est-a-dire orientation portrait ou paysage),
longueur de la ligne en caracteres et hauteur de la page en
lignes. XXX doit correspondre a un format connu de l'imprimante
Xerox. Un format peut etre donne soit en majuscules, soit en

123

minuscules. Le format par defaut est PAYS6.

* =lab_auto, -lba
cet argument est equivalent a la sequence d'arguments suivante, "dple
-blbl xxXx -nb 1,X,y" ou XXX est le nom du segment a lister, 'x' vaut
le page_length correspondant au format plus 3 et 'y' vaut la moitie
du line_length de ce meme format. Cet argument est incompatible avec
les arguments '-nb' et '-blbi’'.

-number PG,LG,COL , -nb PG,LG,COL
cet argument sert a demander a l'imprimante a laser une pagination
automatique. L'impression du numero de page est effectuee sur la ligne
LG a partir de la colonne COL. Seuls, les numeros positifs sont edites,
et la numerotation des pages commence a PG. Ainsi, si on desire n pages
non numerotees en debut 4'impression il faut donner a PG la valeur 1-n
(ex: pour 10 pages non numerotees PG sera egal a '-9').
-recto, -rc
Par defaut, l'impression se fait recto-verso avec les papiers standards.
Le present argument permet de demander une impression recto seulement.
-recto_verso, -rv
Dans le cas de sorties particulieres, l'impression peut se faire
recto seulement. Cet argument permet de forcer la sortie a se faire
en recto-verso.

Arguments de traitement apres impression:

-addr pathname
Cet argument permet de demander le routage par courrier du resultat
de l'impression. Quand un pathname est indique, il s'agit de celui
du segment qui contient l'adresse normalisee qui servira a l'envoi.
Le segment en question doit avoir le suffixe ".addr" qu'il n'est pas
necessaire d'indiquer dans la commande. Il doit se trouver dans le
meme directory que le segment a editer ou, a defaut, dans le home
directory du demandeur. Si aucun pathname n'est donne apres -addr,
c'est le segment Person_id.addr qui sera recherche. Si le segment
recherche n'existe pas, il y a rejet avec un message d'erreur.

La longueur de l'entryname (suffixe non compris) ne doit pas

exceder 22 caracteres.

-col XC
Cet argument permet de demander le collage soit sur le grand cote
(XC = GC ou gc), soit sur le petit cote (XC = PC ou pc). Par defaut, il n'y
a pas collage s'il y a emballage, mais il y a collage sur le grand
cote s'il n'y a pas d'emballage demande.

—emb
Le resultat 4d'impression sera mis sous enveloppe plastique des
qu'un routage par courrier est demande. Sinon, il faut le
demander explicitement par cet argument.

-papier PPPP, -pap PPPP
On peut demander que l'impression soit faite sur un papier special
designe par PPPP. Actuellement PPPP peut etre choisi parmi: perfo,
etig, rose, bleu, vert et jaune.

Acces demande: il est exXige d'avoir au moins l'acces "r" sur le segment
ou multisegment dont on veut 1'impression.

Nota sur l'adresse: l'adresse contenue dans un segment .addr doit etre

124

normalisee, ce qui donne les regles suivantes :

- il y a au maximum 7 lignes utiles,
~ chaque ligne utile comporte dans les caracteres:

1l a 9 un identificateur,
10 le numero de la ligne,
11 a xx la partie a editer (maximum 32 car.),
- la ligne 'l' est obligatoire,
- les lignes doivent etre disposees dans l'ordre de leur numero.
Pour plus de details, consulter les normes du logiciel 'adress'.

Liste des formats disponibles :

Nom ll.max pl.max polices observations

pays4 136 80 R4BOBL

pays6 136 60 MOO6BL Format 'Standard' par defaut.
pays7 132 42

pays8 110 42 R5TIBL

portl 132 60 P1012B Format 'Archivage'’

2 fois 132 car. x 60 1lig.

port2 136 70 P1012B idem portl sur 130 lignes.
(attention: ne marche pas encore

porté 100 80 Idem 'Standard' en portrait
P0612C 1 Normaux {pas d'accent.)
P0612C 2 (pas de scient. idem gque 1)
RE6BOBP 3 Gras (accent.)
R612BP 4 type 'baton' (accent.)
PO6ITE 5 Italique
portéa 100 80 R612BP Caracteres accentues
port6g 100 80 R6BOBP caracteres gras
port7 80 60 Format ‘'Courrier’
R7TIBP 1 Caracteres accentues
R7TICP 2 Caracteres scientifidques
R7TIBP 3 (pas de gras idem que 1)
PO7TDC 4 type 'baton'
PO7ITA 5 Italique
port7b 80 60 PO7TDC car. batons (ascii, pas d'accent.)
portie 99 66 PO7TDC Format pour papier ‘'etiquette’
port7s 80 60 R7TICP Caracteres scientifiques
ports 66 60 Format 'Documentation’
R8TIBP 1l Caracteres accentues
RBTICP 2 Caracteres scientifiques
POSTBC 3 Gras
R812ZBP 4 type 'baton' (accentues)
POBITA 5 Italique
port8s 66 60 RBTICP Caracteres scientifiques
port8b 66 60 RB12BP Caracteres 'baton' (accentues)
mart0l 60 40 RK2C3P Orientation portrait

Gros caracteres (accent. possible)
Espacement proportionnel

125

dprint

12/07/81 dprint, 4ap

Syntax: dp -control_args paths

Function: requests offline printing of segments and multisegment
files. This command does not work on standard object segments.

Arguments:

paths
are pathnames of segments and multisegment files; the star convention is
not allowed.

Control arguments: affect only pathnames that follow themn.
-brief, -bf
suppresses the message "j requests signalled...."
This control argument cannot be overruled later in the command line.
-copy N, -cp N
prints N copies, where N <= 4. (DEFAULT -- 1 copy)
-queue N, -g N
prints paths in priority queue N, where N <= 4. (DEFAULT -~depends
on request type specified.)
—delete, -dil
deletes paths after printing. This control argument cannot be
overruled later in the command line.

-header STR, -he STR
identifies subsequent output by the string STR. (DEFAULT -- the
requestor's Person_id) '
—destination STR, -ds STR
uses the string STR to determine where to deliver the printed
output. (DEFAULT -- the requestor's Project_id)
-notify, =-nt
sends confirmation of completed output.
-request_type STR, -rgqt STR
places paths in the queue identified by STR. (DEFAULT -- printer)
—-forms STR
specifies the type of forms to be used when processing the print
file. Standard I/0 daemon drivers ignore the forms specification
when processing print files.

-indent N, -ind N
indents left margin N columns. (DEFAULT -- Q)

-line_length N, -11 N
continues lines longer than N characters on the next line.
(DEFAULT -- depends on the request type specified)

-page_length N, -pl N
prints no more than N lines on a page. (DEFAULT -- depends on the
request type specified)

-no_endpage, -nep

126

skips to the top of a page only when a formfeed character is.
encountered in the input path. :

-single, -sg
prints any form-feed or vertical~-tab character in input as a newline
character.

-truncate, -tc
truncates any line exceeding the line length (rather than "folding" onto
subsequent lines).
-label STR, -1bl STR
puts STR at the top and bottom of every page.
-top_label STR, =-tlbl STR ’
puts STR at the top of every page.
-bottom_label STR, ~-blbl STR
puts STR at the bottom of every page.
—-access_label, -albl
puts access class of path at the top and bottom of every page.
-no_label, -nlbl
does not place any labels on the printed output.
-non_edited, -ned
prints nonprintable control characters as octal escapes.

Access required: At least "r" access to the segment or multisegment
file.

The process which performs the printing (as obtained by the
"print_request_types" command) must have at least "r" access to the
segment or multisegment file and at least "s" access to the containing
directory to verify that the user also has at least "r" access to the
segment or multisegment file.

If -delete is specified, the I/0 coordinator (normally IO.SysDaemon.z)
must have at least "m" access to the containing directory and at least
"g" access to the parent directory of the containing directory to
verify that the user also has at least "m" access to the containing
directory.

Notes: 1If invoked without any arguments, dprint gives the status of
the default printer queue.

127

dpunch

11/13/81 dpunch, dpn

Syntax: dpn -control_args paths

Function: queues specified segments and/or multisegment files for
punching by the Multics card punch. It is similar to the dprint
command.

Arguments:

paths
are pathnames of segments and/or multisegment files; the star
convention is NOT allowed.

Control arguments: affect only pathnames that follow them.
-brief, -bf
suppresses the message "j requests signalled, ...".
This control argument cannot be overruled later in the command line.
-copy N, -cp N
punches N copies, where N <= 4. (DEFAULT -~ 1 copy)
-delete, =-dl
deletes paths after punching. This control argument cannot be
overruled later in the command line.
-destination STR, -d4s STR
uses the string STR to determine where to deliver the deck.
(DEFAULT -- the requestor's Project_id)

-header STR, -he STR
identifies subsequent output by the string STR. (DEFAULT -- the
requestor's Person_id)
-mcec
punches the specified paths using character conversion. (DEFAULT)
-notify, -nt
sends confirmation of completed output.
~queue N, -g N
punches specified paths in priority queue N (N <= 4). (DEFAULT --
depends on the request type specified.)

~-raw
punches the specified paths using no conversion.
-request_type STR, -rgt STR
places paths in the queue identified by STR. (DEFAULT -~ punch)
-7punch, -7p)
punches the specified paths using 7-punch conversion.

Access required: At least "r" access to the segment or multisegment
file.

The process which performs the punching (as obtained by the

128

"print_request_types" command) must have at least "r" access to the
segment or multisegment file and at least "s" access to the containing
directory to verify that the user also has at least "r" access to the
segment or multisegment file.

If -delete is specified, the I/0 coordinator (normally IO.SysDaemon.z)
must have at least "m" access to the containing directory and at least
"s" access to the parent directory of the containing directory to
verify that the user also has at least "m" access to the containing
directory.

Notes: 1If invoked without any arguments, dpunch gives the status of
the default punch queue.

129

dump_segment

12/07/81 dump_segment, ds

Syntax: ds path offset length -control_args
or: ds seg_no offset length -control_args

Syntax as active function: [ds path offset ~control_args |
or: [ds seg_no offset -control_args]

Function: prints, in octal or hexadecimal format, selected portions of
a segment. It prints out either four or eight words per line and can '
optionally be instructed to print out an edited version of the ASCII,
BCD, EBCDIC (in 8 or 9 bits), or 4-bit byte representation.

The active function returns a single word in octal or hexadecimal
representation.

Arguments:
path
is the pathname or (octal) segment number of the segment to be
dumped. If path is a pathname, but looks like a number, the
preceding argument should be the -name (or -nm) control argument
(see below). The star convention is allowed for the command only.
offset
is the (octal) offset of the first word to be dumped. If both
offset and length are omitted, the entire segment is dumped.
length .
is the (octal) number of words to be dumped. If offset is supplied
and length is omitted, 1 word is dumped.
seg_no
is the octal segment number of a segment to be dumped.

Control arguments:

-4bit
prints out, or returns, a translation of the octal or hexadecimal
dump based on the Multics unstructured 4-bit byte. The translation
ignores the first bit of each 9-bit byte and uses each of the two
groups of four bits remaining to generate a digit or a sign.

-address, -addr
prints the address (relative to the base of the segment) with the
data. This is the default.

-bcd
prints the BCD representation of the words in addition to the octal
or hexadecimal dump. There are no nonprintable BCD characters, so
periods can be taken literally. This control argument causes the
active function to return BCD.

-block N, -bk N
dumps words in blocks of N words separated by a blank line. The
offset, if being printed, is reset to initial value at the beginning

130

of each block.

-character, -ch, -ascii
prints the ASCII representation of the words in addition to the
octal or hexadecimal dump. Characters that cannot be printed are
represented as periods. This control argument causes the active
function to return ASCII.

-ebcdic9
prints the EBCDIC representation of each 9-bit byte in addition to
the octal or hexadecimal dump. Characters that cannot be printed
are represented by periods. This control argument causes the active
function to return 9-bit EBCDIC.

-ebcdics8 ,
prints the EBCDIC representation of each eight bits in addition to
the octal or hexadecimal dump. Characters that cannot be printed
are represented by periods. If an odd number of words is requested
to dump, the last four bits of the last word do not appear in the
translation. This control argument causes the active function to
return 8-bit EBCDIC.

—entry_point name, -ep name
specifies that the offset of the first word to be dumped is
relative to the location defined by the externally available symbol
"name". This control argument can only be used for object segments
(created by a compiler or by the create_data_segment program).

-header, -he
prints a header line containing the pathname (or segment number) of
the segment being dumped as well as the date-time printed. The
default is to print a header only if the entire segment is being
dumped.

-hex8
prints the dumped words in hexadecimal with nine hexadecimal digits
per word rather than octal with 12 octal digits per word.

-hex9
prints the dumped words in hexadecimal with eight hexadecimal digits
per word rather than 12 octal digits per word. Each pair of
hexadecimal digits corresponds to the low-order eight bits of each
9-bit byte.

-long, -1g9
prints eight words on a line. Four is the default. This control
argument cannot be used with -character, -bcd, -4bit, -ebcdic8,
-ebcdic9, or -short.

-name PATH, -nm PATH
indicates that PATH is a pathname even though it may look like an
octal segment number.

-no_address, -nad
does not print the address.
-no_header, -nhe
suppresses printing of the header line even though the entire
segment is being dumped.
-no_offset, -nofs
does not print the offset. This is the default.
-offset N, -0ofs N
prints the offset (relative to N words before the start of data
being dumped) along with the data. If N is not given, 0 is assumed.
-short, -sh

131

compacts lines to fit on a terminal with a short line length.

Single spaces are placed between fields, and only the two low-order
digits of the address are printed, eXxcept when the high-order digits
change. This shortens output lines to less than 8C characters.

Notes:
Only one of the control arguments -ebcdic8, -ebcdic9,
—-character, -bcd, or —-4bit can be specified.

When invoked as an active function, dump_segment returns only one word
of information, which is located at offset within the segment. If the
-4bit, -becd, -character, -ebcdicS, -ebcdic8, -hex8, or -hex9 control
arguments are invoked, the information is returned in the specified
format only. All other arguments are ignored in active function
invocation.

132

ed

30/12/83 ed

Syntax: ed

Fonction: Appelle l'editeur de texte ed.

Note:

Pour plus de precisions on pourra consulter le segment info ed.gi par la
commande: help ed.gi. Ou s'adresser a D. Arditti CNET/PAA/TIM/MTI
(Tel: 638 55 05).

133

ed.gi

30/12/83 ed
Generalites:

ed est un editeur de texte fonctionnant avec des numeros de 1ligne
physiquement presents dans 1le segment edite. Ceci est un gros avantage
lorsqu'on veut ecrire, modifier ou mettre au point des programmes ecrits en
fortran ou en basic (et meme en pll). En effet ces numeros de lignes ne sont
pas modifies 1lorsqu'on effectue des insertions ou des suppressions (ceci
contrairement a ce qui se passe avec des numeros logiques). D'autre part ces
numeros de ligne permettent d'utiliser de maniere particulierement commode les
possibilites d'edition 1locales offertes par certains terminaux (mode message
ou ligne, mode page ou bloc). Enfin ces numeros sont reconnus par probe.

ed a ete ecrit en utilisant des modules empruntes a l'editeur de texte
Multics FAST. Pour cette raison ed ressemble beaucoup a FAST cependant on a
essaye d'apporter gquelques ameliorations et commodites supplementaires et
surtout on s'est attache a supprimer toutes les restrictions d'utilisation de
Multics introduites (volontairement) dans FAST. Comme FAST ressemble a
l'ancien editeur de GCOS les nostalgiques de GCOS seront probablement combles.

ed est a priori pense pour etre utilise avec un terminal ayant des
possibilites d'edition locales: mode ligne (ou message), mode page (ou bloc).
Ceci explique 1le petit nombre de commandes disponibles. Cependant ed peut
fonctionner avec n'importe quel type de terminal.

Fonctionnement:

A l'entree dans ed (apres avoir execute la commande: ed) l'utilisateur
dispose d'un buffer de travail vide.

L'utilisateur peut alors envoyer.

- Des "lignes de texte".
- Des commandes de ed.
- Des commandes Multics.

Les "lignes de texte":

Les "lignes de texte"™ sont reconnues par ed parce qu'elles commencent par un
nompbre (precisement le premier caractere non blanc envoye est un chiffre). Ce
nombre est le numero de ligne. La ligne de texte (numeroc de ligne compris)
vient s'inserer dans le buffer de travail a la place indiquee par Ce numero.
Si une 1ligne existe deja avec Cce meme numero elle est detruite et remplacee
par la nouvelle. Pour supprimer une ligne frapper simplement son numero suivi
d'un CR.

Les commandes de ed:

Les commandes de ed sont les suivantes (nom suivit de son abreviation):

- - 134

- print_text p
- read_text r
- write_text w
- locate 1

- substitute s
- delete_text d

- new n

- resequence rsq
— input input

- num num

- info ?

- move_text mt

- merge_text mgt -
- quit q

- quit_force 0

Pour obtenir une description precise de chacune de ces commandes faire (apres
etre entre dans ed) : help <(nom de commande>.

Les commandes Multics:

Lorsqu'il ne s'agit ni d'une ligne de texXte ni d'une commande de ed la
commande frappee par l'utilisateur est consideree comme une commande Multics
et executee normalement. Ce point permet de realiser n'importe quelle
operation sans dquitter ed : comme FAST, ed est un sous systeme mais
contrairement a FAST, ed n'apporte aucune limitation a Multics. ’

Si 1l'on veut executer une commande Multics commencant par un chiffre ou
portant le meme nom qu'une commande de ed il suffit de faire preceder cette
commande par un ";".

Le pathname par defaut:

Le buffer de travail possede un pathname par defaut. C'est ce pathname qui
sera utilise par la commande write_text (w) pour sauver ce buffer lorsque la
commande w est utilisee sans pathname. Ce pathname se decompose en directory
par defaut et nom par defaut. Le pathname par defaut est initialise par les
commandes read-text (r) et new (n) avec pathname (s'il n'a pas ete initialise
il est vide). La commande w avec pathname modifie le pathname par defaut. 1la
commande info (?) permet entre autre informations de connaitre la directory
par defaut et le pathname par defaut. ’

"L.'abbrev PN":

Lorsqu'on travaille en mode "abbrev" ed initialise et met constament a jour
une "abbrev" nommee PN (PathName) dont le contenu est le pathname par defaut
prive (lorsqu'il existe) de son suffixe .fortran .basic ou .pll.

Cette "abbrev" peut etre utilisee de diverses manieres:

- Pour compiler (en fortran): ft PN -1n
- pour executer le code objet : PN

On pourra de plus creer le jeu d'"abbrev" suivant qui est tres commode:
- FT do "ft PN -1n -ot"
- RUN do "ft PN -1n ~tb;PN"
La premiere compile (en fortran) avec l'option -ot (optimiseur). La seconde
compile (en fortran) avec l'option -tb (pour utiliser avec probe) et execute.

135

Commande Multics "piegees™".

Les commandes Multics suivantes (nom suivi de l'abreviation) sont "piegees"
par ed.

- ready_off raf
- ready_on rdn
- abbrev ab
- .quit .
- logout L

Dans ce contexte "piegee" signifie executee sous le controle de ed. Comme
explique Pplus haut 1le ";" permet d'echapper a ce controle. Il est alors
extremement dangereux d'utiliser le ";" dans ce but.

Message ready:

Apres chaque commande Multic on obtient dans les conditions habituelles le
message ready standard. Apres certaines commandes de ed on obtient un message
ready precede de "ed" ou "ed ". Le " " signifie que le buffer de travail n'a
pas ete sauve.

136

edm

07/23/75 edm

Syntax: edm path

Function: creates or edits ASCII segments.

Arguments:
path
is the pathname of the segment to be edited.

Notes:

For the "s" and "c" requests, the delimiter may be any character
not in the strings sl and s2; c/a/b/ and cxaxbx work the same.
If the first string is empty, characters go in at the front.

For the "g" request, if a "w" has not been done since the last
change to the text then edm warns the user that changes

made may be lost and asks whether the user still

wishes to exit. If no changes have been made since

the last "w" then the user exits directly.

The "gf" request bypasses this check.

Modes: edm has three modes ~- input, edit, and comment. If the path argument is
specified and the segment is found, edm begins in edit mode; otherwise, it
begins in input mode.

In edit mode, edm accepts and performs edit requests.

In input mode, all lines typed are appended to the file until a line
consisting of a period (".") is typed, causing it to return to edit mode.

In comment mode, one line at a time of the file is printed without carriage
return, and the user can append to the end of the line by typing a continuation,
or can type "." to cause a return to edit mode.

Requests: in edit mode the following are valid.

. enter input mode; exit when a line with only "." is typed
N back up N lines

enter "comment" mode; exit when a line with only "." is typed
print current line number

go to bottom of file, enter input mode
N /sl/s2/ <change all occurrences of string "sl" to "s2" for N lines
N delete N lines
updelete delete all lines above current line
E line execute "line" as a Multics command line

f string find a line beginning with "string"

i line insert "line" after current line

00U N~

merge path insert segment "path" after current line
move M N Dbeginning with line M, remove N lines and insert
them after the current line.

137

k enter brief mode (no response after f, n, 1, ¢, s)
1 string 1locate a line containing "string"
n N move down N lines
p N print N lines
g exit from edm (See Notes)
gf exit directly from edm with no question
r line replace current line with "line"
N /sl1l/s2/ same as "c"
go to top of file
enter verbose mode (opposite of "k")
path write edited copy of file into "path" (See Notes)
upwrite path write and delete all lines above current line into "path"

g <t »

B

138

emacs

02/24/82 emacs

Syntax: emacs Pathnames -control_args

Function: invokes the emacs editor.

Arguments:

Pathnames
One or more pathnames to be read into emacs buffers. They may be starnames
or archive component names. If the -mc or -ap control argument is used,
they may be interpreted differently or not at all.

Control arguments:

-no_starup, -ns
Inhibits execution of the user's start_up.emacs file. The
start_up.emacs is executed by default.

« -query

Queries the user for the terminal type to be used by emacs.
The default is to try to determine the terminal type from the
communications terminal type set with set_tty or the ttp preaccess
request, and to query if no terminal type can be found that way.

-ttp
CTLname specifies that emacs should use CTLname as a terminal type.
CTLname may be the absolute or relative pathname of an emacs
terminal ctl program, or a reference name of same. See
>docr>ss>emacs>ctl-writing.info for more details. The default is
explained under the -query control argument.

-mc
PROGRAM loads the lisp program located at the pathname PROGRAM into
the lisp environment when emacs is initilaized.

-apply)
FUNCTION Args, —-ap FUNCTION Args Runs the lisp function FUNCTION as
the first function in the emacs environment, in place of the usual .
start_up mechanism. The arguments Args are given to FUNCTION as
arguments. If this argument is used, the PATHNAME arguments are
interpreted by this function, if at all.

139

enter_abs_request

10/01/80 enter_abs_request, ear

Syntax: ear path -control_args

Function: requests that an absentee process be created. This process executes
commands from a control segment. The control segment is a list of input lines
to the process (type "help exec_com").

Arguments:

path
is the pathname of the absentee control segment; the absin suffix need
not be given.

Control arguments:

—arguments STRs, —~ag STRs
passes the arguments STRs to the absentee process.
This control argument must come last, since everything after it on the
command line is taken as arguments to the absentee process.

-brief, -bf
suppresses the message "N already requested...".

~comment STR, -com STR
associates a comment with the request; it can be printed by the lar
command. STR nmust be enclosed in quotes if it contains spaces or other
command language special characters.

-deferred_indefinitely, -d4dfi
delays the creation of the absentee process indefinitely.
It is created when the operator releases the request.

-foreground, -fg
enters the request into the foreground queue; the default is one of
the priority queues (see the "-queue" control argument).
-limit N, -1i N
places a limit of N seconds on the CPU time the absentee process uses.
-long_id, -1lgid
prints the long request_id. Default is to print the short request_id.
Type "help request_ids".
-notify, -nt
notifies the user of whether a job is logged in, logged out, or deferred.
-output_file path, -of path
specifies the output segment.

-proxy User_id
causes the absentee process to be created with the specified User_id.
This feature is primarily for the RJE facility; its use is controlled by the
system administrator.

-gqueue N, -g N
indicates the priority queue; the default queue is defined by the
system administrator. For convenience in writing exec_coms and
abbreviations, the word foreground or fg following the =-queue

140

control argument performs the same function as the -foreground
control argument.

-resource STR, -rsc STR
specifies the resources (e.g., tape drives) that are needed by the
absentee process. The process is not created until the resources are
available. STR must be enclosed in quotes if it contains blanks or other
delimiters. Type "help reserve_resource" for a description of the
syntax of STR.
-restart, -rt
starts the computation over again from the beginning if interrupted
(e.g., by a system crash). The default is not to restart.
-secondary, =-secC
indicates that a foreground request should be logged in as a secondary
process (subject to preemption) if no primary slots are available.
-sender STR
enters only requests from sender STR; usually an RJE station identifier.
-time dtime, -tm dtime '
delays creation of the absentee process until a specified time.

Notes: Unless it says otherwise, an error message means that the request was
not submitted. :

141

enter_pretrieval _request

09/17/81 enter_retrieval_request, err

Syntax: err path -control_args

Function: gueues volume retrieval requests for specific segments,
directories, multisegment files, and subtrees.

Arguments:

path
is the pathname of a Segment, directory, or node of a subtree. The
star convention is not allowed.

Control arguments:
-brief, -bf
supresses printing of the ID and number of requests in queue.
~from DT, -fm DT
specifies that the search for path and all inferior branches, if
specified, stops at time DT. Thus, objects dumped before time DT
are not recovered. Time DT must be acceptable to the
convert_date_to_binary_ subroutine. If the control
argument is not specified, all valid dump volumes are searched.
-long, -1lg
prints the long ID of the request. The default is to print the
short 1ID.
-multisegment_file, -msf
specifies that the object named in path is a multisegment file and
that all of its components are to be recovered.

-new_path newpath
specifies that if the requestor has the correct access to retrieve
the segment specified in path above (which must already exist) and
the correct access to create a segment with the pathname newpath,
then the object described/identified by path is retrieved into
newpath.

-notify, -nt
specifies that the user is to be notified by online mail of the
success or failure of the request. The default is to not notify the
user.

-previous, -—-prev
specifies that the object to be retrieved is the one dumped prior to
the object presently online. The default is to always retrieve the
most recent copy. By specifying this control argument, the
requestor can retrieve successively earlier copies of an object.

-queue N, -g N
gueues requests in priority gqueue N. The default is queue 3.
-subtree, -subt
specifies that the subtree inferior to the directory specified in
path as well as the directory is to be retrieved. 1If a subtree is

142

found intact after a directory is recovered, then no further action
is taken, unless a time interval has been specified. See "Notes™"
for more information. The default is not to retrieve subtrees.

-to DT
specifies that the search for path and all inferior branches, if
specified, proceeds from time DT backwards. Thus, objects dumped
later than time DT are not recovered. DT must be acceptable to the
convert_date_to_binary_ subroutine. If this control argument is
not specified, time DT is assumed to be the start of the retrieval
operation.

Access reguired:

The user must have write access or modify permission to an object in
order to retrieve it. If an object has been deleted, then append
permission on the containing directory is also required.

Notes: In certain cases where a directory is damaged, the inferior
subtree may be unavailable until the directory is recovered. When a
directory is recovered, and the subtree control argument is specified,
a check is made to see if the subtree is available, and if so,
retrieval is assumed complete.

Retrieval requests of objects for which the online copy is more recent
or the same as the dump copy are refused, unless the -previous, -from,
or —-to control arguments are used.

The pathnames of the segments and directories to be retrieved need not
be specified as a set of primary names. Any set of valid entrynames is
acceptable.

143

exec_com

01/11/82 exec_com, ec

Syntax: ec path ec_args

Function: executes programs written in the exec_com language, used to
pass command lines to the Multics command processor and pass input
lines to commands reading input. The syntax described here is known

as Version 2, for which the first line of the exXec_com program must

be the line consisting of "&version 2". For a description of Version 1
syntax, type "help vlec".

Arguments:

path
is the pathname of an exec_com program, written using the constructs
described in this info segment. The ec suffix is assumed if not
specified. The star convention is NOT allowed.

ec_args
are optional arguments to the exec_com program, and are substituted
for parameter references such as &l. See "List of parameters™.

Syntax as an active function: [ec path ec_args]

List of parameters:

&1 - &9
expand to the 1lst through 9th ec_args, or to defaults defined by a
&default statement or to null string if there is no corresponding
ec_arg. The string &0 is invalid.

&(1) - &(9)
are synonyms for &1 - &S.

&(11), &(1l2), etc.
expands to the corresponding ec_arg, or to a default defined by
&default or to null string if there is no corresponding ec_arg.
The parentheses are required when there are two or more digits.

&gl - &gS

&gq(1), &g(ll), etc.
expands to the corresponding argument with quotes doubled according
to the quote depth of the surrounding context. See "Notes on
quoting". This parameter ensures that quotes in the argument to
exec_com are handled correctly under the quote-stripping action of
the command processor.

&rl - &rS

&r(1), &r(ll), etc.
expands to the corresponding argument enclosed in an added layer of
quotes, and internal quotes doubled accordingly. See "Notes on
quoting". This parameter keeps the value of the argument as a
single unit after one layer of quote-stripping by the command
processor.

144

&n .
expands to the number of ec_args specified to exec_com.
&fl - &f£9
&f(1), &f(1ll), etc.
expands to a list of the Nth through last ec_args separated by
spaces. If N is greater than the value of &n, expands to null string.
&gfl - &gf9
&gf(1), &gf(1ll), etc.
expands to a list of the Nth through last ec_args, with quotes
doubled, separated by spaces. If N is greater than the value of &n,
expands to null string. This parameter is equivalent to:
&gN &gN+1 &gN+2

&rfl - &rfS

&rf(l), &rf(1l), etc.
expands to a list of the Nth through last ec_args, individually
requoted, separated by spaces. If N is greater than the value of
&n, expands to null string. This parameter is equivalent to:
&rN &rN+1 &rN+2

&f&n, &gf&n, &rf&n
expands to the last ec_arg spe01fled to exec_com, either as is,
with quotes doubled, or requoted.

&ec_dir
expands to the pathname of the directory containing the exec_com
currently running. It can be used to call other exec_com's in the
same directory.

&ec_name
expands to the entryname of the exec_com currently running, with
any ec or absin suffix removed (the absin suffix is for an exec_com
invoked by the absentee facility; type "help ear").
This parameter can be used to simulate entrypoints in an exec_com
segment, by adding multiple names to the segment and transferring
to a different &label depending on the name invoked.

&ec_path
expands to the expanded, suffixed pathname of the current exec_com.

&ec_switch
expands to the name of the I/0 switch over which the exec_com
interpreter is reading the exec_com.

List of value expressions:
(All of these constructs can be nested arbitrarily inside each
other.)

& (NAME)
expands to the value assigned to the variable NAME by a previous
&set statement in the same exec_com. If NAME contains &'s, it is
first expanded. Therefore, &() constructs can be nested. However,
&'s in the expansion are not re-expanded. A second level of
expansion must be specified, therefore, by &(&()).
If NAME has not been assigned a value by &set, an error occurs.
Variable names are allowed to contain any characters except &
and cannot consist solely of digits.

&(N)
where N is a positive integer, exXpands to the value of the Nth
ec_arg to exec_com, or if there is no Nth ec_arg, to the last
default value assigned to argument N by a &default statement, or if

145
no default value was assigned, to null string.

&g(NAME), &q(N)
expands to the same thing as &(NAME) or &(N), but with quotes
inside the value doubled according to the gquote depoth of the
surrounding context.

&r{NAME), &r(n)
expands to the same thing as &(NAME) or &(N), but requoted and
with internal quotes doubled.

&[ACTIVE STRING], &||[ACTIVE STRING]
expands to the return value of an active string by calling the
command processor. This construct ends with the matching right
bracket. The &||[...] construct is used in &set statements to treat
the expansion as a single argument to &set. It is important to note
that &[...] active strings are expanded by exec_com, whereas [...]
strings are expanded at command line execution time. Therefore,
||{...] and not &||[...] must be used in a command line to treat
the expansion as a single command argument.

List of literals:
Also see "Notes on white space".
&H...ll)
encloses an arbitrary character string to be taken literally.
Quotes inside the string must be doubled, and the closing undoubled
quote ends the literal string.
&&
expands to a single & character, not further expanded.
&, &(N)
expands to a single ampersand character (ASCII 046), in which case
it is identical to &&, or to N ampersands where N is a positive
integer.
&SP, &SP(N)
expands to a single space character (ASCII 040) or to N spaces.
&BS, &BS(N)
expands to a single backspace character (ASCII 010) or to N
backspaces.

&HT, &HT(N)
expands to a single horizontal tab character (ASCII 011) or to N
horizontal tabs.
&VT, &VT(N)
expands to a single vertical tab character (ASCII 013) or to N
vertical tabs.
&FF, &FF(N), &NP, &NP(N)
expands to a single form-feed character (ASCII 014) or to N
form-feeds.
&NL, &NL(N), &LF, &LF(N)
expands to a single newline character (ASCII 012) or to N newlines.
&QT, &QT(N)
expands to a single double-gquote character (") or to N of them.
&!
expands to a Multics 15-character unigque name, for example
"!BBBhjBnWOpGbbc". Multiple occurrences of &! within the same
exec_com expand to the same string.

List of predicates:

w,

146

&is_defined(NAME)
expands to "true" if the variable named NAME has been assigned a
value by an &set statement in the current exec_com, "false"
otherwise (See "Notes on variables"). This construct expands to
"true" if &(NAME) can be expanded, "false" if &(NAME) is an error.

&is_defined(N)
where N is a positive integer, expands to "true" if an Nth ec_arg
was specified to exec_com or an Nth default was defined via the
&default statement (see "List of assignment statements"), "false"
otherwise.

&is_absin
expands to "true"™ if the exec_com is being executed by the
absentee facility, "false" if it is being executed by the exec_com
command or active function.

&is_active_function, &is_af
expands to "true" if the exec_com is being executed by the exXec_com
active function, "false" otherwise.

&is_attached
expands to "true" if input is currently attached via an &attach
statement, "false" otherwise. See "Notes on input attachment".
Input is always attached when running as an absentee.

&is_input_line
expands to "true" if the line in which it appears is being read as
~an input line by some command, "false" otherwise.

List of control statements: ‘

&attach
causes any commands subsequently invoked in command lines to read
their input from the exec_com rather than from the terminal.
See "Notes on input attachment".

&detach
causes any commands subsequently invoked in command lines to read
their input from the terminal. This is the default. See "Notes on
input attachment".

&if EXPRESSION
expands EXPRESSION to get a true or false value. EXPRESSION can
contain any exec_com-expandable constructs, such as &[...]
(See "List of value expressions"). If the expanded value of
EXPRESSION is "true", the following &then statement (if any) is
executed next. If the value is "false", the following &else
statement (if any) is executed next. If the value is neither "true"
nor "false", an error occurs. See "Examples of if statements”.

&then LINE

&then &do LINES &end

&else LINE

&else &do LINES &end
where LINE is any exec_com line, including another &if statement.
LINE is executed or not depending on the value of the preceding
&if clause. The &then and &else statements, unlike other exec_com
statements, are allowed to appear on the same line with one
another and with &if. See "Examples of if statements"”.
The contents of a &do-&end block reference the same variables as
the containing exec_com. No &goto's are allowed intc a &do-&end
block from outside it.

&goto LABEL

147

causes the next statement to be executed to be the statement
following the first occurrence of "&label LABEL" in the
exec_com.

&label LABEL
specifies a target for "&goto LABEL" and is otherwise ignored.
The string LABEL can contain any characters.

&quit

terminates execution of the exec_com. If the program was invoked
by the exec_com active function, the active function return value
is null string.

&return LINE
terminates execution of the exec_com. If the program was invoked
by the exec_com active function, the active function value is the
(expanded) value of LINE, the rest of the line. If the program was
invoked by the exec_com command, the expanded value of LINE is
printed on the terminal.

List of assignment statements:

&set NAMEl1l VALUEl ... NAMEn VALUEn
assigns values to the variables NAMEl through NAMEn, which are
created if no assignments for them already exist. All NAMEJj and
VALUEj arguments are fully expanded before any values are set.
Therefore, the statement:

&set a &(b) b &(a)
exchanges the values of the variables a and b. Arguments to &set
are delimited by white space. White space and literals inside them
must be enclosed in "...", for example:

&set answer "&[response Answer?]"
Alternatively, the &||[...] construct can be used, causing the entire
return value to be taken as a single argument:

&set answer &||[response Answer?]
There is no restriction on the lengths of NAMEj or VALUEj; NAME]
cannot be all digits. If VALUE3j is the unquoted keyword &undefined,
any existing value for NAMEj is deleted, and the &is_defined(NAMEj])
construct will expand to "false".

&default VALUEl ... VALUEn
assigns default values for the exec_com parameters &{(1) through &(n).
The default value of &(j) only matters if no jth ec_arg was
specified to exec_com. The &(j) parameter reference expands to the
value of the jth ec_arg, or if there is none, to the jth default
value set by &default, or if there is none, to null string.
VALUEj arguments are separated by white space, and each is fully
expanded before default values are set. White space and literal 's
in them must be enclosed in &"...". If VALUEj is the keyword
&undefined, no jth default value is set. This keyword is used as
a place-holder to skip the jth position.

List of printing statements:

&print LINE
prints the expanded remainder of the line, followed by a newline
character. If &print appears on a line by itself, a single newline
character is printed.

&print_nnl LINE
prints the expanded remainder of the line, without appending a

148
newline character.

List of tracing statements:

&ready on

&ready off
turns ready messages on or off. Turning them on causes the system
ready procedure to print a ready message when it is called.
The default is off. This statement does not affect whether the
ready procedure is called. The ready procedure is normally called
after the execution of a command line (type "help ready_on").
The &ready statement is ignored in the absentee environment.

&ready_proc on

&ready_proc off -
determines whether or not the system ready procedure is called
after each command line is executed. The default is on for the
exec_com command, off for the active function. This statement is
ignored in the absentee environment.

&trace TYPES STATE &prefix PREFIX &osw SWITCHNAME
sets tracing for one or more kinds of lines specified by TYPES.
TYPES can be any combination of the following:
&command command lines.
&comment comments, including those sharing other lines.
&control control lines, for example &print....
&input lines being read as input to some command.
The default if TYPE is omitted is all four types.

STATE can be one of the following:
off, false disables tracing entirely.
on, true enables tracing, in whichever of the following
modes was last specified. The default mode is
"gexpanded" for command and input lines, "&both"™
for control lines.)
(continued)

&unexpanded prints lines as they appear in the exec_com
segment. Implies "on".

&expanded prints lines after all expansion has been done.
Implies "on".

&all prints at each stage of expansion. Implies "on".

&both prints each line as it appears in the exec_com,
and again after all expansion. Implies "on".

Defaults for ec's invoked by the exXec_com command/active function
are "&expanded" for command and input lines, "&unexpanded" for
control lines, and "off" for comments.

Defaults in the absentee environment are "&expanded" for command and
control lines, "off" for control lines and comments.

PREFIX specifies a string to be printed at the start of each line.
Default prefixes are all null string.

SWITCHNAME specifies an I/0 switch on which to write the trace.
The default for all types of lines in ec's invoked by the exec_com
command or active function is user_output. The default in the
absentee environment is user_io.

149

Notes on absentee environment:

An exec_com/absin runs in the absentee environment only when it has
been invoked directly by the absentee facility, ie. is running an
absentee process. Exec_com's called within an absentee process are said
to run in the normal exXec_com environment.

Input lines in an absentee process come from the absin segment running
the process. These, along with output lines, are directed to an

absout file. Since both input and output lines are written to the same
switch, the default switch is chosen to be user_io for the absentee
environment rather than user_output as for exec_com's. This default
applies to all tracing, and ensures that even if user_output is
redirected somewhere, the input lines driving the process still appear
in the absout.

The &attach and &detach statements have no effect in the absentee
environment, since input to the absentee process always comes from the
absout file. The &is_attached predicate always returns true.

The &ready and &ready_proc statements also have no effect in the
absentee gnvironment. Instead, the ready_on and ready_off commands
should be used.

Notes on version:

The current version of exec_com is known as Version 2. In many ways

similar to the o0ld Version 1, it adds automatic variables, parameter
defaults, literal character escapes, indentation, comments on lines,
line continuation, expansion of active strings in control lines, and
tracing of comments and control lines.

In addition, there are two incompatible changes between the versions.
Whereas V1 leaves unrecognized &strings alone, V2 rejects them as
syntax errors. This change makes V2 an extensible language.

Secondly, V2 parses lines into control keywords and tokens (separated
by whitespace) before expansion, so that expansion can only change the
values of tokens but not the syntax of a line.

A Version 2 exec_com has "&version 2" as its first line. If this first
line is not present, the exec_com is interpreted as Version 1.

Version 1 exec_com's can optionally begin with "&version 1"; at some
future time, Version 2 will be the default and "&version 1" will be
required.

A conversion command is available to translate Version 1 exec_com's to
Version 2. Type "help cvec".

Notes on white space:

White space (SPACE, HORIZONTAL TAB, VERTICAL TAB, and FORM-FEED)

is ignored at the beginning and end of each line. As a result,
eXec_com lines can be indented freely. Intentional white space at the
beginning or end of a line (for example, an editor input line) must be
-specified by literal escapes such as &SP. See "List of literals".

Notes on comments:

i

150

Comments are specified by the character sequence &—- anywhere in a line.
Where this sequence appears (outside of &"..."), the remainder of the
line is a comment and can contain any characters. White space preceding
the comment, if any, is ignored. Therefore, comments can be aligned

at a particular column without affecting the executable text.

White space before a comment can be specified by the literal escapes
described in "List of literals".

Notes on continuation:

Long command lines and other portions of text that must not be broken
can be continued on successive lines by means of the character sedquence
&+ at the beginning of each continuation line. White space preceding
the &+ is ignored and whitespace following the &+ is part of the
executable line.

Continuation is not affected by intervening comments, whether at the
end of executable text lines or on lines by themselves. This feature
can be used to comment parts of statements.

Notes on quoting:

The exec_com interpreter strips one layer of exec_com gquotes (&"...")
from the text. It does not perform command processor-type stripping of
regular quotes ("...").

To defeat one or more levels of command processor quote-stripping, the
values of variable and parameter expansions can be quote-doubled or
requoted using the "g" and "r" prefixes. Quote-doubling doubles
existing quote characters in a string according to the depth of quotes
inside which the string is currently nested, so that one level of
quote-stripping by the command processor will result in the internal
quotes looking the same as they do inside the original string.
Requoting goes a step further by first gquote-doubling, then surrounding
string with an additional layer of quotes, thus causing the entire
string to remain a single argument after one level of quote stripping
by the command processor. In the examples below, "Level" refers to the
number of levels deep in quotes that the parameter reference appears in
the exec_com text. Assume that the value of the first ec_arg to
exec_com is the string a"b containing a single quote character:

&1 &9l &rl
Level 0 a"b a"p ngnupn
Level 1 "a"pb" wanwpw nungnnnupNnn
Level 2 mnngnpuun nnngnwnngnen L P N DR oL

The exact number of quote characters is unimportant; the important
thing is that &g protects internal quotes from one level of quote
stripping by the command processor, and &r ensures that the

value remains a single argument to the comand processor. These prefixes
are very useful since, if the value of the first ec_arg (for example)
contains a space, the value of &1l substituted into a command line will
be parsed into more than one command line argument.

If a value is null, the &g prefix does not affect it, and the &r prefix
results in a pair of quotes, doubled according to the quote depth of
the context. ‘

151

The "g" and "r" prefixXes can be used in the following constructs:
&ql, &qg(l) &rl, &r(1)

&gqfl, &gf(l) &rfl, &rf(l)

&g&n, &gf&n &r&n, &rf&n

&g(VAR NAME) &r (VAR NAME)

Notes on input attachment:

By default, commands invoked by command lines within an exec_com read
their input from the terminal. By preceding a command line with an
&attach statement, the command can be caused to read input lines from
the text of the exec_com instead. Note that "&attach" must precede the
line on which the input-reading command is invoked. The &detach
statement causes any later input-reading command to get its

input from the terminal.

While &attach is in effect, the &is_attached predicate expands to
"true"; after &detach, it expands to "false".

152

executive_mail

10/21/81 executive_mail, xmail

Syntax: exXecutive_mail arg

Function: invokes the Executive Mail facility

Argument:

-multics_mode, -mm
activates function key 8 for use in Executive Mail. This
function key invokes Multics command level from within the
Executive Mail facility. If the terminal you are using does not
have function keys, use the two character sequence "esc e" to
invoke Multics command level.

Notes: To start the Executive Mail facility, type either
"executive_mail™ or "xmail" when a ready message (usually of
the form "r 14:03 0.285 5") appears on the terminal screen
just above the cursor. Users operate Executive Mail by
selecting operations from lists called menus. All help needed
to operate the system is available within the ExXecutive Mail
facility itself.

153

file_output

07/18/78 file_output, fo

Syntax: fo path -control_args

Function: Directs specified output I/0 switches to a file. Attachments are
reverted by the revert_output command.

Arguments:
path
is the pathname of a segment or MSF.

Control arguments:
-ssw switchname
to specify an I/0 switch.
~truncate, -tc
to truncate the output file.
-extend
to extend the output file (DEFAULT).

Notes: If the specified file does not exist, it is created.
If it does exist, it is appended to unless -truncate is specified.
If path is not specified, the default is a segment named output_file in the
working dir.

If no switchnames are specified, the default is user_output.

Any number of switchnames can be specified. Output directed to any of the
switches is sent to the output file.

To avoid getting ready messages in the output file, the fo and ro commands
should appear on the same line.

Examples:
fo user_file -ssw user_output ~ssw error_output
directs both switches to user_file.

154

fortran

08/29/80 new_fortran, fortran, ft

Syntax: new_fortran path -control_args

Function: invokes the new FORTRAN compiler.

Arguments:

path
is the pathname of a FORTRAN source segment; the fortran suffix
need not be given.

Control arguments:
-ansiéé .
interprets the program according to the 1966 standard for FORTRAN,
with Multics FORTRAN extensions. (Default)
-ansi77
interprets the program according to the 1977 standard for FORTRAN,
with Multics FORTRAN extensions.
-brief, -bf '
writes error messages in short form. .
~brief_table, -bftb
generates partial symbol table giving correspondence between source
line numbers and object locations.
—-card
specifies source segment is in card-image format.

-check, -ck
checks source segment for syntactic and semantic errors. No object
segment is produced.

-fold
maps uppercase letters to lowercase form.

-line_numbers, -1ln
source segment has line numbers.

-list, -1s
produces complete source program listing plus an assembly-like
listing.

-map
produces complete source program listing.

-non_relocatable, -nrlc
inhibits generation of relocation information by the compiler. The
resulting object segment cannot be bound.

-optimize, -ot
invokes an extra compiler phase just before code generation to
perform certain optimizations.
-profile, -pf
generates extra code to meter execution of individual statements.
-relocatable, -rlc
generates relocation information {(Default).

155

-round
rounds intermediate results of real and double precision
calculations before storing. (Default)

-safe_optimize, -safe_ot
like -optimize, but inhibits some code movement.

-severityN, -svN
prints only error messages whose severity is N or greater (where N
is 1, 2, 3, or 4). (Default is 1.)

-stringrange, -strg
produces rnage checking ccde for all substring references.
-subscriptrange, -subrg ’
produces range checking code for all subscripted array references.
-table, -tb
generates full symbol table.
~time, -tm
prints table giving time (in seconds), number of page faults, and
size of temporary area for each phase of the compiler.
-time_ot
prints out timing information on the sub-phases of the optimiZzer.
—-truncate, -tc
truncates intermediate results of real and double precision
computations before storing.

Notes:

The control arguments —optimize and -safe_optimize are mutually
exclusive with -stringrange and -subscriptrange. The control
arguments -—-ansiéé and ~ansi77 are mutually exclusive. The control
arguments -round and -truncate are mutually exclusive.

Type "help fort_options.gi" for a description of the %options and
%global statements. Type "help fortran_77.gi" for general information
about FORTRAN 77 on Multics.

For more information on the FORTRAN compiler, refer to the Multics
FORTRAN Reference manual, Order No. AT58. For more information on
using FORTRAN on Multics, refer to the Multics FORTRAN User's Guide,
Order No. CC70.

156

fortran_abs

11/13/81 fortran_abs, fa

Syntax: fa paths -ft_args -dp_args -control_args

Function: submits an absentee request to perform FORTRAN compilations.

Arguments: -
paths
are the pathnames of segments to be compiled.
ft_args
are control arguments accepted by the fortran command.
dp_args
are control arguments (except -delete) accepted by the dprint
command.

Control arguments:

-~-gqueue N, -g N
is the priority queue of the request. The default queue is defined
by the system administrator. See the Notes for a description of the
interaction with the dprinting of listing files.

-hold
do not dprint or delete any listing files.

-output_file path, -of path
put absentee output in segment path.

-limit N, -1i N
specifies time limit in seconds for the absentee job.

Notes:
Control arguments and paths can be mixed freely and can appear anywhere
on the command line after the command.

Unpredictable results can occur if two absentee requests are submitted
that simultaneously attempt to compile the same segment or write into
the same absout segment.

If the -queue control argument is not specified, the request is
submitted into the default absentee priority queue defined by the site
and, if requested, the listing files will be dprinted in the default
queue of the request type specified on the command line. (If no
request type is specified, the "printer" request type is used.)

If the ~queue control argument is specified, and, if requested, the
listing files will be dprinted in the same queue as is used for the
absentee request. If the request type specified for dprinting does not
have that queue, the highest numbered queue available for the request
type is used and a warning is issued.

157

general_ready

10/10/80 general_ready, gr

Syntax: gr -control_args

Function: prints a ready message containing specified values in a
specified format.

Control arguments:
The following prefix control arguments must occur prior to
any of the format control arguments described below. They allow
the user to override the default formats for the contents of the
ready message.

-string
allows the user to specify the character string at the beginning of
the ready message to replace "r».

—control
allows the user to specify the entire ioa_ control string used to
format the ready message. This control argument overrides any
format arguments that would normally affect the format of the
ready message. '

The format and content of the ready message are controlled by the

following format control arguments.
-inc_vcpu N

incremental virtual CPU value. N can be from 1 to 9, the

default is 3.
-total_vcpu N :

total virtual CPU value. N can be from 1 to 9, the default is 3.
—inc_mem_units N

incremental units. N can be from 1 to 9, the default is 3.
—total_mem_units N

total memory units. N can be from 1 to 9, the default is 3.
-inc_cost N

incremental cost charges. N can be from 1 to 9, the default is 2.
-total_cost N

cost charges. N can be from 1 to 9, the default is 2.

-inc_pf

incremental paging values.
-total_pf

paging values.
—-level

command processor level numbers.
-date

eight-character date (mm/dd/yy).
-date_time

date and time (mm/dd/yy hhmm.m zzz www).
-day

two-digit day (dd).
—day_name

158
three~character day of the week (www).

~hour

two-digit hour (hh).
-minute
two-digit minute (mm)
-month
two-digit month (mm).
-time, -tm
sixX-character time of day (hhmm.m).
~-year
two-digit year (yy)
—-zone

three-character time 2zone (zzz).

The following control~arguments affect the operation of
general_ready, but do not change the format of ready messagdes.
-set
establishes general_ready as the current ready message procedure.
The command processor then calls general_ready to print a ready
message after each command line is complete. This control argument
also causes general_ready to set an alarm timer to catch shift
changes. ’
-revert
makes the system ready procedure the current ready message procedure ”
and resets any timer alarms established by general_ready to catch ;
shift changes.
-reset
resets incremental usage values to zero without printing a ready
message.

-call cmdline
when used with the -set control argument, causes
general_ready to call the command processor to execute cmdline
after the completion of every command line. cmdline is a single
argument to general_ready and therefore, must be enclosed in
quotes if it contains any blanks. cmdline is executed even if
the printing of ready messages has been inhibited by executing
the ready_off command.

Syntax as active function: [gr -control_args]

158

get_quota

01/27/76 get_quota, gq

Syntax: gg paths -control_arg

Function: prints information about secondary storage quota and pages used.

Arguments:
paths
are directory names; star convention can be used.

Control arguments:
-long, -1g
specifies the long form of output.

Notes: The default output is the number of pages of quota assigned to the
directory and the number of pages used by the segments in that directory and
any inferior directories that are charging against that quota.

The long form of output gives the quota and pages~used information provided
in the short output, and also prints the cumulative time-page-product for the
directory (for the current accounting period).

160

have_mail

02/02/78 have_mail
Syntax: [have_mail path]

Function: returns "true" if there is mail in the user's current default mailbox
. or in a specified mailboX.

Arguments:

path
is the optional pathname of a mailbox. If path is not specified, the user's
default mailbox is assumed.

Command syntax: have_mail path

161

help

06/17/81 help

Syntax: help info_names -control_args

Function: selectively prints blocks of information (infos) from
system info segments.

Arguments:

info_names
entrynames or pathnames of infos to be printed. Star convention
allowed. Suffix of info assumed. For subroutines, final entryname
is of the form:

subroutine_s$entry_point_name

or -entry_point control argument can be used. Star convention not
allowed for subroutine info names. See "Info names" below. If no
info_names given, info for the help command is printed.

Basic Use:
When help is invoked without arguments, it prints a description of the
help command. An info_name may be given to print information about a
specific topic. For example, to print information about the list
command, type:
help list

help begins by printing a heading line identifying the information
being printed. It prints the first paragraph of information, then
asks if the user wants more help. The user may give any answer
listed under "List of responses" below. Possible responses include:

yes print next paragraph

skip skip next paragraph

rest print remaining paragraphs

brief print summary of command, active function, subroutine

no stop printing information, go on to next selected info

quit exit help command

Contents of Info Segments:

Information printed by help is stored in formatted segments called
info segments. Each segment contains one or more information blocks
{infos) which describe a particular command, active function,
subroutine entry point, or other feature of the system.

Each info begins with heading line giving date info last modified,
and title of info. Command and active function infos use command
name (including short name) as title. Subroutine infos use
subroutine entry point name.

Information following heading is divided into paragraphs from 1 to 15
lines in length. A paragraph is a logically complete unit containing
a small amount of the total information.

162

Paragraphs are grouped together into sections describing a complete
topic. Sections begin with a topic title. Syntax, Function,
Arguments, Control arguments, Examples and Notes are typical section
titles found in command and active function infos.

help remembers which paragraphs user has seen and which have been
skipped or not yet reached. User asked to "Review" paragraphs seen
before, or asked if "More help" is needed for unseen paragraphs.
help stops printing if all paragraphs seen when the end of info
reached. 1If any paragraphs skipped, help asks if user wants to see
them. If user answers "yes", first unseen paragraph printed. User
can answer "skip -seen" to view subsequent unseen paragraphs.

Control arguments: Control arguments are listed in four groups-—-
info selection, information selection, starting paragraph
selection, and paragraph grouping.

INFO SELECTION

-pathname path, -pn path
path identifies info segment to be printed. Star convention
allowed. Suffix of info assumed. path may end with
$entry_point_name when star convention not used.

-entry_point, -ep
when info_name argument is given as subroutine_, prints
description of subroutine_$subroutine_ entry point, rather than
info describing general properties of all subroutine_ entry points.
See "Info names" below.

INFORMATION SELECTION

-header, -he
prints only long heading line, including pathname of info, info
heading, info line count. -header conflicts with all other
INFORMATION SELECTION control args.

-brief_header, -bfhe
shortens the long heading printed by default. Instead, help prints
brief heading followed by first paragraph, then asks if user wants
to see more information. Brief heading includes info heading and
line count.

-title
prints section titles and section line counts, then asks if users
wants to see first paragraph of info.

-brief, -bf
prints only summary of command, active function or subroutine info,
including: Syntax section, list of control arguments, etc.
-control_arg STRs, -ca STRs
prints only descriptions of control (or other) arguments whose
names contain one of the strings STRs. STRs must not include
a leading minus sign (-).
-all, -a
prints entire info or subroutine description without questions.

STARTING PARAGRAPH SELECTION
-section STRs, -scn STRs

ie3

begins printing at section whose title contains all strings STRs.
By default, printing begins at top.
-search STRs, -srh STRs
begins printing all in paragraph containing strings STRs.
By default, printing begins at top.

PARAGRAPH GROUPING
-minlines I
sets minimum paragraph size to I lines. Default is 4.
See "Grouping of paragraphs" below.
-maxlines J
sets maximum paragraph grouping size to J lines. Default is 15.
See "Grouping of paragraphs" below. -

List of responses:

Following responses can be given to questions asked by help.
yes, ¥

prints next paragraph.
no, n

exits current info. Same as quit if this is last info.
quit, g

rest -scn , r -scn
prints rest of info, without intervening_ dquestions. If ~section or
-scn are given, prints only rest of current section without
questions and then asks if user wants to see next section.

top, t
skips to beginning of info, ehtn asks if user wants to see first
paragraph. :

title -top .
lists titles and line counts of sections which follow. If -top
or -t given, lists all section titles. help repeats previous
guestion after titles are printed.

section STRs -top ,

scn STRs -top
skips to next section whose title contains all strings STRs. If
-top or -t given, title searching starts at top of info. If STRs
omitted, uses STRs from previous section response or ~section
control argument.

search STRs -top .,

srh STRs -top
skips to next paragraph containing all strings STRs. If ~top or
-t gjiven, searching starts at top of info. If STRs omitted, uses
STRs from previous search response or -search control argument.

skip -scn -rest -seen -ep ,

s =~sCn -rest -seen -ep
skips next paragraph. If -section or -scn are given, skips
all paragraphs of current section. If -rest or -r, ~entry_point
cr -ep are given, skips rest of this info or subroutine entry
point description, continuing with the next. If -seen is given,
skips to next paragraph which user has not seen. Only one
control argument allowed in each skip response.

164

brief, bf
prints summary -of command or subroutine info, including
Syntax section, list of control arguments,. etc. help repeats
previous gquestion after summary is printed.

control_arg STRs, ca STRs
prints descriptions of control (or other) arguments
whose names contain one of the strings STRs. help repeats
previous question after descriptions are printed.

entry_point EP_NAME , ep EP_NAME
skips to description of subroutine entry point EP_NAME.
Form of EP_NAME is:
entry_point_name
or subroutine_S$entry_point_name

If EP_NAME omitted, skips to description of subroutine_$subroutine_
entry point. ‘

header, he
prints long heading line, including pathname of info, info heading,
info line count.

prints list of responses allowed to help queries.

prints "help" to identify the current interactive environment.
.. command_1line

treats remainder of response as command line passed to Multics

command processor.

Info names: are arguments for the help command which identify the
info(s) to be printed. Info names may be pathnames or entrynames.
Info names may end with S$entry_point_name to identify a particular
subroutine entry point. The next paragraph illustrates various types
of info names.

FORM EXAMPLES
entryname i pll, pll.status.info, fortranx*,xx
entryname$entry_point_name hcs_$initiate, delete_$path
entryname -ep com_err_ -ep, ioa_ -ep
pathname >udd>Pubs>new>rename, < info_dir>ax.x*x
-pn pathname -pn new_info
pathname$entry_point_name info>my_util$start_prog
pathname -ep >exl>info>display_fort_ -ep

Pathnames contain < or > characters, or follow -pathname control
argument. The path identifies segment containing the info to be
printed.

Entrynames do not contain < or >. help searches for info segments in
directories given in the info_segments (info_segs or info) search list.
Type:

print_search_paths info_segments
for a list of current help search paths. By default, the search

165

paths are:
>doc>iml_info
>doc>info

For pathnames or entrynames, star convention can be used to identify
several infos with a matching name. For example, fortranx.=xx
identifies all infos describing the FORTRAN compiler. All info names
assumed to end with suffix of info if suffix omitted.

When segment is found, help looks inside for particular info which
matches the entryname (or final entryname of path), and prints this
info.

For subroutine infos selected by subroutine_$entry, printing begins
with description of-the $entry entry point; when -entry_point is
given, printing begins with subroutine_$subroutine_ entry point
description; when neither is given, printing begins with general
description of the subroutine. Star convention not allowed when
subroutine_$entry or -entry_point given.

Grouping of paragraphs:

The -minlines and -maxlines control arguments allow the user to
control how much information help prints before asking the user if he
wants to see more. help prints units of information called
paragraphs. A paragraph is a group of lines preceded and followed by
two blank lines.

The -minlines I control gives the length in lines of the smallest
paragraph which help will treat as a distinct unit. Paragraphs
shorter than I lines are often printed as part of the preceding
paragraph.

The -maxlines J control limits the grouping of short paragraphs (those
shorter than I lines long) so that no more than J lines of information
are printed before asking if the user wants more help.

For example, consider info divided into paragraphs as follows——
Paragraph 1 (8 lines)
(2 blank lines)
Paragraph 2 (3 lines)
(2 blank lines)
Paragraph 3 (4 lines)

With -minlines 4 and -maxlines 15, help would treat paragraph 2 as a
short paragraph which is printed with paragraph 1 (total lines = 13).
However, paragraph 3 is 4 lines long, and would be treated as a
distinct paragraph.

With -minlines 5 and -maxlines 10, help prints paragraph 1 separately,
since grouping short paragraph 2 with paragraph 1 would print 13
lines, exceeding -maxlines. Paragraphs 2 and 3 would be grouped
together (total lines = 9) because paragraph 3 is shorter than 5

166
lines.

Paragraphs which have been seen are not grouped with unseen
paragraphs. Similarly, paragraphs at the end of one section of info
are not grouped with those beginning another section. Paragraphs are
not grouped when the -section or -search control arguments are used to
find a particular starting paragraph. If the wrong paragraph were
found by the search, grouping might compound the error by printing
more of the wrong information. Grouping is suppressed when the
section and search requests are used for similar reasons.

Info naming conventions:

Infos for Multics commands, active functions and subroutines are given
the name of the program with a suffix of info. For example, the info
describing the pll compiler command is called pll.info.

Information about changes made to a command or active function from
one release to the next are given the name of the particular system
module with a suffix of changes.info. For example, changes to the
fortran compiler are described in fortran.changes.info.

General information describing use or features of the system is
included in infos whose names end with a suffix of gi.info (gi for
general info). For example, acl_matching.gi.info describes how Access
Control List entries are matched with User_ids in access cortrol
commands such as set_acl.

Finding information:
More than 500 infos are available. To find information about a
particular area of the system, use the list_help command with a topic
name identifying the area of the system. For example, to list
info_names related to the FORTRAN compiler, you could type:

list_help fortran

The -header control argument of the help command can also be used to
find particular information. For example, to get a list of all
general information segments, type:

help *.gi -he

Info segment format:

Users can create info segments describing their own commands,
exec_coms and application programs. Info segments must be formatted
in a special way so that the help command can parse them into
paragraphs. For information about this format, type:

help info_seg.gi

167

home_dir

07/23/80 home_dir, hd

Syntax: hd

Function: returns the pathname of the user's home directory (usually
of the form >user_dir_dir>Project_id>Person_id).

Syntax as active function: [hd]

168

houn

12/30/80 hour

Syntax: hour dt

Function: returns the one- or two-digit number of an hour of the day,
from 0 to 23.

Arguments:

dat
is a date_time in a form acceptable to convert_date_to_binary_. If
no argument is specified, the current hour is returned. See
date_time_strings.gi.info for valid 4t arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [hour dt]

169

how_many_users

02/27/76 how_many_users, hmu

Syntax: hmu args -control_args

Function: prints how many users are currently logged in.

Arguments:
args
can be:
Person_id prints a count of users with the name Person_id.
.Project_id prints a count of users with the project name Project_id.
Person_id.Project_id prints a count of users with the specified
name and project.

Control arguments:

-long, -1lg
prints additional items, including shutdown information and load information
on absentee users.

-absentee, -as
prints load information on absentee users only.

-brief, -bf
suppresses the printing of the headers. Only used in conjunction with one of
the optional_args.

Notes: If this command is invoked without any arguments, basic summary
information is printed. When necessary, absentee counts are denoted by an
asterisk (=*).

170

hunt

08/01/80 hunt

Syntax: hunt name path -control_args

Function: searches a specified subtree of the hierarchy for all
occurrences of a named segment that is either free standing or included
in an archive file.

Arguments:
name :
is the name of a segment for which hunt is to search. The star
convention is allowed.
path
is the pathname of a directory to be interpreted as the root of the
subtree in which to search for the specified segment(s). If path is
not specified, the subtree rooted at the current working directory
is searched.

Control arguments:
-all, -a -
reports on finding links and directories as well as segments.
-archive, -ac
looks inside archives for components whose names match the name
argument. This is the default. :
-first
stops searching as soon as the first occurrence of the specified
segment is found.
-no_archive, =-nac
does not look inside archives and is therefore faster.

Notes: The hunt command displays the type of entry found (seg, dir, or
link) followed by the entry itself. A total of the number of
occurrences found is displayed at the end.

Syntax as active function: [hunt name path -control_args |

Notes as an active function: When invoked as an active function, hunt
returns a string of pathnames separated by spaces. Archive components
are returned as archive_path::component_name.

All arguments accepted by the hunt command are accepted by the active
function.

171

immediate_messages

06/17/81 immediate_messages, im

Syntax: im destination -control_arg

Function: restores the immediate printing of messages sent to the user
by the send_message command and the "You have mail." notification sent
by the send_mail command.

Arguments:

destination
is of the form Person_id.Project_id to specify a mailbox. The
default is the user's default mailbox. If destination contains
< or >, it is assumed to be the pathname of a mailbox.

Control arguments:

~pathname path, =-pn path
specifies a mailbox by pathname. The mbx suffix is assumed. This
control argument and the destination argument are mutually
exclusive.

Notes: This command "cancels" the defer_messages command.

For a description of the mailbox, refer to the accept_messages and
print_mail commands.

172

initiate

03/18/80 initiate, in

Syntax: in path ref_names —control_args
Function: initiates segments.

Arguments:
path
is the pathname of a segment or a link to a segment.
The star convention is NOT allowed.
ref_names
are optional reference names by which to initiate the segment.
If no ref_names are specified, the segment is initiated by the entryname
portion of path.

Control arguments:
-all, -a
initiates the segment by all its names.
-brief, -bf
does not print a message giving the segment number. (Default)
-~chase
used with -all on a link pathname, initiates the target segment by all the
names on the target segment. (Default)
-force, -fc
terminates each reference name first if it is already known.
-long, -1g9
prints a message giving the segment number assigned.
-no_chase
used with -all on a link pathname, initiates the target segment by all the
names on the link.
-no_force, -nfc
prints an error message if a ref_name is already known. (Default)

Access required: nonnull.

173

jo_call

05/22/81 io_call, io

Syntax: io opname switchname args

Function: performs operations on I/0 switches and prints or returns
the results.

Arguments:
opname
is a name given below under "List of operations".
switchname
names I/0 switch through which operation is performed (throughout
the rest of this discussion, switchname is represented by SW).
args :
are additional arguments that some operations require or accept.
Argument N is a buffer size, in characters. When invoked as
active function, N can be omitted, and defaults to the size of the
active function return string.

List of operations:
attach SW attach_description

uses attach_description to attach SW.
detach_iocb SW, detach SW

detachs SW.
open SW mode

opens SW with given mode. (See "Modes" below.)
close SW

closes SW.

get_line SW N —control_args
reads and prints next line from SW; control_args can be: -segment, -nnl,
-nl, -lines.

get_chars SW N -control_args
reads and prints next N characters from SW; control_args can be: -segment,
-nnl, -nl, -lines.

put_chars SW STR -control_args
outputs STR to SW; control_args can be: -segment, -nnl, -nl,
-=lines. If STR is omitted, -segment must be given.

read_record SW N -control_args ,
read SW N -control_args
reads and prints next record from SW; control_args can be:
-segment, -nnl, -nl, -lines.
write_record SW STR -control_args ,
write SW STR ~control_args
writes STR to SW; control_args can be: -segment, -nnl, -nl, -lines.
If STR is omitted, —-segment must be given.
rewrite_record SW STR -control_args ,
rewrite SW STR -control_args

174

replaces current record in file to which SW is attached with STR;
control_args can be: -segment, -nnl, -nl, -lines. If STR is
omitted, -segment must be given.

delete_record SW, delete SW
deletes current record in file to which SW is attached.

position SW type
positions file to which SW is attached. type can be: boef; eof;
forward J, fwd J, £ J; reverse J, rev Jd, r J; I J . I and J are
integers.

seek_key SW key
positions indexed file to which SW is attached to record with given
key. If record not found, key becomes key for insertion of new
record.

read_key SW
reads and prints key and record length of next record in indexed
file to which SW is attached.

read_length SW
reads and prints length of next record in structured file to which
SW is attached.

control SW order args
performs named order operation on SW; args depend upon the
particular order and I/0 module through with SW is attached.
modes SW STR -control_args '
prints old modes associates with SW, and sets new modes given in
STR; control_args can be: -brief.
move_attach SW SW2
moves attachment from SW to SW2. SW is left in detached state.

find_iocb SW

prints location of SW. Switch is created if not already existing.
look_iocb SW

prints location of SW. An error occurs if SW does not exist.
destroy_iocb SW

destroys SW.
print_iocb SW

prints all data from control block for SW.

attached Sw

prints true if SW is attached.
opened SW

prints true if SW is opened.
closed SW

prints true if SW is closed.
detached SW

prints true if SW is detached.

attach_desc SW
prints attach description for SW.
open_desc SW
prints current opening mode for SW.
io_module SW
prints name of I/0 module through which SW is attached.

175

valid_op SW operation
prints true if operation is valid for SW, given its current
attachment and opening mode.

test_mode SW mode
prints true if mode appears in modes string of SW; prints false
if Amode appears. Prints error if mode does not appear or is not
an on/off mode.

valid_mode SW mode
prints true if mode or Amode appears in modes string of SW;
prints false if either does not appear.

Control arguments:

-segment path O L , =-sm path O L
gives pathname of segment into which data from input operations
(get_line, get_chars, read_record) is stored, and from which
data for output operations (put_chars, write_record,
rewrite_record) is obtained. O is an offset within the segment,
measured in characters unless -lines is also given. L is a
length given for output operations, measured in characters
unless -lines is also given. .

-nnl
deletes newline character from end of input data, and suppresses
appending newline to end of output data. This is the default.

-nl
adds newline character to end of input data before printing it,
and appends newline character to end of output data if one not
already present.

—lines
causes 0 and L to be measured in lines, rather than in characters.

Modes:
stream_input, si keyed_sequential_input, ksgi
stream_output, so keyed_sequential_output, ksqgo
stream_input_output, sio keyed_sequential_update, ksqu
sequential_input, sgi direct_input, di
sequential_output, sgo direct_output, do
sequential_update, squ direct_update, du

sequential_input_output, sgio
Syntax as active function: [io_call operation SW args |

Arguments as active function:

get_line SW N —control_args
returns data read as a quoted string; control_args can be:
-no_gquote, -nnl, -nl.

get_chars SW N -control_args
returns data read as a quoted string; control_args can be:
-no_quote, -nnl, -nl.

read_record SW N -control_args ,

read SW N —control_args
returns data read as a gquoted string; control_args can be:
-no_guote, -nnl, -nl.

176

position SW type
returns true if indicated position operation succeeds.
type can be: bof; eof; forward J, fwd J, f J; reverse J,
revJ, r Jg; I J . I and J are integers.

seek_key SW key
returns true if key exists.

read_key SW -control_args
returns key of next record as a guoted string; control_args can be:
-no_gquote.

read_length SW
returns length of next record in a structured file.

control SW order args
performs named order operation on SW, and returns the result.
Result and args depend upon particular order given and the I/0
module in use.

modes SW new_modes
returns old modes, optionally sets new modes.

look_ioch SW

returns true if SW exists.
attached Sw

returns true if SW is attached.
opened SW

returns true if SW is opened.
closed SW

returns true if SW is closed.
detached SW

returns true if SW is detached.

attach_desc SW -control_args
returns attach description for SW as a quoted string; control_args
can be: -no_gquote.
open_desc SW
returns current opening mode for SW.
io_module SW
returns name of I/0 module through which SW is attached.

valid_op SW operation
returns true if operation is valid for SW, given its current
attachment and opening mode.

test_mode SW mode
returns true if mode appears in modes string of SW; returns false
if Amode appears. An error occurs if mode does not appear or is
not an on/off mode.

valid_mode SW mode
returns true if mode or Amode appears in modes string of SW;
returns false if either does not appear.

Control arguments as active function:
-no_quote, -ng
do not enclose the returned data in quotes. Data containing

177

spaces is quoted by default.

178

laser

08/29/83 laser

Syntaxe: laser -control_args

Fonction: cette commande permet d'obtenir des renseignements pratiques tels que
la liste des formats disponibles, la liste des fichiers ecrits sur une bande
laser donnee pour un usager donne, etc ...

Arguments de controle:

-format FMT, -fmt FMT
Cet argument permet d'obtenir des informations sur le format dont le nom est
donne en parametre. Si on n'en precise pas, ces memes informations seront
rendues pour tous les formats. Dans tous les cas, cette restitution n'est
faite que pour les formats auxdquels l'utilisateur a acces.

~forms
permet d'avoir la liste des fonds de page (forms) auxquels l'utilisateur a
acces. .

-long, -1g
permet d'avoir davantage de renseignements sur un format. Par defaut, la
commande ne rend que le minimum essentiel: les page_length et line_length
du format. Avec cet argument, on obtiendra en outre le nom des polices de
caracteres utilisees et des observations particulieres. ATTENTION, NON EN
SERVICE POUR L'INSTANT.

-no_header, =-nhe
evite 1l'edition de l'en-tete pour chaque rubrique a lister (format, forms
ou programme).

-nbtape N, -nbt N
specifie a la commande laser qu'on desire le listage du contenu de N bandes
laser,

-papier,
permet d'obtenir la liste des papiers disponibles sur l'imprimante,

~tape XXXXXX, -tp XXXXXX
specifie a la commande laser qu'on desire commencer le listage du contenu
de bande a partir de la bande 'xXxxXxxX'. Si on ne precise pas de nom, c'est
la bande laser en cours d'ecriture qui est prise en compte. Une bande laser
(ou spooler) a toujours un nom compose des trois lettres 'las' suivi de son
numero d'ordre compris entre 001 et 040.

-user XXX
specifie a la commande laser qu'on ne veut dans le listage des bandes, que
les fichiers appartenant a la personne XXX. Si aucun nom n'est precise, le
listage n'est effectue que pour les fichiers du demandeur. La convention "=x"
est acceptee.

NOTA: cette commande est experimentale et, de ce fait, peut etre amelioree
dans la mesure ou une suggestion interessant une majorite d'utilisateur sera
realisable.

179

last_message

06/17/81 last_message, 1m

Syntax: 1m address

Function: returns the text of the last message received from the
send_message command.

Arguments:
address can be any of the following to specify a mailbox:
—-pathname path, -pn path
where path is the pathname of a mailbox. The mbx suffix is assumed.
STR
specifies a mailbox pathname of STR that contains a > or <.
Person.Project
specifies the Person_id and Project_id of a user whose mailbox is
indicated.

Notes: See also the descriptions of send_message, accept_message,
last_message_sender, and last_message_time.

Syntax as active function: [1m address]

180

last_message_sender

06/17/81 1last_message_sender, 1lms

Syntax: 1lms address

Function: returns the sender of the last message received (from the

. send_message command) in the form "Person_id.Project_id" (e.g.,

RSJones.Demo).

Arguments:)
address can be any of the following to specify a mailbox:
-pathname path, -pn path
where path is the pathname of a mailboxX. The mbx suffix is assumed.
STR
specifies a mailbox pathname of STR that contains a > or <.
Person.Project
specifies the Person_id and Project_id of a user whose mailbox is
indicated.

Notes: The user is cautioned against using this active function when
in polite mode. 1In polite mode, the system holds all messages until
the user finishes typing a line (i.e., until the carriage is at the
left margin). Therefore, it is possible that while the user is
sending a message, the user's process can receive another message
from a different user ~- a message not yet seen. By using the
last_message_sender active function in such a situation, the user can
inadvertently attribute a message to the "wrong" person. See also
the descriptions of send_message, accept_message, last_messadge, and
last_message_time.

Syntax as active function: [1lms address]

181

last_message_time

06/17/81 last_message_time, 1lmt

Syntax: 1mt address

Function: returns the time that the last message (from the
send_message command) was received.

Arguments:
address can be any of the following to specify a mailbox:
-pathname path, -pn path
where path is the pathname of a mailbox. The mbx suffix is assumed.
STR
specifies a mailbox pathname of STR that contains a > or <.
Person.Project
specifies the Person_id and Project_id of a user whose mailbox is
indicated.

Notes: See also the descriptions of send_message, accept_message,
last_message, and last_message_sender in this manual.

Syntax as active function: [lmt address]

182

line_length

02/02/79 1line_length, 11

Syntax: 11 maxlength

Function: sets the maximum terminal line length for output.

Arguments:

maxlength
must be greater than 4. Output lines longer than maxlength are folded.

183

Tink

02/25/76 1link, 1lk

Syntax: 1k pathlA path2A ... pathlN path2N

Function: creates a link pointing to a specified segment or directory.
The word "link" also refers to interprocedure linkage. Type "help linking".

Arguments:

pathlA)
pathname of the segment to which path2i is to point. The pathnames must be
specified in pairs.

path2a
specifies the pathname of the link to be created. If not given (in the final
argument position of a command line only), a link to pathlA is created in
the working directory with the entryname portion of pathli as its entryname.

Access required: append, modify if name duplication occurs.

Notes: The star and equal conventions can be used.

184

list

09/17/80 1list, 1s

Syntax: 1s entrynames -control_args
Function: prints information about the entries in a single directory.

Arguments:

entrynames
are the names of entries to be listed. The star convention
can be used. If no entrynames are given, all entries in the
directory (of the default types or the types specified by
control arguments) are listed. A pathname can be given instead
of an entryname, causing the entries specified by its entryname
portion to be listed, in the directory specified by its
directory portion. It is an error to specify more than one
directory to be listed in a single invocation of the list
command.)

Control arguments for directory:

-pathname path, -pn path
list entries in the directory named path. Note the restriction
described above under "Arguments".

Control arguments for entry type:
-segment, -sm
list segments.
-multisegment_file, -msf
list multisegment files.
-file, -f
list files (segments and multisegment files).
-directory, -dr
list directories.
-branch, -br .
list branches (segments, multisegment files, and directories).

-link, -1k
list links.
-all, -a

list all four entry types.

Control arguments for column: (see also "Notes on columns" below)
-date_time_entry_modified, -dtem

print date-time-entry-modified in the modification-date column.
-date_time_contents_modified, -dtcm

print date-time-contents-modified in the modification—-date column.
~date_time_used, -dtu

print date-time-used column.
-mode, -md

print mode column.
-record, -rec

i85

print records used in size column.
-length, -1n

print length computed from bit count in size column.
-name, -nm

print names column.
-count, -ct

print name-count column, giving number of names.
~-link_path, -1p

print 'link-path column.

Control arguments for totals/header line:
-total, -tt

print only number of entries and sum of their sizes.
-no_header, -nhe

omit all heading lines and blank lines.

Control arguments for multiple—name entry:
~primary, -pri
print only primary names in names column.
-match
print only names that match one of entryname arguments.

Control arguments for entry order:
-sort KEY, -sr KEY
sort entries by specified key column (see "Notes on Sorting").
-reverse, -rv
reverse order of listing (reverses either directory order, or
order of sorting if sorting was specified).

Control arguments for entry exclusion:

-exclude entryname, -ex entryname
excludes entries that match entryname; more than one instance of
this argument can be given.

-first N, -ft N
list only first N entries (after sorting, if it is specified) of
each entry type being listed. .

—~from DATE, -fm DATE
excludes entries having date/time (dtem, dtcm, dtu) before DATE
(see "Notes on dates" below).

-to DATE
excludes entries having date/time (dtem, dtcm, dtu) after DATE
(see "Notes on dates" below).

Control arguments for output format:

-brief, -bf
either overrides default columns (see "Notes on Defaults" below)
or, if -tt given, prints totals information for all selected entry
types on single line.

-short, =-sh
print link paths starting two spaces after their names.

Notes on columns:
The column printing order is -- modification date, dtu, mode, size,
names, name count, and (for links only) link pathname. Modification

- 186

date can be either date-time-contents-modified or
date-time-entry-modified (dtm is accepted as dtem). Size can be
either records used or length computed from the bit count (default).

List of Sorting Keys: The KEY field in "-sort KEY" can be—--
name, nm

sort by primary name, in ASCII collating sequence.
record, rec

sort by records, largest first.
length, 1ln

sort by bit count length, largest first.
mode, md.

sort by mode; order: null, r or s, rw or sm, re, rew or sma.
date_time_entry_modified, dtem

sort by date-time-entry-modified, most recent first.
date_time_contents_modified, dtcm

sort by date-time-contents-modified, most recent first.
count, ct

sort by name count, highest first.

Links can only be sorted by: dtem, dtcm, nm, or ct. When
sorting by other columns, links are listed in the order in which
they are found in the directory. See also Defaults.

Notes on Dates:

The —-from and -to control arguments compare DATE and date. The DATE
string must be acceptable to the convert_date_to_binary_ subroutine.
The date value is date-time-entry-modified (or
date~time-contents-modified, if it is being printed or sorted on) in
all cases except when date-time-used is the only date being printed
or sorted on.

Defaults: Invoking list without any arguments is the same as typing--
list -pn [wd] -file -mode -length -name

If the sort column, COL, is omitted after -sort, the default sorting
column is: modification-date, if it is being printed; otherwise
date-time-used, if it is being printed; otherwise names.

Notes: Use of the -name, -mode, -record, -length, or -brief control
arguments overrides the default columns so that only the names column
and explicitly selected columns are printed.

Only one of the two modification dates, and only one of the two size
figures can be used at any one time. Any combination of arguments
that specifies both items from either pair (e.g., printing dtcm but
sorting on dtem) is an error.

187

list_abs_requests

10/01/80 1list_abs_requests, lar

Syntax: lar path -control_args

Function: lists requests in the absentee queues.

Arguments:

path
is the pathname of a request to be listed. The star convention is
allowed. Only requests matching this pathname are selected. 1If the
path argument is not specified, all pathnames are selected. Also
see the —-entry control argument below.

Control arguments:

-absolute_pathname, -absp
prints the full pathname of each selected request, rather than just
the entryname.

-admin User_id , —-am User_id
selects the requests of all users, or of the user specified by
User_id. If the -admin control argument is not specified, only the
user's own requests are selected. See "Notes" below.

-all, -a
searches the foreground and all priority queues and prints the
totals for each non-empty queue whether or not any requests are
selected from it. If the -all control argument is not specified,
nothing is printed for queues from which no requests are selected.
This control argument is incompatible with the -queue control
argument.

-brief, =-bf
prevents the printing of the state and the comment of the request.
If the -brief control argument is not specified, these items are
printed. This control argument is incompatible with the -long and
-total control arguments.

—deferred_indefinitely, -dfi
selects only requests that are deferred indefinitely. Such requests
are not run until the operator releases them.

-entry STR, -et STR
selects only requests whose entrynames match STR. The star
convention is allowed. Directory portions of request pathnames are
ignored when selecting requests. This control argument is
incompatible with the path argument.

-foreground, -fg
searches only the foreground gqueue, and prints the totals for this queue,
whether or not any requests are selected from it. Also, see the -queue
control argument. '

-id ID
selects only requests whose identifier matches the specified ID.

188

-immediate, -im
selects only requests that can be run immediately upon reaching the
heads of their respective queues. This does not include requests deferred
indefinitely, requests deferred until a specific time, or requests that
have reached the head of the gueue and have been deferred by the system
because their CPU time limits are higher than the maximum for the current
shift. It does include requests deferred because of load control or
resource unavailability, because those conditions could change at any
time. Also, see the —-position control argument.

-long, -1g
prints all of the information pertaining to an absentee regquest
including the long request identifier and the full pathname. If
this control argument is omitted, only the short request identifier,
entryname, state and comment, if present, are printeé. The -long,
-pbrief, and -total control arguments are incompatible.

-long_id, -1lgid
prints the long form of the request identifier. If this or the
-long control argument is not specified, the short form of the
request identifier is printed.

-pathname, -pn
prints the full pathname of each selected request, rather than just
the entryname, just as -absolute_pathname does.

-position, -psn
prints the position within its queue of each selected request. When
used with the ~-total control argument, it prints a list of all the
positions of the selected requests. When used with the -immediate
control argument, it considers only immediate requests when
computing positions. See "Notes" below.

-queue N, -g N
searches only queue N, and prints the totals for that queue, whether
or not any requests are selected from it. If the -gueue control
argument is not specified, all queues are searched but nothing is
printed for queues from which no requests are selected. For
convenience in writing exec_coms and abbreviations, the word
"foreground" or "fg'" following the —gueue control argument performs
the same function as the —-foreground control argument. This control
argument is incompatible with the -all control argument.

-resource STR , -rsc STR
selects only requests having a resource requirement. If STR is
specified, only requests whose resource descriptions contain that
string are selected. This control argument alsc causes the resource
descriptions of the selected requests to be printed, even when the
-long control argument is not specified. Type "help reserve_resource"
for a description of the syntax of STR.

~sender STR
specifies that only requests from sender STR should be listed. One
or more request identifiers must also be specified. In most cases,
the sender is an RJE station identifier.

~-total, =-tt
prints only the total number of selected requests and the total
number of requests in the queue plus a list of positions if the
-position control argument is also specified. If the queue is

189

empty, it is not listed. This control argument is incompatible with
the -long and -brief control arguments.

-user User_id
selects only requests entered by the specified user. See "Notes"
below.

Access required: The user must have o access to the gueue(s) to invoke
lar. The user must have r extended access to the queue(s), in order to
use the -admin, -position, or -user control arguments, since it is
necessary to read all requests in the queue(s) in order to select those
entered by a specified user or to compute the positions of the selected
requests.

Notes: All queues are searched for the user's requests; the request
identification, entryname, state, and comment, if present, of each
request is printed. If no arguments are specified, only the user's own
requests are selected for listing. Nothing is printed for queues from
which no requests are selected.

When a user name is specified, with either the -admin or -user control
arguments, then proxy requests are selected if either the user who
entered the request, or the proxy user on whose behalf it was entered,
matches the specified user name.

The entry name specified after the —entry control argument, the entry
portion of the pathname argument, and the RJE station name specified
after the -sender control argument, may each be starnames.

The User_id arguments specified after the -admin or -user may have any
of the following forms:

Person_id.Project_id matches that user only

Person_id.x matches that person on any project
Person_id same as Person_id.=*

x ,Project_id matches any user on that project
.Project_id same as *.Project_id

*, % same as -admin with no User_id following it

190

list_accessible

07/17/81 1list_accessible, lac

Syntax: lac path User_id =-control_args

Function: scans a directory and lists segments, multisegments, files,
and directories with a specified access for a specified User_id.

Arguments:

path
is the pathname of the directory to be scanned. If path is omitted
or -wd is specified, the working directory is scanned.

User_id
is an access name. It can have null components. The star
convention for access names is allowed. See the description of
set_acl in this manual. If User_id is omitted, the User_id of the
calling process with a star tag is assumed.

Control arguments: If no control arguments are specified, all the
segments and directories to which the named user(s) has nonnull
access are listed.

-dir_mode STR
lists directories to which the named user(s) has any of the modes
specified in STR, where STR can be any or all of the letters sma.

-seg_mode STR
lists segments to which the named user(s) has any of the modes
specified in STR, where STR can be any or all of the letters rew.

Access required: The user must have status (s) permission on the
directory.

Notes: If there can be more than one User_id (i.e., the specified
User_id has null components), the modes for each matched User_id and
the matched User_id are listed on a per entry basis.

191

list_acl

08/30/79 list_acl, 1la

Syntax: la path User_ids -control_args

Function: lists the access control 1lists (ACLs) of segments, multisegment
files, and directories.

Arguments: .
path
is the pathname of a segment, multisegment file, or directory.
The default is -wd, or -working_dir. If omitted, no
User_ids can be specified. The star convention can be used.
User_ids
are access control names that must be of the form Person_id.Project_id.tag.
If User_id is omitted, the entire ACL is listed.

Control arguments:
-ring_brackets, -rb
lists the ring brackets.
-brief, -bf
suppresses the message "User name not on ACL of path."
-directory, =-dr
lists the entire ACL of directories only. The default is segments,
multisegment files, and directories. (See Notes.)
-segment, -sm
lists the ACL of segments and multisegment files only.

Notes: If the list_acl command is invoked with no arguments, it lists the
entire ACL of the working directory.

The -directory and -segment control arguments are used to resolve an
ambiguous choice that may occur when path is a star name.

Type "help acl_matching" for an explanation of the User_id matching strategy.

Syntax as an active function:
[la path User_ids]

Notes on use as an active function:
returns the matching modes and access names separated by spaces, for example:
"r One.B.* rw Two.B.a". The -brief control argument is assumed.

192

list_daemon_requests

02/02/79 1list_daemon_requests, 1dr

Syntax: 1ldr path -control_args
Function: 1lists requests in the I/0 daemon gueue.

Arguments:

path
is the relative pathname of one or more requests to be listed. The star
convention is allowed. If this argument is not specified, all requests are
listed. See also the -entry control argument.

Control arguments:

-absolute_pathname, -—-absp
prints the full pathname.

-admin User_id , -am User_id
selects requests of all users or of the specified user. Default is to list
the user's own requests. Required r extended access to the queue(s), to
read other users' requests.

-all, -a
searches all queues.

-brief, -bf
prevents printing of comment and request state in normal (not -long) mode.

-entry STR, -et STR
selects only requests whose entry names match STR. The star convention is
allowed. Directory portions of request pathnames are not used for selecting
requests. Incompatible with the path argument.

-id ID
selects only requests whose request_ids match ID. Type "help request_ids".

-immediate, -im
selects only I/0 requests that are not deferred. With -position, ignores
deferred requests when computing position.

-long, -1g
prints all information about each selected request, including long
request_id and full pathname. Default is to print short request_id and
entryname.

-long_id, -lgid
prints the long request_id.

-position, -psn
prints queue positions of each selected request. With -total, prints a list
of queue positions. Requires r extended access to the queue(s), to read
other users' requests.

-queue N, -g N
searches queue N. The default queue is generally 3 for I/0 daemon requests,
but can vary with request type.

-request_type STR, -rgt STR
searches the I/0 daemon queues belonging to the specified request type. See
"Notes".

-total, -tt
prints only the total number of selected requests and the total number in
the queue. Incompatible with -long and -brief control arguments.

193

-user User_id
selects only requests of the specified user. Requires r extended access to
the queue(s).

Notes: Only request types belonging to the generic types "printer" or "punch"
can be specified by the -request_type control argument when the -long argument
is given. A list of these request types can be obtained by invoking the
print_request_types command.

194

Tist_help

06/24/80 list_help, 1h

Syntax: 1h topics -control_args

Function: displays the names of all info segments pertaining to a
given topic. Topics are specified by arguments to the list_help
command. An info segment is considered to pertain to a given topic if
the topic name appears in (i.e., is a substring of) the info segment
name. The active function returns the selected names separated by
spaces.

Arguments:
topics
are strings to be searched for in info seg names.

Control arguments:

-absolute_pathname, -absp
prints or returns full pathnames of info segs rather than
entrynames.

-brief, -bf
does not display the alternate names on the info segments. The
default is to display them.

-all, -a
displays the names of all info segments. The default is to display
the names of only those info segments whose names match the topics
specified.

-pathname path, -pn path
specifies the pathname of a directory to search for applicable
segments. The default is to search the directories in the
info_segments search list. Multiple -pathname control arguments are
allowed. See "Notes on Search List" below.

Syntax as active function: [1lh topics -control_args]

Notes on search list: The list_help command uses the "info_segments"
search list that has the synonyms "info_segs" and "info". The default
"info_segments"™ search list is:

>doc>iml_info
>doc>info

These directories contain info segments provided by the site and those
supplied with the system. Type "print_search_paths info_segments" to
see what the current "info_segments" search list is. For more
information about search lists, see the search facility commands, and
in particular, the add_search_paths command description in Commands
and Active Functions, AGS2.

195

list_iacl_dir

08/30/79 list_iacl_dir, 1lid

Syntax: 1lid path User_ids -control_args

Function: lists entries on a directory initial access control list (initial
ACL).

Arguments:

path
pathname of a directory; if it is -wd, -working_d4ir, or omitted, the
working directory is assumed. If it is omitted, no User_ids can be
specified. The star convention can be used.

User_ids
access control names that must be of the form Person_id.Project_id.tag.
If no User_id is specified, the whole initial ACL is listed.

Control arguments:

~ring N, -rg N
ring number (default is current ring).

-brief, -bf -
suppresses the message "User name not on ACL of path."

Notes: If this command is given without any arguments, the entire initial ACL
for the current ring for the working directory is listed.
Type "help acl_matching" for an explanation of the User_id matching strategy.

Syntax as an active function:
[1id path User_ids -ring N]

Notes on use as active function:
returns the matching modes and access names separated by spaces, for example:
"s One.B.* sma Two.B.a". The -brief control argument is assumed.

196

list_iacl_seg

08/30/79 list_iacl_seg, lis

Syntax: 1lis path User_ids -control_args

Function: lists entries on a segment initial access control list (initial ACL)
in a directory.

Arguments:

path
pathname of a directory; if it is -wd, -working_dir, or omitted, the
working directory is assumed. If it is omitted, no User_ids can be
specified. The star convention can be used.

User_ids
access control names that must be of the form Person_id.Project_id.tag.
If no User_id is specified, the whole initial ACL is listed.

Control arguments:
-ring N, -rg N
ring number (default is current ring).
-brief, -bf
suppresses the message "User name not on ACL of path."

Notes: If this command is given without any arguments, the entire segment
initial ACL for the current ring for the working directory is listed.
Type "help acl_matching" for an explanation of the User_id matching strategy.

Syntax as an active function:
[1is path User_ids -ring N]

Notes on use as an active function:
returns the matching modes and access names separated by spaces, for example:
"r One.B.* rw Two.B.a". The -brief control argument is assumed.

197

Tist_not_accessible

01/10/77 1list_not_accessible, lnac

Syntax:_ lnac path User_id -control_args

Function: scans a directory and lists segments and directories that do not have
a specified access relation to a named user.

Arguments:
path
the directory to check (default: working dir)
User_id
a standard access control name (default: User_id of calling process)

Control arguments:

-dir_mode STR
lists directories to which the user does not have STR mode; STR can be any
or all of the letters sma.

-seg_mode STR
lists segments to which the user does not have STR mode; STR can be any or
all of the letters rew.

Notes: If no control arguments are given, the command lists all segments and
directories to which the user has null access.

198

list_ref_names

09/15/80 list_ref_names, 1lrn

Syntax: lrn paths -control_args

Function: 1lists the reference names associated with a specified
segment; it accepts both segment numbers and pathnames as segment
specifications.

Arguments:

paths
can be segment numbers or pathnames of segments known to the user's
process. If path is a segment number, the pathname and reference
names of the segment are printed. If path is a pathname, the
segment number {(in octal) and the reference names of the segment are
printed. If a pathname looks like a control argument (i.e., if it
is preceded by a minus sign) or a number, then path should be
preceded by -name or -nm.

Control arguments:

-all, -a
prints the pathnames and reference names of all known segments, as
well as the reference names of ring 0 segments. The -all control
argument is equivalent to -from O.

-brief, -bf i
suppresses printing of the reference names for the entire execution
of the commandg.

-from N, -fm N
allows the user to specify a range of segment numbers. This control
argument can be used with the -to control argument. The pathnames
and reference names of the segments in this range are printed. If
-to is not specified, the highest used segment number is assumed.

-to
allows the user to specify a range of segment numbers. This control
argument can be used with the —-from control argument. The pathnames
and reference names of the segments in this range are printed. If
-from is not specified, the segment number of the first segment not
in ring 0 is assumed, unless -all is used.

Notes: All of the above arguments (segment specifiers and control
arguments) can be mixed. For example, in the command line:

! 1lrn 156 -from 230 path_one

the pathname and reference names of segment 156 and of all segments

from 230 on are printed. The segment number (in octal) and the
reference names of path_one are printed.

In the default condition, when called with no arguments, list_ref_names
prints information on all segments that are not in ring O.

199

When a pathname is specified, the segment number by which it is known
is printed. When a segment number is specified, 1lrn also prints the
pathname of the segment.

200

list_resources

01/12/81 1list_resources, 1lr

Syntax: 1lr -—control_args

Function: 1lists groups of resources managed by the Resource Control
Package (RCP), selected according to criteria specified by the user.

Control arguments:

-acquisitions, -acq
lists resources acquired by the user specified by the -user control
argument. If this control argument is used, -type must also be
specified.

~assignments, -asm
lists resource assignments. This cannot be used with the active
function.

-awaiting_clear
lists those resources that are awaiting manual clearing.

~device STR, -dv STR
lists device resources with the name STR. No other resources are
listed. This cannot be used with the active function.

-logical_volume, -1v
lists logical volumes that are currently attached. This cannot be
used with the active function.

-long, -1g9
prints all the information known about each resource listed. If
this control argument is not supplied, only the name is printed for
each resource listed. This cannot be used with the active function.
~-1g has no effect if the -acq control argument has been specified.

-mounts, -mts
lists resources currently mounted by the process. This cannot be
used with the active function.

-reservations, -resv
lists only device and volume reservations. This cannot be used with
the active function.

~-type STR, -tp STR
lists resources of the type STR. See list_resource_types for
information on obtaining the names of resource types.

-user User_id
selects a particular user or group of users for whom resource
information is to be printed. This control argument can be used
only in conjunction with -acquisitions. The User_id can be any of
the following forms--

Person.Project
specifies a particular Person_id and Project_id combination.
* .Project

specifies all users on a specified project.

%, %

201

specifies all users (i.e., all acquired resources are listed).
free ’
specifies all resources in the free pool.

system
specifies all resources in the system pool.

specifies all users plus the free and system pools (i.e., all
registered resources will be listed).

If this control argument is not specified, the User_id of the user
invoking list_resources is assumed. See "Notes on Access
Restrictions" below.

Notes on access restrictions: Access to rcp_admin_ is required to
obtain information on other users. Read access to the PDT (Project
Definition Table) of a specified project is required to obtain
information for that project.

Notes: If this command is invoked without any arguments, all resources
assigned and devices attached to the calling process are listed.

Syntax as active function: [lr -control_args]

202

list_retrieval _requests

02/02/79 1list_retrieval_requests, 1lrr

Syntax: 1lrr path -control_args

Function: lists requests in the retrieval dqueue.

Arguments:

path
is the relative pathnme of one or more requests to be listed. The star
convention is allowed. If this argument is not specified, all requests are
listed. See also the —entry control argument.

Control arguments:
-absolute_pathname, -absp
prints the full pathname.
—admin User_id , -am User_id
selects requests of all users or of the specified user. Default is to list
the user's own requests. Required r extended access to the queue(s), to
read other users' requests.
-all, -a
searches all queues.
-brief, -bf
prevents printing of comment and request state in normal (not -long) mode.
-entry STR, -et STR
selects only requests whose entry names match STR. The star convention is
allowed. Directory portions of request pathnames are not used for
selecting requests. Incompatible with the path argument.
-id ID
selects only requests whose request_ids match ID. Type "help request_ids".
-long, -1g
prints all information about each selected request, including long
request_id and full pathname. Default is to print short request_id and
entryname.
-long_id, -1gid
prints the long request_id.
-position, -psn
prints queue positions of each selected request. With -total, prints a list
of queue positions. Requires r extended access to the queue(s), to read
other users' requests.
-queue N, =g N
searches queue N. The default queue is 3.
-total, -ttt
prints only the total number of selected requests and the total number in
the queue. Incompatible with -long and -brief control arguments.
~user User_id
selects only requests of the specified user. Requires r extended access to
the queue(s).

Tocnet

09/12/83

INTRODUCTION:

Ces quelques lignes d'explication ont pour but de decrire les connexions
possibles d'un terminal, relie au reseau local "LOCNET" du CNET/Issy, sur
et de donner les principaux messages
d'erreur dus, soit a un mauvais fonctionnement d'un element du reseau (ou
de Transpac), soit a une saturation d'un de ces-elements, ou encore a une

tout ordinateur relie a ce reseau,

203

mauvaise utilisation quelconque.

1) ACCES:

Mettre le terminal sous tension. Taper H (CR). Apparait alors le message:

"LOCNET PARIS XX". Composer alors le numero d'acces au site desire.

Si la communication est etablie,

2) NUMEROTATION,

(Le site destinataire est 1le

DEPUIS LE RESEAU LOCAL,

DPS-8 MULTICS)

apparait le message:

n COM n

VERS LE CNET/ISSY:

locnet Utilisation du reseau local "LOCNET" du CNET/Paris.

NUMERO TYPE TYPE VITESSES
DE LIAISON D'ACCES
59209055 via le DN 7103 X 25 110-4800
(sous le "modele" ASCII)
59209156 via le DN 7103 X 25 "
(qui demande le modele voulu)
59205201 via le DN 6678 EBVO 1200
59205302 " " "
59206204 " " "
59206306 " " "
En outre, on dispose des 2 mnemoniques : MA = acces EBVO via le DN 6678,
MB = " X 25 " 1le DN 7103.

3) NUMEROTATION, DEPUIS LE RESEAU LOCAL, VERS L'EXTERIEUR:

NUMERO TRANSPAC TYPE

DU DESTINATAIRE D'ACCES VITESSES SITE DESTINATAIRE
Exemples :

12200013220 X 25 110-4800 IRIS 80 : CNET/LANNION
12200013440 X 25 110-4800 " : "
1380201326 X 25 110-4800 VAX : CNET/GRENOBLE

S

204

4) ACCES EXTERIEURS,

(Le site destinataire est le DPS-8 MULTICS)

DEPUIS TRANSPAC, VERS LE CNET/ISSY:

NUMERO TYPE TYPE VITESSES
DE LIAISON D!'ACCES
19202066855 via le DN 7103 X 25 110-4800
(sous le "modele"™ ASCII)
19202066856 via le DN 7103 X 25 "
(qui demande le modele voulu)

182020455 " X 25 "
19202066801 via le DN 6678 EBVO 1200
19202066802 " " "
19202066804 " " "
19202066806 " " "

LIB DTE 008
LIB DTE 023
LIB DTE 035

LIB NC 144
LIB NC 145

LIB DTE 004

LIB DER XXX

LIB NP XXX

RESET DTE 028

6) INFORMATIONS COMPLEMENTAIRES:

Plus d'acces libre sur le site destinataire
Lignes d'acces au calculateur hors service
Erreur de mot de passe dans le numero

PROBLEMES SUR LIAISONS D'ACCES

Frontal en derangement
Numero inconnu

Pertes de caracteres (Par exemple, probleme de controle

de flux sur un PAD)

Pour avoir des informations plus detaillees sur les messages de TRANSPAC,
faire help reseau
profils des PAD,

on trouvera des informations detaillees sur les

avec leur signification.

et des tableaux qui recapitulent les messages TRANSPAC,

205

login

09/17/81 login, 1

Syntax: 1 Person_id Project_id —control_args
or: 1 Person_id.Project_id -control_args

Function: used to gain access to the system. It is a request to the
answering service to start the user identification procedure, and then
either create a process for the user, or connect the terminal to an
existing disconnected process belonging to the user. The login command
line may be no more than 300 characters in length.

Arguments:

Person_id
is the user's registered personal identifier. This argument must be
supplied. The personal identifier can be replaced by a registered
"login alias" if the user has one.

Project_id
is the identification of the user's project. If this argument is
not supplied, the default project associated with the Person_id is
used. See the -change_default_project control argument below for
changing the default project to the Project_id specified by this
argument.

List of general control arguments: The following are permitted in any
use of the login command:

-brief, -bf
suppresses messages associated with a successful login. If the
standard process overseer is being used, the message of the day is
not printed.

-change_default_auth, -cda
changes the user's registered default login authorization to the
authorization specified by the -authorization control argument. If
the authorization given by the user is valid, the default
authorization is changed for subsequent logins, and the message
"default authorization changed" is printed at the terminal. If the
-cda control argument is given without the -auth argument, an error
message is printed.

—-change_default_project, -cdp
changes the user's default project to be the Project_id specified in
this login request line. The default Project_id is changed for
subsequent logins. If the -cdp control argument is specified
without a Project_id argument, an error message is printed.

—change_password, —-cpw
changes the user's password to a newly given password. The login
request asks for the old password before it requests the new one.
Passwords can be up to eight characters long and can not contain
imbedded blanks.

—~generate_password, -gpw
changes the user's password to a new password, generated for the

206

user by the system. The login request asks for the old password
first. Then, a new password is generated and typed on the user's
terminal. The user is asked to retype the new password, to verify
having seen it. :

-modes STR, -mode STR, -md STR
sets the I/0 modes asscciated with the user's terminal to STR, where
STR consists of modes acceptable to the tty_ I/0 module (described
in MPM Communications I/0). STR is usually a list of modes separated
by commas and must not contain blanks.

-no_print_off, -npf
causes the system to overtype a string of characters to provide a
black area for the user to type the password.

-no_warning, -nw
suppresses even urgent system warning and emergency messages from
the operator, both at login and during the user's session. Use of
this argument is recommended only for users who are using a remote
computer to simulate a terminal, or are typing out long memoranda,
when the process output should not be interrupted by even the most
serious messages.

-print_off, -pf
suppresses overtyping for the password. The default for this
control argument depends on the terminal type.

-terminal_type STR, -ttp STR
sets the user's terminal type to STR, where STR is any terminal type
name defined in the standard terminal type table. This control
argument overrides the default terminal type.

List of control arguments for process creaticn: The following
arguments are to be used when requesting the creation of a new
process.

-authorization STR, -auth STR

" sets the authorization of the process to that specified by STR,
where STR is a character string composed of level and category names
for the desired authorization, separated by commas. STR cannot
contain any embedded blank or tab characters. STR must represent
an authorization that is less than or equal to the maximum
authorization of Person_id on the project Project_id. If this
control argument is omitted, the user's registered default login
authorization is used.

-force
logs the user in if at all possible, provided the user has the
guaranteed login attribute. Only system users who perform emergency
repair functions have the necessary attribute.

-home_dir path, -hd path
sets the user's home directory to the path specified, if the user's
project administrator allows this choice.
-no_save_on_disconnect, -nosave
causes the user's process to be logged out instead of being saveqd,
if it becomes disconnected from its login terminal. This argument
is used to override a default of -save_on_disconnect, if that
default has been set by the user's project administrator.
-no_preempt, -np
refuses to log the user in if this can only be done by preempting

207

some other user in this user's load control group.

-no_start_up, -ns
instructs the standard process overseer not to execute the user's
start_up.ec segment, if one exists, and if the project administrator
allows this choice.

-outer_module path, —om path
attaches the user's terminal via the outer module named path rather
than the user's registered outer module, if the user is allowed this
choice.

-process_overseer path, -po path
sets the user's process overseer to the procedure given by the path
specified, if the user's project administrator allows this choice.
If path ends in the characters ",direct", the specified procedure is
called directly during process initialization rather than by the
standard procedure provided by the system. This means that the
program specified by path must perform the tasks that would have
been performed by the standard procedure.

-ring N, -rg N
sets the user's initial ring to be ring N, if this ring number is
greater than or equal to the user's registered initial ring and less
than the user's registered maximum ring.

-save_on_disconnect, -save
saves the user's process if it becomes disconnected from its login
terminal because of a communications line hangup or FNP crash.
Permission to use the process—saving facility, and the setting of
whether or not the facility is enabled by default, are both under
the control of the user's project administrator. See the
description of the -no_save_on_disconnect control argument, and the
descriptions of the save_on_disconnect and no_save_on_disconnect
commands.

-subsystem path, -ss path .
creates the user's process using the prelinked subsystem in the
directory specified by path. The permission to specify a process
overseer also governs the use of the -subsystem argument. To
ove;ride a default subsystem specified by the project administrator,
type -ss "".

List of control arguments for disconnected processes: The following
are used to specify the disposition of disconnected processes.

-connect N
connects the terminal to the user's disconnected process. If more
than one such process exists, the process number N must be
specified.

-new_proc N
destroys the user's disconnected process and creates a new one. If
more than one such process exists, the process number N must be
specified.

—destroy N
destroys the user's disconnected process and logs out. If more than
one such process exists, the process number N must be specified.

-Create
creates a new process without destroyihg any disconnected processes.
This is permitted only for users who are allowed to have multiple

208

interactive processes.

-list
lists the user's disconnected process, showing the process number,
the time of the original login, and the ID of the channel and
terminal that were last connected to the process.

Notes on disconnected processes: If a user's project administrator
allows it, a user's process can be preserved when it becomes
disconnected from its terminal because of a phone hangup or FNP crash.
The user can call back any time before the (installation-defined)
maximum inactive time and ask to be connected to this disconnected
process. This feature is controlled by the -save_on_disconnect and
-no_save_on_disconnect control arguments; the default is set by the
user's project administrator. -

Some users are permitted by their project administrators to have
several interactive processes simultaneously. These users can have
more than one disconnected process. Multiple disconnected processes
are numbered consecutively starting with 1, in the order of their login
times. These process numbers must be used as arguments when referring
to one of a set of multiple disconnected processes. The number and
login time of each is printed by the -list argument or the list
preaccess request. The user can, however, anticipate the process
numbering and use a number in an argument to the login command. The
time listed and sorted on is the time of the original login from which
the process is descended; this time is not affected by new_proc or
reconnection.

List of actions:
A user with disconnected processes who does not specify, on the
login line, the action to be taken with respect to the disconnected
processes, is told of the existence of the disconnected processes
and given a choice of the following actions:

list
to list the user's disconnected processes;
create
to create an additional process;
connect
to connect the terminal to a disconnected process;
new_proc

to destroy a disconnected process, create a new one with the same
attributes, and connect the terminal to it.
destroy
to destroy a disconnected process and log out.
logout
to logout without affecting any process.

Notes:

The connect, new_proc, and destroy requests take an optional process
number as an argument. The logout and destroy requests take an
optional -hold (-hd) control argument, which prevents the breaking of
the connection between the terminal and the answering service. The
new_proc and destroy requests take an optional -immediate control
argument, that causes the disconnected process to be destroyed
immediately, without being sent a trm_ signal; this is useful for
terminating a malfunctioning process. The help request, when issued

209

from a logged in but disconnected terminal, explains these options
rather than explaining how to log in.

210

Togout

04/24/81 logout

Syntax: logout -control_args

Function: terminates a user session and ends communication with the
Multics system. It signals the finish condition for the process; and,
after the default on unit for the finish condition returns, it closes
all open files and destroys the process.

When used as a preaccess command (from a terminal not connected to a
process), it terminates the user session without destroying any
process. (See Disconnected Processes under the login request.)

Control arguments:

-hold, -hd
the user's session is terminated. However, communication with the
Multics system is not terminated, and a user can immediately log in
without redialing..

-brief, -bf
no logout message is printed, and if the -hold control argument has
been specified, no login message is printed either.

211

long_date

12/30/80 long_date

Syntax: long_date dt

Function: returns a month name, a day number, and a year as a single
string in the form "month day, vear" (e.g., November 2, 1976).

Arguments:

4t
is any string acceptable to convert_date_to_binary_. The default is
the current date. See date_time_strings.gi.info for valid 4t
arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [long_date dt]

212

long_message_format

05/26/77 1long_message_format, 1lmf
Syntax: 1mf -pn mbx_path
Function: causes messages from send_message to be printed in long format. A

header giving the sender's name precedes every line received by the user or the
owner of the specified mailbox.

213

mail

02/02/79 mail, ml

Syntax: (sending) ml path Personl.Projectl ... PersonN.ProjectN
-control_args
or: ml path -pn PATH -control_args

(printing) ml Personl.Projectl -control_args
or: ml path -control_args

Function: sends a messade to another user or prints messages in
a mailbox. If the recipient is using accept_messages, that user
receives an immediate notification of the form "You have mail."

Arguments:
path
(sending) pathname of segment to be mailed, or "x" for terminal input.
ExXits from terminal input with a line consisting of ".".
(printing) pathname of mailbox; the mbx suffix need not be given.

PersonN name of a person to whom mail is to be sent. ProjectN project
which PersonN is registered.

Control arguments:
-brief, -bf

(reading) print total only. Print nothing if mailbox empty.
-header, -he

(reading) print header of messages only, not text.
~match Pers.Proj

(reading) print messages from Pers.Proj only (stars ok).
-exclude Pers.Proj, -ex Pers.Proj

(reading) exclude Pers.Proj messages.
-acknowledge, —-ack .

(sending) cause recipient to send message when mail read.
-pathname PATH, -pn PATH .

send to or read a mailbox specified by pathname.
-no_notify, -nnt

(sending) suppress the "You have mail." notification.

Access required:

Access on a newly created mailbox is automatically set to adrosw

for the user who created it, asw for =*.SysDaemon.x*x, and aow for

x.,x,%x, For more information on extended access, type "help ext_access".

Creating mailbox:

A default mailbox is created automatically the first time a user

types "mail"; the default mailbox is:
>user_dir_dir>Project_id>Person_id>Person_id.mbx

on

214

memo

08/31/81 memo

Syntax: memo -memo_options memo_text
or: memo -action_arg -memo_options -selection_args

Syntax as active function: [memo memo_text]
or: [memo -list -totals]

Function: maintains a user-created reminder list in a memo segment,
which is normally Person_ID.memo in the user's home directory.

Arguments:
memo_text
is the text of the memo being set. It may not be longer than 132
characters. It can be specified in one of the following forms:
STR
the first string that does not begin with a hyphen is taken as
the beginning of the memo text. It and all succeeding strings
form the memo text. No further arguments are accepted.
-memo STRs ’
treats all succeeding STRs as part of the memo text, whether or
not they begin with hyphemns.

List of memo_options: These control arguments are used to control

various options of the memo being set, or to select memos being

otherwise processed.

-alarm, -al
specifies that the memo is to be an alarm. It will be printed on
the terminal, or executed if set with -call, when its timer goes
off, if timers are enabled, rather than when memos are explicitly
processed. An alarm memo is deleted immediately after it reaches
maturity, unless it was set with -retain.

-call
passes the memo text to the command processor as a command line when
the memo matures, rather than printing it.

-date DT, -4t DT
identifies a date (DT) for the memo to mature in a form suitable for
input to the convert_date_to_binary_ subroutine. The DT is
truncated to midnight preceding the date in which DT falls.

-expires DT, -exp DT
identifies a time (DT) at which the memo is to expire; this is
treated as a delta from the maturity time (which it must be greater
than) so that repeating memos with expiration times will work
properly. When used as a selection_arg, all expiring memos are
selected, regardless of the expiration dates.

—-invisible, -iv
specifies that the memo is never to be mature and will never be
printed during a normal memo print.

215

-no_retain, -nret
specifies that the memo will only be processed once, and then will
be automatically deleted. This is the default for alarm memos.

-repeat DT, -rpt DT
identifies the interval at which the memo is to repeat where DT must
be greater than or equal to 1 minute. The repeat interval is
applied repeatedly until the new maturity time is greater than the
current time, and then the new memo is set. When used as a
selection_arg, all repeating memos are selected, regardless of the
repeat intervals given. See "Notes on repeating memos".
-repeat_when_processed, -rwp
specifies that the repeat time of a repeating memo will be applied
from the time the memo is processed, rather than the maturity time.
This is useful for memos which are only significant within a single
process.

-retain, -ret
causes an alarm memo to be kept as an ordinary printing (or
executing, if set with -call) memo after it matures, rather than
being deleted automatically. This is the default for non-alarm
memos.

-time DT, ~tm DT)
identifies a time (DT) for the memo to mature in a form suitable for
input to the convert_date_to_binary_ subroutine.

List of action_args: These control arguments control various options
of the memo command. Only one may be specified, and they may not be
combined with memo setting. -

=brief, -Dbf
suppresses printing of the message "No memos." if no memos are
found.

-delete -force , -dl1 -fc
deletes all memos selected by the optional arguments. At least one
memo must be explicitly specified. Memo will query the user before
deleting non-mature memos. when given with —-force, causes memos to
be deleted even if they are not yet mature, without gquerying the
user.

-list, -1s .
prints text and control information of selected memos; no memos are
executed. If no memos are explicitly selected, all memos are
listed. If ~totals is also specified, only the total number of
selected memos is printed.

-off
suppresses all memo alarms, until the next memo command with no
explicitly specified action. The -on and -off control arguments may
be combined with other actions. '

-on
enables memo alarms without printing or executing nonalarm memos.

-pathname PATH, -pn PATH, -pathname -default, -pn -dft
changes the default memo segment to PATH if specified with no other
action. Otherwise, the memo segment specified by PATH is used for
the execution only of the current memo command. If -pathname is

216

used along with -on or -off, the default memo segment IS changed,
and alarms are turned on or off, as appropriate, for the new
segment. The suffix ".memo" need not be supplied. When given as
~pathname -default, the default memo segment is reset to
Person.ID.memo in the user's home directory.

-postpone DT, -pp DT
reschedules the maturity of the selected memos to the time specified
by DT, if DT is later than the current maturity time. At least one
memo must be explicitly specified.

-print, -pr
prints text of all selected memos. No memos are executed. If no
memos are explicitly selected, only mature memos are printed.

-process
causes all mature memos to be processed, and alarms to be turned on,
if not otherwise specified. This is equivalent to not explicitly
specifying an action.

-status, -st
prints information about the current default memo segment. If
-status is specified, it must be the only argument.

~-totals, -tt
can only be specified in combination with the -1ist control
argument. When it is used, the total number of memos selected is
printed, rather than listing each of the memos.

Notes: The -delete, -list, -print, -postpone and -process actions are
mutually exclusive.

List of selection_args: These arguments are used to select memos to be
listed, printed, deleted, or postponed. Some memo_options may also
be used to specify types of memos to be selected (see "Notes" below).
When more than one selection_args are specified, only those memos
that match all of the selection criteria are selected.

memo_number
is either a positive decimal number specifying a single memo (for
example 32), or two such numbers separated by a colon, specifying a
range of memos (for example 12:16).

-from DT, -fm DT
selects all memos which mature on or after DT. -from may be
combined with -to, each of which may only be specified once. This
control argument is incompatible with -date and -time.

-match STRING
specifies a string against which memo texts are matched to select
memos. STR may not be longer than 32 characters. Up to 40 strings
may be specified; all memos which match at least one are selected.
-to DT
selects all memos which mature on or before DT. -to may be combined
with -from. This control argument is incompatible with -date and
-time.

Notes: No more than 5082 memos can be contained in a single memo
segment. An individual memo may be no more than 132 characters long.

If no action is explicitly specified, and no memo is being set, all

217

mature memos are processed (printed or executed), and the alarm timer
is turned on, enabling the processing of alarm memos.

The memo_options can also be used to specify types of memos to be
selected; those which take a Date/Time interval (-repeat, —exXpires, but
not —-date or -time) will cause the selection of ALL repeating or
expiring memecs, as the time interval (which must be specified) is
ignored.

Notes on default memo segment: The memo command operates on the
default memo segment (unless —-pathname is specified with one of the
actions -delete, -list, -postpone, -print or ~process). This default
memo segment is also used when processing alarm timers, to find the
memos which should be processed for the alarm. If the default memo
segment has never been explicitly specified (by using —pathname without
any other actions), it is the segment Person_ID.memc in the user's home
directory.

The default memo segment is created if it does not already exist. If
the default memo segment is changed, alarms are turned off for the old
memo segment, and then turned on for the new one (if requested). Thus,
only one memo segment may have alarms active at a time.

Notes on repeating memos: A repeating memo repeats by setting a new
memo which is identical to the original one, and then turning off the
repeat specification in the original memo.

An alarm memo which repeats will mature once, and then be automatically
deleted, unless it was set with ~-retain, in which case it is turned
into an ordinary, non-alarm memo, and lasts until it expires or is
deleted.

Notes on expiring memos: Expired memos are deleted without being
reprinted or executed. However, if they are repeating memos, they are
repeated before being deleted. A sequence of repeating memos must be
terminated manually (by deleting the current memo); the -exXpires
control argument is not useful for this purpose.

Notes on active function: The memo active function can only be used to
set and list memos. When a memo is set, the number assigned to the
newly set memo is returned. When memos are listed, a string consisting
of the memo numbers selected, separated by spaces, is returned; if
-totals is specified, the total count is returned.

218

menrge_ascii

05/12/81 merge_ascii, ma

Syntax: ma paths -control_args

Function: merges two or more related ASCII text segments.

Arguments:

paths
are pathnames of segments to be merged as automatically as possible.
The equal and :: conventions are allowed. Up to sixX segments can
be merged, including those preceded by the =-edit control_argument.

Control arguments:

-edit path
merges the segment named path in a nonautomatic manner. Edit mode
is entered each time a modification is found in the specified
segment.

-minchars N
specifies the minimum number of characters that must be identical
for merge_ascii to assume blocks of text in different segments are
identical. The default value of minchars is 25.

-minlines N
specifies the minimum number of lines that must be identical for
merge_ascii to assume blocks of text in different segments are
identical. The default value of of minlines is 2.

-0l1d_original path, -o0ld_orig path
identifies path as the pathname of a segment antecedent to the most
recent common ancestor of the texts being merged and allows the
automatic picking up of identical changes present in all the texts
being merged.

-original path, -orig path
identifies path as the pathname of a segment containing the original
version of the text. The proper original is the most recent common
ancestor of the texts being merged. Overlapping changes, even if
identical, cause edit mode to be entered.

-output_file path, -of path
Put the merged output text in the segment named path. (no ::
convention)

Notes: The merge_ascii program is typically used to merge texts that
have been independently modified by several users. If an original
version of the text is available, and if the user desires, merge_ascii
performs the merge automatically, requiring user intervention only when
overlapping modifications are detected. When user intervention is
required, merge_ascii displays line-numbered blocks of text and then
enters edit mode allowing the user to choose lines from any text or
insert new lines.

219

When blocks of text are displayed, each line is preceded by a text
identifier and a line number. The text identifier A is reserved for
the original, whether supplied or not. The identifiers B-G are
assigned to the texts being merged in the order in which their
pathnames are encountered on the command line. The identifier M is
used for the merged output, if printed while in edit mode.

The equal convention is allowed; equal processing is based on the first
path argument in the command invocation.

Either the -original or -old_original (but not both) control argument
may be used to enable automatic merging. If neither is supplied, edit
mode is entered each time differences are found in the segments being
merged. The -ocld_original control argument should be used judiciously,
only if appropriate, and the user fully understands the relationships
between the texts being merged.

List of edit requests: In the syntax of the edit requests, <text_id>
is the lowercase letter corresponding to the text identifier used by
merge_ascii; <line_no> is a line number in the text segment. Line
numbers can be specified as ™" to address the first line or as ">"
to specify the last line of a current block.

<text_id>k
copy current block from specified text (e.g., bk copies current
block from text B).

<(text_id>< line_no>k
copy specified line from specified text (e.g., b5k copies line 5
from text B).

<text_id><line_no>,<line_no>k
copy specified lines from specified text (e.g., b4,7k copies lines 4
through 7 from text B).

<text_id>p
print current block from specified text (e.g., bp prints current
block from text B).

<text_id><line_no>p
print specified line from specified text (e.g., b6p prints line 6
from text B). i

<(text_id>< line_noc>,<line_no’>p
print specified line from specified text (e.g., bl2,16p prints lines
12 through 16 from text B).

<text_id>d
delete the current block in specified text (e.g., md deletes the
current block in text M).

input
enter input mode.

return from input mode to edit mode.

go
exit editor and continue comparison.

quit
abort merge and return to command level. If this request is given
during a merging procedure, all work is lost. Work is not saved
unless merging is done from the beginning to the end of the

220

segments.
execute rest of line as a Multics command line.

display identifiers, current line numbers, and pathnames of each
text.

help
print a list of the edit requests and a brief explanation of each
one.

Notes on edit reguests: 1In any invocation of edit mode the current
block in each text is just the block of lines previously displayed.
The current block in text M is initially empty, and is grown as the
user selects or inputs lines.

The print (p) and copy (k) regquests may address any lines in any
text (A to M) known to merge_ascii. The delete (d) request can only
be applied to the current block in text M, and has the effect of
undoing all edit requests made since changes were last displayed.

Multiple edit requests, delimited by blanks, can be given on a
single request line. However, the quit, go, input, and e requests
must not be followed by other requests.

minute

12/30/80 minute

Syntax: minute dt

- Function: returns the one- or two-digit number of a minute of the
hour, from O to 59.

Arguments:

4t
is a date—-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current time is used.
See date_time_strings.gi.info for wvalid dt arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [minute 4t]

222

modules

02/04/81 Commands, Active Functions, Subroutines

The help system provides individual info segments for each. command,
active function, and subroutine in the Multics system. These info
segments are given the name of the particular system module (command,
active function, or subroutine) with a suffix of "info". The
resulting name is called an info_name. For example, the info segment
describing the print command is named "print.info". But you need not
type this suffix when using the help command; you can simply type

help print

Module Info_names:

If you are unsure of the name of a system module, you can get a list
of possible names by using the list_help command with a word that
describes what you are looking for. For example, if you want to know
how to use the mail facility, you might type

list_help mail

For more information about the 1list_help command, type

help list_help

Subroutine entry points:

You can go directly to the description of a particular entry peint in
a subroutine by typing the name of the entry point with the help
command. For example, by typing

help cu_$get_command_processor

you automatically bypass the 18 cu_ entry points described in
alphabetical order before this one. If, on the other hand, you want
to start printing at the beginning of the info seg for the command

utility subroutine, you type

help cu_

223

month

12/30/80 month

Syntax: month dt

Function: returns the one- or two-digit number of a month of the year,
from 1 to 12.

Arguments:

dt
is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current month is used.
See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [month dat]

224

month_name

12/30/80 month_name

Syntax: month_name dt
Function: returns the full name of a month of the year.

Arguments:

dat
is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current month is used.
See date_time_strings.gi.info for valid 4t arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [month__name dat]

225

move

10/28/80 move, mv

Syntax: move pathl path2...pathln path2n -control_arg

Function: causes a designated segment or multisegment file (along
with its access control list (ACL) and all names) to be moved to a
new position in the storage system hierarchy.

Arguments:

pathl
is the pathname of a segment or multisegment file to be moved. The
star convention is allowed.

path2
is the pathname to which pathl is to be moved in the target
directory. The equal convention is allowed. If the last path2
segment is not specified, pathl is moved to the working
directory and given the entryname pathl.

Control arguments:

-acl

moves the ACL. This is the default.
-all, -a

moves multiple names and ACLs.
-brief, -bf

suppresses the messages "Bit count inconsistent with current
length..." and "Current length is not the same as records used...."
-chase
moves the targets of links that match pathl. (See "Notes".)
-long
prints warning messages as necessary. This is the default.
-name, -nm
moves multiple names. This is the default.

-no_acl

does not move the ACL.
-no_chase

does not move the targets of links that match pathl. (See "Notes".)
-no_name, -nnm

does not move the multiple names.

Access required: Read access is regquired for pathl. Status and
modify permission are required for the directory containing pathl.
Status, modify, and append permission are required for the target
directory. '

Notes:
The move command supports multiple moves on the same syntax line;
pathl is moved to path2, pathln is moved to path2n, etc. If more

226

than one entry is to be moved to the working directory, path2 can be
omitted, but pathl. . .pathln must be contained in parentheses.

If an entry with the entryname pathl already exists in the

target directory, the user will be asked whether the 0ld (already
existing) entry should be deleted. If the user answers "no", the
move does not take place.)

The default for chasing 1links depends on pathl. If pathl is a star
name, links are not chased by default, if pathl is not a star name,
paths are chased.

If pathl is protected by the safety switch, the user is asked whether
pathl is to be deleted from its o0ld containing directory after it has
been moved.

227

move_abs_request

10/08/80 move_abs_request, mar

Syntax: mar request_ids -control_args

Function: moves a request from one absentee queue to another. The
request is always placed at the end of the target queue.

Arguments:

path
is the full or relative pathname for the absentee input segment of
requests to be moved. The star convention is allowed.

-entry STR, -et STR
identifies requests to be moved by STR, the entryname portion of the
absentee input segment pathname. The star convention is allowed.

-id ID
identifies one or more regquests to be moved by request identifier.
This identifier may be used to further define any path or -entry
identifier (see "Notes").

Control arguments:
-all, -a
searches all queues except the target queue. This control argument
is not compatible with —-foreground and -queue control arguments.
-brief, -bf ‘
suppresses messages telling that a particular request_id was not
found or which requests were moved when using star names or -all.
-foreground, -fg
specifies that the foreground queue contains the requests to be
moved. This control argument is not compatible with -all or -dqueue
control arguments.
-queue N, -g N
specifies that absentee queue N contains the requests to be moved.
If not specified, the default queue searched is defined by the
system administrator. This control argument is not compatible
with -all or -foreground control arguments.

-sender STR
specifies that only requests from sender STR should be moved. One
or more request identifiers must be given.

-to_queue N, -tg N
specifies which queue to move the request to. (Regquired)

-user User_id
is a character string specifying the name of the submitter of the
request to be moved, if not equal to the group id of the process.
User_id can be of the form Person_id.Project_id, Person_id, or
.Project_id. This control argument is primarily for the operator
and administrators. Both r and 4 extended access to the queue are
required. This control argument causes the command to use
privileged message segment primitives that preserve the criginal
identity of the submitter. The AIM ring_1l privilege is needed to

228

preserve the original AIM attributes. If ring_1l privilege is not
present the AIM attributes of the user executing mar are used. The
default is that only requests entered by the user executing mar are
moved.

Access required: The user must have o exXtended access to the queue
from which the request is being taken, and a access to the queue to
which the request is being moved. The user must have r and d extended
access to move a request owned by another user (see the description of
the -user control argument above).

Notes: If any path of —-entry STR request identifiers are given, only
one -id ID request identifier will be accepted and it must match any
requests selected by path or entryname.

Multiple -id ID identifiers can be specified in a single command
invocation only if NO path or entry request identifiers are given.

When star names are not used and a single request_id matches more than
one request in the queue(s) searched, none of the requests are moved.
However, a message is printed telling how many matching requests there
are.

If the request is already running, it is not moved and a message is
printed to the user.

A complete description of User_id and AIM attributes can be found in
the MPM Reference Guide.

229

move_daemon_request

10/08/80 move_daemon_regquest, mdr

Syntax: mdr request_identifiers -control_args

Function: moves a request from one I/0 daemon queue to another. The
move can be within the same request type or from one request type to
another. The request is always placed at the end of the target queue.

Arguments:
request_identifiers can be chosen from the following:
path
identifies a request to be moved by the full or relative pathname of
the input data segment. The star convention is allowed.
-entry STR, -et STR
identifies a request to be moved by STR, the entryname portion of
the input data segment pathname. The star convention is allowed.
-id ID
identifies one or more requests to be moved by request identifier.
This identifier may be used to further define any path or -entry
identifier (see "Notes").

Control arguments:

-all, -a
searches all queues for the requests to be moved. This control
argument is incompatible with the -queue control argument. The
target queue is not searched by the -all control argument.

-brief, -bf
suppresses messages telling the user that a particular request
identifier was not found or that requests were moved when using star
names or the -all control argument.

-gueue N, =g N
specifies that queue N for the specified request type contains the
request to be moved, where N is an integer specifying the number for
the queue. If this control argument is omitted, only the default
gueue for the request type is searched. This control argument is
incompatible with the -all control argument.

-request_type STR, -rgt STR
specifies that the request moved is found in the queue(s) for the
request type identified by STR. If this control argument is not
specified, the default request type is "printer". Request types can
be listed by the print_request_types command.

-to_gqueue N, -tg N
specifies which queue to move the request to. If not given, the
default gqueue of the target request type is used.

~-to_request_type STR, -to_rgt STR
specifies that the request should be moved to request type STR. If
this control argument is not specified, the original request type is
used. The target request types must be of the same generic type as
the original request type.

230

-user User_id
specifies the name of the submitter of the requests to be moved.
The default is to move only requests entered by the user executing
the command. The User_id can be Person_id.Project_id, Person_id, or
.Project_id. This control argument is primarily for the operator
and administrators. Both r and d extended access to the gueue are
required. This control argument causes the command to use
privileged message segment primitives that preserve the original
identity of the submitter. If the process has access isolation
mechanism (AIM) ring one privilege, the AIM attributes of the
original submitter are preserved. Otherwise, the AIM attributes of
the current process are used.

Access required: The user must have o extended access to the queue
from which the request is being taken, and a access to the queue to
which the request is being moved. The user must have r and d extended
access to move a request owned by another user (see the description of
the -user control argument above).

Notes: 1If any path or -entry STR request identifiers are given, only
one -id ID request identifier will be accepted and it must match any
requests selected by path or entryname.

Multiple —id ID identifiers can be specified in a single command
invocation only if NO path or entry request identifiers are given.

When star names are not used and a single request identifier matches
more than one request in the queue(s) searched, none of the requests
are moved. However, a message is printed telling how many matching
requests are found.

If the request is already running, it is not moved and a message is
printed to the user.

See the MPM Reference Guide for a description of request identifiers.

231

move_dir

06/05/81 move_dir, mvd

Syntax: mvd source_dir target_dir entry_type_keys -contrel_args

Function: moves a directory and its subtree, including all of the
associated attributes, to another point in the hierarchy.

Arguments:

source_dir
is the pathname of the directory to be moved. The star convention
is allowed to match directory names. Matching names associated with
other storage types are ignored. The source_dir cannot be contained
in target_dir.

target_dir
is the new pathname for source_dir. If the entryname is different
from one already on source_dir, it is added to the existing names.
If target_dir is not specified, source_dir is moved to the working
directory and given the same entryname. The equal convention is
allowed.

Control arguments:

-brief, -bf
suppresses the printing of warning messages.
-force

continues exXecution when target_dir already exists, without asking
the user. 1If the -force control argument is not specified, the user
is queried.

-replace, -rp
deletes the contents of target_dir existing before the copying
begins. If target_dir is non-existent or empty, this control
argument has nc effect. The default is to append the contents of
the source directory to the target directory if it already exists.

List of entry_type_keys: These keys control what type of storage
system entry is moved. The default is to move all entries. The
keys are—-

-branch, -br

-directory, -d4dr

-file, -f

-link, -1k

-multisegment_file, -msf

-non_null_link, -nnlk

-segment, -sm
If one or more entry_type_keys are specified, but not the -directory
key, the subtree of source_dir will not be followed.

Access required: Status and modify permission are required for
source_dir and all of the directories in its tree, and its containing
directory. If target_dir does not exist, append permission is required

232

for its containing directory. If it does exist, modify and append
permission for target_dir are required. This command does not force
access.

The access control list associated with source_dir is moved to
target_d4ir.

Notes: 1If target_dir is contained in source_d4ir, an appropriate error
message is printed and control is returned to command level.

If name duplication occurs while appending the source_d4dir to the
target_dir and the name duplication occurs between directories, the
user is queried whether processing should continue. If the user
answers yes, the contents of the directory are moved (appended) to
target_dir, but none of the attributes of that directory are moved. If
the answer is no, the directory and its subtree is skipped. If name
duplication should occur between segments, the user is asked whether to
delete the existing one in target_dir. (See the move command.)

Links are translated; that is, if there are references to a source
directory in a link pathname, the link pathname is changed to refer to
the target directory.

If part of the tree is not moved, problems with link translation may
occur. If the target of the link in the source_d4ir tree was in the
part of the tree not moved, there may be no corresponding entry in the
target_dir tree. Hence, translation of the link (presumably originally
non-null) will cause the 1link to become null.

See alsc the copy, move, and copy_dir commands.

233

move_gquota

03/01/76 move_quota, mg

Syntax: mg pathl quota_changel ... pathN gquota_changeN

Function: moves storage quota between two directories, one immediately inferior
to the other.

Argumencs:

pathN
pathname of a directory; -wd or -wdir can be used. The star convention
CANNOT be used. :

quota_changeN
number of records to be moved between the containing directory gquota and the
pathN quota. The argument can be either positive or negative.
If positive, quota is moved from the containing directory to pathN; if
negative, the move is from pathN to the containing directory.

Access required: The user must have modify permission on both the directory
specified by pathN and its containing directory.

234

new_proc

07/10/81 new_proc

Syntax: new_proc -control_arg

Function: destroys the user's current process and creates a new one,
using the control arguments given initially with the login command, and
the optional argument to the new_proc command itself. Just before the
o0ld process is destroyed, the "finish" condition is signalled. After
the default on unit returns, all open files are closed. The search
rules, I/0 attachments, and working directory for the new process are
as if the user had just logged in.

Control arguments:

-authorization STR, -auth STR
to create the new process at authorization STR, where STR is any
authorization acceptable to the convert_authorization_ subroutine.
(See the convert_authorization_ subroutine in the MPM Subroutines.)
The authorization must be less than or equal to both the maximum
authorization of the process and the access class of the terminal.
The default is to create the new process at the same authorization.

Notes: If the user's initial working directory contains a segment
named start_up.ec, and the user 4id not log in with the -no_start_up
control argument, new_proc causes the command line:

! exec_com start_up new_proc interactive
to be automatically issued in the new process. This feature can be
used to initialize per-process static variables.

235

no_save_on_disconnect

03/13/80 no_save_on_disconnect

Syntax: no_save_on_disconnect

Function: disables process preservation across hangups in the user's
process, causing the process to log itself out automatically if its
terminal channel hangs up. -

Notes: This command is only meaningful if process preservation was in
effect for the process at login time, either by default or because the
-save_on_disconnect control argument was specified on the login command
line.

236

on

05/22/81 on

Syntax:
on conditions handler_com_line -control_args
subject_com_1line

Function: establishes a handler for a specified set of conditions,
executes an imbedded command line with this handler in effect, and then
reverts the handler. The handler is another imbedded command line to
be executed if the condition is signalled.

Arguments:

conditions
is a list of condition names separated by commas to be trapped by
the on command.

handler_com_line
is the command line to be executed when one of the conditions
contained in the 1list of condition names is raised. If
handler_com_line contains spaces or other command language
characters, it must be enclosed in quotes. If no command is to be
executed when a condition is raised, handler_com_1line must be given
as m"n .

subject_com_line
is the command line to be executed under the control of on. The
subject_com_line consists of the remaining arguments and should be
quoted if it contains parenthesis, brackets or semicolon.

Control arguments:

~brief, -bf R
suppresses the comment printed when a condition occurs.

-long, -1lg9
prints a detailed message describing the condition raised, if one is
available.

-restart, -rt .
continues execution of the subject_com_line after execution of
handler_com_line, or if -cl is also specified, after the start
command is executed.

-retry_command_line, -rcl
causes subject_com_line to be aborted and exectued over again after
executing handler_com_line.

establishes a new command level after the execution of
handler_com_line. The state of subject_com_line is preserved. If
the start command is issued, the same action is taken as would have
been if -cl had not been specified. This control argument is not
allowed for the on active function.

—-exclude STR, —-ex STR
prevents on from trapping the conditions given in STR. If more than
one condition is listed, condition names are separated by commas.

237

This control argument is useful when handling the any_other
condition.

Notes: The default action after executing handler_com_line is to abort
the execution of subject_com_line; this is modified by the -restart and
-rcl control arguments.

If a condition is raised and trapped by the on command while executing
the handler_com_line, it is considered a recursive signal, and the
entire invocation of the on command is aborted.

The message produced by the -long control argument is the same as the
message printed by the reprint_error command. The -brief and ~long
control arguments are mutually exclusive.- The -rcl and -restart
control arguments are mutually exclusive.

See the MPM Reference Guide for a list of standard system conditions.

Syntax as active function:
{on conditions handler_com_line -control_args
subject_com_line]

Notes on active function:
The active function returns true if any of the specified conditions are
signalled during the execution of subject_com_line, false otherwise.

238

print

12/21/81 print, pr

Syntax: print paths -control_args

Function: prints ASCII segments and multi-segment files on
user_output.

~

Arguments:

paths
are the pathnames of the segments and multisegment files to be
printed. The star and archive component (* and ::) conventions are
accepted.

Control arguments:

-archive, -ac
treat each archive component as a new file for heading and line
numbering. If any lines are printed from an archive component, and
if -header is specified, print a header identifying the archive
component name and the date of modification of the archive
component, in the format--

ARCHIVE: :COMPONENT date time

where date and time are those stored in the archive. -archive is
the default if archive components were named with the ::
convention, or if the entryname of the segment ends in ".archive",
unless —-no_archive is specified.

-chase
if a starname is specified, include 1links in the search. Do not
complain about missing link targets for starnames.

—-exclude STRING, -ex STRING
don't print lines containing STRING. Exclusion is done after
matching. Thus, "-match A -exclude B" prints all lines with an A
except those with a B.

-exclude /REGEXP/, -ex /REGEXpP/
don't print lines containing a string matching the regular
expression REGEXP.

-for N
print N lines from the file including the first line. The default
is to print the whole file. If -to is also specified, printing
stops when the first control argument is satisfieqd.

-from X, -fm X
begin printing from the X'th line. The default is line 1.

~from /REGEXP/, -fm /REGEXP/
begin with first line matching the regular expression REGEXP. See
the writeup of the gedx command for the definition of regular
expressions.

-from_page PP
start printing with the PP'th page, counting the first page as 1.

238

The default is to print starting with the first page.

‘~header, -he
print a header of the form—--
NAME date time
before each segment. If -archive is specified, the header is
printed before each archive component instead of before each
segment. -header is the default if no other control arguments are
given, or if multiple pathnames or the star convention are used.
-indent XX, -ind XX
print XX blanks before each line. This indents the printed output
XX columns. The default is no indentation.
-left_col XX, -1lc XX
don't print columns 1 to XX-1l. This argument removes a slice from
the left_hand edge of the file, and prints each line of the file
starting with column XX. If a line has fewer than XX columns, a
blank line is printed. The default is to print starting with column 1.

-line_length YY, -11 YY
format the page with a maximum physical line length of YY
characters. Space generated by -indent and -number is not counted.
If more than YY characters are in an output line, the line is split
and continued on the next line. The default maximum line length is
1024 characters (larger values may be specified.)

-match STRING
print only lines containing the character string STRING.

-match /REGEXP/
print only lines containing a string matching the regular expression
REGEXP.

-name NAME, -nm NAME
take NAME literally, even if it is all numeric or begins with "-"

-no_archive, -nac
even if the file being printed is an archive, do not print headings
for individual archive components; treat it _as a single segment for
line numbering and heading.

-no_chase
do not include links when processing starnames. This is the
default.

-no_header, -nhe . _
suppress the header before segments or archive components. This is
the default if only one pathname is given and other control
arguments are used.

-no_vertsp
simulate formfeed and vertical tab characters by outputting newline
characters.

-number, -nb
print line numbers before each line. The line number and the spaces
separating it from the line take up 10 spaces.
-page_length ZZ, -pl ZZ
start a new page after every ZZ lines from the file are printed.
The default is no pagination, as if 2Z were infinite.
-phys_page_length ZZ, -ppl ZZ
format the page with a physical page length of WW lines. This causes
a page eject to be generated every WW lines. These page ejects are

240

intended to skip over the perforation between physical pages; the
default value of WW is 66. This value is also used to determine how
many newline characters are used to simulate a formfeed of
-no_vertsp is specified.

-right_col YY, -rc YY
don't print columns past YY. This slices characters off the
right-hand side of the file. The default is to print all coclumns.
-stop, -sp .
pause after each page until the user types a newline. Also pause
before the first page.
-to X
stop printing with line number X. The default is to print all
lines. ’
-to /REGEXP/
stop printing with the first line matching the regular expression
REGEXP. The search for REGEXP begins after the first line printed.

-to_page PP
stop printing after the PP'th page. The default is to print the
whole file.

-vertsp .
send formfeed and vertical tab characters to the terminal. This is
the default.

-wait, -wt
pause before the first page until the user types a newline.

Notes: If any of -right_col, -line_length, -page_length, or
-phys_page_length is specified, or -left_col is > 1, printing will be
done via the printer conversion software: overstrikes will be replaced
by multiple lines separated by CR (015) characters, and other control
characters will be ignored.

Numeric arguments are processed specially for compatibility with
previous versions of this command. If no file name has been found, a
number is interpreted as a file name; other numeric arguments are
interpreted as ~from and -to in that order. The —-name control argument
can be used to indicate that a number is intended as a pathname.

More than one -match control argument and more than one -exclude
control argument may be specified; a line is printed if any of the
-match arguments select it, unless one of the -exclude arguments
prevents it from being printed.

241

print_attach_table

02/02/79 print_attach_table, pat

Syntax: pat switch_names -control_args
Function: prints a list of I/0 switches and information about them.

Arguments:

switch_names .
are starnames used to select the switches to be processed.
If no switch_names are specified, all I/0 switches that are currently
attached are processed.

Control arguments:
-name switch_name, -nm switch_name
causes the next argument to be interpreted as a literal switchname, even
it looks like a starname or control argument.
-brief, -bf
suppresses the processing of the four standard switches (user_input,
user_output, user_i/o and error_output)
-all, -a)
processes all switches, even those that are not attached.
-attached, -att
processes only attached switches. This is the default.
-open
processes only open switches.

if

Notes: The output from this command is a table listing the name of each switch

processed, its attach description (if attached) and its open description (if
open). The switches processed are selected by starname match and by whether
they match the criteria specified by the control arguments.

Syntax as an active function:

[pat =-control_args switch_names]
returns a string containing the names of all the switches selecteqd,
separated by spaces.

242

print_default_wdir

02/26/76 print_default_wdir, pdwd

Syntax: pdawd

Function: prints the pathname of the current default working directory.

243

print_maijl

08/21/80 print_mail, prm

Syntax: prm address -control_args

Function: prints all the messages in a mailboX, querying the user
whether to delete each one.

Arguments:

address
specifies the address of a mailbox. See "List of Addresses" below.
If no address is specified, the user's default mailbox is assumed.

Control arguments:
-brief, -bf
suppresses the printing of the informative messages.
~interactive_messages, -—im
operates on interactive messages from send_message as well as mail
messages from send_mail. This is the default.
-list, -1s
prints a summary of the messages in the mailbox before entering the
request loop.
-no_interactive_messages, -nim
operates on send_mail messages, not on interactive messages sent by
send_message.

List of addresses:
-pathname path, -pn path
where path is the pathname of a mailbox. The mbx suffix is assumed.
~user Person_id.Project_id
specifies the Person_id and Project_id of a user whose mailbox is to
be read.
STR
is any argument not beginning with a minus (-) sign, and is
interpreted as -pathname STR if it contains > or < characters.
Otherwise, it is interpreted as -user STR.

Notes on query responses: After printing each message, print_mail asks
the question:
print_mail: Delete message N7

where N is the number of the message'just printed.

Five responses are allowed:

yes
the message is deleted and the next one is printed.
no

244

the message is not deleted and the next one is printed.

reprint
the message just printed is printed again, and the question is asked
again.

quit, g
returns the user to command level after deleting the messages
specified.

abort
returns to command level, without deleting any messages.

Notes on creating a mailbox: A default mailbox is created
automatically the first time a user issues print_mail, read_mail,
accept_messages, or print_messages. The default mailbox is:

>user_dir_dir>Project_id>Person_id>Person_id.mbx

Notes on extended access: Access on & newly created mailbox is
automatically set to adrosw for the user who created it, aow for

* . SysDaemon.*, and aow for x.*.x, The types of extended access for
mailboxes are:

add a add a message.
delete d delete any message.
read r read any message.
own 0 read or delete only your own messages.
status s find out how many messages are in the mailbox.
wakeup w send a wakeup when adding a messade.
The modes '"n", "null", and "" specify null access.

Notes on related commands: Special commands exist to create additional
mailboxes and to change the attributes of mailboxes. These commands,
described in the MPM Subsystem Writers' Guide, are:

mbXx_create

create a mailboxX.
mbx_delete

delete a mailbox.
mbx_add_name

add a name to a mailbox.
mbx_delete_name

delete a name from a mailbox.
mbx_rename

rename a mailbox.

mbx_list_acl

list the access control list of a mailbox.
mbx_set_acl

change or add entries to the ACL of a mailbox.
mbx_delete_acl

delete entries from the ACL of a mailbox.
mbx_set_max_length

set the maximum length of a mailbox.
mbx_safety_switch_on

turn on the safety switch of a mailbox.
mbx_safety_switch_off

245

turn off the safety switch of a mailbox.

For more information, see the read_mail and send_mail commands
descriptions.

246

print_messages

07/17/81 print_messagdes, pm

Syntax: pm destination ~-control_args

Function: prints any interprocess messages that were received (and
saved in the user's mailbox) while the user was not accepting messages,
not logged in, or accept_messages -hold was in effect.

Arguments:

destination
can be of the form Person_id.Project_id to specify a mailbox. If
destination contains > or <, it is the pathname of a mailbox. 1If no
destination is specified, the user's default mailboxX is assumed.

Control arguments:
-alli, -a
prints all messages, including those held by -hold mode (see
accept_messages). This is the default.
-call cmdline
for each message, instead of printing calls the command processor
with the line:
cmdline number sender time message path
For more details, see the accept_messages command.

-last, -1t
reprints only the latest message received.
-long, -1lg

prints the sender and date-time of every message, even when the same
- for two consecutive messages.

-new
when accept_messages -hold mode is in effect, prints only those
messages that have not been printed before. The default is to print
all held messages.

-pathname path, -pn path
specifies a mailbox by pathname. The mbx suffix is assumed. This
control argument and the destination argument are mutually
exclusive.

-short, =-sh
prints messages as with accept_messages -short, omitting redundant
sender names in favor of the prefix "=:". This 1is the default.

Notes: Messages are deleted after they are printed unless the -hold
argument was given to the accept_messages command. The "last" message
remains available for the life of the process or until redefined by a
new message.

If messages are deferred, it is a good practice to print out pending
messages periodically.

247

For a description of the mailbox, refer to the accept_messages and
print_mail commands. See also the active functions last_message,
last_message_sender, and last_message_time.

248

print_motd

06/25/81 print_motd, pmotd
Syntax: pmotd

Function: prints out changes to the message of the day since the last
time the command was called.

Notes: The segment Person_id.motd is created in the user's home
directory to hold the previous version of the message of the day.

Anonymous users use the segment Login_id.motd where Login_id
is the name used on the enter or enterp line.

249

print_pdt

07/14/77 print_pdt

Syntax: print_pdt pdt_name user_name -control_args
Function: print contents of a PDT; can be used to make a PMF from a PDT.

Arguments:

pdt_name
name of PDT. Can be the pathname of a PDT other than the live PDT found in
>scl>pdt.

user_name
print only information about user_name.

Control arguments:
-brief, -bf
print information derived from PMF whose values differ from the default.
-long, -lg
print all information found in the PDT.
-pmf
print in format suited for a PMF.
-no_header, -nhe
do not print header.

Notes: The user must have access to the PDT; most users who are not project
administrators do not have such access.
If none of -pmf, ~brief, or -long are given, all PMF specifiable attributes
and the total amount spent are printed.
To make a PMF out of a PDT, the following command line is recommended:
fo projname; print_pdt projname -pmf; ro

250

print_search_paths

01/17/79 print_search_paths, psp

Syntax: psp search_lists —-control_args
Function: prints the search paths in specified search lists.

Arguments:

search_lists
are names of search lists to print. If none are specified, all search
lists referenced in the process are printed.

Control arguments:

-expanded, -exp
print all keywords except -referencing_dir and all unexpanded search paths
as absolute pathnames.

Notes: All synonyms of a search list name are printed if no search lists are
specified. N

Syntax as an active function: [psp search_list -control_args]

251

print_search_rules

02/13/76 print_search_rules, psr

Syntax: psr

Function: prints the search rules currently in use.

252

print_terminal_types

08/25/77 print_terminal_types, ptt

Syntax: print_terminal_types ttt_path
Function: Displays the names of all currently-defined terminal types.

Arguments:

ttt_path
is the pathname of the terminal type table (TTT) to be
used to find the names of the defined terminal types.
If it is omitted, the system TTT is used.

253

print_wdirp

02/13/76 print_wdir, pwd

Syntax: pwd

Function: prints the pathname of the current working directory.

254

probe

09/30/79 the probe command

Syntax: pb procedure_name

Function: provides symbolic, interactive debugging facilities
for programs compiled with PL/I, FORTRAN, or COBOL.

Arguments:

procedure_name
can be the reference name of an initiated program, a pathname, or if not
given, the procedure owning the frame in which the last condition
was raised is assumed.

Notes: Probe is self-documenting. For further information, invoke probe
and type "help". For a list of all requests, type "list_requests".
For a list of all topics described by probe, type "list_help".

255

probe.gi

09/30/79 General information about probe

Probe is a symbolic debugger for programs written in PL/I, FORTRAN,
and COBOL. It permits a user to interrupt a program at a specified
location, to examine or modify program variables, to examine the stack
history of block invocations, to display spurce lines associated with
an object location. Expression of program variables may be aevaluated
and external functions may be called.

Self~-documentation:

By using the probe "help" request one can see probe information files.
To see a 1list of them, type "list_help". To see a specific file, type
"help file_name". This info file is available by typing "help".

probe interaction: .

When probe has been invoked it accepts requests from the user. A probe
request consists of a keyword (the name of the request to be
performed) and its arguemnts, if any. More than one request may appear
on a line if they are separated by semi-~-colons (";"). For a list of
all requests, type "list_requests".

Breakpoints:

A breakpoint is a set of probe requests associated with a statement of
a program. This set of requests is executed automatically by probe
whenever the location in the object segment corresponding to the
statement is executed. The most common request is "halt", which
suspends execution of the program and listens for further requests.
The user may then examine and modify the state of the suspended
program, and resume (or abort) further execution. Other uses of
breakpoints are to display the state of the program without halting,
or to effect source-level patching by executing assignments. For more
information, type "help breaks".

256

process_dir

07/23/80 process_dir, pd

Syntax: pd

Function: returns the pathname of the process directory of the process
in which it is invoked.

Syntax as active function: [pd]

257

process_list

07/07/81 process_list, pls

Syntax: pls list_path form_path ~control_args

Function: produces a document from all or selected records in a lister
file.

Arguments:

list_path
is the pathname of the lister file to be processed. Lister must be
the last component of the lister file name; however, if list_path
does not have a suffix of lister, one is assumed.

form_path
is the pathname of the listform file that defines the format of the
document. If form_path does not have a suffix of listform, one is
assumed. If this argument is not specified, a listform file in the
working directory is used that has the same entryname as list_path,
with the entryname suffix of lister changed to listform.

Control arguments:

-argument STR, -ag STR
indicates that the listform segment requires arguments. If present,
it must be followed by at least one argument. All arguments
following this control argument on the command line are taken as
arguments to the listform segment. Thus, if present, this must be
the last control argument on the command line.

-brief_errors, -bfe
suppresses warnings about missing or extra arguments for the -ag
control argument. Also suppresses the warning when no records were
selected.

-output_file path, -of path
specifies that the document produced by this command is saved in the
segment specified by path {(see Sample Letter in "Sample List
Processing Files" in Multics Wordpro Reference Guide, Order
No. AZ98).

-extend, -ex
specifies that the document produced by this command is to be
appended to the segment specified by path (-output_file must also be
given). The default is to replace path completely.

-gselect STR, -sel STR
specifies the records selected for processing. If this control
argument is not specified, then all records in the list are
processed

-gort STR, -st STR
sorts the records processed according to sort_string, which is a
string enclosed in quotes. The new ordering of the list is in
effect only for the duration of the command. The lister file is not
modified. If this control argument is not specified, then records
are processed in the order in which they currently appear in the

258

lister file
~totals, -tt
prints the number of records processed.

Notes: The format of the document is defined in a listform file.
Other text processors, such as compose, may be used to further format
the document. By default, the document is printed on the user's
terminal. Alternatively, it may be saved in a segment. For a
description of the structure of a listform file and information on
field insertion, angle bracket escapes, and the selection and sorting
procedures (-select and -sort control arguments), see the Multics
Wordpro Reference Guide, Order No. AZS8.

. 259

profile

12/22/80 profile, pf

Syntax: pf program_names -control_args

Function: a performance measuring tool that analyzes the time spent
executing each source statement of a program, along with other
parameters of interest, after the program is run.

Arguments:

program_names
are pathnames or reference names of programs to be analyzed. 2any
program_name that does not include '™W" or ">" characters is assumed
to be a reference name. They need not be specified if the
-input_file control argument is used.

Control arguments: Control arguments apply to all programs specified,
and can be given in any order.

~brief, -bf
used with -print to exclude from the output all information for
statements that have never been executed. This is the default.

-comment STR, -com STR
used with the -output_file control argument to include STR with the
stored profile data as a comment. This control argument can also be
used with -plot. If STR is to include blanks or other characters
recognized as special by the command processor, it should be
enclosed in quotes. STR can be up to 128 characters long.

-first N, -ft N
used with -sort to print only the first N wvalues.

-from N, -fm N
used with -print or -plot to begin the output with the data for line
number N. The default is 1.

-hardcore, -hard
indicates that the specified programs are supervisor (hardcore)
segments. The current (internal static) profile data for such
programs is retrieved from the address space of the supervisor.
Hardcore programs compiled with the -profile or -long_profile
control arguments must be installed by generating a Multics System
Tape and rebooting Multics. See System Programming Tools, Order
No. AZ03, for a description of the generate_mst command. Note that
the current (internal static) profile data for hardcore programs
cannot be reset (zeroed).

—input_file path, -if path
causes the profile data to be retrieved from the profile data file
specified by path. Use of this control argument causes the current
(internal static) profile data, if any, to be ignored. The pfd
suffix is appended to path if it is not already present. If any
program_names are specified, they select a subset of the stored data

260

for analysis. If no program_names are specified, all data stored in
the profile data file is used. This control argument is
inconsistent with -output_file.

-line_length N, -11 N
used with -list to specify an output width of N characters. The
default is 132.

-list, -1s
Creates a profile listing for all specified programs. The profile
listing file is given a name consisting of the first program name
with the language suffix replaced by the pfl suffix. It is placed
in the working directory. The information described above for the
-print control argument is placed in columns to the left of each
source line in the profile listing.

-long, -1g
used with -print to include in the output information for statements
that have never been executed.

-max_points N, -mp N
used with -plot to specify the maximum number of points (line
numbers) to be plotted (the graphics resolution). The default is
250. The Multics Graphics System is capable of plotting up to 1024
points.

-no_header, -nhe
used with -print to suppress column headings.

-output_file path, -of path
causes the profile data for the specified program_names to be stored
in the profile data file specified by path. The file is created if
it does not already exist and is overwritten if it already exists.
The pfd suffix is added to path if it is not already present. The
profile data is stored in a format acceptable to the -input_file
control argument. The format of pfd data files is described by the
PL/I include file pfd_format.incl.pll. The stored data is
determined by the program_names specified, the -comment control
argument and whether the compilation was done using the -profile or
-long_profile options. The name a program was compiled with is
saved in the profile data file. If program_name specifies a bound
object segment, profile data about each component of the bound
object segment is saved.

-plot STR
plots a bar graph, on any supported graphics terminal, of the values
of the specified field STR. STR can be any of the fields in the
"List of Fields" section below. Use of this control argument
requires that the site has installed the Multics Graphics System,
and that the setup_graphics command has been executed. See the
Multics Graphics System, Order No. AS40, for more information.

-print, -pr
prints the following information for each statement in the specified
program(s):
1. Line Number.
2. Statement Number
if more than one statement on the line.
3. Count
the number of times the statement was executed.

261

4. Cost
an approximation to the accumulated execution time for the
statement. Egqual to the number of instructions executed plus
ten times the number of external operators called.

5. Stars (asterisks)
an indication of the percentage of total cost (or time, for
long_profile data) used in the statement. The number of stars
is selected according to the table below.

4 stars: 20% to 100%

3 stars: 10% to 20%

2 stars: 5% to 10% -

1 star: 2.5% to 5%

no stars: 0% to 2.5%

one period: Statement was not executed.

6. Names of all external operators called by the statement.

For -long_profile (actual accumulated time) data, item 4 is changed
to the following:

4a. Time
actual execution time for the statement in virtual CPU
microsececnds, including all time spent in any operators or
subroutines invoked by the statement.

4b. Average Time
Time divided by Count (the average execution time for one
execution of the statement).

4c. Page Faults
page faults incurred in executing the statement.

-reset, -rs
resets (zeros) all current (internal static) profile data for the
named program(s). When -reset is specified, the resetting is done
as the very last operation if -print, -list, -plot, or -output_file
are also specified. This control argument is inconsistent with
-input_file and -hardcore.

—-search_dir path, -srhd path
used with -hardcore to add path to an internal search list of
hardcore object directories. Up to 8 directories can be specified.
If no search list is specified, >ldd>hard>o is searched for copies
of the specified program(s).

-sort STR
used with -print to sort profile information into descending order
of the specified field STR, which can be any of the fields in the
"List of Fields" section below.

-source_dir path, -scd path
used with -list when the source segments to be listed have been
moved from the directories in which they were compiled. If
-source_dir is specified, only the directory specified by pathname
path is searched for source segments.

-to N
used with -print or -plot to end the output with the data for line
number N. The default is the line number of the last executable
statement.

262

List of Fields:

count

number of times statement was executed.
time

vpcu time of statement (-long_profile).
cost

approximate cost of statement (-profile).
page_faults (pfs)
page faults taken during statement (-long_profile).

Notes: The program to be analyzed must be compiled using the -profile
(-pf) control argument of the cobol, fortran and pll commands, or using
the -long_profile (-1pf) control argument of the pll command. The
-long_profile compiler control argument is used to acquire exact
elapsed time statistics and is much more expensive to use than the
~-profile compiler control argument.

263

program_interrupt

07/25/81 program_interrupt, pi

Syntax: pi

Function: informs a suspended invocation of a subsystem that the user
wishes to abort the current request.

Notes: The program interrupt command is used with interactive
subsystems. Interactive subsystems are commands that accept user
requests from the terminal. To abort a subsystem request the user
uses the quit (or break) key to interrupt execution, and then gives
the program_interrupt command. If the subsystem supports the use of
the program_interrupt command, it will abort the interrupted request
and ask the user for a new one. If the subsystem does not support the
use of program_interrupt, the command will print an error message.
The user may then either restart the interrupted operation with the
"start® command, or abort the entire subsystem invocation with the
"release" command.

List of subsystems:
The following subsystems support the use of the
program_interrupt command--

debug

edm

emacs

help

lisp

print_mail

probe

gedx

read_mail p

send_mail

teco

ted

264

gedx

03/01/76 gedx, gx

Syntax: gx path optional_args

Function: context editor used to create and edit ASCII segments;
also allows the user to create macros and use the editor as an
interpretive programming language.

Arguments:

path
pathname of an ASCII segment from which the editor is to take its initial
instructions; the gedx suffix must not be given.

optional_args
are appended, each as a separate line, to the buffer named args.

Requests: 1listed below in four categories giving, format, default
in parentheses, and brief description. For value of ADR, see
Addressing below; regexp, See Regular expression.

INPUT--these requests enter input mode and must be terminated with f.
ADRa (.a) append lines after specified line.

ADR1, ADR2C (.,.c) change existing line(s); delete and replace.

ADRi (.i) insert lines before specified line.

BASIC EDIT REQUESTS--

ADR1, ADR2d (.,.d4) delete line(s).

ADR1, ADR2p (.,.p) print line(s).

ADR= (.=) print line number.

q exit from gedx editor.

ADRr path ($r path) append contents of path after specified line.

ADR1,ADR2s/regexp/string/ (.,.s/regexp/string/) substitute every
regexp in the line(s) with string. If string contains &, & is
replaced by regexp. First character after s is delimiter; it can be
any character not- in either regexp or string.

ADR1, ADR2w -path- (1,%w path) write lines into segment named path; if
path omitted, default pathname used.

/regexp/ set the value of "." to the first line following the
current line that contains regexp and print the line.

EXTENDED EDIT REQUESTS--

e <command line> execute command line without leaving editor.

ADR1, ADR2gX/regexp/ (1,%$9X/regexp/) perform operation on lines that
contain regexp; X must be 4 for delete, p for print, or = for print
line numbers.

ADR1, ADR2vX/regexp/ (1,$vX/regexp/) perform operation on lines that
do not contain regexp; X must be d for delete, p for print, or =
for print line numbers.

265

BUFFER REQUESTS--

b(X) go to buffer named X.

ADR1, ADR2m(X) (.,.m(X)) move line(s) from current buffer into buffer
named X.

X give the status of all buffers in use.

ADRn (.n) set value of "." to line addressed.

ADR" (.") ignore rest of line; used for comments.

Addressing: Most editing requests are preceded by an address
specifying the line or lines in the buffer on which the request

is to operate. Lines in the buffer can be addressed by

absolute line number; relative line number, i.e., relative to the
"current" line; and context. Current line is denoted by period (.);
last line of buffer, by dollar sign ($).

Regular expressions:

The following characters have specialized meanings when

used in a regular expression. The user can reinvoke the last used
regular expression by giving a null regexp (//).

* signifies any number (or none) of the preceding character.

A when used as the first character of a regular expression,
signifies the character preceding the first character on a line.

$ when used as the last character of a regular expression,
signifies the character following the last character on a line.

. matches any character on a line.

Escape sequences:
f exit from input mode and terminate the input request.

Cc suppress the meaning of the escape sequence or special
character following it.)
b(X) redirect editor stream to read subsequent input from
buffer X.

r temporarily redirects the input stream to read a single line
from the user's terminal.

266

read_mail

03/12/79 read_mail, rdm

Syntax: rdm INPUT_SPEC -CONTROL_ARGS

Function: Selectively lists, prints, deletes, saves and forwards
messages and mail sent to a mailbox.

Arguments: INPUT_SPEC can be any one of the following; if no INPUT_SPEC ‘
is present, the users default mailbox is used: ?
>uddrProject>Person>Person.mbx

-mailbox PATH, -mbx PATH
specifies the pathname of a mailbox.
-user Person.Project
specifies the mailbox of a given user.
-save PATH, —-sv PATH
specifies a savebox PATH.sv.mbx
-log
specifies the user's logbox, [hd]>Person.sv.mbx
STRING
If STRING contains a single period, it is interpreted as a
Person.Project identifier; otherwise, it is interpreted as a
pathname.

Control arguments:
-brief, -bf
Shorten informative messages from read_mail.
" —-interactive_messages, —im
Include interactive messages, as from the send_message command.

-list, -1s
List mailbox contents before entering request 1loop.
~long, -1g

Print full informative messages. (default)
-no_interactive_messages, -nim
Ignore interactive messages. (default)

-no_list, -nls

Do not list msgs before entering request loop. (default)
-no_print, -npr

Do not print msgs before entering request loop. (default)
-no_prompt

Suppress the prompt in the request loop. (default is "read_mail:")
—own

Read only messages sent by the user.
-print, -pr

Print messages before entering the request loop.
-prompt STR

Set the request loop prompt to STR.

267

-quit

Exit read_mail after performing any operations given by the -list,

-print, or -request control arguments.
-request STR, ~rg STR

Execute the requests in STR before entering the request loop.
-request_loop, -rql

Enter the read_mail request loop even if there are no messages

in the mailbox
-totals, -tt

Print the number of the messages in the mailbox, and return. This

argument is incompatible with -print and -list.

Default setting control arguments:

These arguments can be used to set defaults for the behavior of various
read_mail requests. Their effect is to change the behavior of a particular
request so that it behaves as if the specified control argument is always
given. The defaults can all be overridden by using the negative form of

the control argument.

Default setting for the print (pr) request:
-no_header, -nhe
—-header, -he

Default setting for the reply (rp) request:
-fill, -fi)
-include_authors, -iat
-include_original, =~io
—-include_recipients, -irc
-no_fill, -nfi
-no_include_authors, =-niat
-no_include_original, -nio
-no_include_recipients, -nirc

Notes:
Request lines use () for iteration, "" for quoting, and [] to invoke
read_mail active requests, listed below ("List of active requests").

Any request line which befgins with ".." will be passed directly to the
Multics command processor with the leading ".." stripped off. This is
the recommended method for executing Multics commands from within the
read_mail subsysem, as the execute request is cumbersome.

Message specifiers:

Message specifiers (SPECS) are message numbers ("17"), ranges

("6:9"), string matches ("/STR/" or "/STR1l/&/STR2/"), and expressions
involving any of the keywords first (f), last (1), next (n), previous
(p), current (c) and all (a), such as "6:last-3" or "all/STR/". A full
description can be obtained with the read_mail request "help msg_specs".

Messages are not actually deleted from the mailbox until the "gquit"
request is issued, so that "deleted" messages can be retrieved with the
"retrieve" ("rt") request.

268

List of requests:
Only the most important aspects of the requests are documented here;
particular, many requests take more control arguments. For further
information on these requests, use the read_mail 'help' request.

7?7 lists the available read_mail requests and active requests.
. identifies read_mail with version number, recursion level, mailbox
pathname, message count, and current message number.

delete SPECS , dl SPECS
Delete specified messages.

help STR
Print information about redquest names or topics. A list of available
topics is produced by the request "help =*".

list SPECS -Ca's , 1ls SPECS -CA's
Produce a summary listing of specified messages.

print SPECS -CA's , pr SPECS -CA's
Print specified messages. -CA can be -header (-he) or -no_header
(-nhe), among others.

quit -CA's , g =CA's
Exit read_mail. -CA's can be -no_modify (-nm) to not change the
mailbox, -force (-fc) to ignore newly arrived messages.

retrieve SPEC 8§ , rt SPEC S
Un-delete specified messages.

append SPECS PATH
Write msgs at the end of an existing ASCII sedment.
copy SPECS PATH, cp SPECS PATH
Copy msgs intact to another mailbox.
forward SPEC ADDRESSES -CA's
Forward msgs specified by one specifier. ADDRESSES can be -user
Person.Project, -mbx PATH, or STRING, as above.
log -CA SPECS
Copy msgs to user's logbox, adding sender information to the message
header if not already present. -CA can be -delete (-dl1).
preface SPECS PATH
Write msgs at the front of an existing ASCII segment.
save -CA SPECS PATH, sv -CA SPECS PATH
Save msgs in a mailbox, adding sender information to the message
header if not already present. i
write -CA SPECS PATH, w -CA SPECS PATH
Write messages to the end of a new or old ASCII segment. -CA can be
-truncate (-tc) to specify that the segment is to be truncated first.

execute STR's, e STR's
Concatenate all STS's together and execute result as a Multics
command line. Active requests are replaced by their values
before string is constructed.

reply SPECS -CA's , rp SPECS -CA's
Send replies to the senders and recipients of specified messages by
calling the send_mail subsystem.

List of active requests:

execute STR's, e STR's
Concatenate STR's, execute as a Multics active function, and return
its value.

in

269

current -CA's
Return the number of the current message.
first -CA's
Return the number of the first message.
last -CA's
Return the number of the last message.
next -CA's
Return the number of the next message.
previous =-CA's
Return the number of the previous message.
all -CA's
Return a string consisting of all the message numbers.
mailbox, mbx
Return the absolute pathname of the mailbox being read.

270

ready

06/20/80 ready, rdy

Syntax: rdy

Function: types out an up-to-date ready message whose format is
optionally set by the general_ready command. The default ready message
if general_ready is not used gives the time of day and the amount of
CPU time and page faults used since the last ready messagde was typed.
If the user is not at the first command level, i.e., i1f some
computation has been suspended and the stack frames involved not
released, the default ready message also contains the number of the
current command level.

Notes: See the descriptions of ready_on, ready_off, and general_ready
in MPM Commands and Active Functions, AG92.

271

ready _off

02/13/76 ready_off, rdf

Syntax: rdf

Function: turns off the ready messages printed at command level.

272

ready_on

02/13/76 ready_on, rdn

Syntax: rdn

Function: prints a ready message after each command line has been processed.

273

release

02/13/76 release, rl

Syntax: rl -control_arg

Function: releases the stack history preserved after a quit signal or unclaimed
signal.

Control arguments:

-all, -a
to release the stack history preserved (and not already released) after all
previous quit and/or unclaimed signals rather than after only the most
recent gquit or unclaimed signal.

274

release_resource

04/24/81 release_resource, rir

Syntax: release_resource type STRl1 ... STRn -control_arg

Function: The release_resource command releases a resource into the
free pool. A resource may only be released by its accounting owner
or privileged processes.

Arguments:

type
is a resource type defined in the resource type description table
(RTDT).

STRi
is the unique identifying name of the particular resource being
released. If STR looks like a control argument (i.e., if it is
preceded by a hyphen), then it must be preceded by -name or -nm.

Control arguments:

-priv
specifies that the user wishes to perform a privileged release of
this resource from the accounting owner, even though the user may
not be the accounting owner (see "Access Restrictions" below).

Access Restrictions: The use of the -priv control argument requires
exXecute access to the rcp_admin_ gate.

275

rename

01/10/77 rename, rn

Syntax: rn -control_arg pathl namel ... —control_arg pathN nameN

Function: renames entries.

Arguments:
pathN
specifies the o0ld name that is to be replaced; it can be a pathname or an
entryname. The star convention is allowed.
nameN
specifies the new name that replaces the entryname portion of pathN.
The equal convention is allowed.

Control arguments:

-name, -nm
causes the next path and name to be taken literally, without applying the
star or equal conventions and disregarding special cnaracters‘such as »>.

276

reorder_archive

06/01/76 reorder_archive, ra

Syntax: ra -control_argl pathl ... —-control_argN pathN

Function: reorder the contents of an archive segment according to a list
specified by the user. ’

Arguments:
pathN
is the pathname of an archive segment; the archive suffix need not be given.

Control arguments:
-console_input, -ci
indicates user will list component names in order desired.
See "Notes.™" '
-file_input, -fi o
indicates that a list of component names is to be found in the segment named
XXX.order where XXX is the name of the archive segment. See "Notes" Dbelow.

Notes: When -ci control argument is used, user enters component names separated
by line feeds in order desired. A period (.) on a line by itself terminates
input; a two character line, .q, terminates the command without reordering the
archive. '

When -fi control argument is used, archive is reordered according to order
specified in XXX.order. Errors in the list terminate the command without
altering the archive.

2717

reserve_resource

01/18/79 reserve_resource, rsr

Syntax: rsr -resource (-rsc) resource_description

Function: reserves a resource or group of resources for use by the calling
process. The reservation takes effect immediately and lasts until cancelled by
the cancel_resource command or by process termination.

Control arguments:

-resource STR, -rsc STR
this control argument must be present. The string, STR specifies a
description of the resources to be reserved. If this resource description
contains spaces or special characters, it must be enclosed in quotes. This
resource description can also have control arguments and is described in
detail below.

Examples: rsr -rsc "tape_drive -—-attr track=9,den=1600 -rsct tape_vol u309"

Resource Description:
A resource description describes certain devices and volumes by name or by
attributes and an optional number. It has the following format:

-resource_type resource_specl ... -resource_type resource_specn

That is, a series of at least one resource spec where all but the first must be
preceded by the -resource_type or -rsct control argument. The first one may or
may not be preceded by the control argument.

The format of a resource_spec is as follows:

volume_type namel names
or:

device_type names
or:

device_type -control_args

where:
volume_type

can be either tape_vol or disk_vol.
device_type

can be either tape_drive or disk_drive.

Control arguments:

-attributes STR, -attr STR
for tape drives STR can consist of a string of attributes with values
separated by commas with no spaces. The attributes allowd for tape drives
are: model=, track=, and den=. For disk drives the only attribute allowed
is: model=.

278

-number N, -nb N
is the number of identical resources of the type desired.

Example:
tape_vol 50102 u309 -rsct tape_drive -attr track=9,den=800 -nb 2

This describes four resources: two tapes, 50102 and u309; and two tape drives,
both being 9-track and capable of 800 bpi operation.

279

resource_status

04/24/81 resource_status, rst

Syntax: resource_status type STR1 ... STRn -control_args

Function: The resource_status command prints selected information
about the status of a given resource. This command can also be invoked
as an active function (see "Notes" below).

Arguments:

type
is a resource type defined in the resource type description table
(RTDT).

STRi
is the unique identifying name of the particular resource desired.
If STR looks like a control argument (i.e., if it is preceded by a
hyphen), then it must be preceded by -name or -nm.

Control arguments:

-access_class, -acc
prints the AIM access class or access class range of the resource
(see "Notes" below).

-acs_path
prints the pathname of the ACS for this resource (see "Notes"
below). :

-all, -a
specifies that all information maintained about this resource is to
be printed. This control argument is not allowed in an active
function invocation.

-alloc
specifies that the state of the user allocation switch for this
resource is to be printed.

-attributes, -attr
prints the current and protected attributes of this resource.
-charge_type, —-Ccrgtp
prints the charge type for this resource.
-comment, -—com
prints the user-settable comment associated with this resource.
-location, -loc
prints the location field associated with this resource.
~lock
prints the status of the resource lock for this resource. 1In an
active function invocation, "true" is returned if the lock is on;
"false" is returned if it is off.
-mode, -md
prints the user's effective mode to the resource.

-owner, -ow
prints the name of the owner of the resource.

280

—-potential_access_class, -pacc

- prints the potential access class or potential access class range
for this resource (see "Notes" below).

-potential_attributes, -pattr
prints the potential attributes of this resource.

—-priv
specifies that a privileged call is to be made to obtain the status
of this resource (see "Access Restrictions™ below).

-release_lock, -rll
prints the status of the lock which prevents the owner from
releasing this resource. In an active function invocation, "true"
is returned if the lock prevents the owner from releasing the
resource; "false" is returned otherwise.

-uid
prints the unique identifier of this resource.

Notes: When invoked as an active function, this command returns the
value requested by the specified control argument (only one control
argument may be specified in this usage).

Access Restrictions: The use of the -priv control argument requires
execute access to the rcp_admin_ gate.

Syntax as active function: [resource_status type name -control_arg]

281

resource_usage-

02/13/76 resource_usage, ru

Syntax: ru =-control_arg
Function: prints a report of resource consumption for current billing periocod.

Control arguments: (One of the following)

-total, -tt
prints only total dollar figures including the user's dollar limit stop and
his month-to-date spending.

-brief, -bf
prints the information selected by the -total control argument, preceding
this information with a header and following it by total dollar figures
depicting the user's interactive, absentee, and I/0 daemon usage.

-long, =-1lg
prints the most comprehensive picture of the user's resource usage.

Notes: If no control argument is specified, all dollar charges are printed but
resource usage expressed as time is not printed.

282

revert_output

08/10/77 revert_output, ro

Syntax: ro -ssw switchname ... -all

Function: reverts the most recent file_output, syn_output, or terminal_output
attachment, or all such, for each I/0 switch specified.

Control arguments:

~ssw switchname
to specify an I/0 switch. If no switchnames are specified, the default is
user_output.

-all
reverts all fo, so and to attachments for all switches, or for the
switchnames specified.

Examples:
ro —ssw user_output -ssw error_output
reverts both switches.

283

run

06/22/79 run

syntax: run -control_args main_program program_args
Function: provides temporary environment for execution of programs.

- Arguments:
main_program

pathname of the main program for the run.
program_args

arguments passed to the exec_com or main program.

Control arguments:
-exec_com path, -ec path
specifies the exec_com to be executed.
-no_exec_com, -nec
invokes the main program directly.
-limit n, -1li n
interrupts run every n seconds of virtual CPU time.
-copy_reference_names, -crn
starts run with copy of reference names initiated before run and
automatically terminates segments initiated only with the run unit.
-new_reference_names, -nrn
uses a different reference name table and automatically terminates
segments initiated only within the run unit. (DEFAULT)
-0ld_reference_names, -orn
uses original reference name table directly and does not automatically
terminate segments initiated during the run unit.

Notes:

-crn, -nrn, and -orn are mutually exclusive.

If neither -exec_com nor —no_exec_cbm control arguments are given, the
exec_com segment main_program.run.ec is searched for in the same directory as
the main program. If it is not found, the main program is invoked directly.

When an exec_com is used, the main program name, if any, is passed as the
first argument and the exec_com is responsible for invoking the main program.

284

punoff

08/30/79 runoff, rf

Syntax: rf paths -control_args
Function: types out text segments in manuscript form.

Arguments:

paths
are pathnames of input segments or multisegment files; the runoff suffix
need not be given.

Control arguments:
-ball N, -bl N
convert output to a form suitable for an N typeball.
~-character, -ch
create entryname.chars, listing page and line numbers of special characters,
normally not printable, that must be drawn in by hang.
-device N, —-4v N)
prepare output compatible with device N. .
-from N, -fm N
start printing at the page numbered N.
-hyphenate, -hph
call user-supplied procedure to perform hyphenation.
-indent N, -in N
set initial indentation to N.
-no_pagination, -npgn
suppress page breaks.
-number, -nb
print source segment line numbers in output.
-page N, -pg N
change the initial page number to N.
-parameter arg, -pm arg
assign arg as a string to the internal variable "Parameter".
-pass N ’
make N passes over the input.
-segment, -sm
direct output to the segment or multisegment file named entryname.runout,
where entryname is the name of the input segment.

-stop, -sp

wait for a carriage return before each page.
-to N

finish printing after the page numbered N.
-wait, -wt

wait for a carriage return before the first page.

Control requests: are defined below. If the request has a
default, it is in parentheses following the definition.

The following conventions are used to specify arguments of
control requests.

integer constant

cd
exp

+/-n

.ad
.ar
.bp
.br
.CC
.Cce
.Ch
.ds
.ef
.eh
.eq
.ex
.fh

Lfi
.fo
fr

.ft
.gb
.gf
.he
Lif

.in
.la
.11

.11
.ma
.mp
..M8
.ml
.m2
.m3
.m4
.na
.ne
.nf

.of
.0oh
.0p
.pa
.pi

.pl
.rd

285

character

character pair

expression (either numeric or string)

integer expression

+/- indicates update by n; if sign not present, set tc n
segment name

title of the form 'partl'part2'part3’

XXX

H M
t ot

+/=-n

+/-n

right justify text (on)

arabic page numpbers (arabic)

begin new page

break, begin new line

change special character from % to c (%)
center next n lines (1)

note "c" in chars segment as "g"

double space (off)

defines even footer line #

defines even header line #

next N lines are equations (1)

call command processor with "text"
format of footnote demarcation line (underscore)

£ill output lines (on)

equivalent to-- .ef # t, .of # t

controls footnote numbering-- "t" reset each page,
"f" continuous, "u" suppress numbering
delimits footnotes

"go back" to label XXX

"go forward" to label XXX

equivalent to: .eh # t, .oh # t

segment f.runoff inserted at point of request;
value of "exp" assigned to "Parameter"

indent left margin n spaces (0)

define label XXX

next n lines treated as text (1)

line length is n (65)

equivalent to-- .ml +/-n, .m& +/-n (4)

print only every nth page (1)

multiple space of n lines (1)

margin above headers set to n (4)

margin between headers and footers set to n (2)

margin between last text line and last footer set to n (2)
margin between first footer and page bottom set to n (4)
does not right justify (off)

need n lines; begin new page if not enough remain (1)
does not fill output lines;

print them exactly as entered (off)

defines odd footer line #

defines odd header line #

next page number is odd

begin page n

skip n lines if n remain; otherwise

skip n on next page before any text (1)

set page length to n lines

read one line of text from the user_input I/0 switch

.TO
.rt

.8k n

.8p n

.Sr sym exp

.88
.tr cd....
.ts n

286

and process it in place of .rd line

roman numeral page numbers (arabic) -
"return" from this input segment

skip n page numbers (1)

space n lines (1)

assign value of "exp" to variable named "sym"

single space (on)
translate nonblank character ¢ into d4 on output
process next input line only if n is not zero (1)

Lty XXX write "xXxx" onto error_output I/0 switch

.un n indent next text line n spaces less (left margin)

.ur text substitute values of variables in "text",
and scan line again .

Wt read one line of text from user_input I/0 switch and
discard it

o comment line; ignored

. comment line; ignored, but included in chars

output segment

Built-in symbols: runoff has over 50 internal variables,
which are available to the user. 1In addition, the user can
set his own variables with the .sr control request. See the
runoff command in the MPM Commands for the list of built-in
symbols.

can be either arithmetic or string and consist
The

EXpressions:
of numbers and operators in appropriate combinations.
operators and order of precedence are--

A (bit-wise negation), -(unary)

*,/, (remainder)
+,- (binary)
=, <, > /., <, > (all are comparison operators

that yield -1 for true or 0 for false)
& (bit-wise AND)
| (bit-wise OR), = (bit-wise equivalence)
Parentheses for grouping.

The values can have the following forms --
String
<string>= basicstring> | <concatenation> [<substr>; <basicstring>="xxx"
< concatenation>= string> basicstring>; <substr>=string>(x,y)
escape sequences - #b,*t,=*n,*s,x", xx,xcnnn (BS,HT,NL,space,",*, nnn)
Arithmetic adecimal number; # followed by octal digits - an octal number;
followed by hexadecimal digits - a hexadecimal number

287

runoff_abs

11/13/81 runoff_abs, rfa

Syntax: rfa paths -rf_args -dp_args -control_args

Function: submits an absentee request to process text segments using the runoff
commang. :

Arguments:

paths

are the pathnames of segments to be processed by runoff.
rf_args

are control arguments accepted by the runoff command.
dp_args

are control arguments (except -delete and -indent) accepted by the
dprint command.

Control arguments:

-queue N, -g N .
is the priority queue of the request. The default queue is defined
by the system administrator. See the Notes for a description of the
interaction with the dprinting of output files.

-hold
do not dprint or delete any output files.

-output_file path, -of path
put absentee output in segment path.

-limit N, -1i N
specifies time limit in seconds for the absentee job.

Notes:
Control arguments and paths can be mixed freely and can appear anywhere
on the command line after the command.

Unpredictable results can occur if two absentee requests are submitted
that simultaneously attempt to compile the same segment or write into
the same absout segment.

If the -indent control argument is given to this command, it is
interpreted as the runoff control argument; not as the dprint control
argument.

If the —queue control argument is not specified, the request is
submitted into the default absentee priority queue defined by the site
and, if requested, the output files will be dprinted in the default
queue of the request type specified on the command line. (If no
request type is specified, the "printer" request type is used.)

If the —-queue control argument is specified, and, if requested, the
output files will be dprinted in the same queue as is used for the
absentee request. If the request type specified for dprinting does not

288

have that queue, the highest numbered queue available for the request
type is used and a warning is issued.

&©

289

runoff_compose.differences

10/13/77 Differences between compose and runoff

This info file gives the differences between runcff and compose.
A "title" response is recommended, followed by a "search" for the section
of interest. The sections are not in any particular order.

Title Delimiter: \

In order to implement free format header and footer blocks (allowing artwork
and other text features), it is necessary to define a standard title part
delimiter character in a manner similar to the Symbol Delimiter. This title
part delimiter character is chosen as the vertical bar ("|") and may be changed
by the user with the change-title-delimiter control. Any <title> not

beginning with the current title delimiter character will be rejected with a
diagnostic message.

Builtin Mapping:

Ad - AlignMode = "both"
Ce - -

CharsTable -> ExcepTable
Charsw -> ExcepOpt
ConvTable =-> -

Date -> Date

Device -> Device
DeviceTable -> -

Eq =-> -

Egcnt —»> Egent
ExtraMargin -> ExtraMargin
Fi = FillMode

FileName -> FileName
Filesw =-> OutputFileOpt
Foot =-> Footecnt

FootRef -> -

Fp -> -

Fr -> FootReset = "r"
From -> From

Ft -> FootnoteMode
Hyphenating -> Hyphenating
In - Indent
InputFileName -> InputFileName
InputLines -> InputLines
LineslLeft =~> LinesLeft
Ly - PageWidth

Lp => -

Mal = VMargTop

Maz2 -»> VMargHeader

Ma3z -> VMargFooter

Ma4 -> VMargBottom

Ms -=> LineSpace

MultiplePagecount -> PageSpace

NestingDepth -> InsertIndex

290

Nl =-> Pageline

NNP —-> NextPageNo

NoFtNo -> FootReset = "u"

NoPaging => Galley

Np —-> PageNo

PadLeft -> -

Parameter -> Parameter

Passes => Pass

Pi => PictureCount

P1 -> PagelLength

Print =-> Print

Printersw > OutputFileOpt and
Device = "ascii"

PrintLineNumbers -> LineNumberOpt

Roman -> -

Selsw =-> -

SpecCh =->-> SymbolDelimiter

Start -> -

Stopsw => StopOpt

TextRef => -

Time -=> Time

To -> To

TrTable -> TrTable

un => Undent

WaitOpt =-> Waitsw

Symbol Delimiter:

The conventional use of the symbol delimiter (%) as a reference to the page
counter has been removed; however, the remainder of the symbol delimiter parsing
algorithm is unchanged from the algorithm used in runoff. This means that
constructs for nesting and/or concatenation of variable values and literal
strings should continue to work as they did for runoff.

File Suffixes:
.runoff -> .compin
.runout -> .compout

.chars =-> .compx

Control Arguments:
-check, -ck
-device name , -dv name ("ascii")
-exception_graphics, -excep
-from n , -fm n (1)
~-galley nl ,n2 , -g1 nl ,n2 (1,end-of-file)
-hyphenate n , -hyph n , -hph n (3)
—indent n , -in n (0)
-input_file path, -if path (path is required)
-linespace n , -ls n (1)
-noart, -noa
-nofill, -nof
~number, -nb
-number_brief, -nbb
-output_file path , -of path ([wdl>input_file.compout)
-pages I n,n , -pgs n n,n (n is required)
-parameter string, -pm string (string is required)
-pass n (1)
-stop, -sp

291

-to n (end-of-file)
-wait, -wt

Contrel Mapping:

.ad .alb .ar .Srm ar .bp .brp
.br orf .CC .cdl .ce .bbe n
.Ch .tre .ds .1s 2 .ef .fle
.eh .hle .eq .bbe n .ex . exc
.fh Lhlf .fi .fin .fo .fla

.fr t .ftp .fr £ .ftr .fr u .ftu

.ft .bbf/.bef .gb .go .gf .go
.he .hla .if Lifi .in .inl

.la .1la .1i .bbl n .11 . pdw
.ml .vmt .m2 .vmh .m3 .vmf

.m4 .vmb .ma .vmt/.vmb .mp .ps
.ms .18 .na .all .ne .brn

.nf LEif .of .flo .0oh .nlo

.0op .brp o .pa orp n|+ _n .pi .bbp n
.pPl .pdl .ré .rda .ro .Srm ro
.8k .brs .8p .5pb .Sr .8TV

.S58 .1s 1 .tr .trf .ts .ts

.ty .ty .un .unl .ur .ur

Wt Wt

292

save_on_disconnect

03/13/80 save_on_disconnect

Syntax: save_on_disconnect

Function: reverses the effect of the no_save_on_disconnect commang,
re-enabling process preservation across hangups in the user's process.

Notes: This command is only meaningful if process preservation was in
effect for the process at login time, either by default or because the
-save_on_disconnect control argument was specified on the login command
line.

293

send_mail

10/27/83 send_mail, sdm [Info Honeywell modifiee CNET].
ATTENTION: Segment d'info Honeywell avec modif CNET.
Cette modif (provenant en fait de 1'INRIA) consiste en l'insertion d'une

nouvelle section, intitulee "New control arguments", concernant le
courrier inter-Multics.

Syntax: sdm addresses -control_args

Function: Send a message to one or more addresses, which are described

below. It accepts text from the terminal, and cptionally enters a request

loop before sending to allow the user to edit or modify the message.

Notes:

In default mode, send_mail prompts "Subject:" and accepts a subject line
from the terminal, then prompts "Message:" and accepts the message text.
The text is terminated by "." on a line to send the message, " f" to
enter the send_mail editor, or " fg" to enter the request lcop.

Request lines use () for iteration, "" for quoting, and [] to invoke
send_mail active requests.

Arguments: An address is any of the following:

-mailbox path, -mbx path
send to the mailbox specified by path.

-user Person_id.Project_id
send the message to the specified user.

string
If string contains either ">" or ™", it is interpreted as a mailbox
pathname (as in -mbx path); otherwise, it is interpreted as a
Person_id.Project_id.

Any address may be followed by the sequence "-comment string", which

causes string to be appended to the address in the header as a comment.

Control arguments:
-abort

Do not send message unless it can be sent to all recipients. (DEFAULT)

-acknowledge, -ack

Request an acknowledgement from the recipients.
~brief, -bf

Suppress "Mail delivered to ..." when message is sent.
-cc addresses

Specifies that addresses are secondary recipients of the message and adds

them to the cc header field.

-fill
Reformat message text according to "fill-on" and "align-left" mode in
compose.

294

-from addresses
Specifes that addresses are the authors of the messages and adds them to
the From field. (DEFAULT-- the user invoking send_mail)
-header, -he
Generate a header. See "List of header fields". (DEFAULT)
—-in_reply_to string, -irt string
Add an In-Reply-To field containing string.
-input_file path, -if path
Take message text from the specified file, rather than from the console.
-line_length N, -11 N
Cause filling (fill request and -fill control arg) to be done with this
line length. (DEFAULT-- 72)

-log
Send a copy of the message to the user's logbox.
-long, -1lg

Print "Mail delivered to ..." when message is sent. (DEFAULT)
-message_id, -mid

Add Message-ID field to header.
-no_abort :

Send message even it it can't be sent to all recipients.
-no_acknowledge, -nack

Do not request an acknowledgement. (DEFAULT)
-no_fill, -nfi

Do not reformat the message text. (DEFAULT)

-no_header, -nhe
Add only those header fields to the message explicitly requested by the
user.
-no_log
Do not send a copy of the message to the user's logbox. (DEFAULT)
-no_messade_id, -nmid
Do not add a Message-ID field to the header. (DEFAULT)
-no_prompt
Do not prompt the request loop. (DEFAULT-- prompt with "send_mail"™:)

-no_request_loop, -nrqgl
Send the message immediately without entering the request loop. (DEAFULT)
-no_subject, -nsj
Do not prompt for a Subject field. (DEFAULT-- prompt)
-prompt string
Set the request loop prompt to string.
-reply_to addresses, -rpt addresses
Add addresses to the Reply-To field.
-request string, -rq string
Execute the requests in string after reading message text.

-request_loop, -rql
Enters the request loop before sending the message.
-save path, -sv path
Send a copy of the message to path.sv.mbx.
-subject string, -sj string
Sets the subject of the message to string. (DEFAULT-- prompt for subject)
-terminal_input, -ti
Prompt "Message:" and reads the text. (DEFAULT)

295

-to addresses
Specifes that addresses are primary recipients of the message and adds
these addresses to the To header field.

New control arguments:

-at host_id
recipient (identified in the immediately preceding argument)
resides on specified host. The host_id argument may be the
standard host name, host abbreviation, or decimal host number.
This contrcl argument must follow a user name and may be used
to temporarily override the -local or the -host control
arguments.
Available host_ids at CNET: IRIA for Rocquencourt, CICB for Rennes,
CICG for Grenoble, CICT for Toulouse, CCVR for Cray-one.

-host host_id addrs
recipients specified by addrs are resident on the specified
DSA host. Each addr argument represents a user and must meet
the requirements of &a user name on the respective host.
The host_id argument may be the standard host name, host
abbreviation, or decimal host number.

-local addrs
recipients specified by addrs are resident on the local
Multics host. Each addr argument can be specified as either a
Multics pathname or a User_id (Person_id.Project_id).

List of requests:
This 1list lists only the most important features of each request. For
more detailed information, use the send_mail request "help request_name"
to see the info file on a particular request.

? List the available send_mail reguests.
. Identify send_mail with version number, recursion level, and message info.
..line
Execute line as a Multics command without further processing by the
send_mail request processor.
help string
Print information about send_mail requests or topics. For a list of
topics, use the 'help *' request.

list, 1s
Print a message summary with lines, subject, and destinations.
print -control_arg , pr -control_arg
Print the message. =-control_arg can be -header (-he) or -no_header
(-nhe).
quit =-control_arg , g -contreol_arg
Exit send_mail. -control_arg can be -force (-fc), which causes send_mail
to be exited even if the message was modified since last sent.
send addresses ~control_args
- 8end message to addresses or to primary and secondary recipients if no
addresses. -control_args can be -abort, —-acknowledge (-ack), -brief
(-bf), -header (-he), -long (-1g), -message_id, (-mid), -no_abort,
-no_acknowledge (-nack), -no_header (-nhe), -no_message_id (-nmid),
~no_notify (-nnt), or -notify (-nt) to override command line options.

fill -control_arg , fi -control_arg
Reformat message text as in compose "fill-on" and "align-left"" mode.

296

-control_arg can be -line_length N (-11 N) to specify a line length for
this request.

gedx ~-control_arg , gxXx =-control_arg
Invoke gedx editor on the message. -contrel_arg be either -header (-he)
or -no_header (-nhe).

append path
Write the message at the end of the ASCII segment, path.mail.

copy path, cp path
Copy the message to the mailbox, path.mbx.
log .
Save the message in the user's logbox.
preface path
Write the message at the front of the ASCII segment, path.mail.
save path, sv path
Save the message in the savebox, path.sv.mbx.

write path -control_arg , w path -control_arg
Write the message to the end of the ASCII segment, path.mail.
-control_arg can be -truncate (-tc) or -extend (-ex).
apply -control_arg strings, ap -control_arg strings
Put the message into a temporary segment, concatenate all the strings and
the pathname, and pass the result to the Multics command processor.
—-control_arg can be -header (-he) or -no_header (-nhe)
“execute strings, e strings
' Execute strings as a Multics command line after evaluating send_mail
active requests. As an active request, return the result of evaluating
strings as a Multics active string.

" HEADER REQUESTS

These requests (except for remove) print the contents of the specified
header fields if invoked with no arguments.

cc addresses

Add addresses to the secondary recipients and cc field.
from addresses

Add addresses to the list of authors and From field.
in_reply_to string , irt string

Put string in the In-Reply-To field.
message_id, mid

Print Message-ID field, creating it if necessary.

remove . addresses -control_args -
Delete addresses from specified header fields. -control_args can be -cc,
-from, -reply_to and -to and affect the following addresses.

reply_to addresses , rpt addresses
Add addresses to the Reply-To field.

subject strings , sj strings
Set the subject of the messages to strings. As an active request, returns
the subject, re-gquoted.

to addresses
Add addresses to the primary recipients and To field.

List of header fields:

297

Redistributed—-Date, Redistributed-By, and Redistributed-To
specify info about the forwarding of the message.
Date (required)
shows the date and time the message was sent.
From (required)
contains the list of authors. (DEFAULT-- user of send_mail command)
Subject
describes the message contents. Supplied by the user.

Sender
shows the actual sender of the message if different from From.
Reply-To
lists addresses to which a reply should be sent.
To 1lists the primary recipients.
cc 1lists the secondary recipients.

Acknowledge-To
gives an acknowledgement address if acknowledgement was requested.
presence of the field requests acknowledgement.
In-Reply-To
describes the message to which this one is a reply, if any.
Message-ID
contains a unique character string identifier from send_mail.

The

298

send_message

06/30/80 send_message, sm

Syntax: sm Person_id.Project_id message
or:
sm -pathname path message

Function: sends messages (one or more, always sent one line at a time)
to a given user on a given project.

Arguments:

Person_id
is the registered name of the recipient.

Project_id
is the name of the recipient's project.

message
is an optional string. If message is missing from the command line,
send_message types "Input." and accepts lines that it sends, one
line at a time, with each newline character. In this case, input is
terminated by a line consisfing solely of a period.

Control arguments:

-pathname path, -pn path
causes messages to be sent to a mailbox specified by pathname. The
mbx suffix is assumed.

- Notes: For a description of the mailboXx, refer to accept_messages and
print_mail. :

299

send_message_acknowledge

06/17/81 send_message_acknowledge, sma

Syntax: sma Person_id.Project_id message
or: sma -pn PATH message

Function: operates like the send_message command and requests that the
recipient's process return an acknowledgement when the message is read.

Arguments:

Person_id
registered name of the recipient.

Project_id
name of the recipient's project.

message
string up to 132 characters; if omitted, send_message_acknowledge types

. "Input." and accepts lines that it sends, one at a time, with each newline

-, character. In this case, input is terminated by a line consisting of a
period.

Control arguments:
—-pathname PATH, -pn PATH _ :
specifies a mailbox pathname.

Access required: append and wakeup extended access on a mailbox in order to
send an interactive message.

Notes: Parentheses, quotes, brackets, and semicolons in the command line
have their usual command language interpretation.

300

send_message_express

06/17/81 send_message_express, Smx

Syntax: smx Person_id.Project_id message
or: smx -pn PATH message

Function: operates like send_message, but adds message to the recipient's
mailbox only if the message will be printed immediately (i.e., if the recipient
is currently accepting messages).

Arguments:

Person_id
registered name of the recipient.

Project_id
name of the recipient's project.

message
string up to 132 characters; if omitted, send_message_express types "Input."
and accepts lines that it sends, one at a time, with each newline character.
In this case, input is terminated by a line consisting of a period.

Control arguments:
-pathname PATH, -pn PATH
specifies the pathname of a mailbox.

Access required: append and wakeup extended access on a mailbox in order to
send an interactive message.

Notes: Parentheses, quotes, brackets, and semicolons in the command line have
their usual command language interpretation.

301

send_message_silent

06/17/81 send_message_silent, sms

Syntax: sms Person_id.Project_id message
or: sms -pn PATH message

Function: operates like the send_message command but does not print
an error message if the message cannot be sent or will not be
received immediately.

Arguments:

Person_id
registered name of the recipient.

Project_id
name of the recipient's project.

message
string up to 132 characters; if omitted, send_message_silent types
"Input." and accepts lines that it sends, one at a time, with each
newline character. 1In this case, input is terminated by a line
consisting of a period. ‘

Control arguments:
-pathname PATH, -pn PATH
specifies the pathname of a mailbox.

Access required: append and wakeup extended access on a mailbox in
order to send an interactive message.

Notes: Parentheses, quotes, brackets, and semicolons in the command
line have their usual command language interpretation.

302

set_acl

12/22/80 set_acl, sa

syntax:
sa path model User_il ... modeN User_idN -control_args

Function: manipulates the access control lists (ACLs) of segments,
multisegment files, and directories. See "Access Control" in the MPM
Reference Guide for a discussion of ACLs.

Arguments:

path
is the pathname of a segment, multisegment file, or directory. If
it is -wd or -working_dir, the working directory is assumed. The
star convention can be used and applies to either segments and
multisegment files or directories, depending on the type of mode
specified in modeN.

modeN
is a valid access mode. For segments or multisegment files, any or
all of the letters rew; for directories, any or all of the letters
sma with the requirement that if modify is present, status must also
be present. Use null, "n" or "" to specify null access.

User_idN
is an access control name that must be of the form
Person_id.Project_id.tag. All ACL entries with matching names
receive the mode modeN. If no match is found and all three
components are present, an entry is added to the ACL. If the last
modeN has no User_id following it, the Person_id of the user and
current Project_id are assumed.

Control arguments:
-chase
causes links to be chased when using the star convention. (Links
are always chased when path is not a starname.)
-no_chase
causes links to not be chased when using the star convention. This
is the default.
-brief, -bf
suppresses error messages of the form "No match for User_id on ACL
of <path>", where User_id does not specify all components.
-no_sysdaemon, -nsd
suppresses the addition of a "rw x.SysDaemon.*" term when using
-replace.

-replace, -rp
deletes all ACL terms (with the exception of a default
"ry x,SysDaemon.*" term unless -no_sysdaemon is specified) before
adding the terms specified on the command line. The default is to
add to and modify the existing ACL.

-sysdaemon, -sd
when -replace is specified, adds a "rw *.SysDaemon.x" ACL term

303

before adding the terms specified. (Default)

Either of the following control arguments can be specified to
resolve an ambiguous choice between segments and directories that
occur only when modeN is null and the star convention is used in
path—-—

-directory, -d4dr
specifies that only directories are affected.

-segment, -sm
specifies that only segments and multisegment files are affected.
This is the default.

Access required: The user needs modify permission on the containing
directory.

Notes: The arguments are processed from left to right. Therefore, the
effect of a particular pair of arguments can be changed by a later pair

of arguments.

The strategy for matching an access control name argument is defined by

three rules—-—

1) A literal component, including "=*", matches only a component of
the same name.

2) A missing component not delimited by a period is treated the same
as a literal "x" (e.g., "*.Multics" is treated as "x.Multics.x").

Missing components on the left must be delimited by periods.

3) A missing component delimited by a period matches any component.

304

set_fortran_common

10/25/77 set_fortran_common, sfc

Syntax: sfc paths -control_arg
Function: initializes FORTRAN common blocks.

Arguments:

paths
are pathnames of FORTRAN object segments containing references to desired
common blocks.

Control arguments:

-long, -1lg .
prints a warning whan an already allocated common block is smaller than one
encountered in the list of object segments.

305

set_iacl_dir

08/30/79 set_iacl_dir, sid

Syntax: sid path model User_idl ... modeN User_idN —-control_arg

Function: adds entries to a directory initial ACL or modifies the access mode
in a directory initial ACL entry. ’

Arguments:

path
directory in which the initial ACL should be changed; can be
-working_dir or -wd. The star convention can be used.

modeN
mode associated with User_idN. It can be any or all of the letters sma, or
null, n, or "" for null access. If m is given, s must also be given.
User_idN

access control name of the form Person_id.Project_id.tag.

Control arguments:

-ring N, -rg N
identifies ring number (default is current ring). It can appear anywhere on
the line, except between a mode and its associated User_id, and affects the
whole line.

Notes: Type "help acl_matching" for the User_id matching strategy.

306

set_iacl_seg

08/30/79 set_iacl_seg, sis

Syntax: sis path model User_idl ... modeN User_idN -control_arg

Function: adds entries to a segment initial access control list (initial ACL)
in a directory or modifies the access mode in an existing segment initial ACL
entry.

Arguments:

path
directory in which the segment initial ACL should be changed; -wd or
-working_dir for the working directory. The star convention can be

used. :
modeN

mode associated with User_idN; it can consist of any or all of the letters

rew, or null, n, or "" for null access.
User_idN

access control name of the form Person_id.Project_id.tag.

Control arguments:

-ring N, -rg N
identifies ring number (default is current ring). It can appear anywhere on
the line exXcept between a mode and its associated User_id, and affects the
whole line.

Notes: Type "help acl_matching" for the User_id matching strategy.

307

set_presource

04/24/81 set_resource, setr

Syntax: set_resource type STR1 ... STRn -control_args

Function: The set_resource command is used to modify parameters of a
resource.

Arguments:

type .
is a resource type defined in the resource type description table
(RTDT).

STRi
is the unique identifying name of the particular resource pbeing
modified. If STR looks like a control argument (i.e., if it is
preceded by a hyphen), then it must be preceded by -hame or -nm.

Control arguments:

-access_class accr, -acc accr
sets the initial AIM access class parameters, where accr is the
access class range. Users at any authorization within the access
class range inclusive are allowed to read and write to the resource
(provided they also meet other access reguirements).

-acs_path path
specifies the pathname of the access control segment (ACS) for this
resource. The ACS is not created by this command, but must be
created by the accounting owner, and the desired access control list
set (see "Notes"™ below). If this control argument is not given, the
accounting owner of the resource is given rew access by default.

-alloc STR
sets the allocation state of the resource to free or allocated,
where STR must be either "on" or "off". If this control argument is
not given, the allocation state is free. on sets the allocation
state to allocated; off sets the allocation state to free.

-attributes STR, -—-attr STR
specifies the desired values for the attributes of this resource
(see "Notes" below).
-charge_type name, -crgtp name
specifies the name of the billing algorithm used to account for the
use of this resource.
-comment STR, ~com STR
specifies the desired value of the comment string for this resource.
-location STR, -loc STR
specifies a descriptive location for the resource, to aid the
operator in locating it when it is stored in a special place (e.g.,
a vault, a different room, etc.).

-lock STR
locks or unlocks the resource, preventing or allowing use of that

308

resource, where STR must be either "on" or "off". If this control
argument is not specified, the lock is off. on prevents any use of
the resource; off allows use of the resource.

-priv
specifies that a privileged call is to be made to obtain the status
of this resource (see "Access Resirictions" below).

-release_lock STR, -rll STR
specifies whether this resource may be released by the owner, or may
only be released by a privileged process (see "Access Restrictions"
below). If this control argument is not specified, the resource may
be released by the owner (does not require special privilege). on
resources may only be released by privileged process; off resources
may be released by owner.

Notes: If multiple resources are specified to the set_resource
command and an error occurs in the modification of one of these
resources, none of the resources specified are modified.

Access Restrictions: The user must have write effective access to the
resource named to perform any modification on the status of the
resource. In addition, the user must have execute effective access
to the resource named to modify protected attributes. Only the
accounting owner may modify the ACS path. The user must have execute
access to the rcp_admin_ gate in order to use the -—-access_class,
-release_lock, —-location, —-charge_type, or -lock control arguments.

309

set_search_paths

07/08/80 set_search_paths, ssp

Syntax: ssp search_list search_paths -control_arg

Function: allows a user to replace the search paths contained in a
specified search list.

Arguments:

search_list
is the name of a search list. If this search list does not exist,
it is created. A warning message is printed if a search 1list is
created and it is not system defined.

search_paths
are search paths to be added to the specified search list. The
search paths are added in the order in which they are specified in
the command line. The search path can be an absolute or relative
pathname or a keyword. (For a list of acceptable keywords see
add_search_paths in Commands and Active Functions, AG92.) If no
search paths are specified, then the specified search list is set
as if it were being initialized for the first time in the user's
process.

Control arguments:

-brief, -bf
suppresses a warning message for the creation of a search list not
defined by the system.

-default, -4f
replaces the search list with its system-defined default. No
search_paths can be specified with this control argument.

Notes: The specified search list is replaced by the specified search
paths. It is an error to create a new empty search list.

For a complete list of the search facility commands, see the
add_search_paths command description in Commands and Active Functions,
AGS2.

310

set_search_rules

10/08/80 set_search_rules, ssr

Syntax: set_search_rules path -control_arg

Function: sets the dynamic linking search rules of the user to suit
individual needs with only minor restrictions.

Arguments:

path
is the pathname of a segment containing the ASCII representation of
search rules. Search rules are absolute pathnames and any of the
keywords listed below in "List of Keywords", one search rule per
line. If path is not specified, the search rules must be reset to
the default search rules by the —-default control argument.

Control arguments:

-default, -d4f
resets the search rules to the default search rules, as set for a
new process. .

List of keywords:

initiated_segments
checks the already initiated segments.

referencing_dir
searches the containing directory of the segment making the
reference.

working_dir
searches the working directory.

home_d4ir
searches the home directory.

process_dir
searches the process directory.

site-defined
expand into one or more directory pathnames. (An example of a
site_defined keyword is system_libraries.) See the
get_system_search_rules command for an explanation of the values of
these keywords. The "default" keyword can be used to obtain the
site-defined default rules.

Notes: A maximum of 21 rules is allowed. Leading and trailing blanks
are allowed, but embedded blanks are not allowed.

If the user decides not to include the system libraries in the search
rules, many standard commands cannot be found.

See also the descriptions of the print_search_rules,
get_system_search_rules, add_search_rules, and delete_search_rules
commands.

311

set_tty

01/11/82 set_tty, stty

Syntax: stty -control_args

Function: modifies the terminal type associated with the user's
terminal and/or various parameters associated with terminal I/0. The
type as specified by this command determines character conversion and
delay timings; it has no effect on communications line control.

Control arguments:

-all, -a
is the equivalent of specifying the four control arguments -print,
-print_edit, -print_frame, and -print_delay.

-buffer_size N, -bsize N
specifies the terminal's buffer size to be used for output block
acknowledgement where N is the terminal's buffer size in characters.

-brief, -bf
may only be used with the -print control argument and causes only
those modes that are on plus those that are not on/off type modes
(e.g., 1179) to be printed.

-delay STR, -dly STR
sets the delay timings for the terminal according to STR, which is
either the word "default" or a string of six decimal values
separated by commas. If "default" is specified, the default values
for the current terminal type and baud rate are used. The values
specify vert_nl, horz_nl, const_tab, var_tab, backspace, and vt_ff,
in that order. (See "List of delay types" below.)

-edit edit_chars, -ed edit_chars
changes the input editing characters to those specified by
edit_chars. The edit_chars control argumeﬁt is a 2-character string
consisting of the erase character and the kill character, in that
order. If the erase character is specified as a blank, the erase
character is not changed; if the kill character is omitted or
specified as a blank, the kill character is not changed.

-initial_string, -istr
transmits the initial string defined for the terminal type to the
terminal.
-input_flow_control STR, -ifc STR
sets the input_suspend and input_resume characters to those
specified in STR, which is a string of one or two characters.
If STR contains two characters, the first character is the
input_suspend character and the second one is the input_resume
character. If STR contains only one character, it is the
input_resume character and there is no input_suspend character.
-io_switch STR, -is STR
specifies that the command be applied to the I/0 switch whose name
is STR. If this control argument is omitted, the user_i/o switch is
assumed.

A

312

-modes STR
sets the modes for terminal I/0 according to STR, which is a string
of mode names separated by commas. Many modes can be optionally
preceded by "A" to turn the specified mode off. Modes not specified
in STR are left unchanged. For a list of valid mode names, type:

help tty_modes.gi

-output_etb_ack STR, -oea STR
sets the output_end_of_block and output_acknowledge characters to
those specified in STR, which is a string of two characters. The
first character of STR is the end_of_block character and the second
one is the acknowledge character.

-output_suspend_resume STR, —-osr STR
sets the output_suspend and output_resume characters to those
specified in STR, which is a string of two characters. The first
character of STR is the output_suspend character and the second is
the output_resume character.

-print, -pr
prints the terminal type and modes on the terminal. If any other
control arguments are specified, the type and modes printed reflect
the result of the command.

-print_d4elay, -pr_dly
prints the delay timings for the terminal.

-print_edit, -pr_ed
prints the input-editing characters for the terminal.

-reset, -rs
sets the modes to the default modes string for the current terminal
type.

-terminal_type STR, -ttp STR
sets the terminal type of the user to STR, where STR can be any one
of the types defined in the terminal type table (TTT). The default
modes for the new terminal type are turned on and the initial string
for the terminal type, if any, is transmitted to the terminal.
Refer to the print_terminal_types command for information on
obtaining a list of terminal types currently in the TTT.

—-frame STR, -fr STR
changes the framing characters used in blk_xfer mode to those
specified by STR, where STR is a 2-character string consisting of
the frame-begin and the frame—-end character, respectively. These
characters must be specified in the character code of the terminal,
and may be entered as octal escapes, if necessary. The frame-begin
character is specified as a NUL character to indicate that there is
no frame-begin character; the same is true for a frame-end
character. These characters have no effect unless blk_xfer mode is
on. It is an error to set the frame-end character to NUL if the
frame-begin character is not also set to NUL.

-print_frame, -pr_f~fr
prints the framing characters for the terminal.

List of delay types:
vert_nl
is the number of delay characters to be output for all newlines to

313

allow for the linefeed (-127 <= vert_nl <= 127). If it is negative,
its absolute value is the minimum number of characters that must be
transmitted between two linefeeds (for a device such as a

TermiNet 1200).

horz_nl
is a number tc be multiplied by the column position to obtain the

number of delays to be added for the carriage return portion of a
newline (0 <= horz_nl <= 1).

const_tab
is the constant portion of the number of delays associated with any
horizontal tab character (0 <= const_tab <= 127).

var_tab -
is the number of additional delays associated with a horizontal tab
for each column traversed (0 <= var_tab <= 1).

backspace ‘
is the number of delays to be output following a backspace character
(=127 <= backspace <= 127). If it is negative, its absolute value
is the number of delays to be output with the first backspace of a
series only (or a single backspace).

vt_f£ff
is the number of delays to be output following a vertical tab or
formfeed (0 <= vt_f£ff <= 511).

314

set_tty.gi

11/04/83 Les options du stty

Vous trouverez ci-dessous une liste de 28 arguments de la commande stty
(ou : set_tty) pour lesquels il existe une info. en francais.
Ces "arguments" s'emploient :
- les uns comme "arguments de controle" proprement dits,
par exemple : stty -edit <edit_chars>
- les autres comme des "modes" accompagnant 1'argument de
controle "-modes",
par exemple : stty -modes Acapo,crecho

Pour acceder a cette info, veuillez taper la commande indiquee.
En general, cette commande est de la forme : help nom_de_l‘'argument

par exemple : help can
ou bien : help echoplex
etc...

LISTE DES ARGUMENTS - can,capo,crecho,ctl_char,default:

can : Superposition de caracteres. Commandez : help can

capo : Majuscules et minuscules. " : help capo
crecho : Echo [CR] en reponse a [LF]. " : help crecho
ctl_char : Caracteres de commande ASCII. " : help ctl_char
default ¢ Groupe de sixX modes implicites. " : help defaut

LISTE DES ARGUMENTS (SUITE) - delay,echoplex,edit,edited, erkl:

delay (dly) : Valeur des delais. Commandez : help delay
echoplex : Echo. " : help echoplex
edit (ed) : Caracteres d'effacement. " : help edit_chars
edited : Caracteres inconnus du terminal. " : help edited
erkl : Validation des carac. d'effacemt. " : help erkl

LISTE DES ARGUMENTS (SUITE) - esc,frame,hndlquit,iflow,lfecho:

esc ¢ Validation du caractere " ", Commandez : help escC

frame (fr) : Debut et fin de trame. " : help framing_chars.
hndlquit : Comportement en cas de break. " : help hndlquit
iflow : Controle de flux en entree. " ¢t help iflow

1fecho : Echo [LF] en reponse a [CR]. " ¢ help lfecho

LISTE DES ARGUMENTS (SUITE) - 11,oflow,pl,polite,prefixnl:

11 : Longueur de la ligne. Commandez : help ligne
oflow : Controle de flux en sortie. " ¢ help oflow

Pl ¢ Longueur de la page. " ¢ help pl
polite : Interruption d'entree par sortie. " : help polite
prefixnl ¢ Position sur interruption. " : help prefixnl

LISTE DES ARGUMENTS (SUITE) - rawi,rawo,red,replay,reset:

rawi : Traitement en entree. Commandez : help rawi
rawo : Traitement en sortie. " : help rawo
red : Couleur du ruban. " : help ruban

315

replay : Reimpression apres interruption. "
reset (rs) : Retour aux modes normaux. "

LISTE DES ARGUMENTS (SUITE) - scroll,tabecho,tabs:

scroll : Controle de fin de page. Commandez
tabecho ¢ Tabulations en entree. "

tabs : Tabulations en sortie. "

[T

help
help

help
help
help

replay
reset

scroll
tabecho
tabs

316

short_message_format

05/26/77 short_message_format, smf
Syntax: smf -pn mbX_path
Function: causes messages from send_message to be printed in short format.

Successive messages from the same sender are preceded by := instead of by a
header giving the sender's name.

317

sort

03/29/76 sort, merge

syntax:
sort input_specs output_spec -control_args
merge input_specs output_spec -control_args

Function: Sort (Merge) one or more files
according to the values of one or more key fields.

This info file applies to both the sort and the merge;
see the section "Differences Between Sort and Merge".

Arguments:
input_specs
Specify each input file (up to 10) as -
-if pathname Pathname in Storage System, or
-ids "attach_desc" Attach description.

output_spec
Specify just one output file as -
-of pathname Pathname in Storage System, or
-of -replace Replace input file by output file, or
-ods "attach_desc" Attach description.

Control arguments:

-ci Sort (Merge) Description input via terminal, or
-sd pathname Pathname of Sort Description (sort command only), or
-md pathname Pathname of Merge Description (merge command only).
-td pathname Pathname of directory to contain work files;

default is user's process directory (sort command only).
-file_size f Estimated total amount of data to be sorted,

in millions of bytes (sort command only).

Examples:

1) sort -ci -if in -of -rp Sort Description from user's terminal;
input file is named inj;
output file will replace input file.

Input. The Sort requests the Sort Description.

keys: char(10) 0; The single key is a character string
whose length is 10 bytes,
and which starts at the first byte
of the record (word 0, bit 0).

. A line consisting of "." terminates
the Sort Description from a terminal.

2) sort -sd sort_desc -td >udd>pool
Sort Description entered from a segment;
work files will be contained in the
directory >udd>pool;
no input or output file is named.

318

Assume the segment sort_desc contains -
key: bin(17) 1; The key is fixed binary aligned, and
-occupies the second word of the record.
exits: input_file user$input Input_file exit procedure is user$input.
output_file user$output; Output_file exit procedure is user$output.

3) sort -ids "tape_ansi_ V" -ods "record_stream_ -target vfile_ b" -ci
Input file specified by attach description
for a magnetic tape in ANSI format;
output file specified to be unstructured
(the Sort's record output will be
transformed into stream output).

4) merge -md merge_desc -if a.in ~-if b.in -of =.out
Merge Description entered from a segment;
input files are named a.in and b.in;
output file will be named b.out.

Syntax of the Sort (Merge) Description:

keys: <key_description> ... ;

exits: <exit_description> ... ;
If -ci is used, the additional line "." terminates input.
There may be up to 32 keys described.

Syntax of a Key Description:
<datatype> (<size>) <word_offset> [(<bit_offset>)] [descending]
where -
<datatype> Data type of a key field; can be -
char, bit, fixed bin, float bin, dec, float dec.
<size> Length of the key field (in decimal),
in units appropriate to the data type.
<word_offset> Offset in words from the beginning of the record.
Words are numbered (in decimal) starting at O.
<bit_offset> Offset in bits from the beginning of the word.
Bits are numbered (in decimal) starting at O.
descending Rank in descending order for this key field.

Syntax of an EXit Description:
<eXit_name> <user_name>
where -
<exit_name> Name of the exit point -
input_file (sort command only)
output_file (sort command only)
compare
input_record (sort command only
output_record

<user_name> Name of the entry point of the user procedure,
in the same form as a command name.

Writing an Exit Procedure:

See the MPM descriptions of the subroutines sort_ and merge_

for a complete description of how to write a user exit procedure;
or type "help sort_" or "help merge_" for a summary.

319 -

Functions:
Sort or merge one or more files of records which .are not ordered,
to create a new file of ordered (or "ranked") records.

Files Supported:

An input or output file can be specified

either by a pathname or by an attach description.

Its organization must be structured (record I/C is used).
Records can be either fixed length or variable length.

If the user names an input file or an output file,

it must be in the Multics Storage System.

(It can be either a segment or a multisegment file.)

If the user supplies an attach description,

any I/0 module available at the installation can be used,
provided it supports sequential record I/0.

Input: The user can specify up to 10 input files.

The organization can be either sequential or indexed.
Alternatively, the user must name an input_file exit procedure,
which is then responsible for releasing records to the Sort.

Output: The user can specify one output file.

The organization must be sequential.

Alternatively, the user must name an output_file exit procedure,
which is then responsible for retrieving records

(ranked by the Sort) from the Sort. .

Sort Description:
In addition to the arguments to the sort or merge command,
a Sort (Merge) Description is necessary
to specialize the Sort (Merge) for a particular execution.
It can be supplied either via the user's terminal, or via a segment.
A Sort Description can include the following statements -
keys Specifies key fields, used for ranking records.
exXits Names user-written exit procedures.

Keys Statement: Up to 32 key fields can be specified.

Use any PL/I data type - eXxcept varying string, complex, or pictured.
Ordering can be ascending, descending, or mixed.

The original order of records with equal keys is preserved.

If key fields are not described via the keys statement,
then the user must name a compare exit procedure.

Exits Statement: User-written "exit procedures" can be supplied

at specific points in the sorting process.

The following exits are supported:
input_file Reads input file, releases records to the sort.
output_file Receives records in ranked order, writes output file.
compare Compares two records, decides which ranks first.
input_record Process each input record (delete, insert, or alter).
output_record Process each output record (delete, insert, alter,

or summarize data).

320

Differences Between Sort and Merge:
The merge command has the following restrictions
1) -replace cannot be used for the output file.
2) -td and -file_size cannot be specified.

3) The following exit points are not provided -
input_file

output_file

input_record

321

sort_seg

03/01/76 sort_seg, ss

Syntax: ss path -control_args

Function: orders the contents of a segment according to the ASCII collating
seguence.

Arguments:
path
pathname of input segment.

Control arguments:

-segment path, -sm path
places sorted units in a segment whose pathname is path; incompatible with
the -replace control argument.

-replace, -rp
replaces original contents of input segment with the sorted units; this is
the default.

-unique, -ug
deletes duplicate sort units from the sorted results; default is to retain
duplicated units.

—-delimiter STR, —-dm STR
uses STR concatenated with a newline character as the string delimiter;
default is a single newline character.

-block N, -bk N
makes the sort unit a block of N strings where N must be a positive integer;
default for N is 1.

~descending, -dsc
makes the sort in descending order, according to the ASCII collating
sequence; incompatible with the -ascending control argument.

-ascending, -asc
makes the sort in ascending order, according to the ASCII cecllating
sequence; this is the default.

.—field field_spec, -fl1 field_spec
specifies field (or fields) when sorting within a sort unit (see "Notes").

-ordered_field field_spec, -ofl field_spec
specifies mixed ascending and descending fields. (see "Notes")

-all, -a
entire sort unit is considered when sorting; this is the default.

Notes: The field_spec of the -field control argument is a pair of field
specifications, S and L. S is the start position of the field in the sort unit
(i.e., S is 1 if the field begins at the first character). L is the length of
the field, in characters. Both S and L must be positive integers.

The first pair, S1 L1, defines the primary sort field, the second pair, S2 L2,
defines the secondary sort field; and so forth. The use of -field control
argument is incompatible with the use of the -all control argument.

The field_spec of the -ordered_field control argument is given in threes, S,

i

322

L, and O. S and L are the same as for the -field control argument. O is either
the string "asc" for an ascending field or "dsc" for a descending field.

Use of -ordered_field control argument is incompatible with the -ascending,
—-descending, and -field control arguments.

323

start

02/17/76 start, sr

Syntax: sr -control_arg

Function: resumes execution of the user's process from the point of
interruption after a signal has suspended execution. It restores the
attachments of the user_input, user_output, and error_output I/0 switches, and
the mode of user_io to their values at the time of interruption.

Control arguments:
-no_restore, -nr
does not restore the standard I/0 attachments.

Notes: The start command can be used to resume execution after an unclaimed
signal, if the condition that caused the unclaimed signal either is innocuous
or has been corrected.

The start command can be issued after a quit signal.

The release command discards the machine conditions for a suspended execution
instead of restarting them.

324

status

01/29/81 status, st

Syntax: st paths -control_args

Function: prints selected detailed status information about specified
storage system entries.

Arguments:

paths
are the pathnames of segments, directories, multisegment files, and
links for which status information is desired. The default pathname
is the working directory, which can also be specified by -wd or
-working_directory. The star convention can be used.

Control arguments: The following control arguments can be used with
any type of entry, and can appear anywhere on the line after the
command name and are in effect for the whole line.

-author, -at '
prints the author of the entry.

—-chase .
prints information about the branch targets of links instead of the
links themselves. An error occurs for a null link or a link to a
null link.

-chase_if_possible, -cip
prints information about the targets of links where branch targets
exist, and for null links and links to null links prints information
about the ultimate 1link in the chain. This control argument does
not affect the processing of non_links.

-date, -dt

prints all the relevant dates on the entry.
-date_time_dumped, -dtd

prints the date-time-dumped by the hierarchy dumper.
—-date_time_entry_modified, -dtem

prints the date-time-entry-modified.
-date_time_used, -dtu

prints the date-time-used.
-date_time_volume_dumped, -dtvd

prints the date-time-dumped by the volume dumper.
-directory, -d4dr

selects directories when using the star convention.
-link, -1lk

selects 1links when using the star convention.

-name, -nm
prints all the names on the entry.
-no_chase
prints link information about links. (Default)
-no_chase_if_possible, -ncip

325

prints link information about links. (Default)
-primary, -pri-
prints the primary name on the entry.
-segment, -sm
selects segments when using the star convention.
-type, -tp
prints the type of entry: segment, directory, multisegment file, or
link.

List of type specific control arguments: The following control_args

can only be used for segments, multisegment files, and directories.
-access, —-ac

prints the user's effective mode, ring brackets, access class (if

different from the default), and safety switch (if it is on).
-access_class

prints the access class.
-bit_count, -bc

prints the bit count.
-bc_author, -bca

prints the bit count author of the entry.
-copy_switch, -csw

prints whether the copy switch is on or off.
-current_length, -cl

prints the current length in pages.

-damaged_switch, -dsw
prints whether the damaged switch is on or off.
-date, -4t
prints all the dates on the entry: i.e., date used, date contents
modified, date branch modified, date dumped.
—-date_time_contents_modified, -dtcm
prints the date-time-contents—modified.
-device, -4v
prints the logical volume on which the entry resides.

-length, -1n
for segments: prints the bit count, the number of records used, the
current blocks (if different from records used), and the maximum
length in words;
for multisegment files: prints the number of records used by the
whole file, the sum of the bit counts of all components, and the
number of components;
for directories: prints the number of records used and the bit
count.
-logical_volume, -1v
prints the logical volume on which the entry resides. This control
argument is the same as the -device control argument.

-long, -1lg
prints all relevant information about the object.
—max_length, -ml
prints the maximum length of a segment.
-mode,. -md
prints the user's effective mode.
-records, -rec
prints the records used.

326

-ring_brackets, -rb

prints the ring brackets.
-safety_switch, -ssw

prints whether the safety switch is on or off.
-unique_id, -uid

prints the entry's unique identifier.

List of control arguments for segments:
-comp_volume_dump_switch, -cvds
prints whether the complete volume dump switch is on or off.
—-incr_volume_dump_switch, -ivds
prints whether the incremental volume dump switch is on or off.
-usage_count, =-use
prints the number of page faults taken on the segment since
creation. ’

List of control arguments for links:
-link_path, -1lp
prints the target pathname.
-long, -1lg
prints all relevant information about the link.

Notes: If no control argument is specified, the following information
is printed for segments, multisegment files, and directories-- names,
type, date used, date modified, date branch modified, bit count,
records used, user's mode, access class.

If no control argument is specified, the following information is
printed for links—-- the pathname of the entry linked to, names, date
link modified, date dumped. The -mode, —-device, and -length control
arguments are ignored for links.

Zero-valued dates (i.e., dates that have never been set) are not
printed. In addition, attributes in the default state are not printed.

Syntax as active function: [st path -control_args]

327

switch_off

01/15/81 switch_off, swf

Syntax: swf keyword paths -control_args

Function: turns off a specified switch for one or more entries. For
an MSF, the switch of the MSF directory (when possible) and those of
all the components are turned off.

Arguments:
keyword
specifies the name of a switch. See "List of keywords" below.
paths
are the pathnames of segments, MSF's and directories for which
it is possible to set the specified switch. The star convention
is allowed,. and includes links only if -chase is specified.

Control arguments:
-chase

includes links and chases them when using the star convention.
-no_chase

does not include links when using the star convention. (Default)

Access required: modify on the parent.

List of keywords:
copy_switch, csw
(segments) If ON, allows processes lacking write access to modify
a copy of the segment in the process directory.
damaged_switch, dsw
(segments) If ON, the segment is assumed to have been damaged
by a device error or system crash.
complete_volume_dump_switch, cvds
If ON, the entry is dumped during a complete volume dump of the
physical volume on which it resides.
incremental_volume_dump_switch, ivds
If ON, the entry is dumped during an incremental dump cycle
of the volume dumper.

perprocess_static_switch, ppsw
(object segment) If ON, the segment's internal static storage
is not initialized when a run unit is created.

safety_switch, ssw
If ON, the delete command and delete_ subroutine query the user
before deleting the entry.

transparent_paging_device_switch, tpds
If ON, storage system pages of the entry are never allowed to
reside on the bulk store unit.

328

switch_on

01/15/81 switch_on, swn

Syntax: swn keyword paths -control_args

Function: turns on a specified switch for one or more entries. For
an MSF, the switch of the MSF directory (when possible) and those of
all the components are turned on.

Arguments:
keyword
specifies the name of a switch. See "List of keywords" below.
paths
are the pathnames of segments, MSF's and directories for which
it is possible to set the specified switch. The star convention
is allowed, and includes links only if -chase is specified.

Control arguments:
-chase

includes links and chases them when using the star convention.
-no_chase ,

does not include links when using the star convention. (Default)

Access required: modify on the parent.

List of keywords:
copy_switch, csw
(segments) If ON, allows processes lacking write access to modify
a copy of the segment in the process directory.
damaged_switch, dsw
(segments) If ON, the segment is assumed to have been damaged by
a device error or system crash.
complete_volume_dump_switch, cvds
If ON, the entry is dumped during a complete volume dump of the
physical volume on which it resides.
incremental_volume_dump_switch, ivds
If ON, the entry is dumped during an incremental dump cycle of
the volume dumper.

perprocess_static_switch, ppsw
(object segment) If ON, the segment’'s internal static storage
is not initialized when a run unit is created.

safety_switch, ssw
If ON, the delete command and delete_ subroutine query the user
before deleting the entry.

transparent_paging_device_switch, tpds
If ON, storage system pages of the entry are never allowed to
reside on the bulk store unit.

32%

tape_archive

10/02/80 tape_archive, ta

Syntax: ta key table_path args

Function: manages offline archival storage of files on magnetic tape.

Arguments:
key
specifies the archival operation. Valid keys are listed below.
table_path ’
is the pathname of the table of contents for the tape_archive. If the table
does not exist, it is created.
args
are additional arguments that vary according to the key used.

Notes:

Requests to move files between the storage system and tape are not performed
immediately, but are queued within the table until the "go" key is performed by
the user.

The cancel key can be used to cancel a pending request before the tapes are
processed.

List of generic arguments for keys:
paths
are pathnames of segments. The star convention is honored.
components
are names of components of the archive. The star convention is honored.

List of file management keys:
a table_path -control_args paths
appends a file to the archive.
ad table_path -control_args paths
like a, but deletes the file from the storage system when done.
adf table_path -control_args paths
like ad, but deletes forcibly.
r table_path -control_args paths
replaces a file in the archive.
rd table_path =-control_args paths
like r, but deletes the file from the storage system when done.
rdf table_path -control_args paths
like rd, but deletes forcilkly.

u table_path -control_args paths

updates a file in the archive if the DTBM has changed.
ud table_path -control_args paths

like u, but deletes the file from the storage system when done.
udf table_path -control_args paths

330

like ud, but deletes forcibly.
X table_path -control_args components
extracts a file from the archive.
Xf table_path =-control_args components
like X, but forcibly deletes an existing file of the same name from the
storage system. ;

d table_path -control_args components
deletes a file from the archive.

df table_path -control_args components
like 4, but deletes forcibly.

cancel table_path -control_args components
cancels outstanding requests for a component.

List of control arguments for file management keys:
-mode ascii, —mode ebcdic, -mode binary

causes a file to be archived using the specified recording mode.
-single_name, -snm

causes additional names on a file not to be recorded/extracted.

List of miscellaneocus keys:
t table_path components -control_args
prints a table of contents for the archive.
go table_path -control_arg
causes the volume set to be mounted and all queued requests to be performed.
alter table_path parameter value .
alters the specified parameter to the specified value.
compact table_path
schedules compaction of the volume set.
load_table table_path -io_module modulename -retain all volume_ids
causes a copy of the current online table to be retrieved from the tapes.
direct table_path -control_args
enters an interactive mode in which each line typed is interpreted as a key
followed by the arguments to that key.

List of control arguments for the t key:
-brief, -bf
prints contents in short form.
-long, -1g9
prints long form of contents.
-no_header, -nhe
omit header information; list components only.
~header, -he
prints header information only, if no components specified.
-pending
lists only those components with pending requests.
-all, -a
lists all components, even those previously deleted or replaced but still
physically resident on the volume set.

List of control arguments for the go key:

-long, -1g
causes printing of a message as each operation is being performed on the
tape.

-retain all

331

leave volume set mounted after go request completes.
-retain none
demount volume set after go reguest completes. (DEFAULT).

List of control arguments for the direct key:

-retain all
leave the volume set mounted between go requests. Demount volume set and
exit direct mode only when quit request is given.

-retain none
demount the volume set and exit direct mode after the go request completes.
(DEFAULT).

List of parameters for the alter key:
module tape_ansi_/tape_ibm_
changes the tape I/0 module used.
warning_limit fraction
prints warning whenever tape waste exceeds fraction.
auto_limit fraction
schedules compaction whenever waste exceeds fraction.
volume o0ld_volume new_volume -alternate ,
volume -number N new_volume -alternate
changes the specified reel ID.
compaction off
unschedules an upcoming compaction.
density N
sets the density of the volume set to N bpi.

List of requests accepted in direct mode:
(In addition to the above requests)
save
save pending requests.
quit .
discard requests since last "save" and exit without processing tape.
go
causes processing of the volume set, and exists direct mode, unless -retain
all was specified.

causes tape_archive to identify itself.
. .command_line
causes command_line to be passed to the command processor.

332

tape_control_language.gi

12/22/80 Tape Control Language

The TCL source file, written in the Tape Control Language (TCL) is
the control file that governs file transfer with the tape_in or
tape_out commands. For information on these commands, type:

help tape_in or help tape_out

The file is actually a program, written by the user, the contents of
which describe the file transfer. When the user issues the tape_in
or tape_out command, the control file named in the command line by
the path argument is compiled and, if the compilation is successful,
the generated code is interpreted to accomplish the desired file
transfer(s). The same control file can be used with both the tape_in
and tape_out commands.

Notes on creating a TCL control file:
The TCL control file consists of a list of statements of the form:

C(keyword>: <argument(s)>;
or
<keyword>;

These statements are combined to form file-groups and file~groups are
combined to form volume-groups. A TCL control file consists of one
or more volume-groups.

Notes on file-group: A file-group is a list of statements that define
one file transfer. A file-~group must begin with a File statement and
must contain a path statement. 1In addition, it may contain one or
more local statements. A file-group is terminated by a global
statement, an End statement, or another File statement.

Notes on volume-group: A volume-group is a series of statements

that specify the file transfer(s) to be performed between the storage
system and a particular tape volume-set. A volume-group must begin
with a Volume statement, contain one or more file-groups, and
terminate with an End statement. In additon, a volume-—group may
optionally contain one or more global statements, which apply to

all the file—-groups within the volume-group that follow the global
statement.

List of TCL contreol file statements:

All TCL control files must have at least four statements-- a Volume
statement, a File statement, a path statement, and an End statement.
All other TCL statements are optional.-

Volume: <volid>;
specifies the tape volume to be used in file transfer. This

333

statement causes a tape volume whose volume identifier is
<volid> to be mounted on a 9-track drive. The "Volume" keyword
must begin with an upper case letter. <volid> must consist of
from 1 to 6 ASCII characters. If <volid> contains any of the
following characters, it must be enclosed in quotes.

1. any ASCII control character

2. : ; , or blank

3. the sequence /* or x/

4., if <volid> itself contains a quote character, the quote
itself must be doubled and the entire <volid> string
enclosed in quotes

(See the tape_ansi_ and tape_ibm_ info files for more details
on volume specifications.)

File: < fileid>;
specifies the tape file to be read or written. The "File" keyword
must begin with an upper case letter. The tape file is
identified by < fileid> and must be from 1 to 17 characters for
ANSI labeled tapes, and a valid DSNAME for IBM labeled tapes.
The File statement marks the beginning of any local attributes
for a given tape file transfer.

path: < pathname>;
specifies the pathname of the storage system file to be read
or written. <pathname> can be either a relative or absolute
pathname. ’

Eng;
marks the end of the TCL statements for that volume. "End"
must begin with an upper case letter followed by a semicolon.

List of global statements:
A global statement changes a volume-group default.
(See Tape Defaults below.)

Block: <blklen>;
specifies the tape file (maximum) physical block length, in bytes,
to be used with subsequent file-groups.

Density: <den>;
indicates the density in which the volume is to be recorded.
This statement may appear only once within a volume-group or
an error is indicated.

Expiration: <date>;
specifies the expiration date of files to be written (created).
<date> is of a form acceptable to the convert_date_to_binary
subroutine, for example, "09/12/79".

Format: < form>;
specifies the tape record format to be used with subsequent
file_groups.

Mode: <mode>;
specifies the tape mode and character code to be used with
subsequent file-groups.

Record: <reclen>;
specifies the tape file (maximum) logical record length, in
bytes, to be used with subsequent file-groups.

Storage: <structure>;
states the internal (logical) structure of the storage system

334

file(s) to be specified by subsequent file-groups. An
unstructured file is referenced as a series of 9-bit bytes,
commonly called lines; a sequential file is referenced as
sequence of records, each record being a string of S-bit bytes.
<structure> must be either unstructured or sequential.

Tape: < tape-type>;
specifies the kind of tape that is processed. This statement
may appear only once within a volume-group Or an error is
indicated.

List of local statements:
A local statement overrides the volume-group defaults in
effect at the time a file-group is evaluated. A local statement
has no effect outside of the file-group in which it occurs and
may appear anywhere within the file-group.

block: <blklen>;

expiration: <date>;

format: < form>;

mode: <mode>;

record: <reclen>;

storage: <structure>;
these local statements operate exactly as 4o their global
statement counterparts, except that they affect only the
file-group in which they occur.

generate;
causes the entire contents of a file on an ANSI tape to be
replaced while retaining the structure of the file itself and
incrementing the file generation number.

modify;
causes the entire contents of a file on an ANSI or IBM
labeled tape to be replaced while retaining the structure of the
file itself.

number: < number>;
specifies the file sequence number of the file to be used in
the file transfer. <number> must be either an integer between 1
and 9999 inclusive, or the character "x",

replace: <fileid>;
replaces an ANSI or IBM standard labeled tape. The file to
be overwritten is identified by <fileid> in the reblace local
statement and the new file to be written is identified by
<fileid> in the File statement.

storage_extend; .
extends an already existing file in the storage system.

tape_extend;
allows new data records to be appended to an existing file on
an ANSI or IBM standard labeled tape without in any way altering
the previous contents of the tape file.

Tape Defaults:

If no Tape statement is specified in the control file, ANSI standard
labeled tape will be assumed. If, however, a Tape statement is
specified, the tape characteristics for that tape-type will preside
as default until overridden.

Tape-type ANSI: (this is the default)
1) density: 800 bpi
2) file expiration: immediate

335

3) storage system file format: unstructured

4) mode: ascii character code

5) tape file record format: variable length records, blocked
6) physical block length: 2048 characters (maximum)

7) logical record length: 2048 characters (maximum)

Tape-type ibmsl, ibmnl, ibmdos:
1) density: 1600 bpi
2) file expiration: immediate
3) storage system file format: unstructured
4) mode: ebcdic
5) tape file record format: variable length records, blocked
6) physical block length: 8192 characters {maximum)
7) logical record length: 8188 characters (maximum)

Control File Comments:

Comments may be inserted anywhere within the TCL program by
surrounding the comment text with the comment delimiters. /* is the
delimiter that begins a comment, and */ is the delimiter that
terminates a comment.

Notes:
To read files on a labeled tape, where the file names are not known,
the <fileid> "x" can be used in the TCL File statement with tape_in
only.

If it is wished to append a file to a given tape volume, it is not
necessary to know how many files are on the tape if the tape is
labeled. 1In such a case, the character "*" can be used in the TCL
number statement if a valid file name is specified in the TCL File
statement. This appending feature cannot be used to create a
completely new volume.

Either tape_in or tape_out supports processing of unlabeled tapes,
provided that the tapes are structured according to the OS standard.

For a more comprehensive description of the tape_io commands and
the TCL, see the MPM Peripheral I/0, Order No. AX49.

336

tape_in ‘ .

11/13/81 tape_in, tin

Syntax: tape_in path -control_args

Function: transfers files from magnetic tape to the
storage system.

Arguments:

path
is the pathname of the control file that governs the file
transfer. If path does not end with the .tcl suffix, it is
assumed.

Control arguments:
-check, -ck
specifies that only semantic checking be done on the TCL control
file. No tapes are mounted if this option is specified.
-ring .
mounts volumes of the volume-set with write permit rings.
-severityN, -svN
causes the compiler's error messages with severity less
than N (where N is 0, 1, 2, 3, or 4) not to be written into the
"error_output" I/0 switch. The default value for N is 0.

Notes on the TCL source file:

The control file that governs the file transfer is actually a
program, written by the user, in the Tape Control Language (TCL).
the contents of this control file describe the file transfer. The
same contreol file can be used with both the tape_in and tape_out
commands.

For additional information on the TCL, type help tcl.gi.
See also the MPM Peripheral I/0, Order No. AX49.

337

tape_out

11/13/81 tape_out, tout

Syntax: tape_out path ~control_args

Function: transfers files from the storage system to magnetic tape.

Arguments:

path
is the pathname of the control file that governs the file
transfer. If pathname does not end with the .tcl suffix, it
is assumed.

Control arguments:

-check, =-Ck
specifies that only semantic checking be done on the TCL control
file. NO tapes are mounted if this option is specified.

-force, -fc
specifies that the expiration date of a tape file to be
overwritten is to be ignored. This control argument exXtends
unconditional permission to overwrite a tape file, regardless of
the file's "unexpired" status. This unconditional permission
suppresses any query made by the I/0 module to inquire about
tape file's expiration date.

-ring
mounts volumes of the volume-set with write permit rings.
-severityN, -svN
causes the compiler's error messages wWith severity less
than N (where N is 0, 1, 2, 3, or 4) not to be written into the
"error_output” I/O switch. The default value for N is 0.

Notes on the TCL source file:

The control file that governs the file transfer is actually a
program, written by the user, in the Tape Control Language (TCL).
The contents of this control file describe the file transfer. The
same control file can be used with both the tape_in and tape_out
commands.

For additional information on the TCL, type help tcl.gi.
See also the MPM Peripheral I1/0, Order No. AX49.

338

teco

04/20/76 teco

Syntax: teco path outpath

Function: character-oriented text editor provides simple editing requests,
macro definitions, iterations, and conditional statements.

Arguments:
path

input segment.
outpath

output segment.

Notes: This command invokes the editor, searches for a start_up macro, and
executes it. The default start_up macro reads the segment path into the buffer
and puts the pointer at the beginning of the buffer. If outpath is given, g=* is
set to outpath, otherwise, it is set to path. If neither path or outpath is
given, nothing is done. For more information about the editor, see the

Tools PLM, Order No. AN51.

New Entry Point: teco$macro macro_name This entry point invokes teco, searches
for a macro whose name is macro_name and executes it. The argument macro_name
must be supplied. Additional arguments may be provided and are available to
teco commands through the pushdown stack. As an example, the command line:
teco argl arg2 arg3
is equivalent to--
teco$macro start_up argl arg2 arg3
It differs from the standard entry point in several ways.
First, if the teco commands executed encounter an error condition, the
invocation of teco is aborted with an error message. Second, if an "eq" command
is executed, teco never reachs its command level and no prompt message (Z) is
printed. Finally, if teco command level is reached without errors, the macro
mode is disabled and teco functions normally.
This entry point is useful for application programs written in teco, such as
abbreivation editors.

New Features:

O-register g" is set to the value of the last quoted string seen by teco.
For the "n" command, q" is set to the actual text matched.

The "n" command is a search command that searches forward for a gedx-type
regular expression. It is identical in syntax to the "s" command.

The teco command edits segments of any length. The buffer size is determined
by the length of the text being edited.

Multics "e" commands:
eb/path/ where /path/ is a quoted string, copies the segment path
to ==.bak and then writes text to the segment path. The
command takes arguments and interprets them like the

‘

e

- 339

"t" command, except that no arguments is equivalent to
heb/path/.

ec/cmd/ where /cmd/ is a quoted string, passes the quoted string
to the Multics command processor.

ei/path/ where /path/ is a quoted string, inserts the segment
path immediately to the left of the text pointer.

em/macro/ where /macro/ is a quoted string, uses the teco search
rules to find macro.teco and executes it. Any arguments to
the "em" command are available to the macro invoked.

eo/path/ where /path/ is a quoted string, writes text to the
segment path. The command takes arguments and interprets them
like the "t" command, except that no arguments is egquivalent
to heo/path/. , :

eqg exits from teco. -

esn/name/ where n is a text g-register name and /name/ is a quoted
string, calls the segment name passing it the arguments to
the "es" command and the text g-register n. The segment
called can modify the text g-register and return a numeric
value.

Multics vs. PDP-10 teco:

Multics teco treats the entire segment as a single buffer.
There are no equivalents to the PDP-10 append, yank, "n" search, or "w"
commands, or any need for them.

Exiting from teco does not automatically write the buffer back to the
segment. The "eo" or "eb" command must be used.

A search that fails does not change the current text pointer position.

Multics g-register names are one character in length and can be any one of
the 95 printable ASCII characters, including blank.

Multics quoted string are of the form:

/string/ or gn :

where / is any character except a letter or a digit and n is a g-register
name. The form gn allows the contents of a g-register to be specified as a
quoted string.

Multics command lines are terminated by the two character sequence dollar
sign ($) newline. The altmode character is not used in Multics.

The Multics "s" command always gives an error message if the search fails.

Multics teco uses | to denote the logical or operator.

Multics teco treats —-XX as an error.

Multics teco expressions are evaluated somewhat differently.

See the documentation or use the "=" command to print out the value of a
questionable expression. Multics teco "=" command takes zero, one, or two
arguments.

The numeric value of a text g-register is equal to the number of characters
of text.

Multics error messages can be of two forms, long or short.
Short messages are eight characters and long ones are up to fifty characters.
The user can control error message length.

340

ted

01/29/81 ted 2.6

Syntax: ted ted_com -control_args

Function: ted can be used to create and edit ASCII segments. ted can
do many kinds of text processing. ted can be used recursively to a
depth of 14 and it can be called as an active function.

Arguments:

ted_com
If supplied, the contents of the named segment is read into buffer
exec and then executed. If the contents of b(exec) is exhausted,
then reguest lines will be read from user_input unless the —-com
option was present.

Control arguments:

-reset level .
used to break out of a ted_com loop and return to ted request level.
"level" is a 2-digit number specifying the level to be returned to.
If level is not specified, then the most recent invocation is used.

This argument is mutually exclusive with all others.

-abort, =-com
This causes ted to execute a ted_com so that if it has an error, it
will exit instead of returning to ted request level.

-pathname XXX, -pn XXX
Begin execution by reading segment XXX into b(0).

—-arguments ARGS, -ag ARGS
This causes all remaining arguments to be made available to a
ted_com. The arguments may be referenced either in buffers (argl),
(arg2), etc. or as line 1, line 2, etc. of buffer (args).

-read

This causes the read option to be set on. (Default)
-no_read

This causes the read option to be set off. SEE: ©
-safe

causes ted to place its work segments in your default working direc-
tory so as to be able to survive loss of the process.

-restart
If ted was called with the -safe option and the system crashed, the
terminal goes off-line, etc. this call is used to restart where you
left off. You must restart in the same level as when you called ted
-safe. Due to the great variety of reasons why the system crashes,
occasionally the restart will not work. This is infrequent.

-status, -st
causes a list of the environments which exist. [This is an interim
facility at this point in time.
This argument is mutually exclusive with all others.

341

~blank
This requires a blank to be necessary between multiple requests on a
line. Due to the fact that a,c,i,d,r,e,w, reguests use up the rest
of the line, the blank is required just after the request character.
This is the suggested mode of operation.
-part_blank
This requires the blank on only the a,c,i,d,r,e,w regquests.
-no_blank
This requires no extra space. (default)

~label -

Enable tracing of labels processed.
-no_label

Disable tracing of labels. (default)
-trace_edit

Display each ted request line in EDIT mode before it is executed.
-trace_input

Display each line of INPUT mode data before it is inserted.
-trace

Combination of -trace_edit and -trace_input.
-no_trace

No tracing. (default)

-debug, -db
Tells ted to type out "Edit." Dbefore accepting the first line from
user_input. Useful for detecting when a ted_com "falls" back to
request level. i

-break

Enable break processing.
~-no_break

Disable break processing. (default)
-pause

This call is used to interrupt a ted_com execution. This causes ted
to believe it has just encountered a breakpoint. The next time a
request line is fetched, the input routine will enter the break
sequence.

This argument is mutually exclusive with all others.

-Jset XX...
Set the collating sequence for the J sort request. When XX... is
present, each X represents a mapping pair in one of these forms:
cc map first character to second
X->¥YC map range of characters to second
X->Y¥X->Y map range of characters to range of characters. Ranges
must be of equal size.
(When a character is mapped to '777 it means to ignore it.)
C is any of 3 forms
'000 ooo is 3 octal characters
'Z Z is any character
Z Z is any character except ' (which must be entered as '')
X->Y means the contigious characters X through Y. (XY in the
S-bit collating sequence. X and Y are any of the C forms.
when XX... is absent it sets to (uppercase=lowercase):
'000->'177'000->"177'200->'777'777a~->2ZA->2

-Jshow

342
Display the current collating sequence for the J sort.

Notes: This info segment is used by both the help command and the help
request of ted. Only the external entries are known to the help com-
mand. All the rest is formatted in a way which is used by the help
request. The whole segment may be dprinted for user browsing.

List of requests: Only the most important aspects of the requests are
documented here. The default address is shown inside a "[]" pair at
the beginning of the explaination. If nothing is there, there no
address is allowed. If there is "."™ or "$" then 1 address is allowed.
If there is ".,." or "1,%" then 2 addresses are allowed. If there is
"+" jt is a special case which does not fit the rules just stated. RE
stands for a regular expression. (B) stands for a buffer name.

[.] ignore rest of line
%(B) etc
[] call a buffer, with optional arguments
line .
A# line .
[=] execute line if buffer status is/is not true. May test for
buffer empty, on specified line or within specified range.
*/RE/ line
Ax/RE/ line
[.,.] execute line if regexp is found/not found in addressed range
:C
: (L)
[] label define, must be at BOL

[.] print current line number
[*] evaluate

[] transfer of control (goto), X may have the form "C", "(str)",
"+n ”n R "_n "

AOX
[] goto if error during rest of line's execution, X is the same
form as above.

Ixxx

0] call external request ted_xXxXX_

[] return from buffer

a TEXT f
[.] appenda
ta
[.,.] bulk append, terminated by "." line
b(B)
[] change current buffer
b(B,adr,adr)
1] change current buffer to a window of a buffer
!b(B)
'b(B,adr,adr)

343

[] remember current buffer, then change to new one
b()

[] change to remembered buffer
Ab(B)

[] not-buffer (delete buffer)

c TEXT f

[.,.] change
'c

[.,.] bulk change
d

[.,.] delete
e line
[] execute command line
te
[] print, then execute a command line (also E)
.. line
[] execute command line without input function expansion, BOL
only

£(B)
[] file-out into a buffer, auto reversion
1£(B)
[] file-out to a buffer, no auto reversion (also F)
1 £CNLD
[] revert previous form of file-out (also F)
g=/RE/
[1,%] global, linenumber of all lines which match RE
g9d/RE/
[1,$] global, delete all lines which match RE
gp/RE/
[1,$] global, print all lines which match RE
g!p/RE/
[1,%$] global, print/linenumber sll lines which match RE

gx*SELECTION ACTIONs

[1,$] global, do ACTIONs on all lines which match SELECTION
n/T,c,c.../

[.,.] process out pseudo-tab

help

online information
i TEXT f

[.] insert
i

[.] bulk insert
j/spec/

{1,$] sort
!j/spec/

[1,$] sort, with settable collating segquence (also J)
k(B)

[-,.] kopy
'k(B)
'k(B,adr)

[.,.] kopy-append to end of/specified place in any buffer {(also K)
1

344

[] linefeed to user_output
L
[] linefeed to error_output (alsoc L)
m(B)
[.,.] move
‘m(B)
'm(B,adr) .
[.,.] move-append tc end of/specified place in any buffer (also M)

n
[=] nop
e}
[] option/modes
P

[.,.] print

[.,.] print with linenumbers (aiso P)

q
[] quit
tq
[] quit, without modified buffer check (also Q)
r path
[.] read a segment into current buffer
!r path
read w/abbrev expansion of pathname (also R)
r (B)

r (B,adr,adr)

[.] read all or part of a buffer into current buffer
Ar path

[] not-read (force pathname)
s/RE/REPL/

[.,.] substitute occurances of RE with REPL
's/RE/REPL/

[.,.] no-fail substitute

t/xxx/

[] type string to user_output
't/xxx/

[] type string to error_output (also T)
u/RE/

[.,.] lowercase what matches RE
'u/RE/

[.,.] uppercase what matched RE
v

[1,8] inverse form of global, i.e. do when NO match
W path :

[1,$] write from current buffer into a segment
'w path

[1,$] write w/abbrev expansion of pathname (also W)
w (B)

[1,$] write from current buffer into another buffer
wm

[] write~modified (BLANK mode only)
X

345

[] status of all buffers
'x(B)
!X NL>
[] status of named/current buffer
Xm
[] status of all modified buffers (BLANK mode only)

y :
[er.] replace SPs with HTs where possible, remove trailing

whitespace
zdump

[.,.] dump octal/ASCII
z.fi.ad

[.,.] fill/adjust
z.fi.na
[.,.] fill/no-adjust

line

zif ...
[»] execute line if result of evaluation is not "O" or "false

b

invoke buffer (input function)
r .
read line from user_input without NL (input function)

evaluate (input function)

346

terminate_refname

06/25/81 terminate_refname, tmr

Syntax: tmr ref_names -control_args

Function: removes a segment or a single reference name (tmsr) from the
user's address space and resets links to the terminated segment. It is
commonly used prior to initiating a different version of a progranm.

Arguments:
ref_names
are the reference names of segments to be terminated.

Control arguments:

-brief, -bf
suppresses the error message normally printed when a segment to be
terminated is not known (initiated).

-long, -1g
does not suppress the above error message. (Default)

-name STR, -nm STR
specifies an entryname (terminate) or reference name (tmr and tmsr)
STR that begins with a minus sign, to distinguish it from a control
argument.

List of terminate commands with short names:
terminate, tm

terminate_segno, tms

terminate_refname, tmr
terminate_single_refname, tmsr

Notes: The tmr command allows termination by reference name rather
than by pathname. The segment itself is terminated, not merely the
reference name specified.

Caution must be exercised not to unintentionally terminate a segment of
the command language interpreter or another critical piece of the
environment. Fatal process errors usually result from such an action.

347

texto

05/31/83 texto

ACCES A TEXTO:
Ajouter (dans le start_up) la regle de recherche suivante
asr >udd>Chemdata>Texto
puis taper la commande
texto

ASSISTANCE DOCUMENTATION:
Dominique SOURGEN Centre de Calcul piece 0144 tel 638 5057
Francoise GILLET Centre de Calcul piece 018d tel 638 5514

CARACTERISTIQUES PRINCIPALES:
texto est un progiciel de gestion documentaire developpe par la
societe Chemdata de Lyon.
Les caracteristiques principales en sont
--=-> mode conversationnel
-—-> utilisable par non-informaticiens
-——> souplesse de structure (fichiers modifiables a tout
moment)
_> 2 procedures d'interrogation
simple (resultats donnes immediatement)
composee (chaque question genere un ensemble
de reponses memorise et reutilisable)
---> editions elaborees
-—-~> possibilites de creer des index, d'effectuer des tris,
de creer des sous—-fichiers

FONCTIONNEMENT:
3 types de fichiers
—-—~> le CATALOGUE memorise divers types de documents
utilitaires
x*documents de parametres (permettent de structurer
les fichiers documentaires)
*documents d'edition (definition des modeles d'edition)
xdialogues (enchainement de commandes texto pour
utilisation ulterieure)
——=> les FICHIERS DOCUMENTAIRES sont les fichiers proprement
dits
Ils sont structures grace aux documents de parametres.
Ils sont composes d'une suite de documents numerotes.
ce sont des fichiers sequentiels indexes Multics.
-—-> les INDEX pouvant etre
*des fichiers inverses permettant une interrogation
rapide et economique sur de gros volumes
xdes index de tris pour presenter des editions triees

EXEMPLES D'APPLICATION TEXTO:
--~> fichiers de documentation interne de l'entreprise
fichiers d'adresses

348

fichiers de rapports scientifiques ...

-—-> fichiers- de gestion de bibliotheque
gestion de la reception et de la ventilation
des revues

-~-~> constitution de banques et de bases de donnees

349

time

12/30/80 time

Syntax: time dt

Function: returns a four-digit time of day in the form "hh:mm" where
00 <= hh <= 23 and 00 <= mm <= 59.

Arguments:

dat
is a date~time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current time is used.
See date_time_strings.gi.info for valid 4t arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [time 4t]

e e T

350

topics

02/04/81 General Information

The Multics help system includes a number of info segments that
contain general information about features or use of the system. The
info_names of these segments end with a suffix "gi.info" (gi for
general information). For example, acl_matching.gi.info describes how
Access Control List (acl) entries are matched with User_ids in access
control commands such as set_acl. As with all info_names, when typing
"help" with the info_name of one of these gi segments, you need not
type the suffix ".info". 1In addition, you may alsc leave off the
suffix ".gi". So, to get the info segment on acl_matching, you need
only type

help acl_matching

gi Info_names: .
To get a complete list of the info segments whose names have the
suffix "gi.info", use the list_help command:

list_help gi

If you want a list of info segments that pertain to a particular
subject, type a word (or a string of characters that is part of a
word) that describes that subject and the list_help command will print
a list of all info_names containing that word or partial word. For
example, if you want a list of info segments that describe the Multics
mail facility, type

list_help mail

For more information about the list_help command, including its method
for matching character strings, type

nelp list_help

351

total_output_requests

12/07/81 total_output_requests, tor

Syntax: tor request_types -control_args

Function: prints the total number of requests in one or more I/0
Daemon queues.

Arguments:

request_types
name the request types whose totals are to be listed. The default
is to list totals in the queues of the default printer regquest type.

Control arguments:
may only be given when invoked as a command.

-brief, -bf.

omits request types which are empty.
-long, -1g

includes request types which are empty. (default)
-all, -a

lists totals for all I/0 Daemon request type queues.
—-inhibit_error, -ihe

suppresses error messages for request type queues to which the user

does not have access. Totals for such queues are printed as xxxxx,

Access required: To use tor for a given request type, you must have s
(status) extended access to the gueue segments for that request type.

Syntax as an active function: [tor request_type]

Notes: When invoked as an active function, tor returns the count of
entries in each queue defined for the request type. A request type
may have up to 4 queues, numbered from 1 through 4. The tor active
function returns 1, 2, 3 or 4 numbers, representing the totals entries
in queues 1, 2, 3 and 4 respectively. If an error occurs while
accessing any of the queues, a * is returned for the total in that
queue.

No control arguments may be given when tor is invoked as an active
function.
Examples:

! tor -all -brief

printer:
manuals: 0

o
w o
w
N

352

£11x8: 0] 2
hdsa_prt: KxKXK

Incorrect access on entry. hdsa_prt queue 1
mit_pps_2sided: 0 0 1 0

punch: 2

353

trace_stack

12/22/80 trace_stack, ts

Syntax: ts ~control_args

Function: prints a detailed explanation of the current process stack
history in reverse order (most recent frame first).

Control arguments:

-brief, -bf
suppresses listing of source lines, arguments, and handlers. This
control argument cannot be specified if -long is also specified as a
control argument.

-long, -1lg
prints octal dump of each stack frame.

-depth N, -dh N .
dumps only N frames.

-stack_ptr PTR, -sp PTR
starts tracing from stack frame at PTR where PTR is a virtual
pointer acceptable to cv_ptr_. PTR points to the stack frame at
which tracing is to begin.

Notes: The trace_stack command is most useful after a fault or other
error condition. If the command is invoked after such an error, the
machine registers at the time of the fault are also printed, as well
as an explanation of the fault. The source line in which it occurred
can be given if the object segment is compiled with the =table
option.

For a description of stack frames, see "Multics Stack Segments" in
the MPM Subsystem Writers' Guide.

Y

354

truncate

11/13/81 truncate, tc

Syntax: tc -control_arg path length
or: tc segno 1length

Function: truncates a segment to a specified length, and resets the bit

accordingly.

Arguments:

path

is the pathname of a segment. The star convention is NOT allowed.
segno

is an octal segment number.
length

octal integer indicating the length of the segment in words after
truncation; zero by default.

Control arguments:
-name, -nm
specifies that the octal number following it is a pathname.

Access required: write access on the segment to be truncategd.

Notes: If the segment is already shorter than the specified length,
its length is unchanged, but the bit count is set to the specified
length.

This command should not be used on segments that are (or are
components of) structured files.

count

355

vfile_adjust

9/16/75 vfile_adjust, vfa

Syntax: vfa path -control_arg

Function: adjusts a storage system file that may have been left in an
inconsistent state by an interrupted opening.

Arguments:
path
is the pathname of a single file to be adjusted.

Control arguments:
(one specified if and only if file is unstructured)

-set_nl
append a newline char if file does not end with one

-use_nl
truncate file after last new_line character set_bc set bitcount and truncate
at last nonzero byte in the file

-use_bc N
truncate at byte specified by bitcount of component N (last nonzero
component if N not specified)

Notes: a sequential or blocked file is adjusted by truncation after the last
complete record. An indexed file is adjusted by completing any interrupted
operation.
The condition of a file can be determined by using the vfile_status command.
See documentation of the vfile_ I/0 module in the MPM Subroutines for further
details.

356

vfile_status

9/16/75 vfile_status,vfs

Syntax: vis path

Function: prints the apparent type and length of storage system files.
Additional info is provided for structured files.

Arguments:

path

is the pathname of a file. The star convention is allowed.

Notes: for structured files (sequential,blocked, or indexed), the state of the

file

is printed (if busy). The following statistics are also provided for

indexed files--

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

number of records in the file, including those of zero length
number of nonnull records, if different from the above

total length of the records (in bytes)

number of blocks in the free space list for records

height of the index tree (zero for empty files)

number of nodes in the index (each occupies a single 1K page)
total length of all keys (bytes)

number of keys

number of duplicate keys

total length of duplicate keys

Additional information about a file can be obtained using the status command.
See documentation of the vfile_ I/0 module in the MPM Subroutines for further
details.

357

walk_subtree

05/10/78 walk_subtree, ws

Syntax: ws path command_line -control_args

Function: executes a command line in a given directory (starting node) and in
inferior directories.

Arguments:
path
starting node; -wd specifies working directory.
command_line
command line to be executed. Command lines containing blanks must be quoted.

Control arguments:

-first N, -ft N .
where N is the first level in the storage system hierarchy at which the
command line is to be executed; by default N is 1.

-last N, -1t N
where N is the last level in the storage system hierarchy at which the
command line is to be executed; by default N is 99999.

~brief, -bf
suppresses printing the names of directories in which the command is
executed.

-bottom_up, -bu
starts execution of the command line at the last level and proceeds upward
through the storage system.

Notes: The command has a cleanup handler. If, after the user quits out of the
command, she types rl, her working directory is changed back to what it was
before walk_subtree was invoked.

358

where

07/16/81 where, wh

Syntax: wh names -control_args

Function: uses the standard search rules to search for a given segment
or entry point.

Arguments:

names
are segment and entry point names. The star convention is NOT
allowed.

Control arguments:
-all, -a
lists the pathnames of all segments and entry points with the
specified names that can be found using the current search rules,
the user's effective access to each segment or entry point, and the
name of the search rule used to find each segment or entry point.
-brief, -bf
prints only the pathname of each entry found. (Default)
-entry_point, -ep
searches for entry points. If a name argument does not contain a
dollar sign ($), the where command searches for the entry point
name$name.
-inhibit_error, -ihe
does not print an error message if no segments can be found for a
given name. For the where command, no output is printed; for the
active function, null string is returned.

-long, -1g9
prints the name of the search rule used to find each segment and the
user's effective access to the segment, in addition to the pathname.
This control argument is incompatible with -all.

-no_inhibit_error, -nihe
prints an error message if no segments can be found for a given
name. (Default)

-segment, -sm
searches for segments. This is the default, unless name contains a
dollar sign.

Notes: The command prints out the full pathname of the segment, using
its primary name and the entry point name if one is requested. If the
segment or entry point is not in the search path, an error message is
printed.

The primary name of a storage system entry is the name that is first in
the list of names on that entry.

If the -all control argument is not specified, the where command prints

359

information only about the first matching segment or entry point
encountered (using the standard search rules).

The —-entry_point and -segment control arguments are mutually exclusive.
If one of these control arguments is used, all the name arguments are
assumed to be of the type specified.

If neither the -entry_point nor -segment control argument is specified,
the where command scans the name arguments. Any name arguments that
contain a dollar sign are assumed to be names of entry pcints; all
others are assumed to be names of segments.

Syntax as active function: [wh name -control_args]

Notes on active function: The active function returns the pathname
of the segment, as found by the search rules. Only one name can be
specified. The -all, -brief and -long control arguments are not
allowed. Unless -inhibit_error is specified, an error occurs if no
segment can be found.

360

where_search_paths

01/17/79 where_search_paths, wsp

Syntax: wsp search_list entryname -control_args

Function: finds occurrences of an entryname in a search list.

Arguments:
search_list

is the name of the search list to search.
entryname ’

is the entryname to search for.

Control arguments:

-all, -a
print all occurrences of the entryname in the search list.
The default is to just print the first occurrence.

Access required: To find an entryname in the search list, the user must have s
access on the containing directory or non-null access to the entry.

Syntax as an active function: [wsp search_list entryname -control_args]

361

who

05/22/81 who

Syntax: who User_ids -control_args

Function: lists User_ids and other information about current users
of the system.

Arguments:
User_ids
are match names where:
Person_id
lists users with the name Person_id.
.Project_iad
lists users with the project name Project_id.
Person_id.Project.id
lists users with the specified person and project.

Control arguments:

-absentee, -as
lists absentee users. Absentee users are denoted in the 1list by
an asterisk (*) following Person_id.Project_id.

-brief, -bf
suppresses the printing of the header. Not allowed for the active
function.

-daemon, -d4mn
lists daemon users.

~interactive, -ia
lists interactive users.

-long, -1g
prints the date and time logged in, the terminal identification and
the load units of each user, in addition to the user's name and
project. The header includes installation identification and the
time the system was brought up. If available, the time of the next
scheduled shutdown, the time when service will resume after the
shutdown, and the time of the previous shutdown are printed. Not
allowed for the active function.

-name, -nm
sorts the output by the name (Person_id) of each user.

-project, =-pj
sorts the output by the Project_id of each user.

Notes: If the control_args -interactive, -absentee, or -daemon are not
specified, the default is to list all three types of users. If one or
more of these control_args is specified, only users of the specified
type(s) are listed.

If the who command is specified with no arguments, the system responds
with a two-line header followed by a list of interactive users sorted

- 362

according to login time.

If the -project and -name control arguments are omitted, the output is
sorted on login time. Both arguments cannot be used together, because
the sort is performed on one key at a time.

If a User_name is specified, the header is suppressed even if the -long
control argument is specified.

It is possible to prevent the user's own name from being listed by all
users' invocation of who; to do this, the user should contact the
project administrator.

Syntax as active function: [who User_ids -control_args]

Notes on active function: The active function returns a list of
Person_id.Project_id pairs, requoted and separated by spaces. Control
arguments can be used to select and sort.

363

working_dir

07/23/80 working_dir, wd

Syntax: wd

Function: returns the pathname of the working directory of the process
in which it is invoked.

Syntax as active function: [wd]

364

year

12/30/80 year

Syntax: vyear dt

Function: returns the two-digit number of a year of the century from
01l to 99.

Arguments:

dt
is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current year is used.
See date_time_strings.gi.info for valid 4t arguments.

Notes: See the MPM Subroutines for a complete description of
convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [year dt]

365

V- LISTE ALPHABETMUE DE TOUTES LES COMMANDES D’ INFORMATION GENERALES

1 FAST.gi (FAST)
2 absentee.gi (abs,absentee)
3 access_isolation.gi (access_isolation)
4 acl_matching.gi (acl_matching)
5 acl_primitives.gi (acl_primitives,acl_entries.gi)
6 aim_use.gi (aim_use)
7 allocation_storage.gi (allocation_storage)
8 apl_context_editing.gi -
-9 audit_.gi '
10 autobaud (autobaud.gi)
11 bad_area_format.gi (bad_area_format)
12 basic_files.gi (basic_files)
13 canonicalization (canonicalization.gi)
14 card_access_contrel.gi (card_access_control)
15 card_input.gi (card_input)
16 channel_names.gi
17 cobol_implementation.gi (cobol_implementation,cobol.implementation.gi)
18 cobol_mcs.gi (cobol_mes,cobol.mcs.gi)
19 compose.artwork.gi (compose.art.gi,comp.artwork.gi,comp.art.gi)
20 compose.macros.gi (documentation.macros.gi)
21 control_arguments.gi (control_args.gi)
22 copy_on_write.gi (copy_on_write)
23 correspondence.gi (correspondence)
24 damaged_keyed_files.gi
25 damaged_segments.gi (damaged_segments)
26 date_time_strings (date_time_strings.gi)
27 dict.gi (dict)
28 documentation.gi (doc.gi)
29 ed.gi
30 editing.gi
31 ep_basic.gi (ep_basic)
32 extended_access.gi (ext_access)
33 external_storage.gi
34 fast_topics.gi (fast_topics)
35 fort_options.gi (fort_options)
36 fortran.gi
37 fortran_77.gi
38 gcos.gi .
39 graphic_fonts.gi
40 hardcore_wait_events.gi
41 help_infos.gi (help_infos)
42 help_system.gi (help_system)
43 hunt_dec.gi
44 info_seg.gi
45 instance_tags.gi (instance_tag.gi)
46 ijoa_control.gi (ioa_control,format_line_control.gi,fl_control.gi)
47 1linkage_errors.gi
48 1linking.gi (linking)
49 1lister.gi
50 1listform_segment.gi (listform_segment)
51 1listin_segment.gi (listin_segment)
52 load_control.gi (load_control)
53 logical_volumes.gi
54 1ltsm.gi

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
8l
82
83
84
85
86
87
88
89
90
91

366

lv_attaching.gi

mail_system.gi (mail_system,mlsys.gi)
manuals.gi (manuals)
master_directories.gi

mode_string_.gi

modules.gi (modules,module.gi)
new_audit.gi
new_fortran_conversions.gi
new_fortran_differences.gi (new_fortran.differences)
new_fortran_extensions.gi (new_fortran.extensions)
new_fortran_optimizer.gi (nfopt.gi)
order_manuals.gi {(order_manuals)
pascal.gi

plir24 (pllr24.g9i)

print_mail (print_mail.gi)
printed_output (printed_output.gi)
probe.gi

process_overseers.gi (po.gi)
process_preservation.gi
protection_notices.gi

questions.gi

request_ids.gi (request_ids)
set_tty.gi (stty.gi)
severity_indicators.gi

speedtype.gi (speedtype)

star_equal.gi (star_equals,star_equals.gi)
star_system_links.gi
static_handlers.gi (static_handlers)
tape_control_language.gi (tcl.gi)
topics.gi (topics,topic.gi)
tss_basic.gi (tss_basic)
tss_fortran.gi (tss_fortran)
tty_modes.gi

util.fortran.gi

virtual_entries.gi (virtual_entries)
virtual_pointers (virtual_pointers.gi)
volume_names.gi

VI- LISTE ALPHABETIQUE DF TOUTES LES COMMANDES EXPLOITABLES PAR HELP

367

num. Commandes Synonyme (s) lines|entry| act.
infol pts |func.
1(963 029 26
2 |AF.compin active_function.compin 35
3| Answering_Service.errors answering_service.errors 455
AS.errors
as.errors
4| FAST.gi FAST 39
5| MAP ' 24
6| PPS_Support.errors 8
7|abbrev ab 69
8|abbrev.errors ab.errors 149
9|abbrev_ ' 41 3
10 |absentee.gi abs 166
absentee
lljabsolute_pathname_ 87 2
12 |accept_messages am 94
13|access_isolation.gi access_isolation 33
l4jacl_matching.gi acl_matching 21
15jacl_primitives.gi acl_primitives 107
acl_entries.gi
l16|acquire_resource aqr 103
17|active_fnc_err_ g3 2
18|add_bit_offset_ 36 1
19|add_char_offset_ 55 1
20 add_dict_words adw 66
2ljadd_epilogue_handler_ 25 1
22|add_name an 13
23|add_pnotice 41
24 |add_search_paths asp 59
251add_search_rules asr 46
26|add_symbols asb 42
27|adjust_bit_count abc 27 .
28|adjust_bit_count_ 43 1
29ladjust_mrds_db amdb 6l
30|after af 10 yes
3ljaim_check_ 81 3
32|aim_use.gi aim_vuse 69
aim
33|allocation_storage.gi allocation_storage 71
34|alm 257
35jalm_abs aa 51
36|and 11 yes
37 |answer 85
38|apl 80
39japl.errors 279
40 |apl_context_editing.gi 76
41{apl_convert 51
42 (apl_cube 55
431apl_end 6
44 |apl_erf_ 17
45 |apl_erf_.pll 126
46 |apl_get_list_nums_ 40

368

entry

num. Commandes Synonyme (s) lines act.
info| pts [func.
47{apl_help_available 10
48 japl_ioa_ 34
491apl_linalg 62
50iapl_linprog 46
51japl_pickup_float_bin_2_ 68
52|apl_read_segment_ 29
53]apl_start 27
54 {apl_summary 187
55|apl_system_commands 20
56|apl_system_functions 19
57 (apl_system_variables 27
58japl_tekplot 189
591apl_vs_vlapl 215
60|apl_vs_vsapl.extensions S1
6liapl_vs_vsapl.incompat 95
62|apl_ws 14
63 |apl_ws_index 13
64|apl_wsfns 10
65 |append_list als 27
66 |archive ac 165
67jarchive_ 320 5
68|archive_sort as 16
69larchive_table act 33 yes
70|area_info_ 110 1
71ljarea_status 21
72|argument .compin arg.compin 36
73targument_list.compin arg_list.compin 20
74 |arithmetic_af arithmetic 11
75 |arithmetic_to_ascii_ 58 1
76|arpanet.errors 41
77 |as_meters 40
78|ascii_to_ebcdic_ 42 2
79|ask_ 219 15
80jassign_ 17 1
8l|assign_resource ar 147
82iattach_audit ata 41
83jattach_1v alv 17
84 |audit_ 151
85|audit_.gi 187
86 |audit_editor 196
87 |autobaud autobaud.gi 166
88 |backquote lisp.backquote 143
89| backup_cleanup bc 38
90|{bad_area_format.gi bad_area_format 6
Sl|basic 23
S2|basic_files.gi basic_files 95
93 |basic_system bs 39
S4 |before be 11 yes
95 |binary bin 18 yes
96 |bind bad 221
97 |bit_offset_ 27 1
98 | bool 43 yes
98 |{branches 21 yes
100 |bullet.compin 14
101 |byte 17 yes
102 |calc 93 yes

369

num. Commandes Synonyme (s) lines|entry| act.
info] pts |func.
103 (calendar 133
104 |calendrier 92
105 |can 37
106 |(cancel_abs_request car 89
107 |cancel_carry_request cer 36
108|cancel_cobol_program ccp 17
109 |cancel_daemon_request cdr 86
110 |(cancel_resource cnr 27
lll|cancel_retrieval_request crr 70
112 |canonicalization canonicalization.gi 414
113 |(canonicalize canon 31
114 (capo 20
115 |card_access_control.gi card_access_control 78
116 |card_input.gi card_input 631
117 |carry_load 65
118 ceil 10 yes
119 |change_default_wdir cdwd 16
120 |change_error_mode cem 19
121 ichange_symbols csb 37
122 {change_tuning_parameters ctp 39
123 |change_wdir cwd 12
124 |change_wadir_ 15 1
125 |channel_names 54
l26|{channel_names.gi 56
127 |char_bit_offset_fcns_ 20
128 ichar_offset_ 32 1
129 |character_string 25
130 |character_string_af 25
131 |check_iacl 27
132 |check_info_segs cis 68 yes
133 (check_mst ckm o8
134 |check_short_strings 43
135 |(check_star_name_ 25 2
136(clear_partition 40
137 |clear_resource clr 21
138|clock_ 15 1
139 |close_file cf 25
140 |cobol) 113
l4l{cobol_abs cba 51
142 |cobol_implementation.gi cobol_implementation 16
cobol.implementation.gi
cobol.implementation
143 |cobol_mcs.gi cobol_mcs 100
cobol.mcs.gi
cobol.mcs
l44 |(collate 10 yes
145 |(collate9 11 yes
146 |collating.compin coll_page.compin 87
coll_cont.compin
147 {com_err_ 120 2
148 |command.compin 32
149 |command_language.changes cl.changes 126
150 |jcommand_processor_.errors command_processor.errors 38
151 |command_gquery_ 227 3
152 |command_usage_count cuc 67
153 |comp_dir_info 80

370

num. Commandes Synonyme (s) lines|entry| act.
info|l pts [func.
154 |compare 37 yes
155 |compare_ascii cpa 75
156 | compare_dump_tape 60
157 |compare_mst 35
158 | compare_object cob 42
159 | compdv 31
160 |compile_gct 32
l6l|compile_gdt 34
162 |component_info_ 27 2
163 |compose comp 170
164 |compose.artwork.gi compose.art.gi 171
comp.artwork.gi
comp.art.gi
165 |compose.builtins comp_builtin_1list 87
166 |compose.changes comp.changes 744
cchng
167 |compose.controls comp_ctl_list 177
168 |compose.errors csts.info.status 174
comp.errors
169 |compose.macros.gi documentation.macros.gi 251
170jcondition_interpreter_ 17 1
171 connect_help 26
172 {console_output co 21
173 jconsole_report 43
174 contents 10 yes
175 continue_to_signal_ 16 1
176 |control_arguments.gi control_args.gi 241
177 |convert_aim_attributes_ 16 1
178 |convert_authorization_ 105)
179 |convert_characters cve 73
180 |convert_date_to_binary_ 50 2
181 |convert_dial_message_ 16 1
182 |convert_ec cvec 111
183 |convert_numeric_file ’ 21
184 |convert_runoff cv_rf 19
185 [convert_status_code_ 17 1
186 |{convert_tsoapl_ws ctw 27
187 jconvert_vl_{fdump 36
188|copy cp 87
189 |copy_acl 25
190 |copy_acl_ 31
191 |copy_cards ccd 26
192 |copy_characters cpch 10 yes
193 |copy_dir cpd 107
194 [copy_dump_tape 71
195 (copy_£file cpf 110
196 |copy_iacl_dir 25
197 |copy_iacl_seg 23
198 |copy_list cpls 73
199 |copy_mst cpm 19
200 | copy_names 24
201 |copy_names_ 30
202jcopy_on_write.gi copy_on_write 32
203 |copy_seqg_ 36
204 |copy_switch_off csf 12
205 |copy_switch_on csn 12

371

entry

num. Commandes Synonyme (s) lines act.
infol pts |func.
206 |correspondence.gi correspondence 40
207 |count_dict_words cdw 12
208|cours 92
208 |cpu_time_and_paging_ 16 1
210 |create cr 14
2ll|create_area 34
212 |create_daemon_gqueues cdq 28
213 |create_data_segment cds 22
214 |create_data_segment_ 15 1
215 |create_d4ir cd 43 :
2l6jcreate_ips_mask_ 15 1
217 |create_list cls 31
218 create_mrds_d4b cmdb 111
219|create_mrds_dm_include cmdmi 78
220 |create_mrds_dm_table cmdmt 92
221 |create_mrds_dsm cmdsm 95
222 |create_wordlist cwl 39
223 |crecho 20
224 |cross_reference cref 254
225 |cross_ring_ cross_ring_io 18
226 |cross_ring_io_ 14 1
227 |ctl_char 15
228ictlarg.compin controlargument.compin 36
229|ctlarg_list.compin controlargument_list.compin 20
230jcu_ 2663 39
231ljcu_.changes 83
232 |cumulative_page_trace cpt 80
233 |cv_bin_ 43 3
234 |cv_dec_ 15 1
235 |cv_dec_check _ 16 1
236|cv_entry_ 19 1
237 |cv_hex_ 15 1
238 |cv_hex_check_ 16 1
239 |cv_oct_ 15 1
240 (cv_oct_check_ 16 1
241 |cv_ppsctE 26
242 |cv_ptr_ 31 2
243 |cv_ttf 26
244 | damaged_keyed_files 67
245 | damaged_keyed_files.gi 72
246 | damaged_segments.gi damaged_segments 19
247 | damaged_sw_off dsf 27
248 | damaged_sw_on dsn 16
249 date 22 yes
250 |date_and_time 15
251l|date_compiled dtc 41 yes
252|date_deleter 33
253 idate_time 25 yes
254 |date_time_ 28 2
255 |date_time_after dtaf 23 yes
256 |date_time_before dtbe 23 yes
257 |date_time_equal dteq 22 yes
258 |date_time_strings date_time_strings.gi 121
259 |datebin_ 261 15
260 | day 22 yes
261 |day_name 22 yes

372

num. Commandes Synonyme (s) lines|entry| act.
infol pts |[func.
262 |deactivate_seg 33
263 | debug db 112
264 | decat 27 ves
265 |decimal dec 18 yes
266 |decode 29
267 | decode_clock_value_ 33 2
268 | decode_definition_ 44 3
269 | decode_descriptor_ 17 1
270 | default 14 yves
271 | default_wdir dwd 12 yes
272 |defaut 8
273 |defer_messages dm 25
274 |define_area_ 15 1
275 |delay ' 29
276 |delete . 41 55
277 |delete_ 26 2
278|delete_acl da 38
279 | delete_dict_words ddaw 28
280 |delete_dir ad 63
28l | delete_external_variables dev 16
282 |delete_iacl_dir did 41
283 |(delete_jacl_seg dis 42
284 |delete_message dim 33
285 | delete_name dn 31
286|delete_old_pdds 26
287! delete_search_paths dsp 30
288|delete_search_rules dsr 18
289 (delete_symbols dsb 12
290 |(delete_volume_gquota dlvg 16
291 |deregister_resource darr 23
292 |describe_list dls 50 yes
293 |detach_audit dta 20
294 detach_1v div 13
295}dial a 24
296 (dial_manager_ 115 7
297 (dial_manager_call 106
298 |dict.gi dict 103
298| directories dirs 21 yes
300 |directory 10 yes
301l|{directory_commands 7
302 (disban bandis 157
303 |discard_output dco 24
304 |display_account_status das 27
305 |display_audit_file daf 122
306 |display_cobol_run_unit dcr 29
307 |display_comp_dsm ddsm 32
308|display_component_name dcn 14
309 (display_dump_events 48
310 |display_entry_point_dcl depd 73 yes
311|display_ioi_data 75
312|display_kst_entry 24
313 |display_1label 33
314|display_lisp_object_segment 43
315|display_list dils 33 ves
316|display_mrds_db_access dmdba 60
317 |display_mrds_db_population |dmdbp 51

373

num, Commandes Synonyme (s) lines|entry| act.
info| pts [func.
318|display_mrds_db_status dmdbs 74
312 (display_mrds_db_version dmdv 25
320(display_mrds_dm dmdm 107
321 |display_mrds_d4dsm dmdsm 77
322 (display_mrds_open_dbs dmod 27
323 {display_mrds_scope_settings |dmss 31
324l display_mrds_temp_dir dmtd 52
325|display_mstb 16
326(display_pllio_error dpe 11
327 |display_pnotice 34
328 |display_psp 41
328 | display_pvte 34
330 |display_timers 14
331|display_tsoapl_ws atw 18
332 |display_ttt 31
333 |divide 12 yes
334 (damd_ mrds_dama_ 208 6
335|do 70 yes
336(do_subtree 1e5
337|documentation.gi doc.gi 11
documentation
doc
338|dot_fig.compin 50
339|dot_fig_get_no.compin 41
340|dot_fig_index.compin 30
341|dot_page.compin dot_page_off.compin 91
342 |dot_tab.compin 48
343 |dot_tab_get_no.compin 41
344 | dot_tab_index.compin 30
345{dpl dple 125
346{dprint ap 96
347 |dprint_ 15 1
348|dpunch dpn 68
349 |dsl_ mrds_dsl_ 887 24
350|dsmd_ 158 5
351 | dump_gcos dgc 25
352 | dump_partition 49 yes
353 | dump_seg_ 20
354 | dump_segment . ds 130 yes
355 | dump_segment _ 17 1
356|ebcdic_to_ascii_ 15 1
357 | echoplex 14
358} ed 13
359|ed.gi 138
360{edit_chars 18
3plledited 18
362 |editing.gi 59
33| edm 66
364 | emacs 40
365 | emacs.changes 304
366 |emacs.errors 409
367 | emacs.status 218
368 | encode 32
369 | encode_clock_value_ 35 2
370 |enter e 39
371 |enter_abs_request ear 78

374

num. Commandes Synonyme (s) lines|entry| act.
info| pts |func.
372 |enter_carry_request ecr 78
373 |enter_1ss 22
374 |enter_retrieval_request err 85
375 |enterp ep 39
376 |entries 19 yes
377 |entry 10 yes
378|ep_basic.gi ep_basic 22
use_ep_basic
use_sp_basic
379 |equal 22 yes
380 | equal_name enm 15 yes
38l|erkl 14
382 |error_handlers.errors 41
383 |error_table_conversion 23
384 |esc 42
385 |ex_lineno.compin example_line_number.compin 25
386 | example.compin example_off.compin 44
387 | examples.compin 15
388 |excerpt_mst 26
389 | exec_com ec 493 yes
vZ_exec_com
v2ec
390 execute_epilogue_ 15 1
391 (executive_mail Xmail 22
392 exXecutive_mail.errors xXxmail.errors 63
393 |exercise_disk 55
394 [exists 111 yes
395 | expand_cobol_source ecs 50
396 |expand_device_writer xXdaw 54
397 | expand_list els 38
398 | expand_pathname_ 191 4
399 | expand_symbols esb 17
400 |exponent_control 46
401 | exponent_control_ 144 5
402 |extended_access.gi ext_access 19
403 |external_storage.gi 20
404 | fast 18
405 | fast_topics.gi fast_topics 65
406|fig.compin 68
407 fig_get_no.compin 50
408|fig_index.compin 40
409 | fig_on.compin 45
410|file_output fo 37
411|files 21 yes
412 |find_condition_info_ 36 1
413 | find_dict_words faw 37
414 |find_include_file_ 45 3
415 |find_symbols fsb 28
416 | floor 10 yes
417 | format_cobol_source fcs 28
418 | format_document fdoc 58
419 | format_document.errors fdoc.errors 16
420 | format_line f1l 25 yes
421 |format_line_nnl flnnl 38 yes
422 | format_pll fp 943
423 fort_options.gi fort_options 122

375

num. Commandes _ Synonyme (s) lines|entry!| act.
info|l pts |func.
424 | fortran new_fortran 94
ft
425 | fortran.bugs 57
426 | fortran.gi 52
427 |fortran.new_features 831
428 | fortran_77.conversions 119
429 | fortran_77.differences 192
430 | fortran_77.9i 79
431 | fortran_abs fa 51
432 | framing_chars 20
433 | fs_chname 27
434 |ftf.errors 8
435|gcos gc 110
436 |gcos.errors 36
437 |gcos.gi 83
438|gcos_build_library gcbl 52
439igcos_build_patchfile 15
440 gcos_card_utility gcu 105
441 |gcos_create_file 18
442 |gcos_extract_module gcem 39
443 [gcos_fms gfms 83
444 |gcos_library_summary gcls 20
445 |gcos_list_patchfile 16
446 gcos_pull_tapefile gcpt 65
447 |gcos_reformat_syslib 32
448 |gcos_set_environment gse 39
449 |gcos_set_tape_buffer_size gstbs 20
450 | gcos_sysprint gsp 33
451 |gcos_syspunch gspn 16
452 |gcos_tss gtss 25
453 (general_ready gr g9 yes
454 |generate_mst 230
455 [generate_pnotice 114
456 | get_authorization_ 15 1
457 (get_bound_seg_info_ 18 1
458 get_default_wdir_ 15 1
459 (get_definition_ 17 1
460 |get_ec_version_ 29
461 |get_entry_name_ 16 1
462 |get_entry_point_dcl_ 20 1
463 |get_equal_name_ 86 2
464 (get_group_id_ 28 2
465 |get_initial_ring_ 15 1
466 |get_ips_mask 24
467 (get_library_segment gls 98
468 |get_line_length_ 27 2
469 |get_lock_id_ 15 1
470 |get_max_authorization_ 15 1
471 |get_mode 20 yes
472 |(get_pathname gpn 25 yes
473 |get_pdir_ 15 1
474 |get_privileges_ 15 1
475 |get_process_id_ 15 1
476 |get_qgquota gq 24
477 get_ring_ 15 1
478 |get_shortest_path_ 16

376

num. Commandes Synonyme (s) lines|entry| act.
infol pts |func.
479 |get_system_search_rules gssr 7
480 get_temp_segment_ get_temp_segments_ 15 1
481l iget_wdir_ 34 1
482 (graphic_fonts.gi 103
483 |graphic_macros_ gmc_ 194
484 |graphics_editor graphic_editor 172
ge
485 |greater 20 yes
486 |gtss_file_attributes 14
487 | hangup 9
488 | hardcore.errors 1218
489 |hardcore_wait_events.gi 60
490 |harwell 31
491|have_mail 16
492 | hcs_ 8377 80
493 [hello 9
494 |help 347
495 |help_ 54 4
496 |help_infos.gi help_infos 23
497 [help_system.gi help_system 60
498 | hexadecimal hex 23 yes
499 |high 10 yes
500|high9 10 yes
501|ihndlquit 15
502 | home_dir hd 10 yes
503 | host_table 9
504 | hour 22 yes
505 | how_many_users hmu 31
506 | hp_delete_vtoce 56
507 | hunt 48 yes
508 | hunt_dec 36
509 | hunt_dec.gi 59
510]if 17
51ljiflow 29
512|immediate_messages im 28
513 (indent ind S0
514 index 10 ves
515]index_set 28 yes
516|info_seg.gi 232
517 init.compin init_plm.compin 65
init_mpm.compin
init_photo.compin
518|initiate in 38
519|initiate_file_ 145 2
520jinstance_tags.gi instance_tag.gi 22
instance_tag
521l}intermultics_copy imc 84
522|io_call io 235 yes
523 |io_daemon.errors iod.errors 70
524 |ioa_ 263 5
525|ioa_control.gi ioa_control 143
format_line_control.gi
format_line_control
fl1_control.gi
fl1_control
526|iod_info_ 56 4

377

num. Commandes Synonyme (s) lines|entry| act.
info| pts |func.
527 |i0x_ 948 25
528|ipc_ 663 13
529|10exact.compin 40
530|10h.compin 97
531{10setup.compin llsetup.compin 42
: l2setup.compin
13setup.compin
lisetup.compin
532 10toc.compin lltoc.compin 33
12toc.compin
13toc.compin
l4toc.compin
533|1llexact.compin l2exact.compin 38
l3exact.compin
l4exact.compin
534 |11lh.compin 12h.compin 77
13h.compin
l4h.compin
535|11lhbox.compin l2hbox.compin 14
13hbox.compin
l4hbox.compin
536|1llmh.compin 12mh.compin 28
13mh.compin
14mh.compin
537 ({1lmhbox.compin l2mhbox.compin 15
13mhbox.compin
l4mhbox.compin
538|16_ftf 72
539|laser 51
540 last_message 1m 25 yes
541|last_message_sender 1ms 34 yes
542 |last_message_time Imt 25 yes
543 (length in 16 yes
544 |l1less 18 yes
545|lex_error_ 17 1
546 |1lex_string_ 39 2
547 |1fecho 24
548 |library_descriptor lds 46
549|1library_fetch 1if 67
550 |library_info 11 73
551i{library_pathname lpn 58 yes
552{1ligne 6
553jline_length 11 11
554|1link 1k 23
555|1ink_unsnap_ 15 1
556 |linkage_errors.gi 106
557|1linking.gi linking 17
558|1links 19 yes
559|1inus 36
560(1linus.changes 140
56l|linus.errors 97
562}1isp 86
563|lisp.manual_update - 778
564 lisp_compiler lcp 107
56511ist 1s 166
566|1list_abs_requests lar 156

378

num. Commandes Synonyme (s) lines|entry| act.
info| pts |func.
list_abs_request
567 (1list_accessible lac 38
568(list_acl la 45 yes
569 |1list_carry_requests lcr 27
570 |1list_daemon_requests ldar 63
571|1list_dict_words ldw 29
572 |1list_dir_info 45
573{1list_dir_info_ 15 1
574}1list_external_variables lev 23
575|1ist_help 1lh 52 yes
576(1list_iacl_dir lid 38 yes
577 |1list_iacl_seg lis 38 yes
578 |list_mdir imd 52
579(1list_mst 23
580|1list_not_accessible lnac 27
581|list_partitions 42
582 (list_pgs_contents 1pc 25
583 |1list_pnotice_names 22
584 |1list_ref_names lrn 59
list_refnames
585|1list_resource_types irt 31
586|1list_resources ir 81 yes
587{1ist_retrieval_requests irr 50
588ilist_sub_tree 1st 33
589|1list_symbols 1sb 23
590 |1list_tape_contents ltc 33
591|1ist_temp_seg 1ts 25
list_temp_segments
582 {lister.gi 66
593 |lister.new_features lister_new_features 48
594 |listform_segment.gi listform_segment 22
595|1listin_segment.gi listin_segment 51
596 |load_control.gi load_control 50
597 |locate_words 1w 37
598 | locnet 107
599 |logical_volumes.gi 24
600|login 1 236
601} logout 24
602 |long_date 22 yes
603 | long_message_format Imf 8
604 |long_year 21 yes
605 low 13 yes
606 |lower_case 19 yes
607 | lowercase 19 yes
608|1ltrim 16 yes
609|1tsm 146
610|1ltsm.gi 115
6ll{lv_attached 16 yes
6l2!1v_attaching.gi 11
613 |mail ml 52
6l4|mail_system.errors print_mail.errors 606
read_mail.errors
send_mail.errors
mlsys.errors
sdm.errors
rdm.errors

379

num. Commandes Synonyme (s) lines|entry| act.
info| pts |[func.
prm.errors
615|mail_system.gi mail_system 28
mlsys.gi
mlsys
616 | make_commands 48
617 |make_pps_tape 29
618 manage_volume_pool mvp 60 yes
619 manuals.gi manuals 253
620 |master_directories mdirs 22 yes
62l|master_directories.gi 11
622 |match_star_name_ 15 1
623 | max 10 yes
624 | mbx_commands 10
625 |mbxX_create mbcr 27
626 [mbx_delete_acl mbda 23
627 |mbx_list_acl mbla 19 yes
628 |mbx_set_acl mbsa 28
629 |mcs.errors 267
630 |mcs_version 14 yes
631 |mdc_ 95 7
632 | memo 221 yes
633 |menu.errors 9
634 |menu_ 432 9
635 |menu_create 72
636 |menu_delete 17
637 |menu_describe 31 yes
638 |menu_display 21
639 |menu_get_choice 71 yes
640 |menu_1list) 25 yes
641 |merge_ascii ma 138
642 merge_ascii.errors 17
643 |merge_list mls 40
644 merge_mst 35
645 | message.compin msg.compin 17
646 |message_facility 21
647 |message_segments.errors ms.errors 22
648 |mhcs_ 30 2
649 |min 10 yes
650 |minus 10 yes
651 |minute 22 yes
652 |mmi_ mrds_mmi_ 196 8
653 |mod 10 yes
654 |mode_string_ 173 6
655 |mode_string_.gi 137
656 modes 12
657 modify_list mdls 37
658 |module.compin 23
659 |modules.gi modules 41
module.gi
module
660 |monitor_log 90
66l {monitor_gquota 64
662 month 22 yves
663 |month_name 21 yes
664 [motd message_of_the_day 230
665 |move mv 69

380

num. Commandes Synonyme (s) lines|entry| act.
info| pts |func.
666 |move_abs_request mar 85
667 |move_daemon_request mdr g5
668 |move_dir mvd 86
669 move_names 20
670 |move_names_ 28
671 |move_guota mg 22
672 |mpc_data_summary 50
673 |mrds 40
674 |mrds.builtins 33
675 |mrds.changes 88
676 imrds.cmdb_source 6%
677 imrds.cmdsm_source 99
678 |mrds.commands 44
679 |mrds.errors 250
680 |mrds.recovery 32
681 |mrds.scope 29
682 mrds.security 53
683 |mrds.selection_expressions 76
684 [mrds.versions 189
685 |mrds_call mrc 72
686 |mrpg 18
687 |msf_manager_ 296 8
688 |msfs 21 yes
689 |msmi_ mrds_msmi_ 125 5
690 [mvp.errors 27
691 |nag 99
692 |nequal 14 yes
693 |new_audit.gi 67
694 |new_fortran_conversions.gi 123
695 {new_fortran_differences.gi |new_fortran.differences 209
696 {new_fortran_extensions.gi new_fortran.extensions 123
697 |new_fortran_optimizer.gi nfopt.gi 113
698 | new_proc 30
699 [new_user 115
700 [ngreater 10 yes
701|nless 10 yes
702 |no_save_on_disconnect 14
703 |noecho 8
704 {nonbranches 20 yes
705 |nondirectories nondirs 19 yes
706 inonfiles 19 yes
707 inonmaster_directories nmdirs 23 yes
708 |nonmsfs 1S yes
709 nonnull_links nnlinks 20 yes
710 | nonsegments nonsegs 19 yes
711 |nonzero_files nzfiles 23 yes
712 |nonzero_msfs nzmsfs 23 yes
713 |nonzero_segments nzsegs 23 yes
714 | not 10 yes
715 |notes.compin 15
716 inothing nt 19
717{null_links 20 yes
718 numeric_to_ascii_ 16 1
719(object_info_ 42 3
720 octal oct 18 ves
721 |oflow 23

381

num. Commandes Synonyme (s) lines|entry!| act.
info| pts |func.
722|0ld_fortran 62
723 |old_fortran.bugs 38
724 |on 82 yes
725 |option_symbols osb 66
726 |0or 11 yes
727 |order_manuals.gi order_manuals 147
728 |overlay ov 24
728 | p0Of.compin plf.compin 28
p2f.compin
p3f.compin
p4f.compin
p5f.compin
p6f.compin
p7f.compin
p8f.compin
pof.compin
730 | page_trace pgt 37
731 |pagebox.compin midbox.compin 20
732 |par.compin pO.compin 28
pl.compin
p2.compin
p3.compin
p4.compin
p5.compin
p6.compin
p7.compin
p8.compin
p9.compin
733 |par_flush.compin pfl.compin 28
734 |par_hanging.compin phg.compin 41
B plh.compin
p2h.compin
p3h.compin
p4h.compin
p5h.compin
péh.compin
p7h.compin
p8h.compin
pSh.compin
735 |parse_file_ 152 8
736 |pascal 174
737 |pascal.gi 1108
738 |pascal_area 32
739 |pascal_bugs 16
740 | pascal_convert_source pcs 169
741 !pascal_display 20
742 pascal_files =]
743 | pascal_indent 81
744 | pascal_set_prompt_char 9
745 |path 10 yes
746 | pathname_ 127 3
747 | pathname_manipulation_af 15
748 | pause 12
749 | peo peol 8
750 |perprocess_static_sw_off 7
751 |perprocess_static_sw_on 8

382

num. Commandes Synonyme (s) lines|entry| act.
info|l pts |[func.
752 | picture pic 34 yes
753 |pind 81
754 |pl 22
755 |pll 145
756|pll.errors 811
757 pll_abs pa 51
758 |pll_code_changes 171
759|pll_io_ 25 2
760 pll_new_features 91
761 |pllr24 - . plir24.gi 122
762 |pllr2s 96
763 |plus 11 yes
764 |polite 17
765 |pps_ 50
766 |preaccess 16
767 |preface.compin . pf.compin 48
pf_cont.compin
768 |prefixnl 16
769 |prepare_mc_restart_ 40 3
770 |print Pr 160
771|print_attach_table pat 40 yes
772|print_auth_names pan 23
773 |print_bind_map pbm 26
774 |print_default_wdir pdawd 6
775 |print_error_message pem v 8
pel
776print_link_info pli 38
777 |print_linkage_usage plu 7
778|print_log 96
779 print_mail print_mail.gi 118
prm
780 |print_messages pm 59
781|print_motd pmotd 14
782 |print_pdt 33
783 |print_proc_auth ppa 20
784 |print_request_types prt 16
785 print_sample_refs 22
786 |print_search_paths psp 25 yes
787 |print_search_rules psr 6
788 |print_symbols_path psbp 6
789 |print_terminal_types ptt 13
790 |print_tuning_parameters pPtp 29
791iprint_wdir pwa 6
792 |print_wordlist pwl 46
793 |printed_output printed_output.gi 59
794 | probe pPb 19
795 |probe.gi 35
796 | process_cobol_report pcr 46
797 |process_compout pco 129
798 |process_dir pd 10 yes
799 |process_list pls 67
800 |process_overseer_ 8
801 |process_overseers.gi po.gi 133
po
process_overseers
802 |process_preservation.gi 78

383

num. Commandes Synonyme (s) linesjentry| act.
info| pts [func.
803 |profile pf 194
804 | program_interrupt Pi 37
805 |progress P9 77
806 | proj_usage_report 47
807 |project_start_up_ 15
808|projet 126
809 |protection_notices.gi 80
810 (psp3] 198
81l (|ptsr 11
812 |gedx aqx 98
813 (query 52 yes
814 ([questions.gi 44
8l5iquiesce_mrds_dgb gmdb 48
816 |quote 11
817 |quotient 11 yes
818 |random_ 177 12
819 rank 24 yes
820 rawi 12
821 |rawo 14
822 |read_allowed_ 32 1
823 |read_list_ 98
824 (read_mail rdm 188
825 |read_password_ 15 1
826 |read_tape_and_query rtq 231
827 |read_tsoapl_tape rtt 41
828 |read_write_allowed_ 30 1
829 |ready rdy 17
830 |ready_off rdf 6
831 |ready_on rdn 6
832|rebuild_d4ir 25
833 |record_stream_ 60
834 |record_to_sector 17 ves
835 |record_to_vtocx 42
B36|register_resource rgr 6%
837|release rl 14
838 |release_area_ 15 1
838 |release_resource rir 29
840 [release_temp_segment_ 15 1
841l release_temp_segments_ 16 1
842 remove_graphics rg 18
843 [rename rn 21
844 |reorder_archive ra 30
B45 [repeat_query rq 10
846 |replay 20
847 |reprint_error re 20
848 |request.compin 23
849 |request_ids.qgi request_ids 42
850 |request_list.compin rgst_list.compin 20
851 |reseau 1641
852 |reserve_resource rsr 63
853 |reset 9
854 |reset_external_variables rev 20
855 |reset_ips_mask 33
856 |resetcopysw 12
857 |resolve_linkage_error rle 35
858 |resource_report 73

384

num. Commandes Synonyme (s) lines|entry| act.
info| pts |[func.
859 |resource_status rst 83 yes
860 |resource_usage ru 22
86l|response 36 yes
862 |retain_symbols rsb 27
863 |retrieve 177
864 |reverse rv 10 yes
865 |reverse_after rvaf 26 yes
866 |reverse_before rvbe 26 yes
867 |reverse_decat rvdecat 34 yes
868 |reverse_index rvindex 26 yes
869 |reverse_search rvsrh 26 yes
870 |reverse_verify rvverify 26 ves
871 |revert_output ro 21
872 |revise_words rw 46
873 |ring0_get_ 66 5
874 ring_zero_peek_ 205 5
875 {rtrim 16 yes
876 |ruban 10
877 run 40
878 |run_ 13 1
879 |run_cobol rc 27
880 |runoff rf 162
88l |runoff_abs rfa 56
882 |runoff_compose.differences |rf_comp.differences 138
rf_comp.diffs
883 |safety_sw_off safety_switch_off 13
ssf
884 safety_sw_on safety_switch_on 13
ssn
885 | sample_refs 32
886 |save_dir_info 21
887 |save_on_disconnect 13
888 |scroll 22
889 | sdmc 74
890 | search 11 yes
891 |sector_to_record 17 yes
892 |secure_mrds_d4gb smdb 40
893 | segments segs 21 yes
894 |select 34 ves
895 |send_mail sdm 259
896 |send_mail_ 56 4
897 |send_message sm 32
898 |send_message_ 54 4
899 | send_message_acknowledge sma 33
900 | send_message_express smx 33
901 {send_message_silent sms 34
902|set_acl sa 87
903 |set_bit_count sbc 16
904 |set_bit_offset_ 34 1
905 |set_cc 34
906 |set_char_offset_ 37 1
907 |set_dir_ring_brackets sdrb 37
908 |set_fortran_common sfc 18
908 |set_iacl_d4ir sid 28
910 |set_iacl_seg sis 30
Sll|set_ips_mask 33

385

num, Commandes Synonyme (s) lines|entry| act.
info|] pts [func.
912 |set_lock_ 82 2
913 |set_max_length smi 39
914 {set_mdir_account smda 17
915 | set_mdir_owner smdo 17
916 | set_mdir_guota smdq 21
817 |set_mrds_temp_dir smtd 31
918 |set_resource setr 8l
919 |set_ring_brackets srb 41
920 |set_search_paths ssp 41
921 |set_search_rules - ssr 53
922 |set_severity_indicator ssi 15
923 |set_system_storage 23
924 | set_time_zone stz 52
925 |set_translator_search_rules|stsr 16
926 |set_ttt_path 21
927 |set_tty stty 139
928 |set_tty.gi stty.gi 62
929!set_user_storage 23
930 | set_volume_guota svqg 18
931|setcopysw 12
932 |setup_graphics sg 57
933 |severity 42 ves
934 severity_indicators.gi 40
935 | short_message_format smf 8
936 | show_symbols ssb 12
937 |signal_ 15 1
938|slave 14
939 (|slug_off.compin 14
840 |sort merge 183
S4l|sort_items_ 61 5
942 |sort_items_indirect_ 93 6
943 |sort_list sls 37
944 |sort_seg ss 58
945 | special_active_functions 16
946 | speedtype.gi speedtype 58
947 |star_equal.gi star_equals 78
star_equal
star_equals.gi
equal_names
star_names
948|star_system_links.gi 79
949 |start sr 22
950 | start_up.ec 23
951 |static_handlers.gi static_handlers 20
952 | status st 154 yes
853 |stop_cobol_run scr 16
954 |stop_run 7
955 | storage_system_af 18
956 |string 13 yes
957 |strip 18 yes
858 |strip_entry spe 18 yes
959 | sub_err_ 85 1
860 | substr 14 yes
o96l|suffix . 10 yes
962 suffixed_name_ 29 2
963 | sweep_disk_ 60 2

ik
—._

386

num. Commandes Synonyme (s) lines|entry| act.
info| pts |func.
964 [switch_off swf 53
965 |switch_on swn 53
966 [syn_output sO 23
967 |system 99 yes
968 | system_commands 461
969 |system_functions 120
970 |system_info_ 1134 23
971 |system_logs.errors 8
972 |system_variables 229
973 |tab.compin 47
974 |tab_get_no.compin 50
975 |tab_index.compin 40
876 |tab_on.compin 45
977 |tabecho 15
978 tabs 40
979 |tape_archive ta 157
980 |tape_control_language.gi tcl.gi 215
9g8l|tape_i/o.errors tape.errors 8
982 |tape_in tin 37
983 itape_nstd_ 146
984 |tape_out tout 45
985 |tc_io_ 87
986|teco 103
987|teco.errors 27
988|ted 321
989|ted.errors 41
990 |ted_msgs 6
891 |term_ 62 5
992 | terminal_output to 18
993 |terminal_type ttp 11
994 | terminate tm 38
995 | terminate_commands 11
996 |terminate_file_ 64 1
997 terminate_refname tmr ; 41
998 | terminate_segno tms 40
999 terminate_single_refname tmsr 42
1000 test_archive 12 yes
1001litest_io_daemon 25
1002|test_tape . 80
1003 |texto 59
1004 time 22 yes
1005 |timer_manager_ 228 11
1006 |times 11 yes
1007 (titlepage.compin tp.compin 50
1008 |toc_on.compin 39
1009 |topics.gi topics 35
topic.gi
topic
1010 |total_cpu_time_ 15 1
1011 |total_output_requests tor 59 yes
1012 tp.changes 305
1013 tp_cancel 16
1014 |{tp_change_deadline 17
1015}tp_cvsct 14
1016itp_display_command_table tpdct 13
1017 |tp_display_current_xcns tpdcx 11

387

num. Commandes Synonyme (s) lines|entry| act.
info| pts |func.
1018 (tp_display_input_gqueue tpdiqg 13
1019 (tp_display_master_table tpdmt 13
1020 | tp_display_output_gueue tpdog 13
1021 |tp_get_xcn_status tpgxs 32
1022 (tp_io_start 30
1023 |tp_list_pending_requests tplpr 26
1024 |tp_meters 22
1025 |tp_pre_create.ec tp_pre_create 11
1026 |tp_reset_xcn_num 19
1027 |tp_rollback_transaction_ 19 1
‘| 1028 |tp_shrink_g 37
1029 tp_start 27
1030 |tp_stop 17
1031 (tp_user 46
1032 |tp_verify_transaction_ 22 1
1033 |tp_who 27
1034 (tp_worker_init_tcf 16
1035 |tp_worker_start 17
1036 | trace 185
1037 |trace_meters tmt 49
1038 |trace_stack ts 33
1039 |transaction_call trc 54
1040 |transaction_call_ 84 6
l04ljtranslate 13 yes
1042 |translate_ids_schema tis 22
1043 |translator_info_ 15 1
1044 |trim_list tls 49
1045|trim_wordlist twl 31
1046 | trunc 11 yes
1047 | truncate tc 33
1048 |tss_basic.gi tss_basic 105
1049 |tss_fortran.gi tss_fortran 125
1050 |tssi_ 79 6
1051 |ttt_info_ 112 8
1052 |tty.new_features 83
1053 itty_ 445
1054 |tty_modes.gi 194
1055 [unassign_resource ur 22
1056 |underline 11 ves
1057 {unique 18 yes
1058 |unique_bits_ 15 1
105¢ |unique_chars_ 15 1
1060 {unlink ul 34
1061l |unpopulate_mrds_db umdb 43
1062 |unwinder_ 15 1
1063 jupdate_mrds_db_version umdbv 55
umdv
1064 |upper_case uppercase 30 yes
1065 |use_symbols usb 13
1066 |user 147 yes
1067 (user_ftp ftp 220
1068 |user_info_ 669 19
1069 |user_ring_io.errors 13
1070 |user_telnet 195
1071 |util.fortran.gi 73
1072 |v1_exec_com vlec 160 yes

388

Commandes

num. Synonyme (s) lines|entry| act.
info| pts |func.
1073 |{vl_exec_com.differences vliec.diffs 286
1074 1v2_exec_com.differences v2.diffs 228
v2ec.diffs
1075 |valid_decimal _ 15 1
1076(valid_pictured_data vpad 19
1077|validate_info_seg vis 79 ves
1078 |value_ 634 12
1079 (value_defined vaft 41 yes
1080 (value_delete vdl S1
1081 |value_get vg 73 yes
1082 (value_1list vls 115 yes
1083 |value_path vp 15 yes
1084 |value_set Vs 155 yes
1085 |value_set_path vsp 34
1086 |values_afs 12
1087 |verify 20 yes
1088 |vfile_ 1080
1089 |vfile_adjust vfa 32
1090 |vfile_find_bad_nodes 212 yes
1091ivfile_status vis 30
1092fvfile_status_ 15 1
1093 (video.errors 42
1094 |video_data_ 34 1
1095 |video_utils_ 74 2
1096 (virtual_cpu_time_’ 15 1
1097 (virtual_entries.gi virtual_entries 35
virtual_entry
1098 |virtual_pointers virtual_pointers.gi 54
virtual_pointer
1099 |volume_dump_switch_off vdsf 27
1100 |{volume_dump_switch_on vdsn 27
1101{volume_names.gi 53
1102 |vtoc_pathname 45
1103 |vtocx_to_record 19 yes
1104 |walk_subtree ws 34
1105 (where wh 76 yes
1106 |where_search_paths wsp 26 yes
1107 |{who 75 yes
1108 |window_ 1598 22
1108 |{window_call wdc 268 yes
1110 jwindow_io_ 203
111l |working_dir wd 10 yes
1112 |write_allowed_ 32 1
1113 |wsfns 201
1114 |year 22 yves
1115 |zero_segments zsegs 23 yes

