
�>���G �A�/�, �?���H�@�y�k�R�N�R�8�R�9

�?�i�i�T�b�,�f�f�?���H�@�H���`���X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�?���H�@�y�k�R�N�R�8�R�9

�a�m�#�K�B�i�i�2�/ �Q�M �k�j �C�m�H �k�y�R�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�1�t�T�H�Q�B�i���i�B�Q�M �/�m �H�Q�;�B�+�B�2�H �>�1�G�S �b�Q�m�b �J�m�H�i�B�+�b �, �K�Q�/�2
�/�ö�2�K�T�H�Q�B �/�2�b �+�Q�K�K���M�/�2�b �T�`�B�M�+�B�T���H�2�b

�S���i�`�B�+�F �_�Q�#�2�`�i

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�S���i�`�B�+�F �_�Q�#�2�`�i�X �1�t�T�H�Q�B�i���i�B�Q�M �/�m �H�Q�;�B�+�B�2�H �>�1�G�S �b�Q�m�b �J�m�H�i�B�+�b �, �K�Q�/�2 �/�ö�2�K�T�H�Q�B �/�2�b �+�Q�K�K���M�/�2�b �T�`�B�M�@
�+�B�T���H�2�b�X �(�_���T�T�Q�`�i �/�2 �`�2�+�?�2�`�+�?�2�) �*�2�M�i�`�2 �/�2 �`�2�+�?�2�`�+�?�2�b �2�M �T�?�v�b�B�[�m�2 �/�2 �H�ö�2�M�p�B�`�Q�M�M�2�K�2�M�i �i�2�`�`�2�b�i�`�2 �2�i
�T�H���M�û�i���B�`�2 �U�*�_�S�1�V�X �R�N�3�9�- �j�N�R �T�X�- �i���#�H�2���m�t�X ���?���H�@�y�k�R�N�R�8�R�9��

https://hal-lara.archives-ouvertes.fr/hal-02191514
https://hal.archives-ouvertes.fr

CENTRE NATIONAL D'ETUDES

DES TELECOMMUNICATIONS

Centre PARIS B

CENTRE NATIONAL DE LA

RECHERCHE SCIENTIFIQUE

Département TOAE

CENTRE DE RECHERCHE EN PHYSIQUE DE

L'ENllIRONNEMENT TERRESTRE ET PLANETAIRE

NOTE TECHNIQUE CRPE/131

EXPLOITATION DU LOGICIEL HELP SOUS MULTICS

MODE D'EMPLOI DES COMMANDES PRINCIPALES

par

Patrick ROBERT

RPE/OPN

38-40 rue du général Leclerc

92131 ISSY-LES-MOULINEAUX,FRANCE

Le Directeur Le Directeur Adjoint

Vu Vu

I. REVAH P. BAUER

Février 1984

EXPLOITATION DU LOGICIEL HELP SOUS MULTICS

MODE D'EMPL01 DES COMMANDES PRINCIPALES

RESUME

Dans ce document les segments d'information relatifs aux principales
commandes MULTICS, disponibles individuellement par le système de documentation

en ligne "help", sont organisés par catégorie, mis en forme et listés.

Les commandes exploitées (200 environ) dont on a ainsi le mode d'emploi

complet sont extraites du "Guide de poche MULTICS, Commandes et fonctions

actives" (CII-HB,68F2AW17) et du cours de C. Davoust (NT/PAA/ATR/PIT669).

Ce document est complété en dernière partie par une table donnant pour
toutes les commandes exploitables par "help" la liste de leur abréviation et/ou

synonymes, le nombre de lignes du segment d'information correspondant, et

l'information indiquant si la commande est également une fonction active.

Document édité sur l'imprimante a laser XEROX 9700 de PIT

EXPLOITATION DU LOGICIEL HELP SOUS MULTICS

MODE D'EMPL01 DES COMMANDES PRINCIPALES

PLAN

1- INTRODUCTION

Il- LISTE PAR CATEGORIE DES COMMANDES PRINCIPALES

III- LISTE ALPHABETIQUE DES COMMANDES PRINCIPALES

IV- LIBELLE,SYNTAXE,FONCTION ET MODE D'EMPLOI DES COMMANDES PRINCIPALES

V- LISTE ALPHABETIQUE DE TOUTES LES COMMANDES D'INFORMATION GENERALES

VI- LISTE ALPHABETIQUE DE TOUTES LES COMMANDES EXPLOITABLES PAR HELP

AVEC LEURS SYNONYMES ET INDICATION DE FONCTION ACTIVE

1- INTRODUCTION

Ce document est le résultat de l'exploitation du système de documentation

en ligne "help" disponible sous le système MULTICS.

Il a été mis en oeuvre sur le DPS8 de Cil HONEYWELL BULL implanté au CNET

à Issy les Moulineaux.

L'exploitation de ce système de documentation se fait par l'intermédiaire

d'un programme Fortran créant un fichier de commandes spécifiques dont

l'exécution en processus absentee effectue les reqûetes successives au logiciel
interactif "help".Les résultats sont ensuite mis en forme au moyen d'un autre

programme approprié.

Cet ensemble de manoeuvres est lui meme automatisé en un seul fichier de

commandes.

L'entrée de ce système est un fichier de données où sont rangées les

commandes dont on désire le libellé complet et le mode d'emploi.

La sortie de ce système est un fichier dont le contenu est ce propre
document.

Ce document est lui même édité directement par le listage de ce fichier sur

l'imprimante à laser du CNET,selon des critères standards d'impression.

La liste des commandes référenciées dans le fichier d'entrée est celle du

"guide de poche MULTICS,commandes et fonctions actives" (CII-HB,68F2AW17)

complétée d'autres commandes utiles extraites du cours de C.Davoust (NT/PAA/

ATR/PIT669).
'

Elle n'est pas exhaustive,mais regroupe néanmoins les 200 commandes et/ou
fonctions actives les plus utilisées parmi les quelques 1000 disponibles.

Elle a volontairement été limitée afin de garder une taille convenable à ce

document qui se veut une version plus légère et sensiblement différente du

"Multics Programmers' Manual - Commandes and Active Functions" (Doc.CII-HB

68A2AG92). _

Ce document est complété en dernière partie par une table donnant la liste

alphabétique complète de toutes les commandes MULTICS exploitables par "help",

avec,pour chaque commande,la liste de ses abréviations ou synonymes,le nombre

de lignes du segment d'information correspondant,et l'information indiquant
si cette commande est également une fonction active.

3

II- LISTE PAR CATEGORIE DES COMMANDES PRINCIPALES

manipulation de segments et de directories

pages

add_name (an) 23

adjust_bit_count (abc) 27

archive (ac) 30

archive_sort (as) 33

archive_table (act) [act. func.] 34

bind (bd) 50

change_default_wdir (cdwd) 66

change_wdir (cwd) 67

compare [act. func.] 74

compare_ascii (cpa) 75

, compare_object (cob) 77

contents [act. func.] 81

copy (cp) 82

copy_cards (ccd) 85

copy_dir (cpd) 86

., copy_file (cpf) 88

create (cr) 92

create_data_segment (cds) 93

create_dir (cd) 94

default_wdir (dwd) [act. func.] 102

delete (dl) 104

delete_dir (dd) 107
'

delete_name (dn) 112

home_dir (hd) [act. func.] 167
hunt [act. func.] 170

list (ls) 184

merge_ascii (ma) 218

move (mv) 225

move_dir (mvd) 231

print (pr) 238

print_default_wdir (pdwd) 242

print_wdir (pwd) 253

rename (rn) 275

reorder_archive (ra) 276

sort (merge) 317

sort_seg (ss) 321

status (st) [act. func.] 324

switch_off 327

switch_on 328

tape_archive (ta) 329

truncate (tc) 354

walk_subtree (ws) 357
where (wh) [act. func.] 358

working_dir (wd) [act. func.] 363

, 4 ?

Accès au système,environnement,documentation

pages
abbrev (ab) 13

answer 28

check_info_segs (cis) [act. func.] 69

do [act. func.] 120

exec_com (ec) [act. func.] 143

general_ready (gr) [act. func.] 157

help 161

how_many_users (hmu) 169
- . line_length (11) 182

list_help (lh) [act. func.] 194

locnet 203

login (1) . 205

logout 210

memo [act. func.] 214

modules 222

new_proc 234

no_save_on_disconnect 235

on [act. func.] 236 .

print_terminal_types (ptt) 252

process_dir (pd) [act. func.] 256

ready (rdy) 270

ready_off (rdf) 271

. ready_on (rdn 272

release (ri) 273 .

save_on_disconnect 292

set_tty (stty) 311

set_tty.gi (stty.gi) 314

start (sr) 323

topics 350

trace_stack (ts) 353

who [act. func.] 361

compilation et exécution fortran

pages

debug (db) 100

fortran (new_fortran,ft) 154

fortran_abs (fa) 156

probe (pb) 254

probe.gi 255

proçess_list (pis) 257

profile (pf) 259

program_interrupt (pi) 263

run 283

set_fortran_common (sfc) 304

5

controle d'accès et règles de recherche

pages

acl_matching 20

add_search_paths (asp) 24

add_search_rules (asr) 26

check_iacl 68

copy_acl 84

copy_iacl_dir 90

copy_iacl_seg 91

delete_acl (da)
'

106

delete_iacl_dir (did) 109

delete_iacl_seg (dis) 110

delete_search_paths (dsp) 113

delete_search_rules (dsr) 114

initiate (in) 172

link (lk) 183

list_accessible (lac) 190

list_acl (la) [act. func.] 191

list_iacl_dir (lid) [act. func.] 195

list_iacl_seg (lis) [act. func.] 196

list_not_accessible (lnac) . 197

list_ref_names (lrn) 198

print_search_paths (psp) [act. func.] 250

print_search_rules (psr) 251

set_acl (sa) 302

set_iacl_dir (sid) 305

set_iacl_seg (sis) 306

set_search_paths (ssp) 309

set_search_rules (ssr) 310

terminate_refname (tmr) 346

where_search_paths (wsp) [act. func.] 360

messagerie

pages

accept_messages (am) 18

defer_messages (dm) 103

delete_message (dlm) 111

executive_mail (xmail) 152

have_mail [act. func.] 160

immediate_messages (im) 171

last_message (lm) [act. func.] 179

last_message_sender (1ms) [act. func.] 180

last_message_time (lmt) [act. func.] 181

long_message_format (lmf) 212

mail (ml) 213

print_mail (prm) 243

print_messages (pm) 246

print_motd (pmotd) 248

read_mail (rdm) 266

send_mail (sdm) 293

send_message (sm) 298

send_message_acknowledge (sma) 299

6

send_message_express (smx) 300

send_message_silent (sms) 301

short_message_format (smf) 316

système absentee

pages

absentee (abs) 15

cancel_abs_request (car) 59

enter_abs_reque.st (ear) 139

list_abs_requests (lar) 187

input et output

pages

attach_audit (ata) 38

audit_ 39

audit_.gi 42

close_file (cf) 72

collate [act. func.] 73

detach_audit (dta) 115

discard_output (dco) 116

display_audit_file (daf) 117

dpl 122

dprint (dp) 125

dpunch (dpn) 127

dump_segment (ds) 129

file_output (fo) 153

io_call (io) [act. func.] 173

laser 178

move_abs_request (mar) 227

print_attach_table (pat) [act. func.] 241

revert_output (ro) 282

tape_in 336

tape_control_language.gi (tcl.gi) 332

tape_out 337

total_output_requests (tor) [act. func.] 351

vfile_adjust (vfa) 355

vfile_status (vfs) 356

controle des ressources

pages

acquire_resource (aqr) 21

assign_resource (ar) 35

cancel_resource (cnr) 63

clear_resource (clr) 71

get_quota (gq) 159

7

list_resources (lr)] 200

move_quota (mq) 233

print_pdt 249

release_resource (lr) 274

reserve_resource (rsr) 277

resource_status (rst)] 279

resource_usage (ru) 281

set_resource (setr) 307

éditeurs et traitement de texte

pages
audit_editor . 46

compose (comp) 78

create_wordlist (cwl) 95

_ ed 132

ed.gi 133

edm . 136
emacs 138 .

qedx (qx) 264
runoff (rf) 284

runoff_abs (rfa) 287

runoff_compose.differences (rf_comp.diffs) 289
. teco

'
338

ted 340 _
texto 347

dates et temps

pages
calendar 54

calendrier 57

date [act. func.] 96

date_time [act. func.] 97
'

day [act. func.] 98

day_name [act. func.] 99

hour [act. func.] 168

long_date [act. func.] 211

minute [act. func.] 221

month [act. func.] 223

month_name [act. func.] 224

time [act. func.] 349

year [act. func.] 364

8

démons

pages

cancel_daemon_request (cdr) 61

list_daemon_requests (ldr) 192

move_daemon_request (mdr) 229

demandes de restauration

pages

cancel_retrieval_request (crr) 64

enter_retrieval_request (err) 141

list_retrieval_requests (lrr) 202

9

III- LISTE ALPHABETIQUE DES COMMANDES PRINCIPALES

pages
abbrev (ab) 13

absentee (abs) 15

accept_messages (am) 18

acl_matching 20

acquire_resource (aqr) 21

add_name (an) 23

add_search_paths (asp) 24

add_search_rules (asr) 26

adjust_bit_count (abc) 27

answer 28
archive (ac) 30

archive_sort (as) 33

archive_table (act) [act. func.] 34

assign_resource (ar) 35

attach_audit (ata) 38

audit 39

audit_.gi 42

audit_editor 46

bind (bd) 50

calendar 54

calendrier 57

cancel_abs_request (car) 59

cancel_daemon_request (cdr) 61

cancel_resource (cnr) 63

cancel_retrieval_request (crr) 64

change_default_wdir (cdwd) 66

change_wdir (cwd) . 67

check_iacl 68

check_info_segs (cis) [act. func.] 69

clear_resource (clr) 71

close_file (cf) 72

collate [act. func.] 73

compare . [act. func.] 74

compare_ascii (cpa) 75

compare_object (cob) 77

compose (comp) 78

contents [act. func.] 81

copy (cp) 82

copy_acl 84

copy_cards (ccd) 85

copy_dir (cpd) 86

copy_file (cpf) 88

copy_iacl_dir 90

copy_iacl_seg 91

create (cr) 92

create_data_segment (cds) 93

create_dir (cd) 94

create_wordlist (cwl) 95

date [act. func.] 96

date_time [act. func.] 97

day [act. func.] 98

day_name [act. func.] 99

debug (db) 100

10

default_wdir (dwd) [act. func.] 102

defer_messages (dm) 103

delete (dl) 104

delete_acl (da) 106

delete_dir (dd) 107

delete_iacl_dir (did) 109

delete_iacl_seg (dis) 110

delete_message (dlm) 111

delete_name (dn) 112

delete_search_paths (dsp) 113

delete_search_rules (dsr) 114

detach_audit (dta) 115

. discard_output (dco) ' 116

display_audit_file (daf) 117

do [act. func.] 120

dpl 122

dprint (dp) 125

dpunch (dpn) 127

dump_segment (ds) 129

ed . 132

ed.gi 133

edm 136

emacs 138

enter_abs_request (ear) 139

enter_retrieval_request (err) _ 141

exec_com (ec) [act. func.] 143

executive_mail (xmail) _ 152

file_output (fo) 153
'

fortran (new_fortran,ft) 154

fortran_abs (fa) 156

general_ready (gr) [act. func.] 157

get_quota (gq) 159

have_mail [act. func.] 160

help 161

home_dir (hd) [act. func.] 167

hour . [act. func.] 168

how_many_users (hmu) 169

hunt [act. func.] 170

immediate messages (im) 171

initiate (in) 172

io_call (io) [act. func.] 173

laser 178

last_message (lm) [act. func.] 179

last_message_sender (1ms) [act. func.] 180

last_message_time (lmt) [act. func.] 181

line_length (11) 182

link (1k) 183

list (ls) 184

list_abs_requests (lar) 187

list_accessible (lac) 190

list_acl (la) [act. func.] 191

list_daemon_requests (ldr) 192

list_help (lh) [act. func.] 194

list_iacl_dir (lid) [act. func.] 195

list_iacl_seg (lis) [act. func.] 196

list_not_accessible (lnac) 197

list_ref_names (lrn) 198

list_resources (lr)] - 200

list_retrieval_requests (lrr) 202

locnet 203

11

login (1) 205

logout 210

long_date [act. func.] 211

long_message_format (lmf) 212

mail (ml) 213

memo [act. func.] 214

merge_ascii (ma) 218

minute [act. func.] 221

modules 222

month [act. func.] 223

month_name [act. func.] 224

move (mv) 225

move_abs_request (mar) 227

move_daemon_request (mdr) 229

move_dir (mvd) 231

move_quota (mq) 233

new_proc 234

no_save_on_disconnect 235

on [act. func.] 236

print (pr) 238

print_attach_table (pat) [act. func.] 241

print_default_wdir (pdwd) 242

print_mail (prm) 243

print_messages (pm) 246

print_motd (pmotd) 248

. print_pdt 249

print_search_paths (psp) [act. func.] 250

print_search_rules (psr) 251

print_terminal_types (ptt) 252

print_wdir (pwd) 253

probe (pb) 254

probe.gi 255

process_dir (pd) [act. func.] 256

process_list (pis) 257

profile (pf) 259

program_interrupt (pi) 263

qedx (qx) 264

read_mail (rdm) 266

ready (rdy) 270

ready_off (rdf)
'

271

ready_on (rdn) 272

release (ri) 273

release_resource (rlr) 274
`

rename (rn) 275

reorder_archive (ra) 276

reserve_resource (rsr) 277

resource_status (rst)] 279

resource_usage (ru) 281
'

revert_output (ro) 282

run 283

runoff (rf) 284

runoff_abs (rfa) 287

runoff_compose.differences (rf_comp.diffs) 289

save_on_disconnect 292

send_mail (sdm) 293

send_message (sm) 298

send_message_acknowledge (sma) 299

send_message_express (smx) 300

send_message_silent (sms) 301

set_acl (sa) 302

12

set_fortran_common (sfc) 304

set_iacl_dir (sid) 305

set_iacl_seg (sis) 306

set_resource (setr) 307

set_search_paths (ssp) 309

set_search_rules (ssr) 310

set_tty (stty) 311

set_tty.gi (stty.gi) 314

short_message_format (smf) 316

sort (merge) 317

sort_seg (ss) 321

start (sr) 323

status (st) [act. func.] 324

switch_off 327

switch_on 328

tape_archive (ta) 329

tape_control_language.gi (tcl.gi) 332

tape_in 336

tape_out 337

teco 338

ted 340

terminate_refname (tmr) 346

texto 347

time [act. func.] 349

topics 350

total_output_requests (tor) [act. func.] 351

trace_stack (ts) 353

truncate (tc) 354

vfile_adjust (vfa)
' 355

vfile_status (vfs) 356

walk_subtree (ws) 357

where (wh) [act. func.] 358

where_search_paths (wsp) [act. func.] 360

who [act. func.] 361

working_dir (wd) [act. func.] 363

year [act. func.] 364

- 13

11/- LIBELLE ,SYNTAXE ,FONCTION ET MODE D'EMPLOI DES COMMANDES PRINCIPALES

abbrev

03/04/76 abbrev, ab

Syntax: ab -

Function: expands abbreviations in command lines. Each command

line typed to the system is broken up into substrings between

break characters. Substrings found in the user's abbreviation

profile in the home directory are replaced by their expansions.
Substrings within double quotes are not expanded.

List of requests: In the descriptions below, an abbreviation

��abbr�� can be a maximum of 8 characters and cannot contain any
break characters. See "Break characters".

.a ��abbr�� ��rest of line�� _
add an abbreviation that is .

expanded regardless of line position; if already defined,

query user.

.ab ��abbr�� ��rest of line��

add an abbreviation that is

expanded only when at beginning of line or following a semicolon.

.af ��abbr�� �� rest of line��

same as .a without user query.
.abf ��abbr�� ��rest of line��

same as .ab without user query.

.d �� abbrl�� ...�� abbrN��

delete abbreviations.

.1 �� abbrl�� ...�� abbrN��

list definitions of

abbreviations; if none specified, list all.

.la �� letterl�� ...�� letterN��

list all abbreviationss beginning with

letter(s); each letter argument can only be a single character.

.q

quit expanding abbreviations.

. �� rest of line��

do not expand abbreviations in this line.

.P

print out profile segment being used.

.u path
use the profile segment specified by path;

profile suffix must be given.
.r

enter mode that remembers command line after expansion.

14

.f

enter mode that forgets command line after expansion.
.s �� rest of line��

show ��rest of line�� expanded but do not

execute. If in remember mode and ��rest of line�� is not

specified, the last line expanded is shown.

Break characters:

horizontal tab semicolon

vertical tab . formfeed

newline vertical bar

space parentheses

quote less than

dollar sign greater than

apostrophe brackets ,

grave accent braces

period

Abbreviations cannot contain other abbreviations; see the do command.

15

absentee

10/01/80 Absentee facility

A facility for requesting absentee processes is available to users.

A user can request that a process be created which executes commands from a

segment and places its output into a segment.

To request an absentee computation, one first constructs an absentee

control segment which is similar in syntax to an exec_com segment.
The absentee process (when it is created for the user) will read from

this control segment. The suffix of the control segment must be

".absin". Then a command (enter_abs_request) is issued that actually

requests that an absentee process be created on behalf of the user.

The output of this absentee process goes into an absentee output
segment. The name of this output segment can be specified in the

enter_abs_request command. If the name is not specified, then the

pathname of the control segment is used, except that its suffix is
.absout. The user can delay the creation of the absentee process
until after a specified time by means of the "-time" control argument
to the ear command. If this option is not selected, at an arbitrary
time in the future an absentee process is created for the requestor.

Type "help enter_abs_request" or "help ear" for further discussion of

this command. .

The resulting process is identical to an interactive process except that:

1) read operations from user_input are done from the absentee

input segment.
2) write operations to user_output are directed to the absentee

output segment.
3) special condition handlers are established for record_quota_overflow

and cput.
4) any error intercepted by the standard unclaimed signal handler,

except for command_error and command_question, logs out the
absentee process.

Two other commands are installed as part of the absentee facility:
1) list_abs_requests (lar) - a command that gives the user information

on the requests for absentee processes that the user has made.

Type "help list_abs_requests" or "help lar" for more information.

2) cancel_abs_request (car) - a command that can be used to delete a

request for an absentee process. For further details, type "help

cancel_abs_request" or "help car".

Examples:

Suppose that a user wants to request an absentee computation to

perform an off-line compilation. The user creates a control segment
called absentee_pll.absin containing:

cwd current

pll x -table -source -symbols

dp -dl x.list

16 '

logout

The command line:

enter_abs_request absentee_pll.absin

causes an absentee process to be created (some time in the future) that:

1) sets the working directory to a directory named current

inferior to the users's default working directory.

2) compiles a pll program named x.pll with three control arguments

3) dprints 1 copy of the list segment.

4) logs out.

The output of these tasks appears in the same directory as

absentee_pll.absin in a segment called absentee_pll.absout.

Notes:

1) The enter_abs_request command checks for the existence of the

absentee control segment and refuses the request if it is not

present.
2) An absentee process can be requested only for the Person_id and

Project_id of the user submitting the request.

3) The facility is designed so that more than one absentee process
can run at one time. The user should take care, when submitting
several requests that use the same control segment, that the output
of each request is directed to a different output segment (see

enter_abs_request -output_file).
'

4) There can be both an interactive and an absentee process for the

same user at the same time.

5) The who command denotes absentee users by placing an asterisk

directly after person.project, for example "Green.Multics*".

6) The cancel_abs_request command can cancel a request for an absentee

process that is already logged in.

7) The user can ask operations to bump or to cancel an absentee process.
The difference is as follows. Bumping destroys the absentee process
but allows the computation to begin again. Cancelling an absentee

process prevents it from ever being restarted. This distinction is

relevant only if the absentee computation was declared to be

restartable via the "-restart" ("-rt") control argument of the ear

command. The user who contacts operations to destroy an absentee .

process should be sure to specify which function is wanted.

8) The new_proc command is an undefined command in an absentee process.
It results in the termination of the absentee process.

9) For an absentee process to end properly, logout should be the last

command encountered in the absentee control segment. If this condition

is not met, an error message (indicating that the input is exhausted)

is printed.

10) The absentee control segment should not be edited or its bit count

changed during the course of the absentee process. This action causes

unpredictable results.

11) Since the syntax of the absentee control segment is the same as an

exec_com segment, the user should be aware of a few deviations.

Certain exec_com requests are ignored in an absentee environment.

Currently these are:

17

1) ��attach

2) ��detach

3) ��command_line�� ��

4) ��ready

The reasons for these differences are:

1 �� 2) Input is already attached to the absentee input segment.

3) In an absentee process, command lines cannot be distinguished
from input lines.

4) Unlike exec_com, control of the ready message can be achieved

only by the ready_on and ready_off commands. Ail other control

requests work normally.

12) The absentee facility provides a number of priority queues.
The absentee commands (ear, lar, car) have a "-queue" control argument
that allows the user to specify the particular queue desired.

There are four queues. Site administrators can control the default

queue used to submit requests when the "-queue" control argument
isn't given to ear, pll_abs, etc., the cost of using each queue,

scheduling parameters for absentee processes in each queue, and

the lowest priority queue serviced on each shift.

13) The answering service enforces a limit stop (defined by the

installation) on the cpu time that can be used by an absentee process.
A user is able to specify a per-job time limit less than or equal to
this maximum. Specification of a time limit causes a cpu timer to be

established in the absentee process. Resetting all cpu timers makes

the limit ineffective.

14) A user cannot convert his interactive process to an absentee process,
nor his absentee process to an interactive one.

15) If a record quota overflow occurs during the execution of an absentee

process, in some cases the end of the absentee output segment can be

overwritten with a short message.
'

16) In an absentee process, cu_$set_cl_intermediary is invoked to set

the procedure called by the standard unclaimed signal handler after

outputting diagnostics. Thus, after getting a signalled error

(except "command_error" or "command_question"), the standard

unclaimed signal handler passes control to a procedure equivalent
to logout.

17) An argument is passed to start_up.ec to indicate which type of

process is being created. Type "help start_up" for further details.

18) A resetread on user_input results in the termination of the

absentee process. Procedures currently performing a resetread when

handling errors include the following:
basic

debug
edm

qedx

18

acceptjnessages

09/17/81 accept_messages, am

Syntax: am address -control_args

Function: initializes or reinitializes the user's process for

accepting both messages that are sent by the send_message command and

notifications of the form "You have mail." that are sent by the

send_mail command.

Arguments:
address

is the address of a mailbox. If no address is specified, the user's

default mailbox is assumed. The mailbox must be specified in one of

the following forms:

STR

is any argument that does not begin with a minus sign (-). If it

contains either of the characters �� or �� it is interpreted as a

mailbox pathname (the .mbx suffix is added if not present);
otherwise it is interpreted as a User_id.

-pathname PATH, -pn PATH

specifies the pathname of the mailbox. The .mbx suffix is

assumed if it is not present.

Control arguments:
-brief, -bf

prevents accept_messages from informing the user that it is creating
a mailbox, and prints messages in short format.

-call cmdline

when the message is received, instead of printing it in the default

format, accept_messages calls the command processor with a string of

the form:

cmdline number sender time message path
where:

cmdline
is any Multics command line; cmdline must be enclosed in

quotation marks if it contains blanks or other command language
characters.

number

is the sequence number of the message, assigned when the -hold

control argument is used; otherwise, number is 0.

sender

is the User_id of the person who sent the message.
time

is the date-time the message was sent.

message
is the actual message sent.

path
is the pathname of the mailbox to which the message was sent. If

the message was sent to the default mailbox, path is omitted.

19

To reverse the effect of a previously specified -call control

argument, the user can specify the -call control argument with no

cmdline argument.

-flush DT

discards messages sent before the specified date-time, where DT is a

string acceptable to the convert_date_to_binary_ subroutine

(described in the MPM Subroutines). This control argument is

intended to be used by operators and consultants.

-hold, -hd

holds messages until explicitly deleted by the delete_message
command. Messages printed when the -hold control argument is in

effect are preceded by an identifying number.

-long, -lg .

precedes every message printed by the sender's Person_id and

Project_id. This is the default.

-no_hold, -nhd

reverts the -hold control argument.

-prefix STR

places STR in front of all messages printed as they are received.

STR can be up to 12 characters long and can contain the ioa_ control

strings A/, AI and A- if desired.

-print, -pr

prints all messages that were received since the last time the user

was accepting messages.

-short, -sh
'

precedes consecutive messages from the same sender by "=:" instead

of the Person_id and Project_id.
-time N, -tm N

prints undeleted messages every N minutes, preceded by a message of

the form "You have X messages" where X is the number of undeleted

messages. If N equals 0, time mode is reset.

Notes: The user should not give conflicting control arguments in the

same invocation of the command (i.e., -long and -short or -long and

-brief).

20

acl matching

02/27/76 acl_matching

The strategy for matching an access control name argument is defined by three

rules:

A literal component, including "*", matches only a component of the same

name.

A missing component not delimited by a period is treated the same as a

literal "*" (e.g., "*.Multics" is treated as "*.Multics.*").

Missing components on the left must be delimited by periods.
A missing component delimited by a period matches any component.

Examples:
..* matches only the literal ACL entry "*.*.*".

Multics matches only the ACL entry "Multics.*.*".

(The absence of a leading period makes Multics the

first component.)
JRSmith.. matches any ACL entry with a first component of JRSmith.

.. matches any ACL entry.

. matches any ACL entry with a last component of *.

"" (null string) matches any ACL entry ending in ".*.*".

21

acquire_resource

06/17/81 acquire_resource, aqr

Syntax: aqr type STR1 ... STRn -control_args
or: aqr type -number N -control_args

Function: selects a resource of a given type from a free pool of all

such resources, and makes the user the accounting owner of the

resource. The accounting owner is given full control over the access

rights for all users of the resource, as well as control over many

parameters of the resource. Ownership of the resource is terminated

via the release_resource command.

Arguments:

type
is a resource type defined in the resource type description table

(RTDT).
STRi

is the unique identifying name of the particular resource being

acquired. If STR looks like a control argument (i.e., if it is

preceded by a hyphen), then it must be preceded by -name or -nm. If

name is not supplied, a resource is chosen to satisfy the

constraints imposed by the control arguments given (if any).

Control arguments:

-access_class accr, -acc accr

sets the initial AIM access class parameters where accr is an access

class range. Users at any authorization within the access class

range inclusive are allowed to read and write to the resource

(provided they also meet other access requirements).

-acs_path path

specifies the pathname of the access control segment (ACS) for this

resource. The ACS is not created by this command, but must be

created by the owner, and the desired access control list set. If

the.ACS does not exist or is not specified, the default access is

rew to the accounting owner, and null to all others.

-alloc STR

sets the allocation state of the resource to free or allocated,
where STR must be either "on" or "off". If this control argument is

not given, the allocation state is free. on sets the allocation

state to allocated; off sets the allocation state to free.

-attributes STR, -attr STR

specifies that the resource chosen must possess the potential
attributes specified in STR. When a satisfactory resource is

located, the current attributes are set to a proper combination of

these attributes (see "Notes" below).
-comment STR, -com STR

specifies the desired value of the comment string for this resource.

STR can be either "on" or "off". on resources may only be released

by privileged process. off resources may be released by owner.

22

-lock STR

locks or unlocks the resource, preventing or allowing use of that

resource, where STR must be either "on" or "off". on prevents any
of the resource; off allows use of the resource (off is the

default).

-number N, -nb N

specifies that the number of such resources to be acquired is N. If

this control argument is not given, 1 is assumed. This control

argument may only be specified if a name is not given.
-owner STR, -ow STR

spécifies that this is an acquisition on behalf of the user

specified by STR. If STR is given as "system", then the resource is

assigned to the system pool. If STR is given as "free", then the

resource is acquired to the free pool (effectively the same as no

-owner). If STR is of the form Person_id.Project_id (where neither

Person_id nor Project_id may be a star), the user specified has all

the rights of ownership to the resource as if he had acquired it

personally, except that if -release_lock on is specified, the owner

may not release (give up ownership of) the resource voluntarily.

-priv . '����':.

specifies that a privileged call is to be made to obtain the status

of this resource (see "Access Restrictions" below).

-release_lock STR, -rll STR

specifies whether this resource may be released by the owner, or may

only be released by a privileged process (see "Access Restrictions"

below), where STR must be either "on" or "off". If this control

argument is not specified, the resource may be released by the owner

(does not require special privilege).

Notes: This command acquires a resource for either the user issuing
it (requestor) or the user specified by the -owner control argument.
If the requestor is registered on more than one project and needs

corresponding access, or other users (on any project) need access to

acquire a resource, the requestor must create or modify the access

control segment (ACS). The requestor must then specify the

new/modified ACS by issuing this command using the -acs_path control

argument. The User_id, a Person_id.Project_id pair, specifies the

user to be added to or deleted from the ACS.

Access Restrictions: The use of the -owner, -release_lock, or

-access_class control arguments requires execute access to the

rcp_admin_ gate.

23

add name

01/15/76 add_name, an

Syntax: an path names

Function: adds an alternate name to an entry.

Arguments:

path

pathname of an entry. The star convention is allowed.

names

additional names to be added. The equals convention is allowed.

24

add_search_paths

12/03/80 add_search_paths, asp

Syntax:

asp search_list search_pathl -control_args ...

search_pathN -control_args

Function: adds one or more search paths to the specified search list.

Arguments:

search_list
is the name of the search list to which the new search paths are

added.

search_pathi

specifies a new search path, where search_pathl is a relative or

absolute pathname or a keyword (see "List of keywords" below).

Control arguments: are used only after the search_path argument. Only
one is allowed for each search_path.

-after STR, -af STR

specifies that the new search path is positioned after the

search path denoted by STR.

-before STR, -be STR

specifies that the new search path is positioned before the

search path denoted by STR.

-first, -ft

specifies that the new search path is positioned âs the first search

path in the search list.

-last, -lt

specifies that the new search path is positioned as the last search

path in the search list. This is the default.

List of keywords: The following are keywords accepted as search paths
in place of absolute or relative pathnames.

-home_dir, -hd

-process_dir, -pd

-referencing_dir, -rd

-working_dir, -wd

Notes: In addition, a pathname can be specified with the Multics

active function [user name] or [user project]. A search path enclosed

in quotes is not expanded when placed in the search list. It is

expanded when referenced in a user's process. This feature allows

search paths to be defined that identify the process directory or home

directory of any user.

If a link target does not exist, the search facility continues to

search for a matching entryname.

25

List of related search facility commands:

delete_search_paths, dsp

print_search_path, psp

set_search_paths, ssp

where_search_paths, wsp

26

add search rules

05/22/81 add_search_rules, asr

Syntax: asr pathl -control_args ... pathN -control_args

Function: Adds pathnames and keywords to the search rules for object

segments. ,

Arguments:

pathJ
is the absolute or relative pathname of a directory, or one of the

keywords listed below under "List of keywords".

Control arguments:
-after PATH, -af PATH

appends the previous path argument after the existing search rule

named by PATH.

-before PATH, -be PATH

inserts the previous path argument before the existing search rule

named by PATH.

-force, -fc

deletes any old occurrence of path in the search rules before adding
the new rule. The default is to fail and print an error message if

the rule to be added already exists in a different position.

-no_force, -nfc

fails and prints an error message if a rule to be added already
exists in a different position. (Default)

List of keywords:
Both pathJ and PATH arguments can be either pathnames or keywords.
The defined keywords are--

initiated-segments s

referencing_dir

working_dir

In addition, PATH in control args can be:

home_dir

process_dir

any site-defined keywords

Notes: No warning is printed if a rule to be added already exists in

the same position as that for which it is intended.

27

adjust_bit_count

10/16/79 adjust_bit_count, abc

Syntax: adjust_bit_count paths -control_args

Function: sets the bit count of segments by examining the contents.

Arguments:

paths
are the pathnames of segments; star convention is allowed.

Control arguments:
-character, -ch

set to the last nonzero character (default is last nonzero word).
-chase .

chase links when using the star convention. The default is to chase links

only when specified without the star convention.

-long, -lg

print a message when the bit count of a segment is changed, giving the old

and new values.

-no_chase _

do not chase links when using the star convention. (Default)

Notes: This command should not be used on segments in structured files.

28

answer

07/13/81 answer

Syntax: answer STR -control_args command_line

Function: provides preset answers to questions asked by another

command.

Arguments:
'

STR

is the desired answer to any question. If the answer is more than

one word, it must be enclosed in quotes. If STR is -query, the

question is passed on to the user. The -query control argument is

the only one that can be used in place of STR.

command_line
is any Multics command line. It can contain any number of separate

arguments (i.e., have spaces within it) and need not be enclosed in ..

quotes. ,',:..��

Control arguments:
-brief, -bf

suppresses printing (on the user's terminal) of both the question
and the answer.

-call STR

evaluates the active function string STR to obtain the next answer

in a sequence. STR must be quoted if it contains command language
characters. The surrounding brackets must be omitted, as in "segs

*.pll". The return value "true" is translated to "yes", and "false"

to "no". Ail other return values are passed as is.

-match STR

answers only questions whose text matches STR. If STR is surrounded

by slashes (/), it is interpreted as a qedx regular expression.

Otherwise, answer tests whether STR is literally contained in the

text of the question. Multiple occurrences of -match and -exclude

are allowed (see Notes below). They apply to the entire command

line.

-exclude STR, -ex STR

passes on, to the user or other handler, questions whose text

matches STR. If STR is surrounded by slashes (/), it is interpreted
as a qedx regular expression. Otherwise, answer tests whether STR

is literally contained in the text of the question. Multiple
occurrences of -match and -exclude are allowed (see Notes below).

They apply to the entire command line.

-query

skips the next answer in a sequence, passing on the question to the

user. The answer is read read from the user_io I/0 switch.

-then STR

supplies the next answer in a sequence.
-times N

gives the previous answer (STR, -then STR, or -query) N times only

29

(where N is an integer).

Notes: Answer provides preset responses to questions by establishing
an on unit for the condition command_question, and then executing the

designated command. If the designated command calls the command_query_
subroutine (described in the MPM Subroutines) to ask a question, the on

unit is invoked to supply the answer. The on unit is reverted when the

answer command returns to command level. See "List of System
Conditions and Default Handlers" in the MPM Reference Guide for a

discussion of the command_question condition.

If a question is asked that requires a yes or no answer, and the preset
answer is neither "yes" nor "no", the on unit is not invoked.

The last answer specified is issued as many times as necessary, unless

followed by the -times N control argument.

The -match and -exclude control arguments are applied in the order

specified. Each -match causes a given question to be answered if it

matches STR, each -exclude causes it to be passed on if it matches STR.

A question that has been excluded by -exclude is reconsidered if it

matches a -match later in the command line. For example, the command

line:

answer yes -match /fortran/ -exclude /fortran_io/ -match /Afortran_io/

answers questions containing the string "fortran", except that it does

not answer questions containing "fortran_io", except that it DOES

answer questions BEGINNING with "fortran_io".

30

archive

01/12/81 archive, ac

Syntax: ac key archive_path paths

Function: combines an arbitrary number of separate segments into one

single segment.

Arguments:

key
is one of the functions listed below under "List of Keywords." The

key functions are listed according to their operation.

archive_path
is the pathname of the archive segment to be created or used. The

archive suffix is added if the user does not supply it. The star

convention can be used with extraction and table of contents

operations.

paths
are the components to be operated on by table of contents and delete

operations. The star and equal conventions cannot be used.

List of keywords:

key functions are listed below according to their operation.

Table of Contents Operation--
t

print the entire table of contents if no components are named by the

path arguments; otherwise print information about the named

components only. Title and column headings are printed at the top.
tl

print the table of contents in long form; operates like t, printing
more information for each component.

tb

print the table of contents, briefly; operates like t, except that

the title and column headings are suppressed.
tlb

print the table of contents in long form, briefly; operates like tl,

except that the title and column headings are suppressed.

Append Operation--
a

append named components to the archive segment. If a named

component is already in the archive, a diagnostic is issued and

the component is not replaced. At least one component must be

named by the path arguments.
ad

append and delete; operates like a and then deletes all segments
that have been appended to the archive.

adf .

append and force deletion; operates like a and then forces deletion

of all segments that have been appended to the archive.

31

ca

copy and append; operates like a, appending components to a copy of

the new archive segment created in the user's working directory.
cad

copy, append, and delete; operates like ad, appending components to

a copy of the archive segment and deleting the appended segments.
cadf

copy, append, and force deletion; operates like adf, appending

components to a copy of the archive segment and forcibly deleting
the segments requested for appending.

Replace Operation--
r

replace components in, or add components to the archive segment.
When no components are named in the command line, all components of

the archive for which segments by the same name are found in the

user's working directory are replaced. When a component is named,
it is either replaced or added.

rd

replace and delete; operates like r, replacing or adding components,
then deletes all segments that have been replaced or added.

rdf

replace and force deletion; operates like r and forces deletion of .

all replaced or added segments.

cr

copy and replace; operates like r, placing an updated copy of the

archive segment in the user's working directory instead of changing
the original archive segment.

crd

copy, replace and delete; operates like rd, placing an updated copy
of the archive segment in the user's working directory.

crdf

copy, replace, and force deletion; operates like rdf, placing an

updated copy of the archive segment in the user's working directory.

Update Operation--
u

update; operates like r except that it replaces only those

components for which the corresponding segment has a date-time

modified later than that associated with the component in the

archive.

ud

update and delete; operates like u and deletes all updated segments
after the archive has been updated.

udf

update and force deletion; operates like u and forces deletion of

all updated segments.

eu

copy and update; operates like u, placing an updated copy of the .

archive segment in the user's working directory.
cud

copy, update, and delete; operates like ud, placing an updated copy

32

of the archive segment in the user's working directory.
cudf

copy, update, and delete force; operates like udf, placing an

updated copy of the archive segment in the user's working directory.

Delete Operation--
d

delete from the archive those components named by the path
'

arguments.
cd

copy and delete; operates like d, placing an updated copy of the

archive segment in the working directory.

Extract Operation--
x

extract from the archive those components named by the path

arguments, placing them in segments in the storage system. The

directory where a segment is placed is the directory portion of the

path argument. The access mode stored with the archive component is

placed on the segment for the user performing extraction. If no

component names are given, all components are extracted and placed
in segments in the working directory. The archive segment is not

modified.

xf

extract and delete force; operates like x, forcing deletion of any

duplicate names or segments found where the new segment is to be

created.

Notes: The table of contents operation and the extract operation use

the existing contents of an archive segment; the other operations

change the contents of an archive segment. A new archive segment can

be created with either the append or replace operation. In each of

the operations that add to or replace components of the archive, the

original segment is copied and the copy is written into the archive,

leaving the original segment untouched unless deletion is specified
as part of the operation.

The star convention can be used in the archive segment pathname

during extract and table of contents operations; it cannot be used

during append, replace, update, and delete operations.

Each component of an archive segment retains certain attributes of

the segment from which it was copied. These consist of one name, the

effective mode of the user who placed the component in the archive,
the date-time last modified, the bit count, and the date-time placed
in the archive.

33

archive-sort w

06/03/76 archive_sort, as

Syntax: as paths

Function: sorts components of an archive segment into ascending order by name

using standard ASCII collating sequence.

Arguments:

paths
are pathnames of archive segments; archive suffix need not be given.

Notes: The original archive segment is overwritten by the sorted archive

segment.

34

archive_table

02/06/81 archive_table, act

Syntax: act archive_path starnames -control_args

Function: returns the names of specified archive components in a

specified archive segment. Names are returned separated by single

spaces.

Arguments:

archive_path
is the pathname of an archive segment, with or without the archive

suffix. The star convention is NOT allowed.

starnames

are optional component names to be matched against names of archive

components. The star convention IS allowed.

Control arguments:

-absolute_pathname, -absp
returns full pathnames of archive components, of the form

ARCHIVE_DIR��ARCHIVE_NAME::COMPONENT_NAME, rather than just the

component names.

Notes: Invoked as an active function, names are returned requoted and

separated by single spaces. Invoked as a command, archive_table prints
one component name per line.

Syntax as active function: _
[act archive_path starnames -control_args]

35

assign_resource

03/13/80 assign_resource, (ar)

Syntax: ar resource_type -control_args

Function: calls the resource control package (RCP) to assign a
-

resource to the user's process.

Arguments:

resource_type

specifies the type of resource to be assigned. Currently, only
device types can be specified. The -device control argument is used

to name a specific device to assign. Other control arguments are

used to specify characteristics of the device to be assigned. The

following device type keywords are supported:

tape_drive

disk_drive
console

printer

punch
reader

special

Control arguments:
-device STR, -dv STR

specifies the name of the device to be assigned. If this control

argument is specified, other control arguments that specify device

characteristics are ignored. (See "Examples" below.) If the -long
control argument (see below) is used in conjunction with this

control argument, a message containing the name of the assigned
device is printed on the user's terminal; otherwise, no message is

printed.
-model N

specifies the device model number characteristic. Only a device

that has this model number is assigned. In order to find the model

numbers that are acceptable, use the print_configuration_deck
command described in System Tools, Order No. AZ03.

-track N, -tk N

specifies the track characteristic of a tape drive. The value can

be either 9 or 7. If this control argument is not specified and if

the -volume control argument is not specified, a track value of 9 is

used when assigning a tape device.

-density N, -den N

specifies the density capability characteristic of a tape drive.

There can be more than one instance of this argument. A tape drive

is assigned that is capable of being set to all of the specified
densities. Note that the values permitted depend on the particular
hardware on the system. The acceptable values for this argument
are:

200

. 36

556
. 800

1600

6250

-train N, -tn N

specifies the print train characteristic of a printer.

-line_length N, -11 N

specifies the line length of a printer. Its value must be one that

is found in the "line length" field of a printer PRPH configuration
card. If this field is not specified on a printer PRPH

configuration card, this device characteristic is ignored for this

printer. - .

-volume STR, -vol STR

specifies the name of a volume. If possible, the device assigned is

one on which this volume has already been placed. If this is not

possible (e.g., the volume is on a device assigned to a process) any

available, appropriate, and accessible device will be assigned.

-number N, -nb N

specifies the number of resources to assign. All of the resources

assigned have the device characteristics specified by any other

arguments passed to this command. If this control argument is not

specified, one resource is assigned.
-comment STR, -com STR .

is a comment string that is displayed to the operator when the .

resource' is assigned. If more than one string is required, the

entire string must be in quotes. Only printable ASCII characters

are allowed. Any unprintable characters (also tabs or new lines)
found in this string are converted to blanks.

-long, -lg

specifies that all of the device characteristics of the assigned
device should be printed. If this argument is not supplied, only
the name of the assigned device is printed.

-system, -sys

specifies that the user wants to be treated as a system process

during this assignment. If this argument is not specified OR if the

user does not have the appropriate access, then the RCP assumes that

this assignment is for a nonsystem process.
-wait N , -wt N .

specifies that the user wants to wait if the assignment cannot be

made at this time because the resources are assigned to some other

process. The value N specifies the maximum number of minutes to

wait. If N minutes elapse and a resource is not yet assigned, an

error message is printed. If N is not specified, it is assumed that

the user wants to wait indefinitely.

-speed N

specifies the speed of a tape drive. The acceptable values depend
on the particular hardware on the system and can be the following:

75

125

200 .

37

Notes: Currently, only device resources can be assigned. An assigned
device still must be attached by a call to some I/0 module. If a

device is successfully assigned, the name of the device is printed.
(If the user requests a specific device that is successfully assigned,
the name of the device is not printed unless the user asks for it. See

the -device and -long control arguments above.)

Examples: In the example below, the user issues the assign_resource
command with the "tape_drive" keyword and the -model control argument.
The system responds with the name of the assigned device.

! assign_resource tape_drive -model 500

Device tape_04 assigned

In the next example, the user issues the assign_resource command with ,
the "tape_drive" keyword and the -device and -long control arguments.
The system responds with the name of the assigned device and the model

number, track, density and speed characteristics.

! assign_resource tape_drive -device tape_05 -long

Device tape_05 assigned
Model = 500

'

Tracks = 9

Densities = 200 556 800 1600

Speed = 125

38

attach audit

06/17/81 attach_audit, ata

Syntax: ata old_switch new_switch -control_args

Function: starts auditing. Moves the attachment of the specified
switch to another switch. Attaches the first switch via audit_ to the

second.

Arguments:

old_switch
is the switch to be audited. (DEFAULT -- user_i/o)

new_switch
is the dummy switch to receive old_switch's previous attachment.

(DEFAULT -- audit_i/o.time)

Control arguments:

-pathname STR, -pn STR

use STR as the audit file. (DEFAULT -- [homedir]��[date].audit)

-truncate, -tc

truncate the audit file, if it already exists.

(DEFAULT -- extend it.)
-modes STR

set the modes on user_i/o using STR as the mode string.

Notes: If no arguments or control arguments are given, auditing is set

up for user_i/o with a default audit file of [date].audit. Multiple
uses on the same day are all logged, one after the other, in the same

audit file. The attach_audit command sets the safety_switch "on" for

the audit file, detach_audit turns the safety_switch off.

For more information on the audit facility, type:

help audit_

help audit_.gi

help detach_audit

help audit_editor

help display_audit_file

help new_audit.gi

. 39

audit

03/20/81 - audit_ I/0 module

The audit_ I/0 module intercepts I/O activity on a given switch, allowing
one to log and or edit this data.

Attach description:

audit_ switch_name -control_args

Arguments:

switch_name
is the name of an I/O switch to inserted between the existing
switch and its I/0 module.

Control arguments:

-truncate, -tc
. truncate the old audit file, if it has the same name as the new

one.

-pathname, -pn
use this pathname as the audit file. The default pathname is

[homedir]��[date].audit .

Modes operation:

audit_input
audit input lines. (DEFAULT -- on)

audit_output
audit output lines. (DEFAULT -- on)

audit_edit
enable audit editing. Does not put the user in the audit editor, it

only makes it possible to enter the editor. (DEFAULT -- on)

audit_meter
write a metering stamp before each entry in the file. The stamp
consists of the actual time of the metering, incremental cpu time

since the last stamp, and the incremental page faults since the

last stamp.

audit_file_size=n
set the maximum number of records for the audit file to n. The

file is treated as a circular buffer of n records. A file size of

"unlimited" allows the audit file to grow indefinitely.

audit_trigger=x .

set the audit request trigger character to x.

40

audit_trace
trace ail control and mode calls to the module. Mode trace entries

are idntified by a TM tag, control trace entries are identified by
a TC tag.

audit_truncate
truncate the audit file.

audit_transparent
turn off auditing of audit and audit edit requests, as well as

their output.

audit_suspend
turn off all modes.

audit_use_editor_prompt
turn on prompting in the audit editor.

audit_editor_prompt_string=STR, audit_epstr=STR
set the audit editor prompt string to STR. The audit editor

prompt has the default appearance "audit editor: " ,or if the

number of recursive invocations of the editor is greater than 1,
"audit editor(level N): ", where N is the depth of the current

invocation. This string is used as an ioa_ control string, with

the arguments being: a bit which is on if the level is greater
than 1; and, the level. The default string is .

"A/audit editorA[(Ad)A]:A2x".

The audit file:

The default audit file pathname is [homedir]��[date].audit . The default

file_size is unlimited. If one has sufficient data logged, the audit file may
become a multi-segment file. The first 10 bytes of the file contains the

header, which is used by both the audit_ I/0 module and the audit_editor.

The entry type identifiers are:

EL
edit line, returned from audit editor.

IC

result of a get_chars.

IL

result of a get_line.

M

metering data.

OC

result of a put_chars.

TC

control request trace.

TM ,

mode request trace.

41

Notes:

For information about the audit editor see audit_editor.info .

Audit requests:
The audit requests are always recognized when auditing is on. The three

character request sequence is the trigger character followed by the desired

request followed by a new line. The default trigger character is an

exclamation mark ("!"). The requests are:

print "audit" and which of input and output is being audited.

print a brief description of available audit requests.
!e

enter the audit editor.

!E

enter the audit editor, with the input line processed as edit

requests.
!a

abbrev expand the input line. See the MPM documentation on abbrev

for more information.

!r

replay the input line. That is, display the input line without a

new line. Further input up to the next new line is appended to the

redisplayed input. This is the input line which is passed through
the audit_ I/0 module.

!t

instructs the audit_ module not to log the input line, i.e. to make

it transparent.

!d

delete the line. It prevents the input line from ever being seen.

!n

no operation. The input line to which this is appended is simply

passed through the audit_ module.

42

a��dir_.9i

03/20/81 - Auditing and editing I/0:

Auditing allows one to keep a record or log of activity on a

particular I/0 switch. Also, it allows editing of input. The

simplest use of auditing is:

! attach_audit .

This will set up auditing of input and output and enable audit

editing. An audit file will be placed in the user's home directory
with a two component entry name. The first component of the name is

the date and the second component is the suffix ".audit".

Audit requests:

The audit requests are always recognized when auditing is on.

The three character request sequence is the trigger character followed

by the desired request followed by a new line. The default trigger
character is an exclamation mark ("!"). The requests are:

print "audit" and which of input and output is being
'

audited.

!?

print a brief description of available audit requests.
!e

enter the audit editor.

!E

enter the audit editor, with the input line processed as

edit requests.

!a
abbrev expand the input line. See the MPM documentation

on abbrev for more information.

!r

replay the input line. That is, display the input line .

without a new line. Further input up to the next new line

is appended to the redisplayed input. This is the input
line which is passed through the audit_ I/0 module.

!t

instructs the audit- module not to log the input line,
i.e. to make

it transparent.
: T1

no operation. The input line to which this is appended is

simply passed through the audit_ module.

!d

delete the line. It prevents the input line from ever

being seen by the system.

43

Editor requests:

The audit editor requests are presented in two categories,
familiar requests and special requests. The editor syntax is

basically that of qedx. Any number of requests may be on the same

line and spaces are ignored. Addressing, where appropriate, is done

the same as in qedx with two notable exceptions. First, the "." is a

request for self-identification rather than an indicator for the

current address. Second, addresses are in terms of entries in the

audit file rather than lines in a buffer. If the default search tag
is in use, as is the case unless specifically defeated, the absolute

entry number refers to the number of entries with the default search

tag from the beginning of the file. Similarly, a relative entry
address refers to the number of entries with the default search tag
before or after the current address.

Familiar requests:

[[ADR1,]ADR2]p print

print the addressed entries.

s/REGEXP/STRING/ substitute _

replace occurrences of REGEXP in the edit buffer with

STRING.

ADR location

locate the addressed entry. If ADR is not followed by a

request the edit buffer is printed. An ADR can contain an
absolute entry reference at its beginning, relative
addresses in any portion, and regular expressions in any

portion. An absolute address is either a number or the

dollar-sign (to indicate the last entry in the audit file.

..STRING execute

pass STRING to command processor and return to the audit
editor.

= print current entry number

print the current entry number. This value is dependent
on the current default search tag. If the default search

tag changes, the current entry may also change.

q quit

quit from the editor without doing anything (i.e.,

returning any characters).

Special requests:

44
'

expand expand abbrev

abbrev expand the edit buffer.

off audit off

don't audit input and output in the editor.

on audit on

audit the editor.

1 last returned line

address the last line returned by the audit editor.

r[STRING] return line

return the rest of the request line, if non-null.

Otherwise, return the edit buffer (without trigger

sequence).

n return new-line

returns a new-line character.

type print type

print the audit entry type of the current position.

exec execute

'
pass the edit buffer to the command processor and return

to the audit editor.

d/STRING/ default search tag

set the default search tag to STRING. If STRING is only
one character, then only the first character of the tag is

used to determine if an entry is seen (in counting entries

and doing searches). If STRING is two characters, the

match is done one both characters of the tag.

Request syntax and processing:

The square brackets in the request syntax above are to indicate

the contained item is optional. The square brackets are not typed
when entering the request. If execution of a request, in the audit

editor, should fail for any reason, the processing of that request _
line is aborted, the user is informed of the failure, and a new

request is prompted for. Note that this means the user is left in the

editor when a problem is encountered executing a request line

associated with a E audit request.
The audit editor may be entered recursively, and each level of

the editor has its own memory for the last returned line from its

level.

45

Examples:

To set up with default audit file in homedir;

attach_audit
To set up with an audit file in the process_dir;

attach_audit -pn [pd]��my_audit_file
To set the audit file to be a circular file of 5 records;

io modes user_i/o audit_file_size=5
To re-execute the last use of the pll command;

��/Apll/r!E
To execute the above command line again;

lr!E .

46

audit-editop

11/18/80 The audit- editor.

The audit- editor is invoked by typing the edit request when

auditing. The edit request comprising a three character

sequence;

trigger character il | "e" or "E" il new-line

The default trigger character is "!".

Editor request list:

[[ADR,]ADR]p print
s/REGEXP/STRING/ substitute

ADR location

..STRING execute

q quit
: defeat default search tag
? (or .?) list editor requests

expand (or .expand) expand abbrev

off (or .off)) audit off

on (or .on) audit on

1 (or .1) last returned line

r[STRING] (or .r[STRING]) return line

n (or .n) return newline

type (or .type) print type
exec (or .exec) execute edit line

d/STRING/ (or .d/STRING/) default search tag
= print current entry number

Explanation of editor requests:

The audit editor requests are presented in two categories,
familiar requests and special requests. The editor syntax is

basically that of qedx. Any number of requests may be on the

same line and spaces are ignored.

Addressing, where appropriate, is done the same as in qedx
with two notable exceptions. First, the "." is a request for

self-identification rather than an indicator for the current

address. Second, addresses are in terms of entries in the audit

file rather than lines in a buffer.

If the default search tag is in use, as is the case unless

specifically defeated, the absolute entry number refers to the

number of entries with the default search tag from the beginning
of the file. Similarly, a relative entry address refers to the

number of entries with the default search tag before or after

the current address.

Addressing:

47

An address can consist of one or more of the following three

types of address, the-relative address, the absolute address, and
the search address.

An absolute address refers to an entry by its entry number.
This entry number is determined by counting, from the beginning
of the file, the number of entries which match the default search

tag. The use of a colon (":") means every entry is counted.

A relative address is a number preceded by either a "+" or a
"-". It refers to the entry which is the specified number of

entries with the default search tag before , "-", or after, "+",
the entry currently in the edit buffer.

A search address is a regular expression which may be

preceded by a less-than ("��"). A regular expression is a
character string beginning and ending with a slash ("/"). A
search address which is a regular expression alone refers to the
next entry in the file after the one currently in the edit

buffer, which contains a match for the regular expression.

A search address which comprises a regular expression
preceded by a less-than, "��", does a backward search for the
first entry previous to the current entry containing a match for
the regular expression. N is a positive integer, and /REGEXP/
is a regular expression. The three types of addresses and their
variations are: N -N +N /REGEXP/ ��/REGEXP/

Familiar Requests:

[[ADR1,]ADR2]p print

'
print the addressed entries.

s/REGEXP/STRING/ substitute

replace occurrences of REGEXP in the edit buffer with
STRING.

ADR location

locate the addressed entry. If ADR is not followed

by a request the edit buffer is printed. An ADR can
contain an absolute entry reference at its beginning,
relative addresses in any portion, and regular

expressions in any portion. An absolute address is

either a number or the dollar-sign (to indicate the
last entry in the audit file.

..STRING execute

pass STRING to command processor and return to the

audit editor.

q quit

return the current line with the trigger sequence

appended.

48

= print current entry number ·

print the entry number associated with the current

position in the audit file. The value of the entry
number for the current position can change with

different default search tags. See the ":" and "d"

requests below.

Special requests: ,

:
'

defeat default search tag

look at every entry, regardless of entry class (or

tag). only effective for requests following it and

on the same request line.

? (or .?) list editor requests

list the editor requests and a brief description of

their function.

expand (or .expand) expand abbrev

abbrev expand the edit buffer.

off (or .off) audit off

don't audit input and output in the editor.

on (or .on) audit on

audit the editor.

1 (or .1) last returned line

address the last line returned by the audit editor.

r[STRING] (or .r[STRING]) return line

return the rest of the request line, if non-null.

Otherwise, return the edit buffer (without trigger

sequence).

n (or .n) return new-line

returns a new-line character.

type (or .type) print type

print the audit entry type of the current position.

exec (or .exec) execute

pass the edit buffer to the command processor and

return to the audit editor.

d/STRING/ (or .d/STRING/) default search tag

49

set the default search tag to STRING. If STRING is

only one character, then only the first character of

the tag is used to determine if an entry is seen (in

counting entries and doing searches). If STRING is

two characters, the match is done one both characters

of the tag.

Notes: .
The audit_ editor may be invoked while in the audit_ editor,

if the editor is being audited. For every level of the editor,
there is a remembered last returned line distinct from all other

remembered last returned lines.

There is also a position in the audit file associated with
the last returned line. This position is the location that the
last returned line was recorded (this position exists since last
returned lines are audited). The "1" request sets the current

position to be this associated position. It is important to
note that this position (or entry) is distinct from wherever the

original copy of the last returned line(the one which was edited
to produce the last returned line) was located.

50

bind

07/25/81 bind, bd

Syntax: bd paths -control_args

Function: produces a single bound object segment from one or more

unbound object segments, stored in archive segments, which are called

the components of the bound segment. -

Arguments:

paths
are the pathnames of archive segments containing one or more

component object segments to be bound. The archive suffix is

assumed. Up to 16 input archive segments can be specified. They
are logically concatenated in a left-to-right order to produce a

single sequence of input component object segments.

Control arguments:
-brief, -bf

suppresses printing of warning messages.

-force_order, -fco _

is equivalent to including a Force_Order statement in the bindfile.

Since the need to use Force_Order is often temporary, and caused by

update archives which have had components deleted, this is

preferable to using the Force_Order statement, since it need only be

used while the temporary condition exists.

-force_update, -fud
'

is similar in function to -update, except that the archive specified

following -force_update need not exist. Any archive which does

exist is treated the same way as for -update, and any which does not

is simply ignored. This is useful for constructing abbrevs which

bind archives which may or may not have update archives in various

locations.

-list, -ls

produces a listing segment whose name is derived from the name of

the bound object segment plus a suffix of list. The listing segment
is generated for the purpose of dprinting; it contains the bound

segment's bind control segment (see "Notes on bindfile" below), its

bind map, and that information from the bound object segment printed

by the print_link_info command. This control argument cannot be

invoked with -map. In the absence of the -list or -map control

arguments, no listing segment is generated.

-map

produces a listing segment (with the suffixes list and map) that
contains only the bind map information. This control argument is

incompatible with -list. In the absence of the -list or -map
control arguments, no listing segment is generated.

-update paths, -ud paths

51

indicates that the following list of archive segments (paths)

specifies update rather than'input object segments. The archive

suffix is assumed in paths. Up to a combined total of 16 input and

update segments can be specified. The contained update object

segments are matched against the input object segments by object

segment name. Matching update object segments replace the

corresponding input object segments; unmatched ones are appended to

the sequence of input object segments. If several update object

segments have the same name, only the last one encountered is bound

into the bound segment.

Notes: Compilers and the assembler produce unbound object segments.

Binding has three benefits: the reduction of storage fragmentation,
the prelinking of external references between the components, and the

reduction of size of address space necessary to execute the components.

Notes on output: The binder produces as its output two segments: an

executable bound object segment and an optional, printable ASCII

listing segment. The name of the bound segment is, by default, derived

from the entryname of the first input archive segment encountered by

stripping the archive suffix from it. The name of the listing segment
is derived from the name of the bound segment by adding the list suffix

to it. Use of the Objectname master statement in the bindfile (see
"List of master keywords" below) allows the name of the bound segment
to be stated explicitly. In addition, use of the Addname master

statement in the binding instructions causes additional segment names

to be added to the bound segment. The primary name of the bound

segment must not be the same as the name of any component.

Notes on bindfile: The bindfile is a segment containing symbolic
instructions that control the operation of the binder. Its entryname
must contain the bind suffix and it must be archived into any one of

the input archive segments.

In case two bindfiles are specified, one in an input archive segment
and the other in an update archive segment, the latter takes precedence
and a warning message is printed to that effect.

The syntax of the bindfile statements consist of a keyword followed by
zero or more parameters and then delimited by a statement delimiter.

Master statements pertain to the entire bound object segment; normal

statements pertain to a single component object within the bound

segment. Master statements are identified by master keywords that

begin with a capital letter; normal keywords begin with a lowercase

letter. A keyword designates a certain action to be undertaken by the
binder pertaining to parameters following the keyword.

List of master keywords:

Objectname
the parameter is the segment name of the new bound object.

Order

the parameters are a list of objectnames in the desired binding
order. In the absence of an order statement, binding is done in the

order of the input sequence. The order statement requires that

there be a one-to-one correspondence between its list of parameters

52

and the components of the input sequence.

Force-Order
same as Order, except that the list of parameters can be a subset of

the input sequence, allowing the archive segments to contain

additional segments that are not to be bound (e.g., source

programs).

Global

the parameters can be either retain, delete, or no_link. The

parameter selected pertains to all component object segments within

the bound segment. A global or explicit statement concerning a

single component object or a single external symbol of a component ,
object overrides the Global statement for that component object or

symbol.
Addname

the parameters are the symbolic names to be added to the bound

segment. If Addname has no parameters, it causes the segment names

and synonyms of those component objects for which at least a single

entrypoint was retained to be added to the bound segment.

No_Table
does not require parameters. It causes the symbol tables from all

the component symbol sections containing symbol tables to be omitted

from the bound segment. If this keyword is not given, all symbol
tables are kept.

Perprocess_Static
does not require parameters. It causes the perprocess_static flag
of the bound segment to be turned on, which prevents the internal

static storage from being reset during a run unit.

If no bindfile is specified, the binder assumes the following
default parameters:

Objectname: segment name of the first input archive file.

Global: retain; /*regenerate all definitions*/

List of normal keywords:

objectname
the single parameter is the name of a component object as it appears
in the archive segment. The objectname statement indicates that all

following normal statements (up to but not including the next

objectname statement) pertain to the component object whose name is

the parameter of the objectname statement.

synonym
the parameters are symbolic segment names declared to be synonymous
to the component object's objectname.

retain

the parameters are the names of entrypoints defined within the

component object segment that the user wishes to retain as

entrypoints of the bound object segment.

delete

the parameters are the names of entrypoints defined within the

component object segment that the user does not wish to be retained

as entrypoints of the new bound segment.

no_link
the parameters are the names of entrypoints that are NOT to be

53

prelinked during binding. The no_link statement implies a retain

statement for the specified names.

global
the parameter can be either retain, delete, or no_link. The

parameter selected becomes effective for all entrypoints of the

component object. An explicit retain, delete, or no_link statement

concerning a given entrypoint of the component object overrides the

global statement for that specific entrypoint. A global no_link
causes all external references to the component object to be

regenerated as links to entrypoints; this allows execution-time

substitution of such a component by a free standing version of it,
for example for debugging purposes. -

table

does not require parameters. It causes the symbol table for the

. component to be retained and is needed to override the No_Table
master keyword, described above.

List of bindfile delimiters:

keyword delimiter used to identify a keyword followed by one or

more parameters. A keyword that is followed by no parameters is

delimited by a statement delimiter.

statement delimiter.

parameter delimiter. The last parameter is delimited by a statement

delimiter.

/*

begin comment.

end comment.

Notes on error messages: The binder produces three types of error

messages. Messages beginning with the word "Warning" do not

necessarily represent errors, but warn the user of possible
inconsistencies in the input components or bindfile. Messages

beginning with the word "binder_" normally represent errors in the

input components. Errors detected during the parsing of the bindfile

have the format--

Bindfile Error Line #N

where N is the line number of the erroneous statement. If an error is

detected during parsing, the binder aborts because it cannot bind

according to the user's specifications.
1

54

calendar

01/05/81 calendar

Syntax: calendar paths -control_args

Function: prints a calendar page for one month. The preceding and

following months are also shown.

Arguments:

paths
are the pathnames of segments that contain a list of events in the

form of text to be inserted into the calendar.

Control arguments:
-date DATE, -dt DATE

identifies which month is printed. This argument must be a date .

acceptable to the convert_date_to_binary_ subroutine (described in

the MPM Subroutines). If the -date control argument is not given,
the current month is printed.

-fiscal_week, -fw

labels boxes with fiscal week numbers.

-wait, -wt

causes the command to wait for a single newline character from the

user before printing the calendar.

-stop, -sp
causes the command to wait for a single newline character from the

user before printing the calendar and after. printing it.

-force, -fc

causes a calendar to be printed regardless of errors in the input
files. 1

-box_height HEIGHT, -bht HEIGHT

changes the height of each calendar box from 7 lines to HEIGHT

lines. If HEIGHT �� 7, calendars for previous and following months

do not appear in margin.

-julian, -jul

prints "julian dates" in bottom line of each box -- the number

of days from the beginning of the year and the number of days

remaining in the year.

Notes on Output: Each box for a calendar day is 16 characters wide.

and 7 lines high unless otherwise determined by the -box_height
control argument. Each box in the calendar contains the number of

the day of the month; other information can also appear in the box,

at the user's option. The month preceding the specified month and

the month following it are also printed.

Notes on Input: Each segment contains lines that set up a string to

be inserted into the appropriate box of the calendar. The fields in

55

these lines are separated by commas and have the form--

opcode,dtfield,...,dtfield,text

The first field is the operation code (either date, rel, repeat,
easter or rename). The second and succeeding fields depend on which

operation code is used. Lines that produce a date not in the current

month are ignored.

List of operation codes:

date

has the following syntax-- date,DT,TEXT
DT is the date for which the following text is to be inserted.
TEXT is arbitrary text up to 16 characters long.

rel

allows a note to be inserted for a day which is calculated

relative to the beginning of a month. Its syntax is as follows--

rel,MONTHNO,RELDT1,RELDT2,TEXT
MONTHNO is a one or two digit number from 1 to 12 indicating the

month from which the event is to be calculated, or can be -1,
0 or +1. -1 indicates the month previous to the printed month,
0 refers to the month being printed, and +1 indicates the month

after the printed month.

RELDT1 is a date converted relative to the day before the beginning
of the specified month.

RELDT2 is a date which is converted relative to the date indicated

by the RELDT1 of the third field. It specifies the date
selected for the insertion of the TEXT.

TEXT is arbitrary text.

repeat
inserts a note into the boxes for several days which are separated
by a constant interval of time. The syntax is as follows--

repeat,STARTDT,END-OR-COUNT,INTERVAL,TEXT
STARTDT is the date on which the series of events starts.

0 indicates that the series starts on the first day of
the printed month.

END_OR_COUNT is the end date or 0, or a count of the number of
events in the series. 0 indicates that the series continues

throughout the entire month being printed. An integer number

gives the number of events in the series.

INTERVAL is any offset acceptable to the convert_date_to_binary_
subroutine, or 0. An offset is truncated to an integral number
of days; but if it is less than one day, it is treated as if it

were 1 day. 0 indicates an interval of 1 day.
TEXT is arbritrary text to be placed in the box of each day

in the series.

easter

calculates the date for Easter and inserts its text in that date

if it falls in the printed month. The syntax is--

easter,TEXT

rename

allows the user to change the names of days or months.

56

Its syntax is--

rename,OLDNAME,NEWNAME
OLDNAME gives the name of a day or month to be changed. If the name

of that day or month was previously changed in the current

invocation of the command, OLDNAME must be the current name.

NEWNAME gives the name to replace the OLDNAME.

Notes: All dates must be acceptable to the convert_date_to_binary
subroutine. See date_time_strings.gi.info for acceptable forms.

If the command finds errors in its arguments it reports the errors

and does not print a calendar. If it finds errors in an input file,
it stops after all errors have been reported, unless the user gives
the -force control argument to indicate that the calendar should be

printed in spite of errors.

For more information, refer to the MPM Commands and Active Funtions,
Order no. AG92.

57

calendrier

05/13/83 calendrier

Syntaxe: calendar noms_de_chemin -arguments_de_controle

Fonction: Imprime une page de calendrier pour un mois donn' e.

Argument:

noms_de_chemin
sont des noms de segment contenant des donnees a inserer dans le calendrier.
Cet argument est facultatif. S'il n'est pas donn' e, le programme calendar

imprime un calendrier contenant les titres (noms des jours et des mois)
en anglais.

On a cree un segment permettant d'obtenir :

- les noms des jours (Lundi, etc...) et des mois (Janvier, etc...) en

francais ;

- quelques dates importantes indiquees dans les cases correspondantes
(a savoir : les jours feries francais : Nouvel An, Paques, etc..., ainsi

que les jours de passage a l'heure d'ete et a l'heure d'hiver).
Ce segment est : ��am��don��cal_fr .

Chaque utilisateur peut creer d'autres segments contenant les informations

qu'il desire inserer dans ses calendriers. On peut suivre les indications
du "help calendar", et prendre pour modele le segment indique ci-dessus

(on peut imprimer ce segment par un "print" ordinaire).

Arguments de controle:

Les principaux sont : -dt DATE -fw -sp
(Le "help calendar" donne d'autres arguments, qui semblent moins utiles)

Argument de date:

-dt DATE

indique un jour quelconque du mois desire, par exemple :
-dt 05/01/83 pour Mai 1983

-dt 09/01/83 pour Septembre 1983

-dt 12/01/84 pour Decembre 1984

Argument -fw:

-fw

L'option -fw permet d'avoir le numero de semaine indique dans chaque
case de lundi.

Argument -sp:

-sp

L'option -sp permet d'inserer une attente avant le debut de l'impression,
et apres la fin de l'impression ; ceci permet de degager le papier afin

de separer le calendrier proprement dit de ce qui precede (le texte de

58

la commande calendar), et de ce qui suit (le message "ready") ;

lorsqu'on est pret, on tape le caractere "return".

Exemple:
calendar ��am��don��cal_fr -dt 12/01/83

donnera le calendrier du mois de decembre 1983.

On peut se creer une abreviation, par exemple :
.ab CAL calendar ��am��don��cal_fr

et commander :

CAL -dt 12/01/83 -fw

Longueur de ligne:
Il faut une longueur de ligne au moins egale a 120 ;

donc, si necesaire, commander d'abord :

11 120

(ou une valeur superieure a 120).

Conseil:

La derniere ligne imprim' ee comporte quelques grigri indesirables (" 014"
et le message "ready"). Pour les eviter, on peut commander d'abord :

stty -modes edited

rdf

avant d'envoyer la commande calendar. Mais n'oubliez pas, ensuite,
de revenir a :

rdn

stty -modes Aedited

si c'est votre mode habituel.

On peut, dans ce cas, utiliser des abreviations telles que :
.ab CALE stty -modes edited;rdf;calendar ��am��don��cal_fr
.ab CALFIN rdn;stty -modes Aedited

(En fait, il est inutile de commander rdf ... rdn dans le cas ou l'on

emploie l'option -sp).

59

cancel_abs_request ,

10/01/80 cancel_abs_request, car

Syntax: car request_identifiers -control_args

Function: allows a user to delete a request for an absentee

computation that is no longer needed.

Arguments:

request_identifiers can be chosen from the following: _

path
is the full or relative pathname for the absentee input segment of

requests to be cancelled. The star convention is allowed.

-entry STR, -et STR

identifies requests to be cancelled by STR, the entryname portion of

the absentee input segment pathname. The star convention is

allowed.

-id ID

identifies one or more requests to be cancelled by request
identifier. This identifier may be used to further define any path
or -entry identifier (see "Notes").

Control arguments:
-all, -a

indicates that all priority queues and the foreground queue are to

be searched starting with the foreground queue followed by the

highest priority queue and ending with the lowest priority queue.
-brief, -bf

suppresses messages telling that a particular request identifier was

not found or that requests were cancelled when using star names or

the -all control argument.

-foreground, -fg

specifies that the foreground absentee queue contains the request(s)
to be cancelled.

-queue N, -q N

specifies that absentee queue N contains the request to be

cancelled, where N is an integer specifying the number of the queue.
The default queue is defined by the system administrator. For

convenience in writing exec_coms and abbreviations, the word

foreground or fg following the -queue control argument performs the

same function as the -foreground control argument. If the -queue,

-fg, and -all control arguments are omitted, only the default

priority queue is searched.

-sender STR

specifies that only requests from sender STR should be cancelled.

One or more request identifiers must also be specified. In most

cases, the sender is an RJE station identifier.

-user User_id

60

specifies the name of the submitter of the request to be cancelled,
if it is not the same as the group identifier of the process. The

User_id can be specified as Person_id.Project_id, Person_id, or

*.Project_id. This control argument is primarily for operators and

administrators

Access required: The user must have o extended access to the queue to

cancel their own requests. The user must have r and d extended access

to cancel a request entered by another user.

Notes: If the absentee process has already logged in, the user is

given the choice of bumping the job and cancelling the request from the

queue, or allowing the job to continue running and remain in the queue.
This allows the user to cancel a running absentee process.

When star names are not used and a single request identifier matches

more than one request in the queue(s) searched, none of the requests
are cancelled. However, a message is printed telling how many matching

requests were found.

If any path or -entry STR request identifiers are given, only one -id

ID request identifier will be accepted and it must match any requests
selected by path or entryname.

'

Multiple -id ID identifiers can be specified in a single command

invocation only if NO path or entry request identifiers are given.

The -queue, -foreground, and -all control arguments are mutually
exclusive.

Normally, deletion can be made only by the user who originated the

request.

61

cancel a'aemon_request

10/08/80 cancel_daemon_request, cdr

Syntax: cdr request_identifiers -control_args

Function: deletes an I/0 daemon request that is no longer needed.

Arguments: .

request_identifiers can be chosen from the following:

path
identifies a request to be cancelled by the full or relative

pathname of the input data segment. The star convention is allowed.

-entry STR, -et STR

identifies a request to be cancelled by STR, the entryname portion
of the input data segment pathname. The star convention is allowed.

-id ID

identifies one or more requests to be cancelled by request
identifier. This identifier may be used to further define any path
or -entry identifier (see "Notes").

Control arguments:
-all, -a

searches all priority queues for the specified request type starting
with the highest priority queue and ending with the lowest priority
queue. This control argument is incompatible with the -queue
control argument. _

-brief, -bf

suppresses messages telling that a particular request identifier was
not found or that requests were cancelled when using star names or
the -all control argument.

-queue N, -q N

specifies that queue N of the request type contains the request to
be cancelled, where N is a decimal integer specifying the number of
the queue. If this control argument is omitted, only the default

queue for the request type is searched. This control argument is

incompatible with the -all control argument.

-request_type STR, -rqt STR

indicates that the request to be cancelled is to be found in the

queue for the request type identified by the string STR. If this
control argument is not given, the default request type is

"printer". Request types can be listed by the print_request_types
command.

-user User_id

specifies the name of the submitter of the request to be cancelled,
if not the group identifier of the process. The User_id can be

equal to Person_id.Project_id, Person_id, or .Project_id. Both r
and d extended access to the queue are required. This control

argument is primarily for operators and administrators.

_ 62

Access required: The user must have o extended access to the queue to

cancel their own requests. The user must have r and d extended access

to cancel a request entered by another user.

Notes: If the request is already running, the entry is still removed

from the queue but the running request is not stopped. However, the

user is given a message stating that the request is running.

When a request has been removed from the queue after it has started

running and before it has finished, any user requested deletion of the

segment (done with the -delete control argument to the dprint command)

will be ignored by the system.

Multiple -id ID identifiers can be specified in a single command

invocation only if NO path or entry request identifiers are given.

If any path or -entry STR request identifiers are given, only one -id

ID request identifier will be accepted and it must match any requests .

selected by path or entryname.

When star names are not used and a single request identifier matches

more than one request in the queue(s) searched, none of the requests
are cancelled. However, a message is printed telling how many matching

requests there are.

Normally, deletion can be made only by the user who originated the

request.

See also the descriptions of the dprint and dpunch commands.

63

cancel resource

01/18/79 cancel_resource, cnr

Syntax: cnr -id reservation_id -control_arg

Function: cancels reservations made with the reserve_resource command using
the reservation identifier obtainable from the list_resources command.

Arguments:

reservation_id
must be present and is the reservation identifier of the reservation to be
cancelled. It must be preceded by the -id control argument.

Control arguments:

-priv
allows a privileged cancellation to be done, such as, a cancellation of a
reservation belonging to another user.

Access required: Use of the -priv control argument requires access to

rcp_sys_.

Notes: Reservation identifiers may be obtained by using the list_resources
command.

64

cancel_retrieval_request

10/08/80 cancel_retrieval_request, crr

Syntax: crr request_identifiers -control_args

Function: allows a user to delete a request for a volume retrieval

that is no longer needed.

Arguments:

request_identifiers can be chosen from the following:

path
is the full or relative pathname of the segment or subtree of the

retrieval request to be cancelled. The star convention is allowed.

-entry STR, -et STR

identifies the request to be cancelled by STR, the entryname portion
of the segment or subtree pathname. The star convention is allowed.

-id ID

identifies the request to be cancelled specified by its request ID

number. This identifier may be used to further define any path or

-entry identifier (see "Notes").

Control arguments:
-all, -a

indicates that all retrieval queues are to be searched starting with

the highest priority queue and ending with the lowest priority

queue. This control argument is incompatible with the -queue
control argument.

-brief, -bf

suppresses messages telling the user that a particular request
identifier was not found or that requests were cancelled when using
star names or the -all control argument.

-queue N, -q N

specifies that retrieval queue N contains the request to be

cancelled, where N is a decimal integer specifying the number of the

queue. If this control argument is omitted, only the default

priority queue is searched. This control argument is incompatible
with the -all control argument.

-user User_id

specifies the name of the submitter of the requests to be cancelled,
if not equal to the group identifier of the process. The User_id
can be Person_id.Project_id, Person_id, or .Project_id. Both r and

d extended access to the queue are required. This control argument
is primarily for operators and administrators.

Access required: The user must have o extended access to the queue to

cancel their own requests. The user must have r and d extended access

to cancel a request entered by another user.

65

Notes: If any path or -entry STR request identifiers are given, only
one -id ID request identifier will be accepted and it must match any

requests selected by path or entryname.

Multiple -id ID identifiers can be specified in a single command

invocation only if NO path or entry request identifiers are given.

Normally, deletion can be made only by the user who originated the

request.

When star names are not used and a single request identifier matches
more than one request in the queue(s) searched, none of the requests
are cancelled. However, a message is printed telling how many matching

requests there are.

66

change default wdir

02/12/76 change_default_wdir, cdwd

Syntax: cdwd path

Function: sets a directory as the user's default working directory.

Arguments:

path
is the pathname of the directory; if omitted, the current working directory
becomes the default working directory.

Notes: The original default working directory is the user's home directory upon
logging in.

67

change wdir

02/12/76 change_wdir, cwd

Syntax: cwd path

Function: changes the user's working directory.

Arguments:

path
is the pathname of a directory; if omitted, the default working directory is

assumed. (see change_default_wdir)

68

check_iacl

01/09/80 check_iacl

Syntax: check_iacl dirpath -control_args

Function: lists ACL terms that disagree with initial ACL.

Arguments:

dirpath

pathname of a directory to check. The star convention is allowed.

-working_directory or -wd specifies the working directory.

(Default if omitted: working directory)

Control arguments:
-all

lists changed and deleted ACL entries as well. (Default: added entries)
-exclude Pers.Proj, -ex Pers.Proj

excludes ACL entries with names matching Pers.Proj.

Notes:
'

Unless -all is specified, only ACL terms that are ADDITIONS to the initial

ACL are listed.

Up to 10 -exclude arguments are allowed.

69

check_info_segs

09/26/80 check_info_segs, cis

Syntax: cis -control_args

Function: prints a list of info segments modified since a given time.

Control arguments:

-absolute_pathname, -absp
prints or returns absolute pathnames of segments rather than

entrynames.
-brief, -bf

does not print names of changed info segs and "No change" message.
For use with -call. -bf cannot be used with the cis active

function.

-call cmdline

calls the command processor with "cmdline path" for each changed

segment; path is the absolute pathname of a changed segment. If

cmdline contains blanks, it must be enclosed in quotes. This

control argument cannot be used with the cis active function.

-date DT, -dt DT

uses the date DT instead of the date in the user's profile. The

date in the profile is not updated.

-long, -lg

prints the date-time-entry-modified as well as the segment name.

-lg cannot be used with the cis active function.

-no_update, -nud

does not update the date in the user's profile.

-pathname star_path, -pn star_path

star_path is a pathname with a star name in the entryname portion.
All segments that match star_path are checked. More than one

-pathname control argument can be given. If none are given, the

directories in the "info_segments" search list, which has synonyms

"info_segs" and "info" are used.

-time-checked, -tmck

prints the date_time that is stored in the user's profile indicating
from when checking of modified info segments would occur if the

-date control argument were not used. This control argument is

incompatible with all others when used with the cis active function.

It does not update the time in the user's profile when used as the

only control argument.

Notes: The first time cis is invoked by a user, it just sets the date

in the user's profile. A profile is created if one doesn't exist. The

date-time-entry-modified for link targets are checked, not the dtem of

the link.

Syntax as active function: [cis -control_args]

- 70

Notes on active function:

The cis active function returns entrynames of selected info segments

separated by spaces. If -absp is specified, it returns full pathnames
of info segments separated by spaces.

Warning:
Since cis active function also sets the date in the user profile, a

command line using [cis] sets this date before processing any of the

returned info seg names. As a result, segments can be unintentionally

skipped and not seen a second time if a command line containing [cis]
is interrupted.

71

clear-resource

01/29/79 clear_resource, clr

Syntax: clr type STRs

Function: Confirms that the contents of a released volume have been destroyed
so that it may be returned to the free pool of resources kept by RCP resource

management.

Arguments:

type
is a resource type defined in the RTDT. STR is the name of a resource to be
cleared. If it begins with a hyphen, it must be preceded by -name (-nm.)

Access required: Use of this command requires access to the rcp_sys_ gate.

Notes: If multiple resource names are given and one of the named resources
cannot be cleared, none of the resources will be cleared.

72

close file

02/26/76 close_file, cf

Syntax: close_file -control_arg filenames .

Function: closes FORTRAN and PL/I files.

Arguments:
filenames

are the names of open files.

Control arguments:
-all

closes all open files. In this case, no filename appears.

Notes: The format of a FORTRAN file name is fileNN where NN is a two-digit
number other than 00; e.g., file05. PL/I file names are selected by the user

and can have any format.

For each filename argument, all PL/I files of that name and, if applicable,
the FORTRAN file of that name are closed.

The command "close_file -all" does not affect I/0 switches that are not

associated with FORTRAN or PL/I files.

73

collate

09/23/80 collate

Syntax: collate

Function: returns the 128 characters of the ASCII character set in

collating sequence.

Syntax as active function: [collate]

74

compare

03/12/80 compare

Syntax: compare pathl joffsetl path2 joffset2 -control_args

Function: compares two segments and lists their differences.

Arguments:

pathl, path2

pathnames of segments to be compared. path2 can be an equal name.

offsetl, offset2

octal offsets within the segments; if omitted, the entire contents are

compared.

Control arguments:

-brief, -bf .

prints only the first and last words of each discrepancy.

-length N, -ln N

the comparison continues for no more than N (octal) words.

-long, -lg

, prints all discrepancy words. (default)
-mask N

the octal mask N is used in the comparison. If N is less than 12 octal

digits, it is padded on the left with zeros.

Notes: The maximum number for words to be compared is the word count for the

first segment minus its offset or the word count of the second segment minus

its offset, whichever is greater. If the segments are of unequal length, the

remaining words for the longer segment are printed as discrepancies.

Syntax as an active function:

[compare pathlloffsetl path2loffset2 -control-args]
returns true if the compared portions are identical, false otherwise.

75

compare_ascii i

05/12/81 compare_ascii, cpa

Syntax: cpa paths -control_args

Function: compares ASCII segments and prints any differences.

Arguments:

paths
are the pathnames of the segments to be compared. The equal ans

conventions are allowed. Up to six segments can be compared, in

addition to the original if one is supplied. The equal convention

can be used in any pathname except the first one on the command

line, which is assumed to be the original unless otherwise

specified.

Control arguments:
-header, -he

prints a heading, giving the full pathname and identifying letter of

each segment. This heading is not printed by default.

-minchars NN

specifies the minimum number of characters that must be identical

for compare_ascii to assume that it has found the end of a

difference. The default is 20 characters. See "Notes" below.

-minlines NN

specifies the minimum number of lines that must be identical for

compare_ascii to assume that it has found the end of a difference.

The default is two lines. See "Notes" below.

-no_original, -no_orig
indicates that no original segment is supplied. If neither

-no_original nor -original is given, the first pathname on the

command line is assumed to be the original.

-no_numbers, -nnb

does not print identifying letter and line numbers preceding the

lines from the segments being compared. The default is to print
them.

-no_totals, -ntt

does not print the totals line.

-original pathA, -orig pathA

specifies the pathname pathA of the original segment of which the

others are modified versions.

-print_new_lines, -pnl

prints only new lines. New lines are lines found in one or more of

the modified versions but not in the original. An original must be

supplied if this argument is used.

-totals, -tt

prints only the totals line, giving the number of differences and

the number of changed lines. The default is to print discrepancies
and totals line.

76

Notes: The output is organized with the assumption that the pathA

segment was edited to produce pathB. This command prints lines that

were added, replaced, or deleted; it identifies each line by line

number within the respective segment and also by the letter A or B to

indicate which segment the line is from (A for pathA and B for pathB).

Values for minchars and minlines can be specified without being

preceded by control arguments. The order is: minchars minlines.

The values of minchars and minlines control the size of displayed
differences. Large values for these parameters cause small,

closely-spaced differences to be displayed as one large difference,
while very small values (such as -minlines 1 -minchars 2) will cause

small changes to be displayed individually but might also cause large
differences to be broken down into small parts, thereby giving a

misleading picture of what was actually done to produce the modified

versions. The user should adjust these parameters to produce the most

useful results.

77

compare_object

06/30/75 compare_object, cob

Syntax: cob old_path new_path -control_args

Function: Compares two object segments and, optionally, prints out the changes
made to the segment specified by old_path to yield the segment specified by

new_path. The old_path segment is assumed to be older than the new_path

segment, and they are assumed to have been produced from the same source

segment, by different versions of a language processor.

Arguments:

old_path
is the pathname of the old object segment. The star convention is allowed.

new_path
is the pathname of the new object segment. The equal convention is allowed.

Control arguments: v

-brief, -bf

suppresses detailed description of the discrepancies, instead

printing a summary.
-text

compares the text sections.

-defs

compares the definitions sections.

-link, -lk

compares the linkage sections.

-static

compares the static storage if they have separate static, otherwise compares
the linkage sections.

-all, -a

compares the text, definitions, static (if any), and linkage sections.

This is the default.

Notes: Control arguments must follow the two pathnames.

In comparing the lengths of the symbol sections, compare_object uses a

heuristic to determine whether a discrepancy is serious or trivial.

This heuristic is inaccurate for ALM, bound, or large pll segments.

78

compose

07/08/81 compose, comp (Vers 8.0)

Syntax: comp paths -control_args

Function: formats documents for production on various devices

including terminals and line printers.

Arguments:

paths

pathnames of input files to be formatted (up to 200 input files--

SSFs or MSFs-- can be specified) named ��name��.compin. The suffix

need not be supplied in the command line. The star convention is

not supported.

Control arguments:

-arguments argl arg2 ...

-ag argl arg2 ...

all given arg's are made available as user variables; any that con-

tain blanks must be given as quoted strings. This control argument
must be the last one in the command line.

-brief
-bf

Show only the error list header (giving the count of errors) at nor-

mal termination or in response to the program_interrupt command.

This control is effective only when errors are being accumulated for

later display, that is, when output is being sent to the user's ter-

minal. The default is to print the entire error list.

-change_bars x,p,l,r,d
-cb x,p,l,r,d

generates text change symbols (change bars) in the output according
to the parameters given.

x change level character (default is NUL)

p symbol placement key character (default is outside margin)
1 text change symbol to be placed at the left margin. Must be of

the form "n��string��", where ��string�� is any character string

(the change symbol) and n is the number of spaces between the

text and ��string�� (Default is 21). n may be given by itself to

change the space for the default symbol and must be given if

��string�� is given.
r text change symbol to be placed to the right of text (same form

as 1 above)
d text deletion symbol (default same form as 1 above except

default ��string�� is asterisk)

-change_bars_art x,p,l,r,d
-cba x,p,l,r,d

as for change_bars above except that "1", "r", and "d" fields (and

their defaults) are artwork constructs.

79

-check

-ck

syntax check mode; no output is produced.
-device name

-dev name

-dv name

prepare output for device "name". "name".comp_dsm must exist and be

locatable with compose search list. Default is "ascii" for terminal

output and "printer" for -output_file.

-from n

-fm n

begin output at page "n". n must be an EXACT match for an-existing

page number. Default is the first page of the file, regardless of

its page number.

- galley nl ,n2

-gl nl ,n2

prepare galley mode (single column, no running headers or footers)
text for input lines "nl,n2". The default nl,n2 is the entire input
file.

-hyphenate n

-hyph n .

-hph n

change default hyphenation mode to ON with a least word part of "n".

The default value for "n" is 3.

-indent n -

-ind n

add "n" columns of white space at the left of each output line. The

default value is 0.

-input_file path
-if path

"path" is an input file pathname although it looks like a control
'

argument or numeric parameter. "path" is required; there is no

default.

-linespace n

-ls n

set the minimum linespace value to "n" (1 = single, 2 = double,

etc.). The default value is 1.

-noart

-noa

disable artwork conversion replacing artwork constructs with blanks.

-nobell

-nob

suppress the BEL signal for pause events (see -stop and -wait

below).
-nofill

-nof

change the default fill mode to OFF. ,
-number

-nb

show input line numbers in the output; also show list of inserted

files for cross-reference.

- number_brief

80

-nbb

show input line numbers in the output without the list of inserted

files.

-output_file path
-of path

direct all output to the bulk collector file given by "path". The

default path is [wd]��"name".compout where "name".compin is the input
file.

-page n n,n ...

-pg n n,n ...

print only the individual pages given. At least one page must be

given; there is no default.

-pages_changed

-pgc

print only Addendum pages and pages with change-bars.

-parameter string

-pm string

assign "string" to the builtin variable Parameter. "string" is

required; there is no default.

-passes n

-pass s n

make "n" processing passes over the input file(s). The default val-

ue is 1.

-stop

-sp

pause before first output page and after every page, giving a visual

and audible signal to the user.

-to n

end output with page "n". "n" must be an EXACT match for an exist-

ing page number. The default is the last page of the input file

regardless of its page number.

-wait

-wt

pause before first output page, giving a visual and audible signal
to the user.

Notes:

Type "help compose.controls" for a summary of compose controls and

"help compose.builtins" for a list of builtin variables.

Type "help convert_runoff" for information on converting runoff

input files.

Type "help compose.artwork.gi" for information on constructing

artwork.gi within compose.

The following terminals are supported for artwork:

Terminal name for -device option
ASCII (default) ascii

DTC300S dtc300s

Diablo 1620 (HYTERM) hyterm

(END)

81

/

contents

09/12/80 contents

Syntax: contents path

Function: returns the contents of a segment as a character string.
Newline characters in the segment are changed to blanks in the string.

Syntax as active function: [contents path]

82

copy

07/17/81 copy, cp

Syntax: cp pathl path2 ... pathlN path2N -control_args

Function: causes copies of specified segments and multisegment files

to be created in the specified directories with the specified names.

Access control lists (ACLs) and multiple names are optionally copied.

Arguments: .

pathl
is the pathname of a segment or multisegment file to be copied.
The star convention is allowed. The default action of this command

when pathl specifies a link is given below in the "Notes" section.

path2
is the pathname of a copy to be created from pathl. If the last

path2 argument is not given, the copy is placed in the working

directory with the entryname of pathl. The equal convention is

allowed.

Control arguments:
-acl

copies the ACL.

-all, -a

copies multiple names and ACLs.

-brief, -bf

suppresses warning messages.
-chase

copies the targets of links that match pathl. See "Notes" for the

default action.

-long, -lg

prints warning messages as necessary. This is the default.

-name, -nm

copies multiple names.

-no_acl
does not copy the ACL. This is the default.

- no_chase
does not copy the targets of links that match pathl. See "Notes"

for the default action.

-no_name, -nnm

does not copy multiple names. This is the default.

Access required: Read access is required for pathl. Status permission
is required for the directory containing pathl if the -name, -acl or

-all control argument is specified. Append permission is required for

the directory containing path2. Modify permission is required for the

directory containing path2 if the -name, -acl, or -all control

argument is specified.

83

Notes: The control arguments can appear once anywhere in the copy
command line after the command name and apply to the entire copy
command line.

The default for chasing links depends on pathl. If pathl is not a

starname, links are chased by default. If pathl is a starname, links

are not chased.

If the ACL of a segment or multisegment file is being copied, the

initial ACL of the target directory has no effect on the ACL of the

segment or multisegment file after it has been copied into that

directory. The ACL remains exactly as it was in the original

directory. The AIM access class of a segment is not copied by -acl.

Since two entries in a directory cannot have the same entryname,

special action is taken by this command if the name of the segment or

multisegment file being copied (specified by pathl) already exists in
the directory specified by path2. If the entry being copied has an

alternate name, the entryname that would have resulted in a duplicate
name is removed and the user is informed of this action; the copying

operation then takes place. If the entry being copied has only one

entryname, the entry that already exists in the directory must be

deleted to remove the name. The user is asked if the deletion should
be done; if the user answers "no", the copying operation does not take

place.

The copy command prints a warning message if the bit count of pathl is
less than its current length or if the current length is greater than

the number of records used. These warnings are suppressed by the use

of the -brief control argument.

84

copy_acl

08/04/80 copy_acl

Syntax: copy_acl pathlA path2A ... pathln path2N

Function: copies the access control list (ACL) from one file or

directory to another, replacing the current ACL if necessary.

Arguments:

pathlA
is the pathname of a file or directory whose ACL is to be copied.
The star convention is allowed. Either -working_dir or -wd

specifies the working directory.

path2A
is the pathname of a file or directory onto which the initial ACL is

to be copied. The equal convention is allowed. Either -working_dir
or -wd specifies the working directory.

Access required: Status permission required for containing dir of

pathli. Modify permission required for containing dir of path2i.

Notes: The star and equal convention can be used.

85

copy_cards

03/01/76 copy_cards, ccd

Syntax: ccd deck_name new_deck_name

Function: copies specified card image segments from system pool storage into a

user's directory.

Arguments:

deck_name
name entered on the deck_id card.

new_deck_name

pathname of segment in which matching card image segment is placed.
If omitted, the working directory and deck_name are assumed.

Notes: The segments to be copied must have been created using the

Multics card input facility. When there are multiple copies of the same deck in

pool storage, all are copied.
The deck_name may use the star convention; path may use the equal convention.

When an attempt is made to read a card deck having the same name as some

previously read deck still in pool storage, a numeric suffix is added to the

name of the new deck, e.g., "deck_name.l"

Only those card decks having an access class equal to the user's current

authorization can be copied. Other decks will not be found.

86

copy_dir

06/05/81 copy_dir, cpd

Syntax: cpd source_dir target_dir entry_type_keys -control_args

Function: copies a directory and its subtree to another point in the

hierarchy. The user can also specify that portions of the subtree be

copied and can control the processing of links.

Arguments:

source_dir
is the pathname of a directory to be copied. The star convention is

allowed to match directory names. Matching names associated with

other storage types are ignored. The source_dir can not be

contained in target_dir.

target_dir
is the pathname of the copy of the source_dir. The equal convention

is allowed. If target_dir is not specified, the copy is placed in

the working directory with the entryname of source_dir. If the

target_dir does not exist, it is created.

Control arguments:
-brief, -bf '

suppresses the printing of warning messages.
-force

executes the command, when target_dir already exists, without asking
the user. If the -force control argument is not specified, the user

is queried.

-replace, -rp
deletes the existing contents of target_dir before the copying

begins. If target_dir is non-existent or empty, this control

argument has no effect. The default is to append the contents of

- source_dir to the existing contents of target_dir.

-acl

gives the ACL on the source_dir entry to its copy in target_dir.

Although initial ACLs are still copied, they are not used in setting
the ACL of the new entries when this control argument is specified.

-primary, -pri

copies only primary names. The default is to copy all names.

-no_link_translation, -nlt

copies links with no change. The default is to translate links

being copied. If there are references to the source directory in

the link pathname of a link being copied, the link pathname is

changed to refer to the target directory.
-chase

copies the target of a link. The default is not to chase links.

Chasing the links eliminates link translation.

List of entry_type_keys: control what type of storage system entries

87

in the subtree are copied. If no entry_type_key is specified, all

entries are copied. The keys are--

-branch, -br

-directory, -dr

-file, -f

-link, -lk

-multisegment_file, -msf

-non_null_link, -nnlk

-segment, -sm

If one or more entry_type_keys are specified, but not the -directory

key, the subtree of source_dir is not walked.

Access required: Status permission is required for sourçe_dir and all

of the directories in its tree. Status permission is required for the

directory containing source_dir. Read access is required on all files
under source_dir. Append and modify permission are required for the

directory containing target_dir if target_dir does not exist prior to

the invocation of the copy_dir command. Modify and append permission
are required on target_dir if it already exists. This command does not

force access.

If the -acl control argument is not specified, the system default ACLs

are added, then the initial ACL for the containing directory is applied
(which may change the system supplied ACL). Initial ACLs are always

copied for the current ring of execution.

Notes: If target_dir already exists and -force is not specified, the
user is so informed and asked if processing should continue. If

target_dir is contained in source_dir, fin appropriate error message is

printed and control is returned to command level.

If name duplication occurs while appending the source_dir to the

target_dir and the name duplication is between directories, the user is

queried whether processing should continue. If the user answers yes,
the contents of the directory are copied (appended) but none of the

attributes of that directory are copied. If the answer is no, the

directory and its subtree is skipped. If name duplication should occur

between segments, the user is asked whether to delete the existing one
in target_dir. (See the copy command)

If the -replace control argument is specified or target_dir does not

exist, name duplication does not occur.

If part of the tree is not copied (by specifying a storage system entry

key), problems with link translation may occur. If the link target in
the source_dir tree was in the part of the tree not copied, there may
be no corresponding entry in the target_dir tree. Hence, translation
of the link causes the link to become null.

See also the copy, move and move_dir commands.

88 -

copy_file

04/24/81 copy_file, cpf

Syntax: cpf in_control_arg out_control_arg -control_args

Function: copies records from an input file to an output file that has

been restructured for maximum compactness. The input and output file

records must be structured. (See "Notes on unstructured files" below).
The input file can be copied either partially or in its entirety.

Arguments:

in_control_arg
the input file from which records are read can be specified by
either of the following:

-input_switch STR, -isw STR

specifies the input file by means of an already attached I/0
switch name, where STR is the switch name.

-input_description STR, -ids STR

specifies the input file by means of an attach description STR.

STR must be enclosed in quotes if it contains spaces or other _
command language characters.

out_control_arg
the output file to which the records are written can be specified by
either of the following:

-output_switch STR, -osw STR

specifies the output file by means of an already attached I/0
switch name, where STR is the switch name.

-output_description STR, -ods STR

specifies the output file by means of an attach description STR.

STR must be enclosed in quotes if it contains spaces or other

command language characters.

Control arguments:

-all, -a

copies until the input file is exhausted. This is the default.

-brief, -bf

suppresses an informative message indicating the number of records

or lines actually copied.
-count N, -ct N

copies until N records have been copied or the input file is

exhausted, whichever occurs first, where N is a positive integer.
The default is to perform copying until the input file is exhausted.

-from N, -fm N

copies records beginning with the Nth record of the input file,
where N is a positive integer. The default is to begin copying with

the "next record." (See "Notes" below.)

-keyed

copies both records and keys from a keyed sequential input file to a

89

keyed sequential output file. The default is to copy records from

an input file (either keyed or not) to a sequential output file.

(See "Notes on Keyed Files" below.)

-long, -lg

prints an informative message indicating the number of records or

lines actually copied. This is the default.

-start STR, -sr STR

copies records beginning with the record whose key is STR, where STR

is 256 or fewer ASCII characters. The default is to begin copying
with the "next record."

-stop STR, -sp STR

copies until the record whose key is STR has been copied or the

input file is exhausted, whichever occurs first, where STR is 256 or

fewer ASCII characters.

-to N

copies until the Nth record has been copied or the input file is

exhausted, whichever occurs first, where N is a positive integer

greater than or equal to the N given with the -from control

argument. This control argument can only be specified if -from is

also specified.

Notes on unstructured files: The copy_file command operates by

performing record I/O on structured files. If it is desired to copy
from/to an unstructured file, the record_stream_ I/O module can be

used, e.g., by typing the command line:

cpf -ids "record_stream_ -target vfile_ pathname" -osw OUT

The effect is to take lines from the file specified by pathname via the

vfile_ I/0 module, transform them into records via the record_stream_
I/0 module, and then copy them to the I/0 switch named OUT.

Notes on keyed files: The copy_file command can copy a keyed

sequential file to produce an output file that has_been restructured

for maximum compactness as a keyed file or as though it were purely

sequential. By default, the command copies only records and does not

place keys in the output file. To copy the keys, the -keyed control

argument must be used. When -keyed is used, the input file must be a

keyed sequential file. Whether keys are copied or not,. control

arguments can be used to delimit the range of records to be copied
(i.e., -start, -stop, -from, -to, -count). Copying is always performed
in key order.

Notes: If either the input or output specification is an attach

description, it is used to attach a uniquely named I/0 switch to the

file. The switch is opened, the copy performed, and then the switch is

closed and detached. Alternately, the input or output file can be

specified by an I/0 switch name. Either the io_call command or iox_
subroutine can be used to attach the file prior to the invocation of

the copy_file command. (See the descriptions of the io_call command

and the iox- subroutine.)

90

copy_iacl_dir

09/17/81 copy_iacl_dir

Syntax: copy_iacl_dir pathlA path2A ... pathlN path2N

Function: copies the initial access control list for directories

(directory initial ACL) of one directory to another, replacing the

current directory initial ACL if necessary.

Arguments:

pathli
is the pathname of a directory. The star convention is allowed.

Either -working_directory or -wd specifies the working directory.

path2i
is the pathname of the target directory. The equal convention is

allowed. Either -working_directory or -wd specifies the working

directory.

Access required:: Status permission is required on pathli. Modify

permission is required on path2i.

Notes: See the MPM Reference Guide for a description of initial ACL's.

91 -

copy_iacl_seg

09/17/81 copy_iacl_seg

Syntax: copy_iacl_seg pathlA path2A ... pathlN path2N

Function: copies a segment initial access control list (initial ACL)
from one directory to another, replacing the current initial ACL if

necessary.

Arguments:

pathli
'

is the directory from which the initial ACL is to be copied. The
star convention is allowed. Either -working_directory or -wd

specifies the working directory.

path2i
is the directory into which the initial ACL is to be copied. The

equal convention is allowed. Either -working_directory or -wd

specifies the working directory.

Access required: Status permission is required on pathli. Modify
permission is required on path2i;

92

create

02/12/76 create, cr

Syntax: cr paths

Function: creates segments.

Arguments:

paths
are the pathnames of segments to be created.

Access required: append on the parent directory.

93

create-data-segment

10/24/77 create_data_segment, cds

Syntax: cds path -control_arg

Function: translates a create_data_segment source program (CDS program) into an

object segment.

Arguments:

path
is the pathname of a CDS segment; the cds suffix need not be given.

Control arguments:

-list, -ls

produces a source listing of the CDS program followed by object segment
information.

Notes: Because of the invocation of the PL/I compiler, the CDS run is aborted
if a severity error greater than 2 occurs.

94

create-dir

09/17/81 create_dir, cd

Syntax: cd paths -control_args .

Function: causes a specified directory branch to be created in a

specified directory, or in the working directory. That is, it creates

a storage system entry for an empty subdirectory. See the description
of the create command for information on the creation of segments. _

Arguments:

paths
are pathnames of directories to be created.

Control arguments:

-access-class STR, -acc STR

applies to each pathi and causes each directory created to be

upgraded to the specified access class. The access class can be

specified with either long or short names.

-logical_volume VOL, -lv VOL

specifies that each directory created is to be a master directory
whose segments are to reside on the logical volume named VOL.

-name STR, -nm STR

specifies an entryname STR that begins with a minus sign, to

distinguish it from a control argument.

-quota N

specifies the quota to be given to the directory when it is created.

This argument must be specified if either the -access_class or

-logical_volume control argument is specified. If omitted, the

directory is given zero quota. The value of N must be a positive

integer, and applies to each pathi.

Access required: The user must have append permission to a directory
in order to create a subdirectory in that directory.

Notes: If a quota is specified and the directory being created is not

a master directory, the containing directory must have sufficient quota
to move quota to the directory being created. (See the move_quota
command for additional information.)

95

create wordlist

02/10/79 create_wordlist, cwl

Syntax: cwl path -control_args

Function: creates an alphabetized list of ail distinct words found in a

specified text segment. The list is saved in a segment created in the working
directory and given the name of the text segment with the .wl suffix

appended.

Arguments:

path
is the pathname of the text segment.

Control arguments:

-brief, -bf ,
`

do not print the number of words.
-from N, -fm N

begin processing words starting from line number N.

-header, -he

print the pathname of the text segment.

-no_control_lines, -ncl

skip control lines, i.e., lines that begin with a period.
-no_exclude, -ne

do not exclude words containing no letters (e.g., words with only special
characters or punctuation).

-no_sort, -ns

omit alphabetical sorting of the word list; words are ordered as they

appeared in the text segment and duplications are not omitted.
-to N

stop processing words after line N.

Notes: Words are delimited by white space, i.e., space, horizontal tab,
vertical tab, newline, and new page characters. Surrounding punctuation is
removed. Completely underlined words are de-underlined. Words containing no
letters are ignored unless -no_exclude is specified.

- 96

date

12/30/80 date

Syntax: date dt

Function: returns the date abbreviation for a specified date or the

current date.

Arguments:
dt

is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current date is returned.

See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [date dt]

97

date-time

03/19/81 date_time

Syntax: date_time dt

Function: returns a date and time value for a specified date-time or

the current date-time consisting of: a date, a time from 0000.0 to

2359.9, a time zone, and a day of the week. The date and time value is

returned as a single, quoted string of the form

"mm/dd/yy hhmm.m zzz www" (e.g., "08/17/76 0945.7 est Tue").

Arguments:
dt

is a date-time in a form acceptable to convert_date_to_binary_. If

no argument is specified, the current date-time is returned. See

date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [date_time dt]

98

dey

12/30/80 day

Syntax: day dt

Function: returns a one- or two-digit number of a day of the month,
from 1 to 31.

Arguments:
'

dt

is a date-time in a form acceptable to convert_date_to_binary_. If

no argument is specified, the current day of the month is returned.

See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [day dt]

99

day_name

12/30/80 day_name

Syntax: day_name dt

Function: returns the full name of a day of the week for a specified
date or the current date.

Arguments:
dt

is a date_time in a form acceptable to convert_date_to_binary_. If

no argument is specified, the name of the current day is returned.

See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [day_name dt]

100

debug

02/02/79 debug, db

Syntax: db

Function: Interactive debugging aid. Type "help probe" for another.

Data requests: three fields with the following format--

��generalized address�� ��operator�� ��operands��

Generalized address--

[/segment name/] [offset] [segment ID] [relative offset]

Operators--
, print �� alter program control
= assign := call a procedure
�� set a break

Segment IDs--

��a argument list ��i internal static section

��1 linkage section ��p parameters
��t text section ��s stack frame

Operands:
, operand operand first operand is output mode;
second operand is how much to print. (See Output modes)

(See Output modes)

= operand new value to use; can be octal number,
decimal number, character string, register value, instruction

format input, floating point number, pointer, bit string, or

variable.

:= operand procedure_name (argument list).

Registers:

$a $exp

$q $tr

$aq $ralr

$eaq $ppr
$x0 $tpr

. $even

. $odd

. $ind

$x7 $prs

$pro $regs
. $scu .

. $all

$pr7

101

Output modes:

0 octal e floating point with exposent
h half-carriage octal f floating point
d decimal b bit string
a ASCII g graphic
i instruction comp-5 COBOL

p pointer comp-6 COBOL

s source statement comp-7 COBOL

1 code for line number comp-8 COBOL

n no output

Control requests:

.ti,j trace stack from frame i for j frames

.+i or .-i pop or push stack by i frames .

.i set stack to i'th frame

.. Multics command

.d or .D print default values

.c,i continue after break fault (ignore next i break fault)

.ct,i continue, in temporary break mode

.cr,i continue, in normal mode

.q return from debug to caller

.bri reset break i

.br reset the breaks of the default object segment

.bgr reset all breaks

.bli list break i

.bl list the breaks of the default object segment

.bgl list all breaks

.bei ��line�� execution line for break i

.be ��line�� execution line for all breaks of the default

object segment

.bge ��line�� execution line for all breaks

.boi disable break i

.bo disable the break of the default object segment

.bgo disable all breaks

.bni enable break i

.bn enable the breaks of the default object segment

.bgn enable all breaks

.bgt ��line�� establish a temporary global command

.bci al -rel- a2 make conditional break i

.bc al -rel- a2 make conditional all breaks of default object

segment
.bsi n set skips of break i to n

.bd name/no. set (or print) default object segment

.bp print names of all segments with breaks ,

.ai,m print argument i in modes m (modes--o, p, d, a, b, 1, e, f, ?)

.f use registers from last fault

.C use crawlout registers

.mb change to brief output mode

.ml change to long output mode

.si identifies switch_name used for input

.so identifies switch_name used for output

102

default-wdir

07/23/80 default_wdir, dwd
'

Syntax: dwd

Function: returns the pathname of the default working directory of the

process in which it is invoked, as set by the change_default_wdir
(cdwd) command.

Syntax as active function: [dwd]

103

defer messages

06/17/81 defer_messages, dm

Syntax: dm destination -control_arg

Function: suspends printing of messages. _

Arguments:
destination

is of the form Person_id.Project_id to specify a mailbox.

Default is the user's default mailbox.

Control arguments:

-pathname path, -pn path

spécifies a mailbox by pathname. The .mbx suffix is assumed.

Notes: Deferred messages stay in the user's mailbox until the user

issues the print_messages (pm) command. The immediate_messages (im)
command restores printing of messages as they are received.

For a description of the mailbox, see the accept_messages and

print_mail commands.

104

delete

12/22/80 delete, dl

Syntax: dl paths -control_args
'

Function: causes the specified segments and/or multisegment files to

be deleted. See also the delete_dir and unlink commands.

Arguments:

paths
are the pathnames of segments or multisegment files. The star

convention is allowed.

Control arguments:

-brief, -bf

inhibits the printing of an error message if a segment or

multisegment file to be deleted is not found.

-chase

deletes targets of links specified by paths, as well as segments.

-force, -fc

deletes the specified entries whether or not they are protected,
without issuing a query.

-long, -lg

prints a message of the form "Deleted file ��path��" for each entry
deleted.

-name STR, -nm STR

specifies a nonstandard entry name STR (e.g., invalid starname such

as **.**.compout or name containing ��.)

-no_chase
. does not delete targets of links. (Default)

-query_each, -qye
issues a query for every entry to be deleted, whether of not it is

protected. Protected segments will be noted in the query.

-query_all, -qya
lists all segments to be deleted, and issues a query as to whether

they should all be deleted or not. Unless -force is given, an

individual query will be given for protected segments.

Access required: The user must have modify permission on the

containing directory.

Notes: At least one path, or -name STR, must be specified.

In order to delete a segment or multisegment file with the delete

command, the entry must have both its safety switch and its copy switch

off. If either is on, the user is interrogated whether to delete the

entry.

105

Use delete-dir to delete directories. Use unlink to delete links.

106

delete acl

02/06/80 delete_acl, da

Syntax: da path User_ids -control_args

Function: removes entries from the ACLs of segments, multisegment files, and

directories.

Arguments:

path

pathname of a segment, multisegment file, or directory. If it is -wd

or -working_dir, the working directory is assumed. The star convention

is allowed.

User_ids
are access control names that must be of the form Person_id.Project_id.tag.
All ACL entries with matching names are deleted. If User_id is omitted, the

user's Person_id and current Project_id are assumed.

Control arguments:

-all, -a

deletes all ACL entries except for *.SysDaemon.*. ,

-directory, -dr

specifies that only directories are affected. The default is segments,

multisegment files, and directories.

-segment, -sm

specifies that only segments and multisegment files are affected.

-brief, -bf .

suppresses the messages "User name not on ACL." and "Empty ACL."

Access required: modify on the containing directory.

Notes:

Type "help acl_matching" for an explanation of matching strategy used on

User_ids.

107

delete dir

10/08/80 delete_dir, dd

Syntax: dd paths -control_args

Function: causes the specified directories and any segments, links,
and multisegment files they contain, to be deleted. All inferior

dire.ctories and their contents are also deleted.

Arguments:

paths
are pathnames of directories. The star convention is allowed.

Control arguments:
-brief, -bf

inhibits the printing of an error message if the directory to be
deleted is not found.

-force

deletes the specified directories without issuing a query.
-long, -lg

prints a message of the form "Deleted directory ��path��" for each

directory deleted.

-name STR, -nm STR

specifies a nonstandard entry name STR (e.g., invalid starname such
as **.**.compout or name which contains ��.)

-query_each, -qye
issues a query for each directory being deleted. This is the

default.

-query_all, -qya
lists all directories to be deleted, and issues one query for all of
them.

Access required: The user must have modify permission on both the

directory and its superior directory.

Notes: At least one path or -name must be specified.

If the -force control argument is not specified, delete_dir asks
the user whether to delete the specified directory. It is then
deleted only if the user types "yes".

When deleting a nonempty master directory, or a directory containing
inferior nonempty master directories, the user must have previously
mounted the logical volume(s). If a nonempty master directory for an

unmounted volume is encountered, no subtrees of that master directory
are deleted, even if they are mounted.

Use delete to delete segments. Use unlink to delete link entries.

108

WARNING: Protected segments in pathi or any of its subdirectories are

not deleted. Segments whose write bracket is less than the current

ring (except for mailboxes and message segments) are also not deleted.

Consequently, the subtree is not completely deleted if it contains any
such segments. For a discussion of protected segments, see the safety
switch attribute in the MPM Reference Guide. For a discussion of ring

brackets, see "Intraprocess Access Control" in the MPM Reference Guide.

109

delete iacl dir

10/08/80 delete_iacl_dir, did

Syntax: did path User_ids -control_args

Function: deletes entries from a directory's initial access control

list (initial ACL) in a specified directory. A directory initial ACL

contains the ACL entries to be placed on directories created in the

specified directory.

Arguments:

path

specifies a pathname of the directory whose directory initial ACL

should be changed. If path is -wd, -working_dir, or omitted, the

working directory is assumed. The star convention is allowed.

User_ids
are access control names that must be of the form

Person_id.Project_id.tag. All entries in the directory initial ACL

that match User_id are deleted. (For a description of the matching

strategy, refer to the set_acl command.) If no User_ids are

specified, the user's Person_id and current Project_id are assumed.

Control arguments:

-all, -a

deletes the entire directory initial ACL with the exception of an

entry for *.SysDaemon.*.
-brief, -bf .

causes the messages "User name not on ACL of path" and "Empty
initial ACL" to be suppressed.

- -ring N, -rg N

identifies the ring number whose directory initial ACL should be

deleted.If it is present, it must be followed by N (where user's

ring �� or = N �� or = 7). It can appear anywhere on the line and
affects the whole line. If this argument is not given, then the

.user's ring is assumed.

Access required: The user must have modify (m) permission on the

directory.

110

delete_iacl_seg

10/08/80 delete_iacl_seg, dis

Syntax: dis path User_ids -control_args

Function: deletes entries from a segment initial access control list

(initial ACL) in a specified directory. A segment initial ACL contains

the ACL entries to be placed on segments created in the specified

directory.
��

-

Arguments:

path ,

specifies the pathname of a directory whose segment initial ACL

should be changed. If path is -wd, -working_dir, or omitted, the

working directory is assumed. The star convention is allowed.

User_ids
are access control names that must be of the form

Person_id.Project_id.tag. All entries in the directory initial ACL

that match the given User_ids are deleted. (For a description of

the matching strategy, refer to the set_acl command. If no User_ids
are specified, the user's Person_id and current Project_id are

assumed.

Control arguments:
-all, -a

deletes the entire initial ACL with the exception of an entry for

.SysDaemon..
-brief, -bf

causes the messages "User name not on ACL of path" and "Empty
initial ACL" to be suppressed.

-ring N, -rg N

identifies the ring number whose segment initial ACL should be

deleted. If it is present, it must be followed by N (where user's

ring �� or = N �� or = 7). It can appear anywhere on the line and

affects the whole line. If this control argument is not specified,
the user's ring is assumed.

Access required: The user must have modify (m) permission on the

directory.

111

delete-message °

06/17/81 delete_message, dlm ,

Syntax: dlm destination numbers -control_args

Function: deletes a message sent by the send_message command and saved

in a mailbox with the -hold control argument to the accept_messages
command. (See the accept_messages command for more details.)

Arguments:
destination

can be of the form Person_id.Project_id to specify a mailbox. If

destination contains either �� or ��, it is assumed to be the pathname
of a mailbox. This argument and the -pathname control argument are

mutually exclusive.

numbers

are message numbers as printed by the print_message command when

accept_messages -hold is in effect.

Control arguments:
��

.

-all, -a

deletes all messages from the mailbox.

-pathname path, -pn path

specifies a mailbox by pathname. The mbx suffix is assumed. This

control argument and the destination argument are mutually
exclusive.

Notes: If no mailbox is specified, the user's default mailbox is

assumed. For a description of the mailbox, refer to the

accept_messages and print_mail commands.

112

delete name

09/17/81 delete_name, dn

Syntax: dn paths -control_arg
'

Function: deletes specified names from segments, multisegment files,

links, or directories that have multiple names.

Arguments:

paths
are pathnames to be deleted. The star convention is allowed.

Control arguments:

-brief, -bf

suppresses error messages when entries are not found with specified

pathnames. The default is -long (-lg).

-long, -lg

prints error messages when entries are not found. This is the

default.

-name STR, -nm STR

specifies a nonstandard entry name STR (e.g., a name which looks

like a starname such as *.compout or name containing ��).

Access required: The user must have modify permission on the parent

directory.

Notes: At least one path or -name STR must be specified.

113

delete_search_paths

09/17/81 delete_search_paths, dsp

Syntax: dsp search_list search_paths -control_arg

Function: allows a user to delete one or more search paths from the

specified search list.

Arguments:

search_list
is the name of the search list from which the specified search paths
are deleted. It must be quoted if it contains spaces or other

command language characters.

search_pathi

specifies a search path to be deleted. The search path can be an

absolute or relative pathname or a keyword. It is necessary to use

the same name that appears when the print_search_paths command is

invoked.

Control arguments:

-all, -a

specifies that the search list itself is to be deleted. Any search

paths specified are ignored. This control argument must be used to

delete all the search paths in a search list.

Notes: For a complete list of the search facility commands, see the

the add_search_paths command.

114

delete-search-pules

01/22/76 delete_search_rules, dsr

Syntax: dsr paths
'

_

Function: deletes current search rules.

Arguments: _

paths
are pathnames to be deleted from the current search rules.

One of the paths can be the keyword working_dir.

Notes: Site-defined keywords and home_dir and process_dir are not accepted by

delete_search_rules although they are accepted by the add_search_rules command.

Deletion of the keywords initiated_segments and referencing_dir is discouraged
and can lead to unpredictable results.

115

detach audit

12/13/78 detach_audit, dta

Syntax: dta switchname

Function: stops auditing. This removes audit_ from the specified switch and

puts the switch back the way it was before audit_ was used.

Arguments:
switchname

is the switch from which audit_ is to be removed. (DEFAULT -- user_i/o).

Notes: For further information about the audit facility, type:

help audit_

help audit_.gi

help attach_audit

help audit_editor

help display_audit_file .

116

discard_output

09/17/81 discard_output, dco

Syntax: dco -control_arg command_line

Function: executes a command line while temporarily suppressing output
on specified I/0 switches.

Control arguments:

-output_switch STR, -osw STR

where STR is the name of an I/0 switch. If no control arguments are

specified, output on the user_output I/0 switch is suppressed. If

the control argument is specified, it must appear before

command_line.

Arguments:

command_line
is a command line. It need not be quoted.

Notes: If the command specified in command_line cannot be executed, an

error message is printed.

117

display_audit_file

03/20/81 - display_audit_file, daf

Syntax: daf path -control_args

Function: displays an audit file. What portion of which audit file, and

in what format, is determined from the argument (if any) and control

arguments.

Arguments:

path
is the pathname of an audit file to be displayed. The path argument
and the -switch control argument are incompatible. (DEFAULT --

The audit file in use by user_i/o, if user_i/o is being audited.

If not, another switch being audited is looked for.)

Control arguments:
-switch STR, -sw STR

use the audit file associated with switch STR. (DEFAULT -- user_i/o)
-from STRX, -fm STRX

Begin displaying the audit file with thë first entry satisfying
STRX. If STRX is an entry number, then it indicates the entry of

that number. If STRX is a time, then it indicates the first entry

having a time stamp greater than or equal to STRX. If STRX is a

string, then it indicates the first entry containing the string.
(DEFAULT -- beginning of the file.)

-to STRX

Stop displaying the audit file with the first entry indicated by
STRX. STRX has the same interpretation as for -from above.

-next STRX

Stop displaying the audit file with the entry indicated by STRX.

If STRX is an entry number, then it indicates the entry this number

of entries after the first entry displayed. If STRX is a time, then

it indicates the entry this period of time after the first entry

displayed. If STRX is a string, then it indicates the first entry

containing this string after the first entry displayed.
-last STRX

Begin displaying the audit file with the entry indicated by STRX.

If STRX is an entry number, then it indicates the entry this number

before the last entry in the file. If STRX is a time, then it

indicates the entry this period of time before the last entry in the

file. If STRX is a string, then it indicates the first entry from

the bottom of the file which contains this string.
-match STRXs

display only those entries which contain one or more of the STRXs.

-exclude STRXs, -ex STRXs

do not display any entry containing one or more of the STRXs.

-class STRXs

display only those entries which have a class identifier which

matches one or more of the STRXs. The STRXs can be any mixture of upper
and lower case. They are translated into upper case internally by the

- command.

118

-reverse, -rv

, display the entries in reverse chronological order.

-line_length N, -11 N

Set the output line length to N. Lines will be wrapped, if they are

too long, in such a way as to keep the header margin intact.

Any line which follows a newline not originally in the audit file

entry is preceded by an asterisk.

-entry_numbers, -etn

display the entries with their associated entry numbers in the left

margin.

-class_identifiers, -cli

display the entries with their associated class identifiers in the

left margin.

-metering, -mt

display the entries with their associated metering data, time of

entry, virtual cpu time, and page faults.

-append_nl, -anl

append new lines to the end of entries which don't end in a new

line. Overrides a -no_append_nl to the left in the command line.

(DEFAULT -- newlines are appended if a "leader generating" control

argument is present, i.e. -etn -cli and -mt. Otherwise, newlines

aren't appended.)

-no_append_nl, -nanl

prevents the addition of new lines to entries which don't end in a

new line. This control argument overrides the appending of newlines

because of "leader generating" control arguments, or an occurence

(to the left in the command line) of the -append_nl control

argument. (DEFAULT -- newlines are not appended if a "leader

generating" control argument is not present.)

-insert_nl, -inl

insert new lines whenever an entry is over length (as determined by
the -11 control argument or the current line length for the switch).

(DEFAULT -- newlines are inserted.)

-no_insert_nl, -ninl

prevent new lines from being inserted. This is most useful for

overriding the default. (DEFAULT -- newlines are inserted when

entries are over length.)

-output_file PATH, -of PATH

display the audit file into the segment at PATH.

Access required:
Read access on the audit file.

Notes: -

The STRX referred to above is either an argument with no leading

"-", or -string followed by any argument. In the former case, STRX is

interpreted as an entry number if it is a positive integer (with no

decimal point). It's interpreted as a time if it is a positive real

number (with a decimal point). If it's neither a positive integer nor

a positive real number, then it's interpreted as a string. In the

second case, where STRX contains -string, the following argument is

taken as the value of STRX and is always interpreted as a string

argument.

For an entry to be displayed, it must satisfy all of the

constraints specified in the control arguments. Hence, it must be

within the range of entries given by any of -from, -to, -next, and

119

-last; and it must satisfy all of -match, -exclude, and -class.

Examples:
daf -match -string -last

displays all entries containing the string "-last".

daf -from -string 10

displays all entries from the first entry containing the string "10".

120

do

09/17/81 do

Syntax: do command_string args
or: do -control_args

Function: substitutes arguments into a command string. The expanded
command line is then passed to the current Multics command processor
for execution. As an active function, evaluates to the expanded
command line, without executing it.

Arguments:

command_string
is a command line enclosed in quotes.

args
are character string arguments that replace parameters in

command_string.

Control arguments:
set the mode of operation of the do command, and can only be

specified if neither a command_string nor args are given.
-absentee

establishes an on unit for the any_other condition during the

execution of the expanded command line.

-brief, -bf

suppresses printing of the expanded command line (default).

-go

passes the expanded command line to the command processor (default).
-interactive

does not catch any signals. This is the default.

-long, -lg

prints the expanded command line on error_output before it is

executed or passed back.

-nogo
does not pass the expanded command line to the command processor.

Notes: Each ��i (where i is from 1 to 9) found in command_string is replaced by

the corresponding argi. ��(nn) can be used for argument numbers greater than 9

(nn are digits). If any argi is not supplied, each instance of ��i is replaced

by the null string. Each ��! in command_string is replaced by a 15-character ID

unique to the particular invocation of the do command. Each instance of ���� is

replaced by an ampersand.

Syntax as an active function: [do command_string args]

List of parameters:

��qi
(where i is from 1 to 9) requests quote-doubling in the argument
as it is substituted into the expanded command line.

121

��ri

(where i is from 1 to 9) requests that the argument be requoted and

have its quotes doubled during substitution.

��n

is replaced by the actual number of args supplied.
��fi

(where i is from 1 to 9) is replaced by the actual arguments argi

through argN.

��f��n .

is replaced by the last argument supplied.

��qfi
is replaced by arguments argi through argN with quotes doubled.

��rfi

is replaced by arguments argi through argN, requoted.

- 122

dpl

11 jan 84 dprint_laser, dpl

Syntaxe: dpl -control_args path

Fonction: creation d'une requete d'impression d'un segment ou d'un

fichier multisegment. Cette commande ne travaille pas directement

sur les segments- objets standards.

Argument:

path
est le pathname du segment ou du fichier multisegment; la convention

star n'est pas permise.

Arguments de controle:

Sont acceptes tous les arguments de controle de la commande

'dprint' sauf ceux indiques ci-dessous :

-header, -he

-request_type, rqt

Arguments de controle changes:

-copy N, -cp N

Le segment ou multisegment-file sera imprime en N exemplaires.
N vaut 1 par defaut et aura une valeur maximum de 9

-forms FOND

l'impression sera faite stir le fond de page designe par FOND.

Il faut que ce fond de page soit enregistre dans la Xerox, sinon

un message d'erreur est edite par la commande 'dpl'. En l'absence

d'argument -forms, le fond de page est blanc. On peut donner le

nom du fond de page soit en majuscules, soit en minuscules.

-line_length N, -11 N

cet argument a meme role que pour dprint a la seule difference que la

requete est rejetee tout de suite des que N �� 136 (auparavant, elle

restait bloquee en queue d'attente). En outre, si N depasse le maximum

correspondant au format utilise (cf. commande laser), ce fait est

signale a l'utilisateur et il lui est demande s'il veut continuer.

-page_length N, -pl N

meme role que dans dprint. La seule difference reside dans le fait que
tout depassement de N du maximum correspondant au format utilise est

signale: il est alors demande a l'utilisateur s'il veut continuer.

Arguments nouveaux:

-format XXX, -fmt XXX

l'impression sera faite suivant le format XXX, XXX etant une

chaine de 1 a 6 caracteres. Un format designe un ensemble de

parametres tels que police de caracteres, cadrage vertical ou

horizontal (c'est-a-dire orientation portrait ou paysage),

longueur de la ligne en caracteres et hauteur de la page en

lignes. XXX doit correspondre a un format connu de l'imprimante
Xerox. Un format peut etre donne soit en majuscules, soit en

123

minuscules. Le format par defaut est PAYS6.

'-lab_auto, -lba

cet argument est equivalent a la sequence d'arguments suivante, "dple
-blbl xxx -nb l,x,y" ou xxx est le nom du segment a lister, 'x' vaut

le page_length correspondant au format plus 3 et 'y' vaut la moitie

du line_length de ce meme format. Cet argument est incompatible avec

les arguments '-nb' et '-blbl'.

-number PG,LG,COL , -nb PG,LG,COL
cet argument sert a demander a l'imprimante a laser une pagination

automatique. L'impression du numero de page est effectuee sur la ligne
LG a partir de la colonne COL. Seuls, les numeros positifs sont edites,
et la numerotation des pages commence a PG. Ainsi, si on desire n pages
non numerotees en debut d'impression il faut donner a PG la valeur 1-n

(ex: pour 10 pages non numerotees PG sera egal a '-9').

-recto, -rc

Par defaut, l'impression se fait recto-verso avec les papiers standards.

Le present argument permet de demander une impression recto seulement.

-recto-verso, -rv

Dans le cas de sorties particulieres, l'impression peut se faire

recto seulement. Cet argument permet de forcer la sortie a se faire

en recto-verso.

Arguments de traitement apres impression:
-addr pathname

Cet argument permet de demander le routage par courrier du resultat

de l'impression. Quand un pathname est indique, il s'agit de celui

du segment qui contient l'adresse normalisee qui servira a l'envoi.

Le segment en question doit avoir le suffixe ".addr" qu'il n'est pas
necessaire d'indiquer dans la commande. Il doit se trouver dans le

meme directory que le segment a editer ou, a defaut, dans le home

directory du demandeur. Si aucun pathname n'est donne apres -addr,
c'est le segment Person_id.addr qui sera recherche. Si le segment
recherche n'existe pas, il y a rejet avec un message d'erreur.

La longueur de l'entryname (suffixe non compris) ne doit pas
exceder 22 caracteres.

-col XC

Cet argument permet de demander le collage soit sur le grand cote

(XC = GC ou gc), soit sur le petit cote (XC = PC ou pc). Par defaut, il n'3
a pas collage s'il y a emballage, mais il y a collage sur le grand
cote s'il n'y a pas d'emballage demande.

-emb

Le resultat d'impression sera mis sous enveloppe plastique des

qu'un routage par courrier est demande. Sinon, il faut le

demander explicitement par cet argument.

-papier PPPP, -pap PPPP

On peut demander que l'impression soit faite sur un papier special

designe par PPPP. Actuellement PPPP peut etre choisi parmi: perfo,

etiq, rose, bleu, vert et jaune.

Acces demande: il est exige d'avoir au moins l'acces "r" sur le segment
ou multisegment dont on veut l'impression.

Nota sur l'adresse: l'adresse contenue dans un segment .addr doit etre

124

normalisee, ce qui donne les regles suivantes :

- il y a au maximum 7 lignes utiles,
- chaque ligne utile comporte dans les caracteres:

1 a 9 un identificateur,
10 le numero de la ligne,
11 a xx la partie a editer (maximum 32 car.),

- la ligne 'l' est obligatoire,
- les lignes doivent etre disposees dans l'ordre de leur numero.

Pour plus de details, consulter les normes du logiciel 'adress'.

Liste des formats disponibles : ,

Nom ll.max pl.max polices observations

pays4 136 80 R4BOBL

pays6 136 60 M006BL Format 'Standard' par defaut.

pays7 7 132 42

pays8 110 42 R5TIBL

portl 132 60 P1012B Format 'Archivage'
2 fois 132 car. x 60 lig.

port2 136 70 P1012B idem portl sur 130 lignes.

(attention: ne marche pas encore)

port6 100 80 Idem 'Standard' en portrait
P0612C 1 Normaux (pas d'accent.)
P0612C 2 (pas de scient. idem que 1)
R6BOBP 3 Gras (accent.)
R612BP 4 type 'baton' (accent.)
P06ITB 5 Italique -

port6a 100 80 R612BP Caracteres accentues

port6g 100 80 R6BOBP Caracteres gras

port7 80 60 Format 'Courrier'

R7TIBP 1 Caracteres accentues

R7TICP 2 Caracteres scientifiques
R7TIBP 3 (pas de gras idem que 1)

P07TDC 4 type 'baton'

P07ITA 5 Italique

port7b 80 60 P07TDC car. batons (ascii, pas d'accent.)

port7e 99 66 P07TDC Format pour papier 'étiquette'

port7s 80 60 R7TICP Caracteres scientifiques

port8 66 60 Format 'Documentation'

R8TIBP 1 Caracteres accentues

R8TICP 2 Caracteres scientifiques
P08TBC 3 Gras

R812BP 4 type 'bâton' (accentues)
P08ITA 5 Italique

port8s 66 60 R8TICP Caracteres scientifiques

port8b 66 60 R812BP Caracteres 'baton' (accentues)

martOl 60 40 RK2C3P Orientation portrait
Gros caracteres (accent. possible)

Espacement proportionnel

125

dprint

12/07/81 dprint, dp

Syntax: dp -control_args paths

Function: requests offline printing of segments and multisegment
files. This command does not work on standard object segments.

Arguments:

paths
are pathnames of segments and multisegment files; the star convention is

not allowed.

Control arguments: affect only pathnames that follow them.

-brief, -bf

suppresses the message "j requests signalled...."
"

This control argument cannot be overruled later in the command line.

-copy N, -cp N

prints N copies, where N ��= 4. (DEFAULT -- 1 copy)

-queue N, -q N

. prints paths in priority queue N, where N ��= 4. (DEFAULT --depends
on request type specified.)

-delete, -dl

deletes paths after printing. This control argument cannot be

overruled later in the command line.

-header STR, -he STR

identifies subsequent output by the string STR. (DEFAULT -- the

requestor's Person_id)
-destination STR, -ds STR

uses the string STR to determine where to deliver the printed

output. (DEFAULT -- the requestor's Project_id)

-notify, -nt

sends confirmation of completed output.

-request_type STR, -rqt STR

places paths in the queue identified by STR. (DEFAULT -- printer)
-forms STR

specifies the type of forms to be used when processing the print
file. Standard I/0 daemon drivers ignore the forms specification
when processing print files.

-indent N, -ind N

indents left margin N columns. (DEFAULT -- 0)

-line_length N, -11 N

continues lines longer than N characters on the next line.

(DEFAULT -- depends on the request type specified)

-page_length N, -pl N

prints no more than N lines on a page. (DEFAULT -- depends on the

request type specified)

-no_endpage, -nep

126

skips to the top of a page only when a formfeed character ils
encountered in the input path.

-single, -sg

prints any form-feed or vertical-tab character in input as a newline

character.

-truncate, -tc

truncates any line exceeding the line length (rather than "folding" onto

subsequent lines).
-label STR, -lbl STR

puts STR at the top and bottom of every page.

-top_label STR, -tlbl STR

puts STR at the top of every page.

-bottom-label STR, -blbl STR

puts STR at the bottom of every page.

-access_label, -albl

puts access class of path at the top and bottom of every page.

-no_label, -nlbl

does not place any labels on the printed output.

-non_edited, -ned

prints nonprintable control characters as octal escapes.

Access required: At least "r" access to the segment or multisegment
file.

The process which performs the printing (as obtained by the

"print_request_types" command) must have at least "r" access to the

segment or multisegment file and at least "s" access to the containing

directory to verify that the user also has at least "r" access to the

segment or multisegment file.

If -delete is specified, the I/0 coordinator (normally IO.SysDaemon.z)
must have at least "m" access to the containing directory and at least

"s" access to the parent directory of the containing directory to

verify that the user also has at least "m" access to the containing

directory.

Notes: If invoked without any arguments, dprint gives the status of

the default printer queue.

127

dpunch

11/13/81 dpunch, dpn

Syntax: dpn -control_args paths

Function: queues specified segments and/or multisegment files for

punching by the Multics card punch. It is similar,to the dprint
command.

Arguments:

paths
'

are pathnames of segments and/or multisegment files; the star

convention is NOT allowed.

Control arguments: affect only pathnames that follow them.

-brief, -bf

suppresses the message "j requests signalled, ...".

This control argument cannot be overruled later in the command line.

-copy N, -cp N

punches N copies, where N ��= 4. (DEFAULT -- 1 copy)
-delete, -dl

deletes paths after punching. This control argument cannot be
overruled later in the command line.

-destination STR, -ds STR

uses the string STR to determine where to deliver the deck.

(DEFAULT -- the requestor's Project_id)

-header STR, -he STR

identifies subsequent output by the string STR. (DEFAULT -- the

requestor's Person_id)
-mcc

punches the specified paths using character conversion. (DEFAULT)

-notify, -nt

sends confirmation of completed output.

-queue N, -q N

punches specified paths in priority queue N (N ��= 4). (DEFAULT --

depends on the request type specified.)

-raw

punches the specified paths using no conversion.

-request_type STR, -rqt STR

places paths in the queue identified by STR. (DEFAULT -- punch)

-7punch, -7p 1

punches the specified paths using 7-punch conversion.

Access required: At least "r" access to the segment or multisegment
file.

The process which performs the punching (as obtained by the

128

"print_request_types" command) must have at least "r" access to the

segment or multisegment file and at least "s" access to the containing

directory to verify that the user also has at least "r" access to the

segment or multisegment file.

If -delete is specified, the I/0 coordinator (normally IO.SysDaemon.z)
must have at least "m" access to the containing directory and at least

"s" access to the parent directory of the containing directory to

verify that the user also has at least "m" access to the containing

directory.

Notes: If invoked without any arguments, dpunch gives the status of

the default punch queue.

129

dump_segment

12/07/81 dump_segment, ds

Syntax: ds path offset length -control_args
or: ds seg_no offset length -control_args

Syntax as active function: [ds path offset -control_args]
or: [ds seg_no offset -control_args]

Function: prints, in octal or hexadecimal format, selected portions of

a segment. It prints out either four or eight words per line and can

optionally be instructed to print out an edited version of the ASCII,

BCD, EBCDIC (in 8 or 9 bits), or 4-bit byte representation.

The active function returns a single word in octal or hexadecimal

representation.

Arguments: , :.

path
is the pathname or (octal) segment number of the segment to be

dumped. If path is a pathname, but looks like a number, the

preceding argument should be the -name (or -nm) control argument

(see below). The star convention is allowed for the command only.
offset

is the (octal) offset of the first word to be dumped. If both

offset and length are omitted, the entire segment is dumped.

length .

is the (octal) number of words to be dumped. If offset is supplied
and length is omitted, 1 word is dumped.

seg_no
is the octal segment number of a segment to be dumped.

Control arguments:
-4bit

prints out, or returns, a translation of the octal or hexadecimal

dump based on the Multics unstructured 4-bit byte. The translation

ignores the first bit of each 9-bit byte and uses each of the two

groups of four bits remaining to generate a digit or a sign.

-address, -addr

prints the address (relative to the base of the segment) with the

data. This is the default.

-bcd

prints the BCD representation of the words in addition to the octal

or hexadecimal dump. There are no nonprintable BCD characters, so

periods can be taken literally. This control argument causes the

active function to return BCD.

-block N, -bk N

dumps words in blocks of N words separated by a blank line. The

offset, if being printed, is reset to initial value at the beginning

130

of each block.

-character, -ch, -ascii

prints the ASCII representation of the words in addition to the

octal or hexadecimal dump. Characters that cannot be printed are

represented as periods. This control argument causes the active

function to return ASCII.

-ebcdic9

prints the EBCDIC representation of each 9-bit byte in addition to

the octal or hexadecimal dump. Characters that cannot be printed
are represented by periods. This control argument causes the active

function to return 9-bit EBCDIC.

-ebcdic8

prints the EBCDIC representation of each eight bits in addition to

the octal or hexadecimal dump. Characters that cannot be printed
are represented by periods. If an odd number of words is requested
to dump, the last four bits of the last word do not appear in the

translation. This control argument causes the active function to

return 8-bit EBCDIC.

-entry_point name, -ep name

specifies that the offset of the first word to be dumped is

relative to the location defined by the externally available symbol
"name". This control argument can only be used for object segments

(created by a compiler or by the create_data_segment program).

-header, -he

prints a header line containing the pathname (or segment number) of

the segment being dumped as well as the date-time printed. The

default is to print a header only if the entire segment is being

dumped.

-hex8

prints the dumped words in hexadecimal with nine hexadecimal digits

per word rather than octal with 12 octal digits per word.

-hex9

prints the dumped words in hexadecimal with eight hexadecimal digits

per word rather than 12 octal digits per word. Each pair of

hexadecimal digits corresponds to the low-order eight bits of each

9-bit byte.

-long, -lg

prints eight words on a line. Four is the default. This control

argument cannot be used with -character, -bcd, -4bit, -ebcdic8,

-ebcdic9, or -short.

-name PATH, -nm PATH

indicates that PATH is a pathname even though it may look like an

octal segment number.

-no_address, -nad

does not print the address.

-no_header, -nhe

suppresses printing of the header line even though the entire

segment is being dumped.

-no_offset, -nofs

does not print the offset. This is the default.

-offset N, -ofs N

prints the offset (relative to N words before the start of data

being dumped) along with the data. If N is not given, 0 is assumed.

-short, -sh

131

compacts lines to fit on a terminal with a short line length.

Single spaces are placed between fields, and only the two low-order

digits of the address are printed, except when the high-order digits

change. This shortens output lines to less than 80 characters.

Notes:

Only one of the control arguments -ebcdic8, -ebcdic9,

-character, -bcd, or -4bit can be specified.

When invoked as an active function, dump_segment returns only one word

of information, which is located at offset within the segment. If the

-4bit, -bcd, -character, -ebcdic9, -ebcdic8, -hex8, or -hex9 control

arguments are invoked, the information is returned in the specified
format only. All other arguments are ignored in active function

invocation.

132

ed

30/12/83 ed

Syntax: ed

Fonction: Appelle l'éditeur de texte ed.

Note:

Pour plus de precisions on pourra consulter le segment info ed.gi par lé

commande: help ed.gi. Ou s'adresser a D. Arditti CNET/PAA/TIM/MTI

(Tel: 638 55 05).

133

ed.gi
1

30/12/83 ed

Generalites:

ed est un editeur de texte fonctionnant avec des numeros de ligne

physiquement presents dans le segment edite. Ceci est un gros avantage

lorsqu'on veut ecrire, modifier ou mettre au point des programmes ecrits en

fortran ou en basic (et meme en pll). En effet ces numeros de lignes ne sont

pas modifies lorsqu'on effectue des insertions ou des suppressions (ceci
contrairement a ce qui se passe avec des numeros logiques). D'autre part ces

numeros de ligne permettent d'utiliser de maniere particulierement commode les

possibilites d'edition locales offertes par certains terminaux (mode message
ou ligne, mode page ou bloc). Enfin ces numeros sont reconnus par probe.

ed a ete ecrit en utilisant des modules empruntes a l'éditeur de texte

Multics FAST. Pour cette raison ed ressemble beaucoup a FAST cependant on a

essaye d'apporter quelques ameliorations et commodites supplementaires et

surtout on s'est attache a supprimer toutes les restrictions d'utilisation de

Multics introduites (volontairement) dans FAST. Comme FAST ressemble a

l'ancien editeur de GCOS les nostalgiques de GCOS seront probablement combles.

ed est a priori pense pour etre utilise avec un terminal ayant des

possibilites d'edition locales: mode ligne (ou message), mode page (ou bloc).
Ceci explique le petit nombre de commandes disponibles. Cependant ed peut
fonctionner avec n'importe quel type de terminal.

Fonctionnement:

A l'entree dans ed (apres avoir execute la commande: ed) l'utilisateur

dispose d'un buffer de travail vide.

L'utilisateur peut alors envoyer.

- Des "lignes de texte".
- Des commandes de ed.
- Des commandes Multics.

Les "lignes de texte":

Les "lignes de texte" sont reconnues par ed parce qu'elles commencent par un

nombre (precisement le premier caractere non blanc envoye est un chiffre). Ce

nombre est le numero de ligne. La ligne de texte (numero de ligne compris)
vient s'inserer dans le buffer de travail a la place indiquee par ce numero.

Si une ligne existe deja avec ce meme numero elle est detruite et remplacee

par la nouvelle. Pour supprimer une ligne frapper simplement son numero suivi

d'un CR.

Les commandes de ed:

Les commandes de ed sont les suivantes (nom suivit de son abreviation):

- - 134

- print_text p
- read_text r
- write_text w w

- locate 1
- substitute s
- delete_text d
- new n
- resequence rsq
- input input
- num num
- info ?
- move_text mt
- merge_text mgt - .
- quit q .

�� - quit_force Q

Pour obtenir une description precise de chacune de ces commandes faire (apres
etre entre dans ed) : help ��nom de commande��.

Les commandes Multics:

Lorsqu'il ne s'agit ni d'une ligne de texte ni d'une commande de ed la

commande frappee par l'utilisateur est consideree comme une commande Multics

et executee normalement. Ce point permet de realiser n'importe quelle

operation sans quitter ed comme FAST, ed est un sous systeme mais

contrairement a FAST, ed n'apporte aucune limitation a Multics.

Si l'on veut executer une commande Multics commencant par un chiffre ou

portant le meme nom qu'une commande de ed il suffit de faire preceder cette

commande par un ";".

Le pathname par defaut:

Le buffer de travail possede un pathname par defaut. C'est ce pathname qui
sera utilise par la commande write_text (w) pour sauver ce buffer lorsque la

commande w est utilisee sans pathname. Ce pathname se decompose en directory

par defaut et nom par defaut. Le pathname par defaut est initialise par les

commandes read-text (r) et new (n) avec pathname (s'il n'a pas ete initialise

il est vide). La commande w avec pathname modifie le pathname par defaut. la

commande info (?) permet entre autre informations de connaitre la directory

par defaut et le pathname par defaut..

"L'abbrev PN":

Lorsqu'on travaille en mode "abbrev" ed initialise et met constament a jour
une "abbrev" nommee PN (PathName) dont le contenu est le pathname par defaut

prive (lorsqu'il existe) de son suffixe .fortran .basic ou .pll.
Cette "abbrev" peut etre utilisee de diverses manieres:

- Pour compiler (en fortran): ft PN -ln
- pour executer le code objet : PN

On pourra de plus creer le jeu d'"abbrev" suivant qui est tres commode:
- FT do "ft PN -ln -ot"
- RUN do "ft PN -ln -tb;PN"

La premiere compile (en fortran) avec l'option -ot (optimiseur). La seconde

compile (en fortran) avec l'option -tb (pour utiliser avec probe) et execute.

135

Commande Multics "piegees".

Les commandes Multics suivantes (nom suivi de l'abreviation) sont "piegees"
par ed.

- ready_off rdf
- ready_on rdn
- abbrev ab
- .quit .q
- logout L

Dans ce contexte "piegee" signifie executee sous le controle de ed. Comme

explique plus haut le ";" permet d'échapper a ce controle. Il est alors
extremement dangereux d'utiliser le ";" dans ce but.

Message ready:

Apres chaque commande Multic on obtient dans les conditions habituelles le

message ready standard. Apres certaines commandes de ed on obtient un message
ready precede de "ed" ou "ed ". Le " " signifie que le buffer de travail n'a

pas ete sauve.

136

07/23/75 edm

Syntax: edm path

Function: creates or edits ASCII segments.

Arguments:

path
is the pathname of the segment to be edited.

Notes:

For the "s" and "c" requests, the delimiter may be any character

not in the strings sl and s2; c/a/b/ and cxaxbx work the same.

If the first string is empty, characters go in at the front.

For the "q" request, if a "w" has not been done since the last

change to the text then edm warns the user that changes
made may be lost and asks whether the user still

wishes to exit. If no changes have been made since

the last "w" then the user exits directly.
The "qf" request bypasses this check.

Modes: edm has three modes -- input, edit, and comment. If the path argument is

specified and the segment is found, edm begins in edit mode; otherwise, it

begins in input mode.

In edit mode, edm accepts and performs edit requests.
In input mode, all lines typed are appended to the file until a line

consisting of a period (".") is typed, causing it to return to edit mode.

In comment mode, one line at a time of the file is printed without carriage

return, and the user can append to the end of the line by typing a continuation,

or can type "." to cause a return to edit mode.

Requests: in edit mode the following are valid.

. enter input mode; exit when a line with only "." is typed
- N back up N lines

, enter "comment" mode; exit when a line with only "." is typed
= print current line number

b go to bottom of file, enter input mode

c N /sl/s2/ change all occurrences of string "sl" to "s2" for N lines

d N delete N lines

updelete delete all lines above current line

E line execute "line" as a Multics command line

f string find a line beginning with "string"
i line insert "line" after current line

merge path insert segment "path" after current line

move M N beginning with line M, remove N lines and insert

them after the current line.

- 137

k enter brief mode (no response after f, n, 1, c, s)
1 string locate a line containing "string"
n N move down N lines

p N print N lines

q exit from edm (See Notes)

qf exit directly from edm with no question
r line replace current line with "line"

s N /sl/s2/ same as "c"

t go to top of file

v enter verbose mode (opposite of "k")
w path write edited copy of file into "path" (See Notes)

upwrite path write and delete all lines above current line into "path"

138

emacs

02/24/82 emacs

Syntax: emacs Pathnames -control_args

Function: invokes the emacs editor.

Arguments:
Pathnames

One or more pathnames to be read into emacs buffers. They may be starnames

or archive component names. If the -mc or -ap control argument is used,

they may be interpreted differently or not at all.

Control arguments:

-no_starup, -ns

Inhibits execution of the user's start_up.emacs file. The

start_up.emacs is executed by default.

-query

Queries the user for the terminal type to be used by emacs.

The default is to try to determine the terminal type from the

communications terminal type set with set_tty or the ttp preaccess

request, and to query if no terminal type can be found that way.

-ttp
CTLname specifies that emacs should use CTLname as a terminal type.
CTLname may be the absolute or relative pathname of an emacs

terminal ctl program, or a reference name of same. See

��doc��ss��emacs��ctl-writing.info for more details. The default is

explained under the -query control argument.

-mc

PROGRAM loads the lisp program located at the pathname PROGRAM into

the lisp environment when emacs is initilaized.

-apply
FUNCTION Args, -ap FUNCTION Args Runs the lisp function FUNCTION as

the first function in the emacs environment, in place of the usual .

start_up mechanism. The arguments Args are given to FUNCTION as

arguments. If this argument is used, the PATHNAME arguments are

interpreted by this function, if at all.

139

enter_abs_reguest

10/01/80 enter_abs_request, ear

Syntax: ear path -control_args

Function: requests that an absentee process be created. This process executes

commands from a control segment. The control segment is a list of input lines

to the process (type "help exec_com"). ,

Arguments: -

path
is the pathname of the absentee control segment; the absin suffix need

not be given.

Control arguments:

-arguments STRs, -ag STRs

passes the arguments STRs to the absentee process.
This control argument must come last, since everything after it on the

command line is taken as arguments to the absentee process.
-brief, -bf

suppresses the message "N already requested...".
-comment STR, -com STR '

associates a comment with the request; it can be printed by the lar

command. STR must be enclosed in quotes if it contains spaces or other

command language special characters.

-deferred-indefinitely, -dfi

delays the creation of the absentee process indefinitely.
It is created when the operator releases the request.

-foreground, -fg
enters the request into the foreground queue; the default is one of ,

the priority queues (see the "-queue" control argument).
-limit N, -li N

places a limit of N seconds on the CPU time the absentee process uses.

-long_id, -lgid

prints the long request_id. Default is to print the short request_id.

Type "help request_ids".

-notify, -nt

notifies the user of whether a job is logged in, logged out, or deferred.

-output_file path, -of path

specifies the output segment.

.
-proxy User_id

causes the absentee process to be created with the specified User_id.
This feature is primarily for the RJE facility; its use is controlled by the

system administrator.

-queue N, -q N

indicates the priority queue; the default queue is defined by the

system administrator. For convenience in writing exec_coms and

abbreviations, the word foreground or fg following the -queue

140

control argument performs the same function as the -foreground
control argument.

-resource STR, -rsc STR

specifies the resources (e.g., tape drives) that are needed by the

absentee process. The process is not created until the resources are

available. STR must be enclosed in quotes if it contains blanks or other

delimiters. Type "help reserve_resource" for a description of the

syntax of STR.

-restart, -rt

starts the computation over again from the beginning if interrupted

(e.g., by a system crash). The default is not to restart.

-secondary, -sec

indicates that a foreground request should be logged in as a secondary

process (subject to preemption) if no primary slots are available.

-sender STR

enters only requests from sender STR; usually an RJE station identifier.

-time dtime, -tm dtime

delays creation of the absentee process until a specified time.

Notes: Unless it says otherwise, an error message means that the request was

not submitted.

141

enter_retrieval_request

09/17/81 enter_retrieval_request, err

Syntax: err path -control_args

Function: queues volume retrieval requests for specific segments,

directories, multisegment files, and subtrees.

Arguments:

path
is the pathname of a segment, directory, or node of a subtree. The

star convention is not allowed.

Control arguments:

-brief, -bf

supresses printing of the ID and number of requests in queue.
-from DT, -fm DT

specifies that the search for path and all inferior branches, if

specified, stops at time DT. Thus, objects dumped before time DT

are not recovered. Time DT must be acceptable to the

convert_date_to_binary- subroutine. If the control

argument is not specified, all valid dump volumes are searched.

-long, -lg

prints the long ID of the request. The default is to print the

short ID.

-multisegment_file, -msf

specifies that the object named in path is a multisegment file and

that all of its components are to be recovered.

-new_path newpath

specifies that if the requestor has the correct access to retrieve

the segment specified in path above (which must already exist) and

the correct access to create a segment with the pathname newpath,
then the object described/identified by path is retrieved into .

newpath.

-notify, -nt

specifies that the user is to be notified by online mail of the

success or failure of the request. The default is to not notify the

user.

-previous, -prev

specifies that the object to be retrieved is the one dumped prior to

the object presently online. The default is to always retrieve the

most recent copy. By specifying this control argument, the

requestor can retrieve successively earlier copies of an object.

-queue N, -q N

queues requests in priority queue N. The default is queue 3.

-subtree, -subt

specifies that the subtree inferior to the directory specified in

path as well as the directory is to be retrieved. If a subtree is

142

found intact after a directory is recovered, then no further action

is taken, unless a time interval has been specified. See "Notes"

for more information. The default is not to retrieve subtrees.

-to DT

specifies that the search for path and all inferior branches, if

specified, proceeds from time DT backwards. Thus, objects dumped
later than time DT are not recovered. DT must be acceptable to the

convert_date_to_binary_ subroutine. If this control argument is

not specified, time DT is assumed to be the start of the retrieval

operation.

Access required:
The user must have write access or modify permission to an object in

order to retrieve it. If an object has been deleted, then append

permission on the containing directory is also required.

Notes: In certain cases where a directory is damaged, the inferior

subtree may be unavailable until the directory is recovered. When a

directory is recovered, and the subtree control argument is specified,
a check is made to see if the subtree is available, and if so,
retrieval is assumed complete.

Retrieval requests of objects for which the online copy is more recent

or the same as the dump copy are refused, unless the -previous, -from,
or -to control arguments are used.

The pathnames of the segments and directories to be retrieved need not
'

be specified as a set of primary names. Any set of valid entrynames is

acceptable.

143

exec com

01/11/82 exec_com, ec

Syntax: ec path ec_args

Function: executes programs written in the exec_com language, used to

pass command lines to the Multics command processor and pass input
lines to commands reading input. The syntax described here is known

as Version 2, for which the first line of the exec_com program must

be the line consisting of "��version 2". For a description of Version 1 ��

syntax, type "help vlec".

Arguments:

path
is the pathname of an exec_com program, written using the constructs

described in this info segment. The ec suffix is assumed if not

specified. The star convention is NOT allowed.

ec_args
are optional arguments to the exec_com program, and are substituted

for parameter references such as ��1. See "List of parameters".

Syntax as an active function: [ec path ec_args]

List of parameters:
��1 - ��9

expand to the lst through 9th ec_args, or to defaults defined by a

��default statement or to null string if there is no corresponding

ec_arg. The string ��0 is invalid.

��(1) - ��(9)
are synonyms for ��1 - ��9.

��(11), ��(12), etc.

expands to the corresponding ec_arg, or to a default defined by
��default or to null string if there is no corresponding ec_arg.
The parentheses are required when there are two or more digits.

��ql - ��q9

��q(l), ��q(ll), etc.

expands to the corresponding argument with quotes doubled according
to the quote depth of the surrounding context. See "Notes on

quoting". This parameter ensures that quotes in the argument to

exec_com are handled correctly under the quote-stripping action of

the command processor.
��rl - ��r9

��r(l), ��r(ll), etc.

expands to the corresponding argument enclosed in an added layer of

quotes, and internal quotes doubled accordingly. See "Notes on

quoting". This parameter keeps the value of the argument as a

single unit after one layer of quote-stripping by the command

processor.

144

��n .

expands to the number of ec_args specified to exec_com.
��fl - ��f9

if(1), ��f(11), etc.

expands to a list of the Nth through last ec_args separated by

spaces. If N is greater than the value of ��n, expands to null string.

��qfl - ��qf9

��qf(1), ��qf(l1), etc.

expands to a list of the Nth through last ec_args, with quotes

doubled, separated by spaces. If N is greater than the value of ��n,

expands to null string. This parameter is equivalent to:

��qN ��qN+l ��qN+2

��rfl - ��rf9

��rf(l), ��rf(ll), etc.

expands to a list of the Nth through last ec_args, individually

requoted, separated by spaces. If N is greater than the value of

��n, expands to null string. This parameter is equivalent to:

��rN ��rN+l ��rN+2

��f��n, ��qf��n, ��rf��n

expands to the last ec_arg specified to exec_com, either as is,

with quotes doubled, or requoted.

��ec_dir

expands to the pathname of the directory containing the exec_com

currently running. It can be used to call other exec_com's in the

same directory.

��ec_name

expands to the entryname of the exec_com currently running, with

any ec or absin suffix removed (the absin suffix is for an exec_com
invoked by the absentee facility; type "help ear").
This parameter can be used to simulate entrypoints in an exec_com

segment, by adding multiple names to the segment and transferring
to a different ��label depending on the name invoked.

��ec_path

expands to the expanded, suffixed pathname of the current exec_com.

��ec_switch

expands to the name of the I/0 switch over which the exec_com -
interpreter is reading the exec_com.

List of value expressions:
(All of these constructs can be nested arbitrarily inside each

other.)

��(NAME)

expands to the value assigned to the variable NAME by a previous
��set statement in the same exec_com. If NAME contains ��'s, it is

first expanded. Therefore, ��() constructs can be nested. However,
��'s in the expansion are not re-expanded. A second level of

expansion must be specified, therefore, by ��(��()).
If NAME has not been assigned a value by ��set, an error occurs.

Variable names are allowed to contain any characters except ��

and cannot consist solely of digits.

��(N)
where N is a positive integer, expands to the value of the Nth

ec_arg to exec_com, or if there is no Nth ec_arg, to the last

default value assigned to argument N by a ��default statement, or if

145

no default value was assigned, to null string.

��q(NAME), ��q(N)

expands to the same thing as ��(NAME) or ��(N), but with quotes
inside the value doubled according to the quote depoth of the

surrounding context.

��r(NAME), ��r(n)

expands to the same thing as ��(NAME) or ��(N), but requoted and

with internal quotes doubled.

��[ACTIVE STRING], ��11[ACTIVE STRING]

expands to the return value of an active string by calling the

command processor. This construct ends with the matching right
bracket. The ��11 [...] construct is used in ��set statements to treat

the expansion as a single argument to ��set. It is important to note

that ��[...] active strings are expanded by exec_com, whereas [...]

strings are expanded at command line execution time. Therefore,

··] and not ��11 [...] must be used in a command line to treat

the expansion as a single command argument.

List of literals:

Also see "Notes on white space".

encloses an arbitrary character string to be taken literally.

Quotes inside the string must be doubled, and the closing undoubled

quote ends the literal string.

expands to a single �� character, not further expanded.
'

��AMP, ��AMP(N)

expands to a single ampersand character (ASCII 046), in which case

it is identical to ����, or to N ampersands where N is a positive
integer.

��SP, ��SP(N)

expands to a single space character (ASCII 040) or to N spaces.
��BS, ��BS(N)

expands to a single backspace character (ASCII 010) or to N

backspaces.

��HT, ��HT(N)

expands to a single horizontal tab character (ASCII 011) or to N

horizontal tabs.

��VT, ��VT(N)

expands to a single vertical tab character (ASCII 013) or to N

vertical tabs.

��FF, ��FF(N), ��NP, ��NP(N)

expands to a single form-feed character (ASCII 014) or to N

form-feeds.

��NL, ��NL(N), ��LF, ��LF(N)

expands to a single newline character (ASCII 012) or to N newlines.

��QT, ��QT(N)

expands to a single double-quote character (") or to N of them.

expands to a Multics 15-character unique name, for example

"!BBBhjBnWQpGbbc". Multiple occurrences of ��! within the same

exec_com expand to the same string.

List of predicates:

146

��is_defined(NAME)

expands to "true" if the variable named NAME has been assigned a

value by an ��set statement in the current exec_com, "false"

otherwise (See "Notes on variables"). This construct expands to

"true" if ��(NAME) can be expanded, "false" if ��(NAME) is an error.

��is_defined(N)
where N is a positive integer, expands to "true" if an Nth ec_arg
was specified to exec_com or an Nth default was defined via the

��default statement (see "List of assignment statements"), "false"

otherwise.

��is_absin

expands to "true" if the exec_com is being executed by the

absentee facility, "false" if it is being executed by the exec_com
command or active function.

��is_active_function, ��is_af

expands to "true" if the exec_com is being executed by the exec_com
active function, "false" otherwise.

��is_attached

expands to "true" if input is currently attached via an ��attach

statement, "false" otherwise. See "Notes on input attachment".

Input is always attached when running as an absentee.

��is_input_line

expands to "true" if the line in which it appears is being read as
`

an input line by some command, "false" otherwise.

List of control statements: .

��attach

causes any commands subsequently invoked in command lines to read
-

their input from the exec_com rather than from the terminal.

See "Notes on input attachment".

��detach

causes any commands subsequently invoked in command lines to read

their input from the terminal. This is the default. See "Notes on

input attachment".

��if EXPRESSION

expands EXPRESSION to get a true or false value. EXPRESSION can

contain any exec_com-expandable constructs, such as ��[...] 1

(See "List of value expressions"). If the expanded value of

EXPRESSION is "true", the following ��then statement (if any) is

executed next. If the value is "false", the following ��else

statement (if any) is executed next. If the value is neither "true"

nor "false", an error occurs. See "Examples of if statements".

��then LINE

��then ��do LINES ��end

��else LINE

��else ��do LINES ��end

where LINE is any exec_com line, including another ��if statement.

LINE is executed or not depending on the value of the preceding
��if clause. The ��then and ��else statements, unlike other exec_com

statements, are allowed to appear on the same line with one

another and with ��if. See "Examples of if statements".

The contents of a ��do-��end block reference the same variables as

the containing exec_com. No ��goto's are allowed into a ��do-��end

block from outside it.

��goto LABEL

147

causes the next statement to be executed to be the statement

following the first occurrence of "��label LABEL" in the

exec_com.
��label LABEL

specifies a target for "��goto LABEL" and is otherwise ignored.
The string LABEL can contain any characters.

��quit -

terminates execution of the exec_com. If the program was invoked

by the exec_com active function, the active function return value .
is null string.

��return LINE

terminates execution of the exec_com. If the program was invoked

by the exec_com active function, the active function value is the

(expanded) value of LINE, the rest of the line. If the program was

invoked by the exec_com command, the expanded value of LINE is

printed on the terminal.

List of assignment statements:

��set NAME1 VALUE1 ... NAMEn VALUEn

assigns values to the variables NAME1 through NAMEn, which are

created if no assignments for them already exist. All NAMEj and

VALUEj arguments are fully expanded before any values are set.

Therefore, the statement:

��set a ��(b) b ��(a)

exchanges the values of the variables a and b. Arguments to ��set

are delimited by white space. White space and literals inside them

must be enclosed in "...", for example:
��set answer "��[response Answer?]"

Alternatively, the ��11[... construct can be used, causing the entire

return value to be taken as a single argument:
��set answer ��11[response Answer?]

There is no restriction on the lengths of NAMEj or VALUEj; NAMEj
cannot be all digits. If VALUEj is the unquoted keyword ��undefined,

any existing value for NAMEj is deleted, and the ��is_defined(NAMEj)
construct will expand to "false".

��default VALUE1 ... VALUEn

assigns default values for the exec_com parameters ��(1) through ��(n).
The default value of ��(j) only matters if no jth ec_arg was

specified to exec_com. The ��(j) parameter reference expands to the

value of the jth ec_arg, or if there is none, to the jth default

value set by ��default, or if there is none, to null string.

VALUEj arguments are separated by white space, and each is fully

expanded before default values are set. White space and literal 's

in them must be enclosed in ��"...". If VALUEj is the keyword
��undefined, no jth default value is set. This keyword is used as

a place-holder to skip the jth position.

List of printing statements: ,
��print LINE

prints the expanded remainder of the line, followed by a newline

character. If ��print appears on a line by itself, a single newline

character is printed.

��print_nnl LINE

prints the expanded remainder of the line, without appending a

148

newline character.

List of tracing statements:

��ready on

��ready off

turns ready messages on or off. Turning them on causes the system

ready procedure to print a ready message when it is called.

The default is off. This statement does not affect whether the

ready procedure is called. The ready procedure is normally called

after the execution of a command line (type "help ready_on").
The ��ready statement is ignored in the absentee environment.

��ready_proc on

��ready_proc off

determines whether or not the system ready procedure is called

after each command line is executed. The default is on for the

exec_com command, off for the active function. This statement is

ignored in the absentee environment.

��trace TYPES STATE ��prefix PREFIX ��osw SWITCHNAME

sets tracing for one or more kinds of lines specified by TYPES.

TYPES can be any combination of the following:
��command command lines.

��comment comments, including those sharing other lines.

��control control lines, for example ��print....

��input lines being read as input to some command.

The default if TYPE is omitted is all four types.

STATE can be one of the following:
off, false disables tracing entirely.

on, true enables tracing, in whichever of the following
modes was last specified. The default mode is

"��expanded" for command and input lines, "��both"

for control lines.
'

(continued)

��unexpanded prints lines as they appear in the exec_com

segment. Implies "on".

��expanded prints lines after all expansion has been done.

Implies "on".

��all prints at each stage of expansion. Implies."on".
��both prints each line as it appears in the exec_com,

and again after all expansion. Implies "on".

Defaults for ec's invoked by the exec_com command/active function

are "��expanded" for command and input lines, "��unexpanded" for

control lines, and "off" for comments.

Defaults in the absentee environment are "��expanded" for command and

control lines, "off" for control lines and comments.

PREFIX specifies a string to be printed at the start of each line.

Default prefixes are all null string.

SWITCHNAME specifies an I/0 switch on which to write the trace.

The default for all types of lines in ec's invoked by the exec_com
command or active function is user_output. The default in the

absentee environment is user_io.

149

Notes on absentee environment:

An exec_com/absin runs in the absentee environment only when it has

been invoked directly by the absentee facility, ie. is running an

absentee process. Exec_com's called within an absentee process are said

to run in the normal exec_com environment.

Input lines in an absentee process come from the absin segment running
the process. These, along with output lines, are directed to an

absout file. Since both input and output lines are written to the same

switch, the default switch is chosen to be user_io for the absentee

environment rather than user_output as for exec_com's. This default

applies to all tracing, and ensures that even if user_output is

redirected somewhere, the input lines driving the process still appear
in the absout.

The ��attach and ��detach statements have no effect in the absentee

environment, since input to the absentee process always comes from the

absout file. The ��is_attached predicate always returns true.

The ��ready and ��ready_proc statements also have no effect in the

absentee environment. Instead, the ready_on and ready_off commands
should be used.

Notes on version:

The current version of exec_com is known as Version 2. In many ways
similar to the old Version 1, it adds automatic variables, parameter
defaults, literal character escapes, indentation, comments on lines,
line continuation, expansion of active strings in control lines, and

tracing of comments and control lines.

In addition, there are two incompatible changes between the versions.
Whereas VI leaves unrecognized ��strings alone, V2 rejects them as

syntax errors. This change makes V2 an extensible language.

Secondly, V2 parses lines into control keywords and tokens (separated
by whitespace) before expansion, so that expansion can only change the
values of tokens but not the syntax of a line.

A Version 2 exec_com has "��version 2" as its first line. If this first
line is not present, the exec_com is interpreted as Version 1.

Version 1 exec_com's can optionally begin with "��version 1"; at some

future time, Version 2 will be the default and "��version 1" will be

required.

A conversion command is available to translate Version 1 exec_com's to
Version 2. Type "help cvec".

Notes on white space:
White space (SPACE, HORIZONTAL TAB, VERTICAL TAB, and FORM-FEED)
is ignored at the beginning and end of each line. As a result,

exec_com lines can be indented freely. Intentional white space at the

beginning or end of a line (for example, an editor input line) must be

specified by literal escapes such as ��SP. See "List of literals".

Notes on comments: .

150

Comments are specified by the character sequence ��- anywhere in a line.

Where this sequence appears (outside of ��"..."), the remainder of the .

line is a comment and can contain any characters. White space preceding
the comment, if any, is ignored. Therefore, comments can be aligned
at a particular column without affecting the executable text.

White space before a comment can be specified by the literal escapes
described in "List of literals".

Notes on continuation:

Long command lines and other portions of text that must not be broken

can be continued on successive lines by means of the character sequence
��+ at the beginning of each continuation line. White space, preceding
the ��+ is ignored and whitespace following the ��+ is part of the

executable line.

Continuation is not affected by intervening comments, whether at the

end of executable text lines or on lines by themselves. This feature

can be used to comment parts of statements.

Notes on quoting:
The exec_com interpreter strips one layer of exec_com quotes (��"...")

from the text. It does not perform command processor-type stripping of

regular quotes ("...").

To defeat one or more levels of command processor quote-stripping, the

values of variable and parameter expansions can be quote-doubled or

requoted using the "q" and "r" prefixes. Quote-doubling doubles

existing quote characters in a string according to the depth of quotes
inside which the string is currently nested, so that one level of

quote-stripping by the command processor will result in the internal

quotes looking the same as they do inside the original string.

Requoting goes a step further by first quote-doubling, then surrounding

string with an additional layer of quotes, thus causing the entire

string to remain a single argument after one level of quote stripping

by the command processor. fn the examples below, "Level" refers to the

number of levels deep in quotes that the parameter reference appears in

the exec_com text. Assume that the value of the first ec_arg to

exec_com is the string a"b containing a single quote character:

��1 ��ql ��rl

Level 0 a"b a"b "a""b"

Level 1 "a"b" "a""b" 91 Il 'la Il Il t' ttb Il Il Il

Level 2 rrrrrrarrbrrrrn nrrrranrrnnannrr nnrrnrrrrrrarrrrrrnnnnnbnrrnnrrrrrr

The exact number of quote characters is unimportant; the important

thing is that ��q protects internal quotes from one level of quote

stripping by the command processor, and ��r ensures that the

value remains a single argument to the comand processor. These prefixes
are very useful since, if the value of the first ec_arg (for example)
contains a space, the value of ��1 substituted into a command line will

be parsed into more than one command line argument.

If a value is null, the ��q prefix does not affect it, and the ��r prefix
results in a pair of quotes, doubled according to the quote depth of

the context.

151

The "q" and "r" prefixes can be used in the following constructs:

��ql, ��q(l) ��rl, ��r(l)

��qfl, ��qf(l) ��rfl, ��rf(l)

��q��n, ��qf��n ��r��n, ��rf��n

��q(VAR NAME) ��r(VAR NAME)

Notes on input attachment:

By default, commands invoked by command lines within an exec_com read

their input from the terminal. By preceding a command line with an

��attach statement, the command can be caused to read input lines from

the text of the exec_com instead. Note that "��attach" must precede the

line on which the input-reading command is invoked. The ��detach

statement causes any later input-reading command to get its

input from the terminal.

While ��attach is in effect, the ��is_attached predicate expands to

"true"; after ��detach, it expands to "false".

152

executive-mail l

10/21/81 executive_mail, xmail

Syntax: executive_mail arg

Function: invokes the Executive Mail facility

Argument:

-multics-mode, -mm

activates function key 8 for use in Executive Mail. This

function key invokes Multics command level from within the

Executive Mail facility. If the terminal you are using does not

have function keys, use the two character sequence "esc e" to

invoke Multics command level.

Notes: To start the Executive Mail facility, type either

"executive_mail" or "xmail" when a ready message (usually of

the form "r 14:03 0.285 5") appears on the terminal screen

just above the cursor. Users operate Executive Mail by

selecting operations from lists called menus. All help needed

to operate the system is available within the Executive Mail

facility itself.

153

file_output

07/18/78 file_output, fo

Syntax: fo path -control_args

Function: Directs specified output I/0 switches to a file. Attachments are

reverted by the revert_output command. ,

Arguments:

path
is the pathname of a segment or MSF.

Control arguments:
-ssw switchname

to specify an I/O switch.

-truncate, -tc

to truncate the output file.

-extend

to extend the output file (DEFAULT).

Notes: If the specified file does not exist, it is created.

If it does exist, it is appended to unless -truncate is specified.
If path is not specified, the default is a segment named output_file in the

working dir.

If no switchnames are specified, the default is user_output.

Any number of switchnames can be specified. Output directed to any of the

switches is sent to the output file.

To avoid getting ready messages in the output file, the fo and ro commands

should appear on the same line.

Examples:
fo user_file -ssw user_output -ssw error_output

directs both switches to user_file.

154

fortran

08/29/80 new_fortran, fortran, ft
'

Syntax: new_fortran path -control_args

Function: invokes the new FORTRAN compiler.

Arguments:

path
is the pathname of a FORTRAN source segment; the fortran suffix

need not be given.

Control arguments:
-ansi66

interprets the program according to the 1966 standard for FORTRAN,
with Multics FORTRAN extensions. (Default)

-ansi77

interprets the program according to the 1977 standard for FORTRAN,
with Multics FORTRAN extensions.

-brief, -bf

writes error messages in short form. .

-brief_table, -bftb

generates partial symbol table giving correspondence between source

line numbers and object locations.

-card

specifies source segment is in card-image format.

-check, -ck

checks source segment for syntactic and semantic errors. No object

segment is produced.
-fold

maps uppercase letters to lowercase form.

-line_numbers, -ln

source segment has line numbers.

-list, -ls

produces complete source program listing plus an assembly-like

listing.

-map

produces complete source program listing.

-non_relocatable, -nrlc

inhibits generation of relocation information by the compiler. The

resulting object segment cannot be bound.

-optimize, -ot

invokes an extra compiler phase just before code generation to

perform certain optimizations.

-profile, -pf

generates extra code to meter execution of individual statements.

-relocatable, -rlc

generates relocation information (Default).

155

-round

rounds intermediate results of real and double precision
calculations before storing. (Default)

-safe_optimize, -safe_ot
like -optimize, but inhibits some code movement.

-severityN, -svN

prints only error messages whose severity is N or greater (where N

is 1, 2, 3, or 4). (Default is 1.)

-stringrange, -strg

produces rnage checking code for all substring references.

-subscriptrange, -subrg

produces range checking code for all subscripted array references.

-table, -tb

generates full symbol table.

-time, -tm

prints table giving time (in seconds), number of page faults, and

size of temporary area for each phase of the compiler.

- time_ot

prints out timing information on the sub-phases of the optimizer.

-truncate, -tc

truncates intermediate results of real and double precision

computations before storing.

Notes:

The control arguments -optimize and -safe_optimize are mutually
exclusive with -stringrange and -subscriptrange. The control

arguments -ansi66 and -ansi77 are mutually exclusive. The control

arguments -round and -truncate are mutually exclusive.

Type "help fort_options.gi" for a description of the %options and

%global statements. Type "help fortran_77.gi" for general information

about FORTRAN 77 on Multics.

For more information on the FORTRAN compiler, refer to the Multics

FORTRAN Reference manual, Order No. AT58. For more information on

using FORTRAN on Multics, refer to the Multics FORTRAN User's Guide,
Order No. CC70.

156

fortran abs

11/13/81 fortran-abs, fa

Syntax: fa paths -ft_args -dp_args -control_args

Function: submits an absentee request to perform FORTRAN compilations.

Arguments:. ��

paths
are the pathnames of segments to be compiled.

ft_args
are control arguments accepted by the fortran command.

dp_args
are control arguments (except -delete) accepted by the dprint
command.

Control arguments:

-queue N, -q N

is the priority queue of the request. The default queue is defined

by the system administrator. See the Notes for a description of the

interaction with the dprinting of listing files.

-hold

do not dprint or delete any listing files.

-output_file path, -of path

put absentee output in segment path.
-limit N, -li N

specifies time limit in seconds for the absentee job.

Notes:

Control arguments and paths can be mixed freely and can appear anywhere
on the command line after the command.

Unpredictable results can occur if two absentee requests are submitted

that simultaneously attempt to compile the same segment or write into

the same absout segment.

If the -queue control argument is not specified, the request is

submitted into the default absentee priority queue defined by the site

and, if requested, the listing files will be dprinted in the default

queue of the request type specified on the command line. (If no

request type is specified, the "printer" request type is used.)

If the -queue control argument is specified, and, if requested, the

listing files will be dprinted in the same queue as is used for the

absentee request. If the request type specified for dprinting does not

have that queue, the highest numbered queue available for the request

type is used and a warning is issued.

157

general_ready

10/10/80 general_ready, gr
'

Syntax: gr -control_args

Function: prints a ready message containing specified values in a

specified format.

Control arguments:
The following prefix control arguments must occur prior to

any of the format control arguments described below. They allow

the user to override the default formats for the contents of the

ready message.

-string
allows the user to specify the character string at the beginning of

the ready message to replace "r".

-control

allows the user to specify the entire ioa- control string used to

format the ready message. This control argument overrides any
format arguments that would normally affect the format of the

ready message.

The format and content of the ready message are controlled by the

following format control arguments.

-inc_vcpu N

incremental virtual CPU value. N can be from 1 to 9, the

default is 3.

-total_vcpu N

total virtual CPU value. N can be from 1 to 9, the default is 3.

- inc_mem_units N

incremental units. N can be from 1 to 9, the default is 3.

- total_mem_units N

total memory units. N can be from 1 to 9, the default is 3.

-inc_cost N

incremental cost charges. N can be from 1 to 9, the default is 2.

-total_cost N

cost charges. N can be from 1 to 9, the default is 2.

-inc_pf
incremental paging values.

-total_pf

paging values.

-level

command processor level numbers.

-date

eight-character date (mm/dd/yy).

-date_time
date and time (mm/dd/yy hhmm.m zzz www).

-day

two-digit day (dd).

-day_name

158

three-character day of the week (www).

-hour

two-digit hour (hh).
-minute

two-digit minute (mm)
-month

two-digit month (mm).

-time, -tm

six-character time of day (hhmm.m).

-year

two-digit year (yy)
-zone

three-character time zone (zzz).

The following control arguments affect the operation of

general_ready, but do not change the format of ready messages.
-set

establishes general_ready as the current ready message procedure.
The command processor then calls general_ready to print a ready

message after each command line is complete. This control argument
also causes general_ready to set an alarm timer to catch shift

changes.
-revert

makes the system ready procedure the current ready message procedure
and resets any timer alarms established by general_ready to catch

shift changes.
-reset

resets incremental usage values to zero without printing a ready

message.

-call cmdline

when used with the -set control argument, causes

general_ready to call the command processor to execute cmdline

after the completion of every command line. cmdline is a single

argument to general_ready and therefore, must be enclosed in

quotes if it contains any blanks. cmdline is executed even if

the printing of ready messages has been inhibited by executing
the ready_off command.

Syntax as active function: [gr -control_args]

159

get_quota

01/27/76 get_quota, gq

Syntax: gq paths -control_arg

Function: prints information about secondary storage quota and pages used.

Arguments :

paths
are directory names; star convention can be used.

Control arguments:

-long, -lg

specifies the long form of output.

Notes: The default output is the number of pages of quota assigned to the

directory and the number of pages used by the segments in that directory and

any inferior directories that are charging against that quota.
The long form of output gives the quota and pages-used information provided

in the short output, and also prints the cumulative time-page-product for the

directory (for the current accounting period).

- 160

��e_ma7'/ 1

02/02/79 have_mail

Syntax: [have_mail path]

Function: returns "true" if there is mail in the user's current default mailbox

. or in a specified mailbox.

Arguments:

path
is the optional pathname of a mailbox. If path is not specified, the user's

default mailbox is assumed.

Command syntax: have_mail path

161

belp

06/17/81 help

Syntax: help info_names -control_args

Function: selectively prints blocks of information (infos) from

system info segments.

Arguments:

info_names

entrynames or pathnames of infos to be printed. Star convention

allowed. Suffix of info assumed. For subroutines, final entryname
is of the form:

subroutine_$entry_point_name
or -entry_point control argument can be used. Star convention not

allowed for subroutine info names. See "Info names" below. If no

info_names given, info for the help command is printed.

Basic Use:

When help is invoked without arguments, it prints a description of the

help command. An info_name may be given to print information about a

specific topic. For example, to print information about the list

command, type:

help list

help begins by printing a heading line identifying the information

being printed. It prints the first paragraph of information, then

asks if the user wants more help. The user may give any answer

listed under "List of responses" below. Possible responses include:

yes print next paragraph

skip skip next paragraph
rest print remaining paragraphs .
brief print summary of command, active function, subroutine

no stop printing information, go on to next selected info

quit exit help command

Contents of Info Segments:
Information printed by help is stored in formatted segments called

info segments. Each segment contains one or more information blocks

(infos) which describe a particular command, active function,
subroutine entry point, or other feature of the system.

Each info begins with heading line giving date info last modified,
and title of info. Command and active function infos use command

name (including short name) as title. Subroutine infos use

subroutine entry point name.

Information following heading is divided into paragraphs from 1 to 15

lines in length. A paragraph is a logically complete unit containing
a small amount of the total information.

162

Paragraphs are grouped together into sections describing a complete

topic. Sections begin with a topic title. Syntax, Function, -

Arguments, Control arguments, Examples and Notes are typical section

titles found in command and active function infos.

help remembers which paragraphs user has seen and which have been

skipped or not yet reached. User asked to "Review" paragraphs seen

before, or asked if "More help" is needed for unseen paragraphs.

help stops printing if all paragraphs seen when the end of info

reached. If any paragraphs skipped, help asks if user wants to see

them. If user answers "yes", first unseen paragraph printed. User

can answer "skip -seen" to view subsequent unseen paragraphs.

Control arguments: Control arguments are listed in four groups--
info selection, information selection, starting paragraph

selection, and paragraph grouping.

INFO SELECTION

-pathname path, -pn path

path identifies info segment to be printed. Star convention

allowed. Suffix of info assumed. path may end with

$entry_point_name when star convention not used.

-entry_point, -ep
when info_name argument is given as subroutine_, prints

description of subroutine_$subroutine_ entry point, rather than

info describing general properties of all subroutine_ entry points.
See "Info names" below.

INFORMATION SELECTION

-header, -he

prints only long heading line, including pathname of info, info

heading, info line count. -header conflicts with ail other

INFORMATION SELECTION control args.

-brief_header, -bfhe

shortens the long heading printed by default. Instead, help prints
brief heading followed by first paragraph, then asks if user wants .

to see more information. Brief heading includes info heading and

line count.

-title

prints section titles and section line counts, then asks if users

wants to see first paragraph of info.

-brief, -bf

prints only summary of command, active function or subroutine info,

including: Syntax section, list of control arguments, etc.

-control_arg STRs, -ca STRs

prints only descriptions of control (or other) arguments whose

names contain one of the strings STRs. STRs must not include

a leading minus sign (-).

-all, -a

prints entire info or subroutine description without questions.

STARTING PARAGRAPH SELECTION

-section STRs, -scn STRs

163

begins printing at section whose title contains all strings STRs.

By default, printing begins at top.
-search STRs, -srh STRs

begins printing ail in paragraph containing strings STRs.

By default, printing begins at top.

PARAGRAPH GROUPING

-minlines I

sets minimum paragraph size to I lines. Default is 4.

See "Grouping of paragraphs" below.

-maxlines J

, sets maximum paragraph grouping size to J lines. Default is 15.

See "Grouping of paragraphs" below. - .

List of responses:

Following responses can be given to questions asked by help.

yes, y

prints next paragraph.
no, n

exits current info. Same as quit if this is last info.

quit, q

rest -scn , r -scn

prints rest of info, without intervening questions. If -section or

-scn are given, prints only rest of current section without ,
'

questions and then asks if user wants to see next section.

top, t

skips to beginning of info, ehtn asks if user wants to see first

paragraph.
title -top

lists titles and line counts of sections which follow. If -top
or -t given, lists all section titles. help repeats previous

question after titles are printed.

section STRs -top ,
scn STRs -top

skips to next section whose title contains all strings STRs. If

-top or -t given, title searching starts at top of info. If STRs

omitted, uses STRs from previous section response or -section

control. argument.
search STRs -top ,
srh STRs -top

skips to next paragraph containing all strings STRs. If -top or

-t given, searching starts at top of info. If STRs omitted, uses
'

STRs from previous search response or -search control argument.

skip -scn -rest -seen -ep ,
s -scn -rest -seen -ep

skips next paragraph. If -section or -scn are given, skips
all paragraphs of current section. If -rest or -r, -entry_point
cr -ep are given, skips rest of this info or subroutine entry

point description, continuing with the next. If -seen is given,

skips to next paragraph which user has not seen. Only one

control argument allowed in each skip response.

164

brief, bf

prints summary of command or subroutine info, including

Syntax section, list of control arguments, etc. help repeats

previous question after summary is printed.

control_arg STRs, ca STRs

prints descriptions of control (or other) arguments
whose names contain one of the strings STRs. help repeats

previous question after descriptions are printed.

entry_point EP_NAME , ep EP_NAME

skips to description of subroutine entry point EP_NAME.
Form of EP_NAME is:

entry_point_name
or subroutine_$entry_point_name

If EP_NAME omitted, skips to description of subroutine_$subroutine_

entry point.

header, he

prints long heading line, including pathname of info, info heading,
info line count.

prints list of responses allowed to help queries. -

prints "help" to identify the current interactive environment.

.. command_line
treats remainder of response as command line passed to Multics

command processor.

Info names: are arguments for the help command which identify the

info(s) to be printed. Info names may be pathnames or entrynames.
Info names may end with $entry_point_name to identify a particular
subroutine entry point. The next paragraph illustrates various types
of info names. -

FORM EXAMPLES

entryname pll, pll.status.info, fortran*.**

entryname$entry_point_name hcs_$initiate, delete_$path .

entryname -ep com_err_ -ep, ioa_ -ep

pathname ��udd��Pubs��new��rename, ��info_dir��a*.**

-pn pathname -pn new_info

pathname$entry_point_name info��my_util$start_prog

pathname -ep ��exl��info��display_fort_ -ep

Pathnames contain �� or �� characters, or follow -pathname control

argument. The path identifies segment containing the info to be

printed.

Entrynames do not contain �� or ��. help searches for info segments in

directories given in the info_segments (info_segs or info) search list.

Type:

print_search_paths info_segments
for a list of current help search paths. By default, the search

165

paths are:

��doc��iml_info
��doc��info

For pathnames or entrynames, star convention can be used to identify
several infos with a matching name. For example, fortran*.**

identifies all infos describing the FORTRAN compiler. Ail info names

assumed to end with suffix of info if suffix omitted.

When segment is found, help looks inside for particular info which

matches the entryname (or final entryname of path), and prints this

info.

For subroutine infos selected by subroutine_$entry, printing begins
with description of thé $entry entry point; when -entry_point is

given, printing begins with subroutine_$subroutine_ entry point
description; when neither is given, printing begins with general

description of the subroutine. Star convention not allowed when

subroutine_$entry or -entry_point given.

Grouping of paragraphs:
The -minlines and -maxlines control arguments allow the user to
control how much information help prints before asking the user if he

wants to see more. help prints units of information called

paragraphs. A paragraph is a group of lines preceded and followed by
two blank lines.

The -minlines I control gives the length in lines of the smallest

paragraph which help will treat as a distinct unit. Paragraphs
shorter than I lines are often printed as part of the preceding

paragraph.

The -maxlines J control limits the grouping of short paragraphs (those
shorter than I lines long) so that no more than J lines of information
are printed before asking if the user wants more help.

For example, consider info divided into paragraphs as follows--

Paragraph 1 (8 lines)

(2 blank lines)

Paragraph 2 (3 lines)

(2 blank lines)

Paragraph 3 (4 lines)

With -minlines 4 and -maxlines 15, help would treat paragraph 2 as a

short paragraph which is printed with paragraph 1 (total lines = 13).

However, paragraph 3 is 4 lines long, and would be treated as a

distinct paragraph.

With -minlines 5 and -maxlines 10, help prints paragraph 1 separately,
since grouping short paragraph 2 with paragraph 1 would print 13

lines, exceeding -maxlines. Paragraphs 2 and 3 would be grouped

together (total lines = 9) because paragraph 3 is shorter than 5

166
'

lines.

Paragraphs which have been seen are not grouped with unseen

paragraphs. Similarly, paragraphs at the end of one section of info

are not grouped with those beginning another section. Paragraphs are

not grouped when the -section or -search control arguments are used to

find a particular starting paragraph. If the wrong paragraph were

found by the search, grouping might compound the error by printing
more of the wrong information. Grouping is suppressed when the

section and search requests are used for similar reasons.

Info naming conventions:

Infos for Multics commands, active functions and subroutines are given
the name of the program with a suffix of info. For example, the info

describing the pll compiler command is called pll.info.

Information about changes made to a command or active function from

one release to the next are given the name of the particular system
module with a suffix of changes.info. For example, changes to the

fortran compiler are described in fortran.changes.info.

General information describing use or features of the system is

included in infos whose names end with a suffix of gi.info (gi for

general info). For example, acl_matching.gi.info describes how Access

Control List entries are matched with User_ids in access control

commands such as set_acl.

Finding information:

More than 500 infos are available. To find information about a

particular area of the system, use the list_help command with a topic
name identifying the area of the system. For example, to list

info_names related to the FORTRAN compiler, you could type:

list_help fortran

The -header control argument of the help command can also be used to

find particular information. For example, to get a list of all

general information segments, type:

help *.gi -he

Info segment format:

Users can create info segments describing their own commands,

exec_coms and application programs. Info segments must be formatted

in a special way so that the help command can parse them into

paragraphs. For information about this format, type:

help info_seg.gi

167

home d i r

07/23/80 home_dir, hd

Syntax: hd

Function: returns the pathname of the user's home directory (usually
of the form ��user_dir_dir��Project_id��Person_id).

Syntax as active function: [hd]

168

hour

12/30/80 hour

Syntax: hour dt

Function: returns the one- or two-digit number of an hour of the day,
from 0 to 23.

Arguments:
dt

is a date_time in a form acceptable to convert_date_to_binary_. If

no argument is specified, the current hour is returned. See

date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [hour dt]

169

how_many_users

02/27/76 how_many_users, hmu

Syntax: hmu args -control_args .

Function: prints how many users are currently logged in.

Arguments: .

args
can be:

Person_id prints a count of users with the name Person_id.

.Project_id prints a count of users with the project name Project_id.

Person_id.Project_id prints a count of users with the specified
name and project.

Control arguments:

-long, -lg

prints additional items, including shutdown information and load information

on absentee users.

-absentee, -as

prints load information on absentee users only.
'

-brief, -bf

suppresses the printing of the headers. Only used in conjunction with one of

the optional_args.

Notes: If this command is invoked without any arguments, basic summary
information is printed. When necessary, absentee counts are denoted by an

asterisk (*).

170

hunt

08/01/80 hunt

Syntax: hunt name path -control_args

Function: searches a specified subtree of the hierarchy for all

occurrences of a named segment that is either free standing or included

in an archive file.

Arguments:
name

is the name of a segment for which hunt is to search. The star

convention is allowed.

path
is the pathname of a directory to be interpreted as the root of the

subtree in which to search for the specified segment(s). If path is

not specified, the subtree rooted at the current working directory
is searched.

Control arguments:

-all, -a '

reports on finding links and directories as well as segments.

-archive, -ac

looks inside archives for components whose names match the name

argument. This is the default.

-first

stops searching as soon as the first occurrence of the specified

segment is found.

-no_archive, -nac

does not look inside archives and is therefore faster.

Notes: The hunt command displays the type of entry found (seg, dir, or

link) followed by the entry itself. A total of the number of

occurrences found is displayed at the end.

Syntax as active function: [hunt name path -control_args]

Notes as an active function: When invoked as an active function, hunt

returns a string of pathnames separated by spaces. Archive components
are returned as archive_path::component_name.

Ail arguments accepted by the hunt command are accepted by the active

function.

171

immediate messages

06/17/81 immediate_messages, im

Syntax: im destination -control_arg

Function: restores the immediate printing of messages sent to the user

by the send_message command and the "You have mail." notification sent

by the send_mail command.

Arguments:
destination

is of the form Person_id.Project_id to specify a mailbox. The

default is the user's default mailbox. If destination contains
�� or ��, it is assumed to be the pathname of a mailbox.

Control arguments:

-pathname path, -pn path

specifies a mailbox by pathname. The mbx suffix is assumed. This

control argument and the destination argument are mutually
exclusive.

Notes: This command "cancels" the defer_messages command.

For a description of the mailbox, refer to the accept_messages and

print_mail commands.

172

initiate

03/18/80 initiate, in

Syntax: in path ref_names -control_args

Function: initiates segments.

Arguments:

path
is the pathname of a segment or a link to a segment.
The star convention is NOT allowed.

ref_names
are optional reference names by which to initiate the segment.
If no ref_names are specified, the segment is initiated by the entryname

portion of path.

Control arguments: -

-all, -a

initiates the segment by all its names.

-brief, -bf

does not print a message giving the segment number. (Default)
-chase

used with -all on a link pathname, initiates the target segment by all the

names on the target segment. (Default)

-force, -fc .

terminates each reference name first if it is already known.

-long, -lg

prints a message giving the segment number assigned.

-no_chase
used with -all on a link pathname, initiates the target segment by all the

names on the link.

-no_force, -nfc

prints an error message if a ref_name is already known. (Default)

Access required: nonnull.

173

; o_ca 11 1

05/22/81 io_call, io

Syntax: io opname switchname args

Function: performs operations on I/0 switches and prints or returns

the results.

Arguments:

opname
is a name given below under "List of operations".

switchname

names I/0 switch through which operation is performed (throughout
the rest of this discussion, switchname is represented by SW).

args
are additional arguments that some operations require or accept.

Argument N is a buffer size, in characters. When invoked as

active function, N can be omitted, and defaults to the size of the

active function return string.

List of operations:
attach SW attach_description

uses attach_description to attach SW.

detach_iocb SW, detach SW

detachs SW.

open SW mode

opens SW with given mode. (See "Modes" below.)
close SW

closes SW.

get_line SW N -control_args
reads and prints next line from SW; control_args can be: -segment, -nnl,

-nl, -lines.

get_chars SW N -control_args
reads and prints next N characters from SW; control_args can be: -segment,

-nnl, -nl, -lines.

put_chars SW STR -control_args

outputs STR to SW; control_args can be: -segment, -nnl, -nl,
-lines. If STR is omitted, -segment must be given.

read_record SW N -control_args ,
read SW N -control_args

reads and prints next record from SW; control_args can be:

-segment, -nnl, -nl, -lines. ,

write_record SW STR -control_args ,
write SW STR -control_args

writes STR to SW; control_args can be: -segment, -nnl, -nl, -lines.

If STR is omitted, -segment must be given.

rewrite_record SW STR -control_args ,
rewrite SW STR -control_args

174

replaces current record in file to which SW is attached with STR;

control_args can be: -segment, -nnl, -nl, -lines. If STR is

omitted, -segment must be given.

delete_record SW, delete SW

deletes current record in file to which SW is attached.

position SW type

positions file to which SW is attached. type can be: bof; eof;
forward J, fwd J, f J; reverse J, rev J, r J; I J . I and J are

integers.

seek_key SW key
*

positions indexed file to which SW is attached to record with given

key. If record not found, key becomes key for insertion of new

record.

read_key SW

reads and prints key and record length of next record in indexed

file to which SW is attached.

read_length SW

reads and prints length of next record in structured file to which

SW is attached.

control SW order args

performs named order operation on SW; args depend upon the

particular order and I/0 module through with SW is attached.

modes SW STR -control_args

prints old modes associates with SW, and sets new modes given in

STR; control_args can be: -brief.

move_attach SW SW2

moves attachment from SW to SW2. SW is left in detached state.

find_iocb SW

prints location of SW. Switch is created if not already existing.

look_iocb SW

prints location of SW. An error occurs if SW does not exist.

destroy_iocb SW

destroys SW.

print_iocb SW

prints all data from control block for SW.

attached SW

prints true if SW is attached.

opened SW

prints true if SW is opened.
closed SW

prints true if SW is closed.

detached SW

prints true if SW is detached.

attach_desc SW

prints attach description for SW.

open_desc SW

prints current opening mode for SW.

io_module SW

prints name of I/0 module through which SW is attached.

175

valid_op SW operation

prints true if operation is valid for SW, given its current

attachment and opening mode.

test_mode SW mode

prints true if mode appears in modes string of SW; prints false

if Amode appears. Prints error if mode does not appear or is not

an on/off mode.

valid_mode SW mode

prints true if mode or Amode appears in modes string of SW;

prints false if either does not appear.

Control arguments:

-segment path 0 L , -sm path 0 L

gives pathname of segment into which data from input operations

(get_line, get_chars, read_record) is stored, and from which

data for output operations (put_chars, write_record,

rewrite_record) is obtained. 0 is an offset within the segment,
measured in characters unless -lines is also given. L is a

length given for output operations, measured in characters

unless -lines is also given.

-nnl

deletes newline character from end of input data, and suppresses

appending newline to end of output data. This is the default.

-nl

adds newline character to end of input data before printing it,
and appends newline character to end of output data if one not

already present.
-lines

causes 0 and L to be measured in lines, rather than in characters.

Modes:

stream_input, si keyed_sequential_input, ksqi

stream_output, so keyed_sequential_output, ksqo

stream_input_output, sio keyed_sequential_update, ksqu

sequential_input, sqi direct_input, di

sequential_output, sqo direct_output, do

sequential_update, squ direct_update, du

sequential_input_output, sqio

Syntax as active function: [io_call operation SW args]

Arguments as active function:

get_line SW N -control_args
returns data read as a quoted string; control_args can be:

-no_quote, -nnl, -nl..

get_chars SW N -control_args
returns data read as a quoted string; control_args can be:

-no_quote, -nnl, -nl.

read_record SW N -control_args ,
read SW N -control_args

returns data read as a quoted string; control_args can be:

-no_quote, -nnl, -nl.

176

position SW type ,
returns true if indicated position operation succeeds.

type can be: bof; eof; forward J, fwd J, f J; reverse J,

rev J, r J; I J . I and J are integers.

seek_key SW key
returns true if key exists.

read_key SW -control_args
returns key of next record as a quoted string; control_args can be:

-no_quote.

read_length SW ,
returns length of next record in a structured file.

control SW order args

performs named order operation on SW, and returns the result.

Result and args depend upon particular order given and the I/0
module in use.

modes SW new_modes
returns old modes, optionally sets new modes.

look_iocb SW

returns true if SW exists.

attached SW

returns true if SW is attached.

opened SW

returns true if SW is opened.
closed SW

returns true if SW is closed.

detached SW

returns true if SW is detached.

attach_desc SW -control_args
returns attach description for SW as a quoted string; control_args
can be: -no_quote.

open_desc SW

returns current opening mode for SW.

io_module SW

returns name of I/0 module through which SW is attached.

valid_op SW operation
returns true if operation is valid for SW, given its current

attachment and opening mode.

test_mode SW mode

returns true if mode appears in modes string of SW; returns false

if Amode appears. An error occurs if mode does not appear or is

not an on/off mode.

valid_mode SW mode

returns true if mode or Amode appears in modes string of SW;
returns false if either does not appear.

Control arguments as active function:

-no-quote, -nq
do not enclose the returned data in quotes. Data containing

177

spaces is quoted by default.

178

laser

08/29/83 laser

Syntaxe: laser -control_args

Fonction: cette commande permet d'obtenir des renseignements pratiques tels que
la liste des formats disponibles, la liste des fichiers ecrits sur une bande

laser donnee pour un usager donne, etc ...

Arguments de controle:

-format FMT, -fmt FMT

Cet argument permet d'obtenir des informations sur le format dont le nom est

donne en parametre. Si on n'en precise pas, ces memes informations seront

rendues pour tous les formats. Dans tous les cas, cette restitution n'est

faite que pour les formats auxquels l'utilisateur a acces.

-forms

permet d'avoir la liste des fonds de page (forms) auxquels l'utilisateur a

acces.

-long, -lg

permet d'avoir davantage de renseignements sur un format. Par defaut, la

commande ne rend que le minimum essentiel: les page_length et line_length
du format. Avec cet argument, on obtiendra en outre le nom des polices de

caracteres utilisees et des observations particulieres. ATTENTION, NON EN

SERVICE POUR L'INSTANT.

-no_header, -nhe

evite l'édition de l'en-tete pour chaque rubrique a lister (format, forms

ou programme).

-nbtape N, -nbt N

specifie a la commande laser qu'on desire le listage du contenu de N bandes

laser,

-papier,

permet d'obtenir la liste des papiers disponibles sur l'imprimante,

-tape xxxxxx, -tp xxxxxx

specifie a la commande laser qu'on desire commencer le listage du contenu

de bande a partir de la bande 'xxxxxx'. Si on ne precise pas de nom, c'est

la bande laser en cours d'écriture qui est prise en compte. Une bande laser

(ou spooler) a toujours un nom compose des trois lettres 'las' suivi de son

numero d'ordre compris entre 001 et 040.

-user XXX

specifie a la commande laser qu'on ne veut dans le listage des bandes, que
les fichiers appartenant a la personne XXX. Si aucun nom n'est precise, le

listage n'est effectue que pour les fichiers du demandeur. La convention "*"

est acceptee.

NOTA: cette commande est experimentale et, de ce fait, peut etre amelioree

dans la mesure ou une suggestion interessant une majorite d'utilisateur sera

realisable.

179

last message

06/17/81 last_message, lm

Syntax: lm address

Function: returns the text of the last message received from the

send_message command. ,

Arguments:
address can be any of the following to specify a mailbox:

-pathname path, -pn path
where path is the pathname of a mailbox. The mbx suffix is assumed.

STR

specifies a mailbox pathname of STR that contains a �� or �� .

Person.Project

specifies the Person_id and Project_id of a user whose mailbox is

indicated.

Notes: See also the descriptions of send_message, accept_message,

last_message_sender, and last_message_time.

Syntax as active function: [lm address]

180

last_message_sender

06/17/81 last_message_sender, lms

Syntax: lms address

Function: returns the sender of the last message received (from the

send_message command) in the form "Person_id.Project_id" (e.g.,

RSJones.Demo).

Arguments:
address can be any of the following to specify a mailbox:

-pathname path, -pn path
where path is the pathname of a mailbox. The mbx suffix is assumed.

STR

specifies a mailbox .pathname of STR that contains a �� or �� .

Person.Project .

specifies the Person_id and Project_id of a user whose mailbox is

indicated.

Notes: The user is cautioned against using this active function when

in polite mode. In polite mode, the system holds all messages until .

the user finishes typing a line (i.e., until the carriage is at the

left margin). Therefore, it is possible that while the user is

sending a message, the user's process can receive another message
from a different user -- a message not yet seen. By using the

last_message_sender active function in such a situation, the user can

inadvertently attribute a message to the "wrong" person. See also

the descriptions of send_message, accept_message, last_message, and

last_message_time.

Syntax as active function: [lms address]

181

last message_t��me

06/17/81 last_message_time, lmt

Syntax: lmt address

Function: returns the time that the last message (from the

send_message command) was received.

Arguments:
address can be any of the following to specify a mailbox:

-pathname path, -pn path
where path is the pathname of a mailbox. The mbx suffix is assumed.

STR

specifies a mailbox pathname of STR that contains a �� or �� .

Person.Project

specifies the Person_id and Project_id of a user whose mailbox is

indicated. ��

Notes: See also the descriptions of send_message, accept_message, ;

last_message, and last_message_sender in this manual.

Syntax as active function: [lmt address]

182

line_length

02/02/79 line_length, 11

Syntax: 11 maxlength

Function: sets the maximum terminal line length for output.

Arguments: ·

maxlength
must be greater than 4. Output lines longer than maxlength are folded.

183

link

02/25/76 link, lk
'

Syntax: lk pathlA path2A ... pathlN path2N

Function: creates a link pointing to a specified segment or directory.
The word "link" also refers to interprocedure linkage. Type "help linking".

Arguments:

pathlA

pathname of the segment to which path2i is to point. The pathnames must be

specified in pairs.

path2A

specifies the pathname of the link to be created. If not given (in the final

argument position of a command line only), a link to pathlA is created in

the working directory with the entryname portion of pathli as its entryname.

Access required: append, modify if name duplication occurs.

Notes: The star and equal conventions can be used.

184

list

09/17/80 list, ls

Syntax: Is entrynames -control_args

Function: prints information about the entries in a single directory.

Arguments:

entrynames
are the names of entries to be listed. The star convention

can be used. If no entrynames are given, all entries in the

directory (of the default types or the types specified by
control arguments) are listed. A pathname can be given instead

of an entryname, causing the entries specified by its entryname

portion to be listed, in the directory specified by its

directory portion. It is an error to specify more than one

directory to be listed in a single invocation of the list

command.
-

Control arguments for directory:

-pathname path, -pn path
list entries in the directory named path. Note the restriction

described above under "Arguments".

Control arguments for entry type:

-segment, -sm

list segments.

-multisegment_file, -msf

list multisegment files,

-file, -f

list files (segments and multisegment files).

-directory, -dr

list directories.

-branch, -br -

list branches (segments, multisegment files, and directories).

-link, -lk

list links.

-all, -a

list all four entry types.

Control arguments for column: (see also "Notes on columns" below)

-date_time_entry_modified, -dtem

print date-time-entry-modified in the modification-date column.

-date_time_contents_modified, -dtcm

print date-time-contents-modified in the modification-date column.

-date_time_used, -dtu

print date-time-used column.

-mode, -md

print mode column.

-record, -rec

185

print records used in size column.

-length, -ln

print length computed from bit count in size column.

-name, -nm

print names column.

-count, -ct

print name-count column, giving number of names.

-link_path, -lp

print link-path column.
'

Control arguments for totals/header line:

-total, -tt

print only number of entries and sum of their sizes.

-no_header, -nhe .

omit all heading lines and blank lines.

Control arguments for multiple-name entry:

-primary, -pri

print only primary names in names column.

-match

print only names that match one of entryname arguments.

Control arguments for entry order:

-sort KEY, -sr KEY

sort entries by specified key column (see "Notes on Sorting").

-reverse, -rv

reverse order of listing (reverses either directory order, or

order of sorting if sorting was specified).

Control arguments for entry exclusion:

-exclude entryname, -ex entryname
excludes entries that match entryname; more than one instance of

this argument can be given.
-first N, -ft N

list only first N entries (after sorting, if it is specified) of

each entry type being listed..

-from DATE, -fm DATE

excludes entries having date/time (dtem, dtcm, dtu) before DATE

(see "Notes on dates" below).
-to DATE

excludes entries having date/time (dtem, dtcm, dtu) after DATE

(see "Notes on dates" below).

Control arguments for output format:

-brief, -bf

either overrides default columns (see "Notes on Defaults" below)

or, if -tt given, prints totals information for all selected entry

types on single line.

-short, -sh

print link paths starting two spaces after their names.

Notes on columns:

The column printing order is -- modification date, dtu, mode, size,

names, name count, and (for links only) link pathname. Modification

- 186

date can be either date-time-contents-modified or
. date-time-entry-modified (dtm is accepted as dtem). Size can be

either records used or length computed from the bit count (default).

List of Sorting Keys: The KEY field in "-sort KEY" can be--

name, nm

sort by primary name, in ASCII collating sequence.

_ record, rec

sort by records, largest first.

length, ln

sort by bit count length, largest first.

mode, md
�� sort by mode; order: null, r or s, rw or sm, re, rew or sma. - .

date_time_entry_modified, dtem

sort by date-time-entry-modified, most recent first.

date-time-contents modified, dtcm

sort by date-time-contents-modified, most recent first.

count, ct

sort by name count, highest first.

Links can only be sorted by: dtem, dtcm, nm, or ct. When

sorting by other columns, links are listed in the order in which

they are found in the directory. See also Defaults.

Notes on Dates: .

The -from and -to control arguments compare DATE and date. The DATE

string must be acceptable to the convert_date_to_binary_ subroutine.

The date value is date-time-entry-modified (or

date-time-contents-modified, if it is being printed or sorted on) in

all cases except when date-time-used is the only date being printed
or sorted on.

Defaults: Invoking list without any arguments is the same as typing--
list -pn [wd] -file -mode -length -name

If the sort column, COL, is omitted after -sort, the default sorting
column is: modification-date, if it is being printed; otherwise

date-time-used, if it is being printed; otherwise names.

Notes: Use of the -name, -mode, -record, -length, or -brief control

arguments overrides the default columns so that only the names column

and explicitly selected columns are printed.

Only one of the two modification dates, and only one of the two size

figures can be used at any one time. Any combination of arguments
that specifies both items from either pair (e.g., printing dtcm but

sorting on dtem) is an error.

187

list_abs_requests

10/01/80 list_abs_requests, lar

Syntax: lar path -control_args

Function: lists requests in the absentee queues.

Arguments:

path
is the pathname of a request to be listed. The star convention is

allowed. Only requests matching this pathname are selected. If the

path argument is not specified, all pathnames are selected. Also

see the -entry control argument below.

Control arguments:

-absolute_pathname, -absp

prints the full pathname of each selected request, rather than just
the entryname.

-admin User_id , -am User_id
selects the requests of all users, or of the user specified by

User_id. If the -admin control argument is not specified, only the
user's own requests are selected. See "Notes" below.

-all, -a

searches the foreground and ail priority queues and prints the

totals for each non-empty queue whether or not any requests are

selected from it. If the -ail control argument is not specified,
nothing is printed for queues from which no requests are selected.

This control argument is incompatible with the -queue control

argument.

-brief, -bf

prevents the printing of the state and the comment of the request.
If the -brief control argument is not specified, these items are

printed. This control argument is incompatible with the -long and

-total control arguments.

-deferred_indefinitely, -dfi

selects only requests that are deferred indefinitely. Such requests
are not run until the operator releases them.

-entry STR, -et STR

selects only requests whose entrynames match STR. The star

convention is allowed. Directory portions of request pathnames are

ignored when selecting requests. This control argument is

incompatible with the path argument.

-foreground, -fg
searches only the foreground queue, and prints the totals for this queue,
whether or not any requests are selected from it. Also, see the -queue
control argument.

-id ID

selects only requests whose identifier matches the specified ID.

188

-immediate, -im

selects only requests that can be run immediately upon reaching the

heads of their respective queues. This does not include requests deferred

indefinitely, requests deferred until a specific time, or requests that

have reached the head of the queue and have been deferred by the system
because their CPU time limits are higher than the maximum for the current

shift. It does include requests deferred because of load control or

resource unavailability, because those conditions could change at any
time. Also, see the -position control argument.

-long, -lg

prints all of the information pertaining to an absentee request

including the long request identifier and the full pathname. If

this control argument is omitted, only the short request identifier,

entryname, state and comment, if present, are printed. The -long,

-brief, and -total control arguments are incompatible.

-long_id, -lgid

prints the long form of the request identifier. If this or the

-long control argument is not specified, the short form of the

request identifier is printed.

-pathname, -pn

prints the full pathname of each selected request, rather than just
the entryname, just as -absolute_pathname does.

-position, -psn

prints the position within its queue of each selected request. When

used with the -total control argument, it prints a list of all the

positions of the selected requests. When used with the -immediate

control argument, it considers only immediate requests when

computing positions. See "Notes" below.

-queue N, -q N

searches only queue N, and prints the totals for that queue, whether

or not any requests are selected from it. If the -queue control

argument is not specified, ail queues are searched but nothing,is

printed for queues from which no requests are selected. For

convenience in writing exec_coms and abbreviations, the word

"foreground" or "fg" following the -queue control argument performs
the same function as the -foreground control argument. This control

argument is incompatible with the -ail control argument.

-resource STR , -rsc STR

selects only requests having a resource requirement. If STR is

specified, only requests whose resource descriptions contain that

string are selected. This control argument also causes the resource

descriptions of the selected requests to be printed, even when the

-long control argument is not specified. Type "help reserve_resource"
for a description of the syntax of STR.

-sender STR

specifies that only requests from sender STR should be listed. One

or more request identifiers must also be specified. In most cases,
the sender is an RJE station identifier.

-total, -tt

prints only the total number of selected requests and the total

number of requests in the queue plus a list of positions if the

-position control argument is also specified. If the queue is

- 189

empty, it is not listed. This control argument is incompatible with

the -long and -brief control arguments.
-user User_id

selects only requests entered by the specified user. See "Notes"

below.

Access required: The user must have o access to the queue(s) to invoke

lar. The user must have r extended access to the queue(s), in order to

use the -admin, -position, or -user control arguments, since it is

necessary to read all requests in the queue(s) in order to select those

entered by a specified user or to compute the positions of the selected

requests..

Notes: All queues are searched for the user's requests; the request
identification, entryname, state, and comment, if present, of each

request is printed. If no arguments are specified, only the user's own

requests are selected for listing. Nothing is printed for queues from

which no requests are selected.

When a user name is specified, with either the -admin or -user control

arguments, then proxy requests are selected if either the user who

entered the request, or the proxy user on whose behalf it was entered,
matches the specified user name.

The entry'name specified after the -entry control argument, the entry

portion of the pathname argument, and the RJE station name specified
after the -sender control argument, may each be starnames.

The User_id arguments specified after the -admin or -user may have any
of the following forms:

Person_id.Project_id matches that user only

Person_id.* matches that person on any project

Person_id same as Person_id.* *

*.Project_id matches any user on that project

.Project_id same as *.Project_id
. * same as -admin with no User_id following it

190

list accessible

07/17/81 list_accessible, lac

Syntax: lac path User_id -control_args

Function: scans a directory and lists segments, multisegments, files, .

and directories with a specified access for a specified User_id.

Arguments:

path
is the pathname of the directory to be scanned. If path is omitted

or -wd is specified, the working directory is scanned.

User_id
is an access name. It can have null components. The star

convention for access names is allowed. See the description of

set_acl in this manual. If User_id is omitted, the User_id of the

calling process with a star tag is assumed.

Control arguments: If no control arguments are specified, ail the

segments and directories to which the named user(s) has nonnull

access are listed.

- dir_mode STR

lists directories to which the named user(s) has any of the modes

specified in STR, where STR can be any or all of the letters sma.

-seg_mode STR

lists segments to which the named user(s) has any of the modes

specified in STR, where STR can be any or ail of the letters rew.

Access required: The user must have status (s) permission on the

directory.

Notes: If there can be more than one User_id (i.e., the specified

User_id has null components), the modes for each matched User_id and

the matched User_id are listed on a per entry basis.

191

l1St 8C1

08/30/79 list_acl, la

Syntax: la path User_ids -control_args

Function: lists the access control lists (ACLs) of segments, multisegment

files, and directories.

Arguments: .

path
is the pathname of a segment, multisegment file, or directory.
The default is -wd, or -working_dir. If omitted, no

User_ids can be specified. The star convention can be used.

User_ids
are access control names that must be of the form Person_id.Project_id.tag.
If User_id is omitted, the entire ACL is listed.

Control arguments:

-ring_brackets, -rb

lists the ring brackets.

-brief, -bf

suppresses the message "User name not on ACL of path."
-directory, -dr

lists the entire ACL of directories only. The default is segments,

multisegment files, and directories. (See Notes.)

-segment, -sm

lists the ACL of segments and multisegment files only.

Notes: If the list_acl command is invoked with no arguments, it lists the

entire ACL of the working directory.
The -directory and -segment control arguments are used to resolve an

ambiguous choice that may occur when path is a star name.

Type "help acl_matching" for an explanation of the User_id matching strategy.

Syntax as an active function:

[la path User_ids]

Notes on use as an active function:

returns the matching modes and access names separated by spaces, for example:
"r One.B.* rw Two.B.a". The -brief control argument is assumed.

192

%1St daemon_requeStS

02/02/79 list_daemon_requests, ldr

Syntax: ldr path -control_args

Function: lists requests in the I/0 daemon queue.

Arguments: .

path
is the relative pathname of one or more requests to be listed. The star

convention is allowed. If this argument is not specified, all requests are

listed. See also the -entry control argument.

Control arguments:

-absolute_pathname, -absp

prints the full pathname.
-admin User_id , -am User_id

selects requests of all users or of the specified user. Default is to list

the user's own requests. Required r extended access to the queue(s), to

read other users' requests.

-all, -a
'

searches all queues.
-brief, -bf

prevents printing of comment and request state in normal (not -long) mode.

-entry STR, -et STR

selects only requests whose entry names match STR. The star convention is

allowed. Directory portions of request pathnames are not used for selecting

requests. Incompatible with the path argument.
-id ID

selects only requests whose request_ids match ID. Type "help request_ids".

-immediate, -im

selects only I/0 requests that are not deferred. With -position, ignores
deferred requests when computing position.

-long, -lg

prints ail information about each selected request, including long

request_id and full pathname. Default is to print short request_id and .

entryname.

-long_id, -lgid

prints the long request_id.

-position, -psn

prints queue positions of each selected request. With -total, prints a list

of queue positions. Requires r extended access to the queue(s), to read

other users' requests.

-queue N, -q N

searches queue N. The default queue is generally 3 for I/0 daemon requests,
but can vary with request type.

-request_type STR, -rqt STR

searches the I/0 daemon queues belonging to the specified request type. See

"Notes".

-total, -tt

prints only the total number of selected requests and the total number in

the queue. Incompatible with -long and -brief control arguments.

193

-user User_id
selects only requests of the specified user. Requires r extended access to

the queue(s).

Notes: Only request types belonging to the generic types "printer" or "punch"
can be specified by the -request_type control argument when the -long argument
is given. A list of these request types can be obtained by invoking the

print_request_types command.

194

/7��_Ae7/?

06/24/80 list_help, lh

Syntax: lh topics -control_args

Function: displays the names of all info segments pertaining to a

given topic. Topics are specified by arguments to the list_help
command. An info segment is considered to pertain to a given topic if

the topic name appears in (i.e., is a substring of) the info segment
name. The active function returns the selected names separated by

spaces.

Arguments:

topics
are strings to be searched for in info seg names.

Control arguments:

-absolute_pathname, -absp

prints or returns full pathnames of info segs rather than

entrynames.

-brief, -bf

does not display the alternate names on the info segments. The

default is to display them.

-all, -a

displays the names of all info segments. The default is to display
the names of only those info segments whose names match the topics

specified.

-pathname path, -pn path

specifies the pathname of a directory to search for applicable

segments. The default is to search the directories in the

info_segments search list. Multiple -pathname control arguments are

allowed. See "Notes on Search List" below.

Syntax as active function: [lh topics -control_args]

Notes on search list: The list_help command uses the "info_segments"
search list that has the synonyms "info_segs" and "info". The default

"info_segments" search list is:

��doc��iml_info
��doc��info

These directories contain info segments provided by the site and those

supplied with the system. Type "print_search_paths info_segments" to

see what the current "info_segments" search list is. For more

information about search lists, see the search facility commands, and

in particular, the add_search_paths command description in Commands

and Active Functions, AG92.

195

)ist iacl dir

08/30/79 list_iacl_dir, lid

Syntax: lid path User_ids -control_args

Function: lists entries on a directory initial access control list (initial

ACL). ..

Arguments:

path

pathname of a directory; if it is -wd, -working_dir, or omitted, the

working directory is assumed. If it is omitted, no User_ids can be

specified. The star convention can be used.

User_ids
access control names that must be of the form Person_id.Project_id.tag.
If no User_id is specified, the whole initial ACL is listed.

Control arguments:

-ring N, -rg N

ring number (default is current ring).
-brief, -bf '

suppresses the message "User name not on ACL of path."

Notes: If this command is given without any arguments, the entire initial ACL
for the current ring for the working directory is listed.

Type "help acl_matching" for an explanation of the User_id matching strategy.

Syntax as an active function:

[lid path User_ids -ring N]

Notes on use as active function:

returns the matching modes and access names separated by spaces, for example:
"s One.B.* sma Two.B.a". The -brief control argument is assumed.

196

list_iacl_seg

08/30/79 list_iacl_seg, lis

Syntax: lis path User_ids -control_args

Function: lists entries on a segment initial access control list (initial ACL)

in a directory.,

Arguments:

path

pathname of a directory; if it is -wd, -working_dir, or omitted, the

working directory is assumed. If it is omitted, no User_ids can be

specified. The star convention can be used.

User_ids
access control names that must be of the form Person_id.Project_id.tag.
If no User_id is specified, the whole initial ACL is listed.

Control arguments:

-ring N, -rg N

ring number (default is current ring).

-brief, -bf

suppresses the message "User name not on ACL of path."

Notes: If this command is given without any arguments, the entire segment
initial ACL for the current ring for the working directory is listed.

Type "help acl_matching" for an explanation of the User_id matching strategy.

Syntax as an active function:

[lis path User_ids -ring N]

Notes on use as an active function:

returns the matching modes and access names separated by spaces, for example:
"r One.B.* rw Two.B.a". The -brief control argument is assumed.

197

list not accessible

01/10/77 list_not_accessible, lnac

Syntax: Inac path User_id -control_args

Function: scans a directory and lists segments and directories that do not have

a specified access relation to a named user.

Arguments:

path
the directory to check (default: working dir)

User_id
a standard access control name (default: User_id of calling process)

Control arguments:

- dir_mode STR

lists directories to which the user does not have STR mode; STR can be any
or all of the letters sma.

-seg_mode STR

lists segments to which the user does not have STR mode; STR can be any or

all of the letters rew.

Notes: If no control arguments are given, the command lists all segments and

directories to which the user has null access.

198

1ist_ref_names

09/15/80 list_ref_names, lrn

Syntax: lrn paths -control_args

Function: lists the reference names associated with a specified

segment; it accepte both segment numbers and pathnames as segment

specifications.

Arguments:

paths
can be segment numbers or pathnames of segments known to the user's

process. If path is a segment number, the pathname and reference

names of the segment are printed. If path is a pathname, the

segment number (in octal) and the reference names of the segment are

printed. If a pathname looks like a control argument (i.e., if it

is preceded by a minus sign) or a number, then path should be

preceded by -name or -nm.

Control arguments:

-all, -a

prints the pathnames and reference names of all known segments, as

well as the reference names of ring 0 segments. The -all control

argument is equivalent to -from 0.

-brief, -bf

suppresses printing of the reference names for the entire execution
'

of the command.

-from N, -fm N

allows the user to specify a range of segment numbers. This control

argument can be used with the -to control argument. The pathnames
and reference names of the segments in this range are printed. If

-to is not specified, the highest used segment number is assumed.

-to

allows the user to specify a range of segment numbers. This control

argument can be used with the -from control argument. The pathnames
and reference names of the segments in this range are printed. If

-from is not specified, the segment number of the first segment not

in ring 0 is assumed, unless -ail is used.

Notes: All of the above arguments (segment specifiers and control

arguments) can be mixed. For example, in the command line:

! lrn 156 -from 230 path_one

the pathname and reference names of segment 156 and of all segments
from 230 on are printed. The segment number (in octal) and the

reference names of path_one are printed.

In the default condition, when called with no arguments, list_ref_names

prints information on all segments that are not in ring 0.

199

When a pathname is specified, the segment number by which it is known

is printed. When a segment number is specified, lrn also prints the

pathname of the segment.

200

list-resources

01/12/81 list_resources, lr

Syntax: lr -control_args

Function: lists groups of resources managed by the Resource Control

Package (RCP), selected according to criteria specified by the user.

Control arguments:

-acquisitions, -acq
lists resources acquired by the user specified by the -user control

argument. If this control argument is used, -type must also be

specified.

-assignments, -asm

lists resource assignments. This cannot be used with the active

function.

-awaiting_clear
lists those resources that are awaiting manual clearing.

-device STR, -dv STR

lists device resources with the name STR. No other resources are

listed. This cannot be used with the active function.

-logical_volume, -lv

lists logical volumes that are currently attached. This cannot be

used with the active function.

-long, -lg

prints all the information known about each resource li'sted. If

this control argument is not supplied, only the name is printed for

each resource listed. This cannot be used with the active function.

-lg has no effect if the -acq control argument has been specified.

-mounts, -mts

lists resources currently mounted by the process. This cannot be

used with the active function.

-reservations, -resv

lists only device and volume reservations. This cannot be used with

the active function.

-type STR, -tp STR

lists resources of the type STR. See list_resource_types for

information on obtaining the names of resource types.

-user User_id
selects a particular user or group of users for whom resource

information is to be printed. This control argument can be used

only in conjunction with -acquisitions. The User_id can be any of

the following forms--

Person.Project

specifies a particular Person_id and Project_id combination.

*.Project

specifies all users on a specified project.
.

201

specifies all users (i.e., ail acquired resources are listed).

free

specifies all resources in the free pool.

system

specifies all resources in the system pool.
** *

specifies all users plus the free and system pools (i.e., all

registered resources will be listed).

If this control argument is not specified, the User_id of the user

invoking list_resources is assumed. See "Notes on Access

Restrictions" below.

Notes on access restrictions: Access to rcp_admin_ is required to

obtain information on other users. Read access to the PDT (Project
Definition Table) of a specified project is required to obtain

information for that project.

Notes: If this command is invoked without any arguments, all resources

assigned and devices attached to the calling process are listed.

Syntax as active function: [lr -control_args]

202

list_retrieval_requests

02/02/79 list_retrieval_requests, lrr

Syntax: lrr path -control_args

Function: lists requests in the retrieval queue.

Arguments:

path
is the relative pathnme of one or more requests to be listed. The star

convention is allowed. If this argument is not specified, all requests are

listed. See also the -entry control argument.

Control arguments:

-absolute_pathname, -absp

prints the full pathname.
-admin User_id , -am User_id

selects requests of all users or of the specified user. Default is to list

the user's own requests. Required r extended access to the queue(s), to

read other users' requests.
-all, -a

searches ail queues.
-brief, -bf

prevents printing of comment and request state in normal (not -long) mode.

-entry STR, -et STR

selects only requests whose entry names match STR. The star convention is

allowed. Directory portions of request pathnames are not used for

selecting requests. Incompatible with the path argument.
-id ID

selects only requests whose request_ids match ID. Type "help request_ids".

-long, -lg

prints all information about each selected request, including long

request_id and full pathname. Default is to print short request_id and

entryname.

-long_id, -lgid

prints the long request_id.

-position, -psn

prints queue positions of each selected request. With -total, prints a list

of queue positions. Requires r extended access to the queue(s), to read

other users' requests.

-queue N, -q N

searches queue N. The default queue is 3.

-total, -tt

prints only the total number of selected requests and the total number in

the queue. Incompatible with -long and -brief control arguments.
-user User_id

selects only requests of the specified user. Requires r extended access to

the queue(s).

203

locnet

09/12/83 locnet Utilisation du reseau local "LOCNET" du CNET/Paris.

INTRODUCTION:

Ces quelques lignes d'explication ont pour but de decrire les connexions

possibles d'un terminal, relie au reseau local "LOCNET" du CNET/Issy, sur

tout ordinateur relie a ce reseau, et de donner les principaux messages
d'erreur dus, soit a un mauvais fonctionnement d'un element du reseau (ou
de Transpac), soit a une saturation d'un de ces-éléments, ou encore a une

mauvaise utilisation quelconque.

1) ACCES:

Mettre le terminal sous tension. Taper H (CR). Apparait alors le message:
"LOCNET PARIS XX". Composer alors le numero d'acces au site desire.

Si la communication est etablie, apparait le message: "COM"

2) NUMEROTATION, DEPUIS LE RESEAU LOCAL, VERS LE CNET/ISSY:

(Le site destinataire est le DPS-8 MULTICS)

En outre, on dispose des 2 mnemoniques : MA = acces EBVO via le DN 6678,
MB = " X 25 " le DN 7103.

3) NUMEROTATION, DEPUIS LE RESEAU LOCAL, VERS L'EXTERIEUR:

204

4) ACCES EXTERIEURS, DEPUIS TRANSPAC, VERS LE CNET/ISSY:

(Le site destinataire est le DPS-8 MULTICS)

5) MESSAGES D'ERREURS LES PLUS COURANTS:

LIB DTE 008 Plus d'acces libre sur le site destinataire

LIB DTE 023 Lignes d'acces au calculateur hors service

LIB DTE 035 Erreur de mot de passe dans le numero

LIB NC 144

LIB NC 145 PROBLEMES SUR LIAISONS D'ACCES

LIB DTE 004

LIB DER XXX Frontal en derangement
LIB NP XXX Numero inconnu

RESET DTE 028 Pertes de caracteres (Par exemple, probleme de controle

de flux sur un PAD)

6) INFORMATIONS COMPLEMENTAIRES:

Pour avoir des informations plus detaillees sur les messages de TRANSPAC,
faire help reseau ; on trouvera des informations detaillees sur les

profils des PAD, et des tableaux qui recapitulent les messages TRANSPAC,
avec leur signification.

205

login

09/17/81 login, 1

Syntax: 1 Person_id Project_id -control_args
or: 1 Person_id.Project_id -control_args

Function: used to gain access to the system. It is a request to the

answering service to start the user identification procedure, and then

either create a process for the user, or connect the terminal to an

existing disconnected process belonging to the user. The login command

line may be no more than 300 characters in length.

Arguments:

Person_id
is the user's registered personal identifier. This argument must be

supplied. The personal identifier can be replaced by a registered

"login alias" if the user has one.

Project_id
is the identification of the user's project. If this argument is

not supplied, the default project associated with the Person_id is

used. See the -change_default_project control argument below for

changing the default project to the Project_id specified by this

argument.

List of general control arguments: The following are permitted in any
use of the login command:

-brief, -bf

suppresses messages associated with a successful login. If the

standard process overseer is being used, the message of the day is

not printed.

-change_default_auth, -cda

changes the user's registered default login authorization to the

authorization specified by the -authorization control argument. If

the authorization given by the user is valid, the default

authorization is changed for subsequent logins, and the message
"default authorization changed" is printed at the terminal. If the

-cda control argument is given without the -auth argument, an error

message is printed.

-change_default_project, -cdp
changes the user's default project to be the Project_id specified in

this login request line. The default Project_id is changed for

subsequent logins. If the -cdp control argument is specified
without a Project_id argument, an error message is printed.

-change_password, -cpw

changes the user's password to a newly given password. The login

request asks for the old password before it requests the new one.

Passwords can be up to eight characters long and can not contain

imbedded blanks.

-generate_password, -gpw

changes the user's password to a new password, generated for the

206

user by the system. The login request asks for the old password
first. Then, a new password is generated and typed on the user's

terminal. The user is asked to retype the new password, to verify

having seen it. v

-modes STR, -mode STR, -md STR

sets the I/0 modes associated with the user's terminal to STR, where

STR consists of modes acceptable to the tty_ I/0 module (described
in MPM Communications I/0). STR is usually a list of modes separated

by commas and must not contain blanks.

- no_print_off, -npf
causes the system to overtype a string of characters to provide a

black area for the user to type the password.

-no_warning, -nw

suppresses even urgent system warning and emergency messages from

the operator, both at login and during the user's session. Use of

this argument is recommended only for users who are using a remote

computer to simulate a terminal, or are typing out long memoranda,
when the process output should not be interrupted by even the most

serious messages.

-print_off, -pf

suppresses overtyping for the password. The default for this

control argument depends on the terminal type.

- terminal_type STR, -ttp STR

sets the user's terminal type to STR, where STR is any terminal type
name defined in the standard terminal type table. This control

argument overrides the default terminal type.

List of control arguments for process creation: The following

arguments are to be used when requesting the creation of a new

process.
-authorization STR, -auth STR

sets the authorization of the process to that specified by STR,
where STR is a character string composed of level and category names

for the desired authorization, separated by commas. STR cannot

contain any embedded blank or tab characters. STR must represent
an authorization that is less than or equal to the maximum

authorization of Person_id on the project Project_id. If this

control argument is omitted, the user's registered default login
authorization is used.

-force

logs the user in if at all possible, provided the user has the

guaranteed login attribute. Only system users who perform emergency

repair functions have the necessary attribute.

-home_dir path, -hd path
sets the user's home directory to the path specified, if the user's

project administrator allows this choice.

- no_save_on_disconnect, -nosave

causes the user's process to be logged out instead of being saved,
if it becomes disconnected from its login terminal. This argument
is used to override a default of -save_on_disconnect, if that

default has been set by the user's project administrator.

-no-preempt, -np
refuses to log the user in if this can only be done by preempting

207

some other user in this user's load control group.

-no_start_up, -ns

instructs the standard process overseer not to execute the user's

start_up.ec segment, if one exists, and if the project administrator

allows this choice.

-outer-module path, -om path
attaches the user's terminal via the outer module named path rather

than the user's registered outer module, if the user is allowed this

choice.

-process_overseer path, -po path
sets the user's process overseer to the procedure given by the path

specified, if the user's project administrator allows this choice.

If path ends in the characters ",direct", the specified procedure is

called directly during process initialization rather than by the

standard procedure provided by the system. This means that the

program specified by path must perform the tasks that would have

been performed by the standard procedure.

-ring N, -rg N

sets the user's initial ring to be ring N, if this ring number is

greater than or equal to the user's registered initial ring and less

than the user's registered maximum ring.

-save-on-disconnect, -save

saves the user's process if it becomes disconnected from its login
terminal because of a communications line hangup or FNP crash.

Permission to use the process-saving facility, and the setting of

whether or not the facility is enabled by default, are both under

the control of the user's project administrator. See the

description of the -no_save_on_disconnect control argument, and the

descriptions of the save_on_disconnect and no_save_on_disconnect
commands.

-subsystem path, -ss path .

creates the user's process using the prelinked subsystem in the

directory specified by path. The permission to specify a process
overseer also governs the use of the -subsystem argument. To

override a default subsystem specified by the project administrator,

type -ss "".

List of control arguments for disconnected processes: The following
are used to specify the disposition of disconnected processes.

-connect N

connects the terminal to the user's disconnected process. If more

than one such process exists, the process number N must be

specified.

-new_proc N

destroys the user's disconnected process and creates a new one. If

more than one such process exists, the process number N must be

specified.

-destroy N

destroys the user's disconnected process and logs out. If more than

one such process exists, the process number N must be specified.

-create

creates a new process without destroying any disconnected processes.
This is permitted only for users who are allowed to have multiple

208

interactive processes.
-list

lists the user's disconnected process, showing the process number,
the time of the original login, and the ID of the channel and

terminal that were last connected to the process.

Notes on disconnected processes: If a user's project administrator

allows it, a user's process can be preserved when it becomes

disconnected from its terminal because of a phone hangup or FNP crash.

The user can call back any time before the (installation-defined)
maximum inactive time and ask to be connected to this disconnected

process. This feature is controlled by the -save_on_disconnect and

-no-save-on-disconnect control arguments,, the default is set by the

user's project administrator.. ��

Some users are permitted by their project administrators to have

several interactive processes simultaneously. These users can have

more than one disconnected process. Multiple disconnected processes
are numbered consecutively starting with 1, in the order of their login
times. These process numbers must be used as arguments when referring
to one of a set of multiple disconnected processes. The number and

login time of each is printed by the -list argument or the list

preaccess request. The user can, however, anticipate the process

numbering and use a number in an argument to the login command. The

time listed and sorted on is the time of the original login from which

the process is descended; this time is not affected by new_proc or

reconnection.

List of actions:

A user with disconnected processes who does not specify, on the

login line, the action to be taken with respect to the disconnected

processes, is told of the existence of the disconnected processes
and given a choice of the following actions:

list

to list the user's disconnected processes;
create

to create an additional process;
connect

to connect the terminal to a disconnected process;

new_proc
to destroy a disconnected process, create a new one with the same

attributes, and connect the terminal to it.

destroy
to destroy a disconnected process and log out.

logout
to logout without affecting any process.

Notes:

The connect, new_proc, and destroy requests take an optional process
number as an argument. The logout and destroy requests take an

optional -hold (-hd) control argument, which prevents the breaking of

the connection between the terminal and the answering service. The

new_proc and destroy requests take an optional -immediate control

argument, that causes the disconnected process to be destroyed

immediately, without being sent a trm_ signal; this is useful for

terminating a malfunctioning process. The help request, when issued

209

from a logged in but disconnected terminal, explains these options
rather than explaining how to log in.

210

%O90Ut

04/24/81 logout

Syntax: logout -control_args

Function: terminates a user session and ends communication with the

Multics system. It signals the finish condition for the process; and,
after the default on unit for the finish condition returns, it closes

all open files and destroys the process.

When used as a preaccess command (from a terminal not connected to a

process), it terminates the user session without destroying any

process. (See Disconnected Processes under the login request.)

Control arguments:

-hold, -hd

the user's session is terminated. However, communication with the

Multics system is not terminated, and a user can immediately log in

without redialing.-
-brief, -bf

no logout message is printed, and if the -hold control argument has

been specified, no login message is printed either.

211

long date

12/30/80 long_date

Syntax: long_date dt

Function: returns a month name, a day number, and a year as a single

string in the form "month day, year" (e.g., November 2, 1976).

Arguments:
dt

is any string acceptable to convert_date_to_binary_. The default is

the current date. See date_time_strings.gi.info for valid dt

arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [long_date dt]

- 212

long message_format

05/26/77 long_message_format, lmf
-

Syntax: lmf -pn mbx_path

Function: causes messages from send_message to be printed in long format. A

header giving the sender's name precedes every line received by the user or the

owner of the specified mailbox.

213

mail 1

02/02/79 mail, ml

Syntax: (sending) ml path Personl.Projectl ... PersonN.ProjectN

-control_args
or: ml path -pn PATH -control_args

(printing) ml Personl.Projectl -control_args
or: ml path -control_args

Function: sends a message to another user or prints messages in

a mailbox. If the recipient is using accept_messages, that user

receives an immediate notification of the form "You have mail."

Arguments:

path
(sending) pathname of segment to be mailed, or "*" for terminal input.

Exits from terminal input with a line consisting of ".".

(printing) pathname of mailbox; the mbx suffix need not be given.

PersonN name of a person to whom mail is to be sent. ProjectN project on

which PersonN is registered.

Control arguments:

-brief, -bf

(reading) print total only. Print nothing if mailbox empty.

-header, -he

(reading) print header of messages only, not text.

-match Pers.Proj

(reading) print messages from Pers.Proj only (stars ok).
-exclude Pers.Proj, -ex Pers.Proj

(reading) exclude Pers.Proj messages.

-acknowledge, -ack

(sending) cause recipient to send message when mail read.

-pathname PATH, -pn PATH .

send to or read a mailbox specified by pathname.

-no_notify, -nnt

(sending) suppress the "You have mail." notification.

Access required:
Access on a newly created mailbox is automatically set to adrosw

for the user who created it, asw for *.SysDaemon.*, and aow for

..*. For more information on extended access, type "help ext_access".

Creating mailbox:

A default mailbox is created automatically the first time a user

types "mail"; the default mailbox is:

��user_dir_dir��Project_id��Person_id��Person_id.mbx

214

memo

08/31/81 memo

Syntax: memo -memo_options memo_text
or: memo -action_arg -memo_options -selection_args

Syntax as active function: [memo memo_text]
or: [memo -list -totals]

Function: maintains a user-created reminder list in a memo segment,
which is normally Person_ID.memo in the user's home directory.

Arguments:

memo_text
is the text of the memo being set. It may not be longer than 132

characters. It can be specified in one of the following forms:

STR

the first string that does not begin with a hyphen is taken as

the beginning of the memo text. It and all succeeding strings
form the memo text. No further arguments are accepted.

-memo STRs
.

treats all succeeding STRs as part of the memo text, whether or

not they begin with hyphens.

List of memo_options: These control arguments are used to control

various options of the memo being set, or to select memos being
otherwise processed.
-alarm, -al

specifies that the memo is to be an alarm. It will be printed on

the terminal, or executed if set with -call, when its timer goes

off, if timers are enabled, rather than when memos are explicitly

processed. An alarm memo is deleted immediately after it reaches

maturity, unless it was set with -retain.

-call

passes the memo text to the command processor as a command line when

the memo matures, rather than printing it.

-date DT, -dt DT

identifies a date (DT) for the memo to mature in a form suitable for

input to the convert_date_to_binary_ subroutine. The DT is

truncated to midnight preceding the date in which DT falls.

-expires DT, -exp DT

identifies a time (DT) at which the memo is to expire; this is

treated as a delta from the maturity time (which it must be greater

than) so that repeating memos with expiration times will work

properly. When used as a selection_arg, all expiring memos are

selected, regardless of the expiration dates.

-invisible, -iv

specifies that the memo is never to be mature and will never be

printed during a normal memo print.

- 215

-no_retain, -nret

specifies that the memo will only be processed once, and then will

be automatically deleted. This is the default for alarm memos.

-repeat DT, -rpt DT

identifies the interval at which the memo is to repeat where DT must

be greater than or equal to 1 minute. The repeat interval is

applied repeatedly until the new maturity time is greater than the

current time, and then the new memo is set. When used as a

selection_arg, all repeating memos are selected, regardless of the

repeat intervals given. See "Notes on repeating memos".

-repeat_when_processed, -rwp

specifies that the repeat time of a repeating memo will be applied
from the time the memo is processed, rather than the maturity time.

This is useful for memos which are only significant within a single

process.

-retain, -ret

causes an alarm memo to be kept as an ordinary printing (or

executing, if set with -call) memo after it matures, rather than

being deleted automatically. This is the default for non-alarm

memos.

-time DT, -tm DT

identifies a time (DT) for the memo to mature in a form suitable for

input to the convert_date_to_binary_ subroutine. _

List of action_args: These control arguments control various options
of the memo command. Only one may be specified, and they may not be

combined with memo setting.

-brief, -bf

suppresses printing of the message "No memos." if no memos are

found.

-delete -force , -dl -fc

deletes all memos selected by the optional arguments. At least one

memo must be explicitly specified. Memo will query the user before

deleting non-mature memos. when given with -force, causes memos to

be deleted even if they are not yet mature, without querying the

user.

-list, -ls .

prints text and control information of selected memos; no memos are

executed. If no memos are explicitly selected, all memos are

listed. If -totals is also specified, only the total number of

selected memos is printed.
-off

suppresses all memo alarms, until the next memo command with no

explicitly specified action. The -on and -off control arguments may
be combined with other actions.

-on

enables memo alarms without printing or executing nonalarm memos.

-pathname PATH, -pn PATH, -pathname -default, -pn -dft

changes the default memo segment to PATH if specified with no other .

action. Otherwise, the memo segment specified by PATH is used for

the execution only of the current memo command. If -pathname is

216

used along with -on or -off, the default memo segment IS changed,
and alarms are turned on or off, as appropriate, for the new

segment. The suffix ".memo" need not be supplied. When given as

-pathname -default, the default memo segment is reset to

Person.ID.memo in the user's home directory.

-postpone DT, -pp DT

reschedules the maturity of the selected memos to the time specified

by DT, if DT is later than the current maturity time. At least one

memo must be explicitly specified.

-print, -pr

prints text of all selected memos. No memos are executed. If no

memos are explicitly selected, only mature memos are printed.

-process
causes all mature memos to be processed, and alarms to be turned on,
if not otherwise specified. This is equivalent to not explicitly

specifying an action.

-status, -st

prints information about the current default memo segment. If

-status is specified, it must be the only argument.

-totals, -tt

can only be specified in combination with the -list control

argument. When it is used, the total number of memos selected is

printed, rather than listing each of the memos.

Notes: The -delete, -list, -print, -postpone and -process actions are

mutually exclusive.

List of selection_args: These arguments are used to select memos to be

listed, printed, deleted, or postponed. Some memo_options may also

be used to specify types of memos to be selected (see "Notes" below).
When more than one selection_args are specified, only those memos

that match all of the selection criteria are selected.

memo_number
is either a positive decimal number specifying a single memo (for

example 32), or two such numbers separated by a colon, specifying a

range of memos (for example 12:16).
-from DT, -fm DT

selects all memos which mature on or after DT. -from may be

combined with -to, each of which may only be specified once. This

control argument is incompatible with -date and -time.

-match STRING

specifies a string against which memo texts are matched to select

memos. STR may not be longer than 32 characters. Up to 40 strings

may be specified; all memos which match at least one are selected.

-to DT

selects all memos which mature on or before DT. -to may be combined

with -from. This control argument is incompatible with -date and

-time.

Notes: No more than 5082 memos can be contained in a single memo

segment. An individual memo may be no more than 132 characters long.

If no action is explicitly specified, and no memo is being set, all

217

mature memos are processed (printed or executed), and the alarm timer

is turned on, enabling the processing of alarm memos.

The memo_options can also be used to specify types of memos to be

selected; those which take a Date/Time interval (-repeat, -expires, but

not -date or -time) will cause the selection of ALL repeating or

expiring memos, as the time interval (which must be specified) is

ignored.

Notes on default memo segment: The memo command operates on the

default memo segment (unless -pathname is specified with one of the

actions -delete, -list, -postpone, -print or -process). This default

memo segment is also used when processing alarm timers, to find the

memos which should be processed for the alarm. If the default memo

segment has never been explicitly specified (by using -pathname without

any other actions), it is the segment Person_ID.memo in the user's home

directory.

The default memo segment is created if it does not already exist. If

the default memo segment is changed, alarms are turned off for the old

memo segment, and then turned on for the new one (if requested). Thus,

only one memo segment may have alarms active at a time.

Notes on repeating memos: A repeating memo repeats by setting a new

memo which is identical to the original one, and then turning off the

repeat specification in the original memo.

An alarm memo which repeats will mature once, and then be automatically

deleted, unless it was set with -retain, in which case it is turned

into an ordinary, non-alarm memo, and lasts until it expires or is

deleted.

Notes on expiring memos: Expired memos are deleted without being

reprinted or executed. However, if they are repeating memos, they are

repeated before being deleted. A sequence of repeating memos must be

terminated manually (by deleting the current memo); the -expires
control argument is not useful for this purpose.

Notes on active function: The memo active function can only be used to

set and list memos. When a memo is set, the number assigned to the

newly set memo is returned. When memos are listed, a string consisting
of the memo numbers selected, separated by spaces, is returned; if

-totals is specified, the total count is returned.

218 ,

merge_ascii

05/12/81 merge_ascii, ma

Syntax: ma paths -control_args

Function: merges two or more related ASCII text segments.

Arguments:

paths
are pathnames of segments to be merged as automatically as possible.
The equal and :: conventions are allowed. Up to six segments can

be merged, including those preceded by the -edit control_argument.

Control arguments:
-edit path

merges the segment named path in a nonautomatic manner. Edit mode

is entered each time a modification is found in the specified

segment.
-minchars N

specifies the minimum number of characters that must be identical

for merge_ascii to assume blocks of text in different segments are
'

identical. The default value of minchars is 25.

-minlines N

specifies the minimum number of lines that must be identical for

merge_ascii to assume blocks of text in different segments are

identical. The default value of of minlines is 2.

-old_original path, -old_orig path
identifies path as the pathname of a segment antecedent to the most

recent common ancestor of the texts being merged and allows the

automatic picking up of identical changes present in all the texts

being merged.

-original path, -orig path
identifies path as the pathname of a segment containing the original
version of the text. The proper original is the most recent common

ancestor of the texts being merged. Overlapping changes, even if

identical, cause edit mode to be entered.

-output_file path, -of path
'

put the merged output text in the segment named path. (nu

convention)

Notes: The merge_ascii program is typically used to merge texts that

have been independently modified by several users. If an original
version of the text is available, and if the user desires, merge_ascii

performs the merge automatically, requiring user intervention only when

overlapping modifications are detected. When user intervention is

required, merge_ascii displays line-numbered blocks of text and then

enters edit mode allowing the user to choose lines from any text or

insert new lines.

219

When blocks of text are displayed, each line is preceded by a text

identifier and a line number. The text identifier A is reserved for

the original, whether supplied or not. The identifiers B-G are

assigned to the texts being merged in the order in which their

pathnames are encountered on the command line. The identifier M is

used for the merged output, if printed while in edit mode.

The equal convention is allowed; equal processing is based on the first

path argument in the command invocation.

Either the -original or -old_original (but not both) control argument

may be used to enable automatic merging. If neither is supplied, edit

mode is entered each time differences are found in the segments being

merged. The -old_original control argument should be used judiciously,

only if appropriate, and the user fully understands the relationships
between the texts being merged.

List of edit requests: In the syntax of the edit requests, ��text_id��
is the lowercase letter corresponding to the text identifier used by

merge_ascii; ��line_no�� is a line number in the text segment. Line

numbers can be specified as "��" to address the first line or as "��"

to specify the last line of a current block.

��text id��k

copy current block from specified text (e.g., bk copies current

block from text B).

�� text_id����line_no��k

copy specified line from specified text (e.g., b5k copies line 5

from text B). ,
�� text_id���� line_no��,�� line_no��k

copy specified lines from specified text (e.g., b4,7k copies lines 4

through 7 from text B).

�� text_id��p

print current block from specified text (e.g., bp prints current

block from text B).
�� text_id���� line_no��p

print specified line from specified text (e.g., b6p prints line 6

from text B).
-

�� text_id���� line_no��,�� line_no��p

print specified line from specified text (e.g., bl2,16p prints lines

12 through 16 from text B).

��text id��d
delete the current block in specified text (e.g., md deletes the

current block in text M).

input
enter input mode.

return from input mode to edit mode.

go
exit editor and continue comparison.

quit
abort merge and return to command level. If this request is given

during a merging procedure, all work is lost. Work is not saved

unless merging is done from the beginning to the end of the

220

segments.
e

execute rest of line as a Multics command line.

x

display identifiers, current line numbers, and pathnames of each

text.

help

print a list of the edit requests and a brief explanation of each

one.

Notes on edit requests: In any invocation of edit mode the current

block in each text is just the block of lines previously displayed.
The current block in text M is initially empty, and is grown as the

user selects or inputs lines.

The print (p) and copy (k) requests may address any lines in any
text (A to M) known to merge_ascii. The delete (d) request can only
be applied to the current block in text M, and has the effect of

undoing all edit requests made since changes were last displayed.

Multiple edit requests, delimited by blanks, can be given on a

single request line. However, the quit, go, input, and e requests
must not be followed by other requests.

221

minute

12/30/80 minute

Syntax: minute dt _

Function: returns the one- or two-digit number of a minute of the

hour, from 0 to 59.

Arguments: .
dt

is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current time is used.

See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [minute dt]

222

modules

02/04/81 Commands, Active Functions, Subroutines

The help system provides individual info segments for each command,
active function, and subroutine in the Multics system. These info

segments are given the name of the particular system module (command,
active function, or subroutine) with a suffix of "info". The

resulting name is called an info_name. For example, the info segment

describing the print command is named "print.info". But you need not

type this suffix when using the help command; you can simply type

help print

Module Info_names:
If you are unsure of the name of a system module, you can get a list

of possible names by using the list_help command with a word that

describes what you are looking for. For example, if you want to know

how to use the mail facility, you might type

list_help mail

For more information about the list_help command, type

help list_help

Subroutine entry points:
You can go directly to the description of a particular entry point in

a subroutine by typing the name of the entry point with the help
command. For example, by typing

help cu_$get_command_processor

you automatically bypass the 18 cu_ entry points described in

alphabetical order before this one. If, on the other hand, you want

to start printing at the beginning of the info seg for the command

utility subroutine, you type

help cu_

223

month .

12/30/80 month

Syntax: month dt

Function: returns the one- or two-digit number of a month of the year,
from 1 to 12.

Arguments:
dt

is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current month is used.

See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [month dt]

224

month_name

12/30/80 month_name

Syntax: month_name dt

Function: returns the full name of a month of the year.

Arguments:
dt

is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current month is used.

See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [month_name dt]

225

nove

10/28/80 move, mv

Syntax: move pathl path2...pathln path2n -control_arg

Function: causes a designated segment or multisegment file (along
with its access control list (ACL) and ail names) to be moved to a

new position in the storage system hierarchy.

Arguments:

pathl
is the pathname of a segment or multisegment file to be moved. The

star convention is allowed.

path2 2

is the pathname to which pathl is to be moved in the target

directory. The equal convention is allowed. If the last path2

segment is not specified, pathl is moved to the working

directory and given the entryname pathl.

Control arguments:
-acl

. moves the ACL. This is the default.

-all, -a

moves multiple names and ACLs.

-brief, -bf

suppresses the messages "Bit count inconsistent with current

length..." and "Current length is not the same as records used...."

-chase

moves the targets of links that match pathl. (See "Notes".)

-long

prints warning messages as necessary. This is the default.

-name, -nm

moves multiple names. This is the default.

- no_acl
does not move the ACL.

- no_chase
does not move the targets of links that match pathl. (See "Notes".)

-no_name, -nnm

does not move the multiple names.

Access required: Read access is required for pathl. Status and

modify permission are required for the directory containing pathl.

Status, modify, and append permission are required for the target

directory.
'

Notes:

The move command supports multiple moves on the same syntax line;

pathl is moved to path2, pathln is moved to path2n, etc. If more

226 .

than one entry is to be moved to the working directory, path2 can be

omitted, but pathl...pathln must be contained in parentheses.

If an entry with the entryname pathl already exists in the

target directory, the user will be asked whether the old (already

existing) entry should be deleted. If the user answers "no", the
move does not take place.

The default for chasing links depends on pathl. If pathl is a star

name, links are not chased by default, if pathl is not a star name,

paths are chased.

If pathl is protected by the safety switch, the user is asked whether

pathl is to be deleted from its old containing directory. after it has

been moved.

227

move_abs_request

10/08/80 move_abs_request, mar

Syntax: mar request_ids -control_args

Function: moves a request from one absentee queue to another. The

request is always placed at the end of the target queue.

Arguments:

path
is the full or relative pathname for the absentee input segment of

requests to be moved. The star convention is allowed.

-entry STR, -et STR

identifies requests to be moved by STR, the entryname portion of the

absentee input segment pathname. The star convention is allowed.

-id ID

identifies one or more requests to be moved by request identifier.

This identifier may be used to further define any path or -entry
identifier (see "Notes").

Control arguments:

-all, -a

searches all queues except the target queue. This control argument
is not compatible with -foreground and -queue control arguments.

-brief, -bf
.

suppresses messages telling that a particular request_id was not

found or which requests were moved when using star names or -all.

-foreground, -fg

specifies that the foreground queue contains the requests to be

moved. This control argument is not compatible with -ail or -queue
control arguments.

-queue N, -q N

specifies that absentee queue N contains the requests to be moved.

If not specified, the default queue searched is defined by the

system administrator. This control argument is not compatible
with -all or -foreground control arguments.

-sender STR

specifies that only requests from sender STR should be moved. One

or more request identifiers must be given.

-to_queue N, -tq N

specifies which queue to move the request to. (Required)
-user User_id

is a character string specifying the name of the submitter of the

request to be moved, if not equal to the group id of the process.

User_id can be of the form Person_id.Project_id, Person_id, or

.Project_id. This control argument is primarily for the operator
and administrators. Both r and d extended access to the queue are

required. This control argument causes the command to use

privileged message segment primitives that preserve the original

identity of the submitter. The AIM ring_l privilege is needed to

228

preserve the original AIM attributes. If ring_l privilege is not

present the AIM attributes of the user executing mar are used. The

default is that only requests entered by the user executing mar are

moved.

Access required: The user must have o extended access to the queue
from which the request is being taken, and a access to the queue to

which the request is being moved. The user must have r and d extended

access to move a request owned by another user (see the description of

the -user control argument above).

Notes: If any path of -entry STR request identifiers are given, only
one -id ID request identifier will be accepted and it must match any

requests selected by path or entryname.

Multiple -id ID identifiers can be specified in a single command

invocation only if NO path or entry request identifiers are given.

When star names are not used and a single request_id matches more than

one request in the queue(s) searched, none of the requests are moved.

However, a message is printed telling how many matching requests there

are.

If the request is already running, it is not moved and a message is

printed to the user.

A complete description of User_id and AIM attributes can be found in

the MPM Reference Guide.

229

move-daemon-request

10/08/80 move_daemon_request, mdr

Syntax: mdr request_identifiers -control_args

Function: moves a request from one I/O daemon queue to another. The

move can be within the same request type or from one request type to

another. The request is always placed at the end of the target queue.

Arguments:

request_identifiers can be chosen from the following:

path
identifies a request to be moved by the full or relative pathname of

the input data segment. The star convention is allowed.

-entry STR, -et STR

identifies a request to be moved by STR, the entryname portion of

the input data segment pathname. The star convention is allowed.

-id ID

identifies one or more requests to be moved by request identifier.

This identifier may be used to further define any path or -entry
identifier (see "Notes").

Control arguments:

-all, -a

searches all queues for the requests to be moved. This control

argument is incompatible with the -queue control argument. The

target queue is not searched by the -all control argument.
'

-brief, -bf

suppresses messages telling the user that a particular request
identifier was not found or that requests were moved when using star

names or the -all control argument.

-queue N, -q N

specifies that queue N for the specified request type contains the

request to be moved, where N is an integer specifying the number for

the queue. If this control argument is omitted, only the default

queue for the request type is searched. This control argument is

incompatible with the -all control argument.

-request_type STR, -rqt STR

specifies that the request moved is found in the queue(s) for the

request type identified by STR. If this control argument is not

specified, the default request type is "printer". Request types can

be listed by the print_request_types command.

-to_queue N, -tq N

specifies which queue to move the request to. If not given, the

default queue of the target request type is used.

-to_request_type STR, -to_rqt STR

specifies that the request should be moved to request type STR. If

this control argument is not specified, the original request type is

used. The target request types must be of the same generic type as

the original request type.

230

-user User_id

specifies the name of the submitter of the requests to be moved.

The default is to move only requests entered by the user executing
the command. The User_id can be Person_id.Project_id, Person_id, or

.Project_id. This control argument is primarily for the operator
and administrators. Both r and d extended access to the queue are

required. This control argument causes the command to use

privileged message segment primitives that preserve the original

identity of the submitter. If the process has access isolation

mechanism (AIM) ring one privilege, the AIM attributes of the

original submitter are preserved. Otherwise, the AIM attributes of

the current process are used.

Access required: The user must have o extended access to the queue
from which the request is being taken, and a access to the queue to

which the request is being moved. The user must have r and d extended

access to move a request owned by another user (see the description of

the -user control argument above).

Notes: If any path or -entry STR request identifiers are given, only
one -id ID request identifier will be accepted and it must match any

requests selected by path or entryname.

Multiple -id ID identifiers can be specified in a single command

invocation only if NO path or entry request identifiers are given.

When star names are not used and a single request identifier matches

more than one request in the queue(s) searched, none of the requests
are moved. However, a message is printed telling how many matching

requests are found.

If the request is already running, it is not moved and a message is

printed to the user.

See the MPM Reference Guide for a description of request identifiers.

231

move dir

06/05/81 move_dir, mvd

Syntax: mvd source_dir target_dir entry_type_keys -control_args

Function: moves a directory and its subtree, including all of the

associated attributes, to another point in the hierarchy.

Arguments:

source_dir
is the pathname of the directory to be moved. The star convention

is allowed to match directory names. Matching names associated with

other storage types are ignored. The source_dir cannot be contained

in target_dir.

target_dir
is the new pathname for source_dir. If the entryname is different

from one already on source_dir, it is added to the existing names.

If target_dir is not specified, source_dir is moved to the working

directory and given the same entryname. The equal convention is

allowed.

Control arguments:
-brief, -bf

suppresses the printing of warning messages.
-force

continues execution when target_dir already exists, without asking
the user. If the -force control argument is not specified, the user

is queried.

-replace, -rp
deletes the contents of target_dir existing before the copying

begins. If target_dir is non-existent or empty, this control

argument has no effect. The default is to append the contents of

the source directory to the target directory if it already exists.

List of entry_type_keys: These keys control what type of storage

system entry is moved. The default is to move all entries. The

keys are--

-branch, -br

-directory, -dr

-file, -f

-link, -lk

-multisegment_file, -msf

-non_null_link, -nnlk

-segment, -sm

If one or more entry_type_keys are specified, but not the -directory

key, the subtree of source_dir will not be followed.

Access required: Status and modify permission are required for

source_dir and all of the directories in its tree, and its containing

directory. If target_dir does not exist, append permission is required

232

for its containing directory. If it does exist, modify and append
permission for target_dir are required. This command does not force

access.

The access control list associated with source_dir is moved to

target_dir.

Notes: If target_dir is contained in source_dir, an appropriate error

message is printed and control is returned to command level.

If name duplication occurs while appending the source_dir to the

target_dir and the name duplication occurs between directories, the

user is queried whether processing should continue. If the user

answers yes, the contents of the directory are moved (appended) to

target_dir, but none of the attributes of that directory are moved. If

the answer is no, the directory and its subtree is skipped. If name

duplication should occur between segments, the user is asked whether to

delete the existing one in target_dir. (See the move command.)

Links are translated; that is, if there are references to a source

directory in a link pathname, the link pathname is changed to refer to

the target directory.

If part of the tree is not moved, problems with link translation may
occur. If the target of the link in the source_dir tree was in the

part of the tree not moved, there may be no corresponding entry in the

target_dir tree. Hence, translation of the link (presumably originally
non-null) will cause the link to become null.

See also the copy, move, and copy_dir commands.

233

move-quote

03/01/76 move_quota, mq

Syntax: mq pathl quota_changel ... pathN quota_changeN

Function: moves storage quota between two directories, one immediately inferior

to the other.

Arguments:

pathN

pathname of a directory; -wd or -wdir can be used. The star convention

CANNOT be used.

quota_changeN
number of records to be moved between the containing directory quota and the

pathN quota. The argument can be either positive or negative.
If positive, quota is moved from the containing directory to pathN; if

negative, the move is from pathN to the containing directory.

Access required: The user must have modify permission on both the directory

specified by pathN and its containing directory.

234

new_proc

07/10/81 new_proc

Syntax: new_proc -control_arg

Function: destroys the user's current process and creates a new one,

using the control arguments given initially with the login command, and

the optional argument to the new_proc command itself. Just before the

old process is destroyed, the "finish" condition is signalled. After

the default on unit returns, all open files are closed. The search

rules, I/0 attachments, and working directory for the new process are

as if the user had just logged in.

Control arguments:
-authorization STR, -auth STR

to create the new process at authorization STR, where STR is any
authorization acceptable to the convert_authorization_ subroutine.

(See the convert_authorization_ subroutine in the MPM Subroutines.)
The authorization must be less than or equal to both the maximum

authorization of the process and the access class of the terminal.

The default is to create the new process at the same authorization.

Notes: If the user's initial working directory contains a segment
named start_up.ec, and the user did not log in with the -no_start_up
control argument, new_proc causes the command line:

! exec_com start_up new_proc interactive

to be automatically issued in the new process. This feature can be

used to initialize per-process static variables.

235

no save on disconnect

03/13/80 no_save_on_disconnect

Syntax: no_save_on_disconnect

Function: disables process preservation across hangups in the users

process, causing the process to log itself out automatically if its

terminal channel hangs up. - .

Notes: This command is only meaningful if process preservation wa.s in

effect for the process at login time, either by default or because the

-save_on_disconnect control argument was specified on the login command

line.

236

on

05/22/81 on

Syntax:
on conditions handler_com_line -control_args

subject_com_line

Function: establishes a handler for a specified set of conditions,
executes an imbedded command line with this handler in effect, and then
reverts the handler. The handler is another imbedded command line to
be executed if the condition is signalled.

Arguments:
conditions

is a list of condition names separated by commas to be trapped by
the on command.

handler_com_line
is the command line to be executed when one of the conditions
contained in the list of condition names is raised. If

handler_com_line contains spaces or other command language
characters, it must be enclosed in quotes. If no command is to be

executed when a condition is raised, handler_com_line must be given
as "".

subject_com_line
is the command line to be executed under the control of on. The

subject_com_line consists of the remaining arguments and should be

quoted if it contains parenthesis, brackets or semicolon.

Control arguments:
-brief, -bf

suppresses the comment printed when a condition occurs.

-long, -lg

prints a detailed message describing the condition raised, if one is
available.

-restart, -rt _

continues execution of the subject_com_line after execution of

handler_com_line, or if -cl is also specified, after the start

command is executed.

-retry_command_line, -rcl

causes subject_com_line to be aborted and exectued over again after

executing handler_com_line.

-cl

establishes a new command level after the execution of

handler_com_line. The state of subject_com_line is preserved. If

the start command is issued, the same action is taken as would have

been if -cl had not been specified. This control argument is not

allowed for the on active function.

-exclude STR, -ex STR

prevents on from trapping the conditions given in STR. If more than

one condition is listed, condition names are separated by commas.

237

This control argument is useful when handling the any_other
condition.

Notes: The default action after executing handler_com_line is to abort

the execution of subject_com_line; this is modified by the -restart and

-rcl control arguments.

If a condition is raised and trapped by the on command while executing
the handler_com_line, it is considered a recursive signal, and the

entire invocation of the on command is aborted.

The message produced by the -long control argument is the same as the

message printed by the reprint_error command. The -brief and -long
control arguments are mutually exclusive The -rcl and -restart

control arguments are mutually exclusive.

See the MPM Reference Guide for a list of standard system conditions.

Syntax as active function:

[on conditions handler_com_line -control_args

subject_com_line]

Notes on active function:

The active function returns true if any of the specified conditions are

signalled during the execution of subject_com_line, false otherwise.

238 �� .

print

12/21/81 print, pr

Syntax: print paths -control_args

Function: prints ASCII segments and multi-segment files on

user_output.

Arguments:

paths
are the pathnames of the segments and multisegment files to be

printed. The star and archive component (* and ::) conventions are

accepted.

Control arguments:

-archive, -ac

treat each archive component as a new file for heading and line

numbering. If any lines are printed from an archive component, and

if -header is specified, print a header identifying the archive _

component name and the date of modification of the archive

component, in the format'--

ARCHIVE : :COMPONENT date time

where date and time are those stored in the archive. -archive is

the default if archive components were named with the ::

convention, or if the entryname of the segment ends in ".archive",
unless -no_archive is specified.

-chase

if a starname is specified, include links in the search. Do not

complain about missing link targets for starnames.

-exclude STRING, -ex STRING

don't print lines containing STRING. Exclusion is done after

matching. Thus, "-match A -exclude B" prints all lines with an A

except those with a B.

-exclude /REGEXP/, -ex /REGEXP/ .

don't print lines containing a string matching the regular

expression REGEXP.

-for N

print N lines from the file including the first line. The default

is to print the whole file. If -to is also specified, printing

stops when the first control argument is satisfied.

-from X, -fm X

begin printing from the X'th line. The default is line 1.

-from /REGEXP/, -fm /REGEXP/

begin with first line matching the regular expression REGEXP. See

the writeup of the qedx command for the definition of regular

expressions.

-from_page PP

start printing with the PP'th page, counting the first page as 1.

239

The default is to print starting with the first page.

-header, -he

print a header of the form--

NAME date time

before each segment. If -archive is specified, the header is

printed before each archive component instead of before each

segment. -header is the default if no other control arguments are

given, or if multiple pathnames or the star convention are used.

-indent XX, -ind XX

print XX blanks before each line. This indents the printed output
XX columns. The default is no indentation.

-left_col XX, -lc XX

don't print columns 1 to XX-1. This argument removes a slice from

the left_hand edge of the file, and prints each line of the file

starting with column XX. If a line has fewer than XX columns, a

blank line is printed. The default is to print starting with column 1.

-line_length YY, -11 YY

format the page with a maximum physical line length of YY

characters. Space generated by -indent and -number is not counted.

If more than YY characters are in an output line, the line is split
and continued on the next line. The default maximum line length is

1024 characters (larger values may be specified.)
-match STRING

print only lines containing the character string STRING.

-match /REGEXP/

print only lines containing a string matching the regular expression
REGEXP.

-name NAME, -nm NAME

take NAME literally, even if it is all numeric or begins with ����-����.

-no_archive, -nac

even if the file being printed is an archive, do not print headings
for individual archive components; treat it.as a single segment for

line numbering and heading.

- no_chase

_ do not include links when processing starnames. This is the

default.

-no_header, -nhe .

suppress the header before segments or archive components. This is

the default if only one pathname is given and other control

arguments are used.

-no_vertsp
simulate formfeed and vertical tab characters by outputting newline

characters.

-number, -nb

print line numbers before each line. The line number and the spaces

separating it from the line take up 10 spaces.

-page_length ZZ, -pl ZZ

start a new page after every ZZ lines from the file are printed.
The default is no pagination, as if ZZ were infinite.

-phys_page_length ZZ, -ppl ZZ

format the page with a physical page length of WW lines. This causes

a page eject to be generated every WW lines. These page ejects are

240

intended to skip over the perforation between physical pages; the

default value of WW is 66. This value is also used to determine how

many newline characters are used to simulate a formfeed of

-no_vertsp is specified.

-right_col YY, -rc YY

don't print columns past YY. This slices characters off the

right-hand side of the file. The default is to print all columns.

-stop, -sp

pause after each page until the user types a newline. Also pause
before the first page.

-to X

stop printing with line number X. The default is to print all

lines.

-to /REGEXP/

stop printing with the first line matching the regular expression
REGEXP. The search for REGEXP begins after the first line printed.

-to-page PP

stop printing after the PP'th page. The default is to print the

whole file.

-vertsp
-

send formfeed and vertical tab characters to the terminal. This is

the default.

-wait, -wt

pause before the first page until the user types a newline.

Notes: If any of -right_col, -line_length, -page_length, or

-phys_page_length is specified, or -left_col is �� 1, printing will be

done via the printer conversion software: overstrikes will be replaced
by multiple lines separated by CR (015) characters, and other control

characters will be ignored.

Numeric arguments are processed specially for compatibility with

previous versions of this command. If no file name has been found, a

number is interpreted as a file name; other numeric arguments are

interpreted as -from and -to in that order. The -name control argument
can be used to indicate that a number is intended as a pathname.

More than one -match control argument and more than one -exclude

control argument may be specified; a line is printed if any of the
-match arguments select it, unless one of the -exclude arguments

prevents it from being printed.

241

print_attach_table e

02/02/79 print_attach_table, pat

Syntax: pat switch-names -control_args

Function: prints a list of I/0 switches and information about them.

Arguments: .

switch_names
are starnames used to select the switches to be processed.
If no switch_names are specified, all I/0 switches that are currently
attached are processed.

Control arguments:
-name switch_name, -nm switch_name

causes the next argument to be interpreted as a literal switchname, even if

it looks like a starname or control argument.

-brief, -bf

suppresses the processing of the four standard switches (user_input,

user_output, user_i/o and error_output)
-all, -a

processes all switches, even those that are not attached.

-attached, -att

processes only attached switches. This is the default.

-open

processes only open switches.

Notes: The output from this command is a table listing the name of each switch

processed, its attach description (if attached) and its open description (if

open). The switches processed are selected by starname match and by whether

they match the criteria specified by the control arguments.

Syntax as an active function:

[pat -control_args switch-names]
returns a string containing the names of all the switches selected,

separated by spaces.

242

print_default_wdir

02/26/76 print_default_wdir, pdwd

Syntax: pdwd

Function: prints the pathname of the current default working directory.

243

pl'int_mail

08/21/80 print_mail, prm

Syntax: prm address -control_args

Function: prints all the messages in a mailbox, querying the user

whether to delete each one.

Arguments:
address

specifies the address of a mailbox. See "List of Addresses" below.

If no address is specified, the user's default mailbox is assumed.

Control arguments:
-brief, -bf

suppresses the printing of the informative messages.

-interactive-messages, -im

operates on interactive messages from send_message as well as mail

messages from send_mail. This is the default.

-list, -ls

prints a summary of the messages in the mailbox before entering the

request loop.

- no_interactive_messages, -nim

operates on send_mail messages, not on interactive messages sent by

send_message.

List of addresses:

-pathname path, -pn path
where path is the pathname of a mailbox. The mbx suffix is assumed.

-user Person_id.Project_id

specifies the Person_id and Project_id of a user whose mailbox is to

be read.

STR

is any argument not beginning with a minus (-) sign, and is

interpreted as -pathname STR if it contains �� or �� characters.

Otherwise, it is interpreted as -user STR.

Notes on query responses: After printing each message, print_mail asks

the question:

print_mail: Delete message N?

where N is the number of the message just printed.

Five responses are allowed:

yes
the message is deleted and the next one is printed.

no

'
244

the message is not deleted and the next one is printed.

reprint
the message just printed is printed again, and the question is asked

again.

quit, q
returns the user to command level after deleting the messages

specified.
abort

returns to command level, without deleting any messages.

Notes on creating a mailbox: A default mailbox is created

automatically the first time a user issues print_mail, read_mail,

accept_messages, or print_messages. The default mailbox is:

��user_dir_dir��Project_id��Person_id��Person_id.mbx

Notes on extended access: Access on a newly created mailbox is

automatically set to adrosw for the user who created it, aow for

.SysDaemon., and aow for *.*.*. The types of extended access for

mailboxes are:

add a add a message.
delete d delete any message.
read r read any message.
own o read or delete only your own messages.
status s find out how many messages are in the mailbox.

wakeup w send a wakeup when adding a message.

The modes "n", "null", and ""
specify null access.

Notes on related commands: Special commands exist to create additional

mailboxes and to change the attributes of mailboxes. These commands,
described in the MPM Subsystem Writers' Guide, are:

mbx_create
create a mailbox.

mbx_delete
delete a mailbox. -

mbx_add_name
add a name to a mailbox.

mbx_delete_name
delete a name from a mailbox.

mbx_rename
rename a mailbox.

mbx_list_acl
list the access control list of a mailbox.

mbx_set_acl

change or add entries to the ACL of a mailbox.

mbx_delete_acl
delete entries from the ACL of a mailbox.

mbx_set_max_length
set the maximum length of a mailbox.

mbx_safety_switch_on
turn on the safety switch of a mailbox.

mbx_safety_switch_off f -

245

turn off the safety switch of a mailbox.

For more information, see the read_mail and send-mail commands

descriptions. ,

246

print-niessages

07/17/81 print_messages, pm

Syntax: pm destination -control_args

Function: prints any interprocess messages that were received (and
saved in the user's mailbox) while the user was not accepting messages,
not logged in, or accept_messages -hold was in effect.

-

Arguments:
destination

can be of the form Person_id.Project_id to specify a mailbox. If

destination contains �� or ��, it is the pathname of a mailbox. If no

destination is specified, the user's default mailbox is assumed.

Control arguments:

-all, -a

prints all messages, including those held by -hold mode (see

accept-messages). This is the default.

-call cmdline

for each message, instead of printing calls the command processor
with the line:

cmdline number sender time message path
For more details, see the accept_messages command.

-last, -lt

reprints only the latest message received.

-long, -lg
'

prints the sender and date-time of every message, even when the same

for two consecutive messages.

-new

when accept_messages -hold mode is in effect, prints only those

messages that have not been printed before. The default is to print
all held messages. _

-pathname path, -pn path

specifies a mailbox by pathname. The mbx suffix is assumed. This

control argument and the destination argument are mutually
exclusive.

-short, -sh

prints messages as with accept_messages -short, omitting redundant

sender names in favor of the prefix "=:". This is the default.

Notes: Messages are deleted after they are printed unless the -hold

argument was given to the accept_messages command. The "last" message
remains available for the life of the process or until redefined by a

new message.

If messages are deferred, it is a good practice to print out pending

messages periodically.

247

For a description of the mailbox, refer to the accept_messages and

print_mail commands. See also the active functions last_message,

last_message_sender, and last_message_time.

248

pl'int_motd

06/25/81 print_motd, pmotd

Syntax: pmotd

Function: prints out changes to the message of the day since the last

time the command was called.

Notes: The segment Person_id.motd is created in the user's home

directory to hold the previous version of the message of the day.

Anonymous users use the segment Login_id.motd where Login_id
is the name used on the enter or enterp line.

249

print_pdt

07/14/77 print_pdt

Syntax: print_pdt pdt_name user_name -control_args

Function: print contents of a PDT; can be used to make a PMF from a PDT.

Arguments:

pdt_name
name of PDT. Can be the pathname of a PDT other than the live PDT found in

��scl��pdt.

user_name

print only information about user_name.

Control arguments:

-brief, -bf

print information derived from PMF whose values differ from the default.

-long, -lg

print ail information found in the PDT.

-pmf

print in format suited for a PMF.

-no_header, -nhe

do not print header.

Notes: The user must have access to the PDT; most users who are not project
administrators do'not have such access.

If none of -pmf, -brief, or -long are given, all PMF specifiable attributes

and the total amount spent are printed.
To make a PMF out of a PDT, the following command line is recommended:

fo projname; print_pdt projname -pmf; ro

250

print_search_pâths

01/17/79 print_search_paths, psp

Syntax: psp search_lists -control_args

Function: prints the search paths in specified search lists.

Arguments:

search_lists
are names of search lists to print. If none are specified, all search

lists referenced in the process are printed.

Control arguments:

-expanded, -exp

print all keywords except -referencing_dir and all unexpanded search paths
as absolute pathnames.

Notes: All synonyms of a search list name are printed if no search lists are

specified.

Syntax as an active function: [psp search_list -control_args]

251

print_search_rules

02/13/76 print_search_rules, psr

Syntax: psr

Function: prints the search rules currently in use.

252

print_terminal_types

08/25/77 print_terminal_types, ptt

Syntax: print_terminal_types ttt_path

Function: Displays the names of all currently-defined terminal types.

Arguments:

ttt_path
is the pathname of the terminal type table (TTT) to be

used to find the names of the defined terminal types.
If it is omitted, the system TTT is used.

253

print wdir

02/13/76 print_wdir, pwd

Syntax: pwd

Function: prints the pathname of the current working directory.

254

probe

09/30/79 the probe command

Syntax: pb procedure_name

Function: provides symbolic, interactive debugging facilities
for programs compiled with PL/I, FORTRAN, or COBOL.

Arguments:

procedure_name
can be the reference name of an initiated program, a pathname, or if not

given, the procedure owning the frame in which the last condition

was raised is assumed.

Notes: Probe is self-documenting. For further information, invoke probe
and type "help". For a list of all requests, type "list_requests".
For a list of all topics described by probe, type "list_help".

255 -

probe.gi

09/30/79 General information about probe
'

Probe is a symbolic debugger for programs written in PL/I, FORTRAN,
and COBOL. It permits a user to interrupt a program at a specified
location, to examine or modify program variables, to examine the stack

history of block invocations, to display spurce lines associated with

an object location. Expression of program variables may be aevaluated

and external functions may be called. -

Self-documentation:

By using the probe "help" request one can see probe information files.

To see a list of them, type "list_help". To see a specific file, type

"help file_name". This info file is available by typing "help".

probe interaction:

When probe has been invoked it accepts requests from the user. A probe

request consists of a keyword (the name of the request to be

performed) and its arguemnts, if any. More than one request may appear
on a line if they are separated by semi-colons (";"). For a list of

ail requests, type "list_requests".

Breakpoints:
A breakpoint is a set of probe requests associated with a statement of

a program. This set of requests is executed automatically by probe
whenever the location in the object segment corresponding to the

statement is executed. The most common request is "halt", which
'

suspends execution of the program and listens for further requests.
The user may then examine and modify the state of the suspended

program, and resume (or abort) further execution. Other uses of

breakpoints are to display the state of the program without halting,
or to effect source-level patching by executing assignments. For more

information, type "help breaks".

256

process-dir

07/23/80 process_dir, pd

Syntax: pd

Function: returns the pathname of the process directory of the process
in which it is invoked.

Syntax as active function: [pd]

257

process_list

07/07/81 process_list, pls

Syntax: pls list_path form_path -control_args

Function: produces a document from all or selected records in a lister

file.

Arguments:

list_path
is the pathname of the lister file to be processed. Lister must be

the last component of the lister file name; however, if list_path
does not have a suffix of lister, one is assumed.

form_path
is the pathname of the listform file that defines the format of the

document. If form_path does not have a suffix of listform, one is

assumed. If this argument is not specified, a listform file in the

working directory is used that has the same entryname as list_path,
with the entryname suffix of lister changed to listform.

Control arguments:

-argument STR, -ag STR

indicates that the listform segment requires arguments. If present,
it must be followed by at least one argument. All arguments

following this control argument on the command line are taken as

arguments to the listform segment. Thus, if present, this must be

the last control argument on the command line.

-brief_errors, -bfe

suppresses warnings about missing or extra arguments for the -ag
control argument. Also suppresses the warning when no records were

selected.

-output_file path, -of path

specifies that the document produced by this command is saved in the

segment specified by path (see Sample Letter in "Sample List

Processing Files" in Multics Wordpro Reference Guide, Order

No. AZ98).

-extend, -ex

specifies that the document produced by this command is to be

appended to the segment specified by path (-output_file must also be

given). The default is to replace path completely.
-select STR, -sel STR

specifies the records selected for processing. If this control

argument is not specified, then all records in the list are

processed
-sort STR, -st STR

sorts the records processed according to sort_string, which is a

string enclosed in quotes. The new ordering of the list is in

effect only for the duration of the command. The lister file is not

modified. If this control argument is not specified, then records

are processed in the order in which they currently appear in the

258

lister file

-totals, -tt

prints the number of records processed.

Notes: The format of the document is defined in a listform file.

Other text processors, such as compose, may be used to further format

the document. By default, the document is printed on the users

terminal. Alternatively, it may be saved in a segment. For a

description of the structure of a listform file and information on

field insertion, angle bracket escapes, and the selection and sorting

procedures (-select and -sort control arguments), see the Multics

Wordpro Reference Guide, Order No. AZ98.

259

profile

12/22/80 profile, pf

Syntax: pf program-names -control_args

Function: a performance measuring tool that analyzes the time spent

executing each source statement of a program, along with other

parameters of interest, after the program is run.

Arguments:

program_names
are pathnames or reference names of programs to be analyzed. Any

program_name that does not include zzz�� or "��" characters is assumed

to be a reference name. They need not be specified if the

-input_file control argument is used.

Control arguments: Control arguments apply to all programs specified,
and can be given in any order.

-brief, -bf

used with -print to exclude from the output all information for

statements that have never been executed. This is the default.

-comment STR, -com STR

used with the -output_file control argument to include STR with the

stored profile data as a comment. This control argument can also be

used with -plot. If STR is to include blanks or other characters

recognized as special by the command processor, it should be

enclosed in quotes. STR can be up to 128 characters long.
-first N, -ft N

used with -sort to print only the first N values.

-from N, -fm N

used with -print or -plot to begin the output with the data for line

number N. The default is 1.

. -hardcore, -hard

indicates that the specified programs are supervisor (hardcore)

segments. The current (internal static) profile data for such

programs is retrieved from the address space of the supervisor.
Hardcore programs compiled with the -profile or -long_profile
control arguments must be installed by generating a Multics System

Tape and rebooting Multics. See System Programming Tools, Order

No. AZ03, for a description of the generate_mst command. Note that

the current (internal static) profile data for hardcore programs
cannot be reset (zeroed).

-input_file path, -if path
causes the profile data to be retrieved from the profile data file

specified by path. Use of this control argument causes the current

(internai static) profile data, if any, to be ignored. The pfd
suffix is appended to path if it is not already present. If any

program_names are specified, they select a subset of the stored data

260

for analysis. If no program_names are specified, all data stored in

the profile data file is used. This control argument is

inconsistent with -output_file.

-line_length N, -11 N

used with -list to specify an output width of N characters. The

default is 132.

-list, -ls

creates a profile listing for all specified programs. The profile

listing file is given a name consisting of the first program name

with the language suffix replaced by the pfl suffix. It is placed
in the working directory. The information described above for the

-print control argument is placed in columns to the left of each

source line in the profile listing.

-long, -lg
used with -print to include in the output information for statements

that have never been executed.

-max_points N, -mp N

used with -plot to specify the maximum number of points (line

numbers) to be plotted (the graphics resolution). The default is

250. The Multics Graphics System is capable of plotting up to 1024

points.

-no_header, -nhe

used with -print to suppress column headings.

-output_file path, -of path
causes the profile data for the specified program_names to be stored

in the profile data file specified by path. The file is created if
it does not already exist and is overwritten if it already exists.

The pfd suffix is added to path if it is not already present. The

profile data is stored in a format acceptable to the -input_file
control argument. The format of pfd data files is described by the

PL/I include file pfd_format.incl.pll. The stored data is

determined by the program_names specified, the -comment control

argument and whether the compilation was done using the -profile or

-long_profile options. The name a program was compiled with is
saved in the profile data file. If program_name specifies a bound

object segment, profile data about each component of the bound

object segment is saved.

-plot STR

plots a bar graph, on any supported graphics terminal, of the values
of the specified field STR. STR can be any of the fields in the
"List of Fields" section below. Use of this control argument

requires that the site has installed the Multics Graphics System,
and that the setup_graphics command has been executed. See the

Multics Graphics System, Order No. AS40, for more information.

-print, -pr

prints the following information for each statement in the specified
program(s):
1. Line Number.

2. Statement Number

if more than one statement on the line.

3. Count

the number of times the statement was executed.

261

4. Cost

an approximation to the accumulated execution time for the

statement. Equal to the number of instructions executed plus
ten times the number of external operators called. v

5. Stars (asterisks)
an indication of the percentage of total cost (or time, for

long_profile data) used in the statement. The number of stars

is selected according to the table below.

4 stars: 20% to 100%

3 stars: 10% to 20%

2 stars: 5% to 10% -
1 star: 2.5% to 5%

no stars: 0% to 2.5% %

one period: Statement was not executed.

6. Names of all external operators called by the statement.

For -long_profile (actual accumulated time) data, item 4 is changed
to the following:

4a. Time

actual execution time for the statement in virtual CPU

microseconds, including all time spent in any operators or

subroutines_invoked by the statement.

4b. Average Time .

Time divided by Count (the average execution time for one

execution of the statement).
4c. Page Faults

page faults incurred in executing the statement.

-reset, -rs

resets (zeros) all current (internal static) profile data for the

named program(s). When -reset is specified, the resetting is done

as the very last operation if -print, -list, -plot, or -output_file
are also specified. This control argument is inconsistent with

-input_file and -hardcore.

-search_dir path, -srhd path
used with -hardcore to add path to an internal search list of

hardcore object directories. Up to 8 directories can be specified.
If no search list is specified, ��ldd��hard��o is searched for copies
of the specified program(s).

-sort STR

used with -print to sort profile information into descending order

of the specified field STR, which can be any of the fields in the

"List of Fields" section below.

-source_dir path, -scd path
used with -list when the source segments to be listed have been

moved from the directories in which they were compiled. If

-source_dir is specified, only the directory specified by pathname

path is searched for source segments.
-to N

used with -print or -plot to end the output with the data for line

number N. The default is the line number of the last executable

statement.

262

List of Fields:

count

number of times statement was executed.

time

vpcu time of statement (-long_profile).
cost

approximate cost of statement (-profile).

page_faults (pfs)

page faults taken during statement (-long_profile).

Notes: The program to be analyzed must be compiled using the -profile

(-pf) control argument of the cobol, fortran and pll commands, or using
the -long_profile (-lpf) control argument of the pli command. The

-long_profile compiler control argument is used to acquire exact

elapsed time statistics and is much more expensive to use than the

-profile compiler control argument.

263

program_interrupt

07/25/81 program_interrupt, pi

Syntax: pi

Function: informs a suspended invocation of a subsystem that the user

wishes to abort the current request.

Notes: The program interrupt command is used with interactive

subsystems. Interactive subsystems are commands that accept user

requests from the terminal. To abort a subsystem request the user

uses the quit (or break) key to interrupt execution, and then gives
the program_interrupt command. If the subsystem supports the use of

the program_interrupt command, it will abort the interrupted request
and ask the user for a new one. If the subsystem does not support the

use of program_interrupt, the command will print an error message.
The user may then either restart the interrupted operation with the

"start" command, or abort the entire subsystem invocation with the

"release" command.

List of subsystems:
The following subsystems support the use of the

program_interrupt command--

debug
edm

emacs

help

lisp

print_mail

probe

qedx

read_mail , .

send_mail .
teco

ted

264 -

qedx

03/01/76 qedx, qx
'

Syntax: qx path optional_args

Function: context editor used to create and edit ASCII segments;
also allows the user to create macros.and use the editor as an

interpretive programming language.

Arguments:

path

pathname of an ASCII segment from which the editor is to take its initial

instructions; the qedx suffix must not be given.

optional_args
are appended, each as a separate line, to the buffer named args.

Requests: listed below in four categories giving, format, default

in parentheses, and brief description. For value of ADR, see

Addressing below; regexp, see Regular expression. _

INPUT--these requests enter input mode and must be terminated with f.

ADRa (.a) append lines after specified line.

ADR1,ADR2c (.,.c) change existing line(s); delete and replace.
ADRi (.i) insert lines before specified line.

BASIC EDIT REQUESTS--
ADR1,ADR2d (.,.d) delete line(s).

ADR1,ADR2p (.,.p) print line(s).
ADR= (.=) print line number.

q exit from qedx editor.

ADRr path ($r path) append contents of path after specified line.

ADR1,ADR2s/regexp/string/ (.,.s/regexp/string/) substitute every

regexp in the line(s) with string. If string contains ��, �� is

replaced by regexp. First character after s is delimiter; it can be

any character not in either regexp or string..

ADRl,ADR2w -path- (l,$w path) write lines into segment named path; if

path omitted, default pathname used.

/regexp/ set the value of "." to the first line following the

current line that contains regexp and print the line.

EXTENDED EDIT REQUESTS--
e ��command line�� execute command line without leaving editor.

ADR1,ADR2gX/regexp/ (l,$gX/regexp/) perform operation on lines that

contain regexp; X must be d for delete, p for print, or = for print
line numbers.

ADR1,ADR2vX/regexp/ (l,$vX/regexp/) perform operation on lines that

do not contain regexp; X must be d for delete, p for print, or =

for print line numbers.

265

BUFFER REQUESTS--
b(X) go to buffer named X.

ADR1,ADR2m(X) (.,.m(X)) move line(s) from current buffer into buffer

named X.

x give the status of all buffers in use.

ADRn (.n) set value of "." to line addressed.

ADR" (.") ignore rest of line; used for comments.

Addressing: Most editing requests are preceded by an address

specifying the line or lines in the buffer on which the request
is to operate. Lines in the buffer can be addressed by
absolute line number; relative line number, i.e., relative to the

"current" line; and context. Current line is denoted by period (.);
last line of buffer, by dollar sign ($).

Regular expressions:
The following characters have specialized meanings when

used in a regular expression. The user can reinvoke the last used

regular expression by giving a null regexp (//).

* signifies any number (or none) of the preceding character.

A when used as the first character of a regular expression,

signifies the character preceding the first character on a line.

$ when used as the last character of a regular expression,

signifies the character following the last character on a line.

. matches any character on a line.

Escape sequences:
f exit from input mode and terminate the input request.

c suppress the meaning of the escape sequence or special
character following it. -

b(X) redirect editor stream to read subsequent input from

buffer X.

r temporarily redirects the input stream to read a single Line

from the user's terminal.

266

read mail 1

03/12/79 read_mail, rdm

Syntax: rdm INPUT_SPEC -CONTROL_ARGS

Function: Selectively lists, prints, deletes, saves and forwards

messages and mail sent to a mailbox.

Arguments: INPUT_SPEC can be any one of the following; if no INPUT_SPEC
is present, the users default mailbox is used:

��udd��Project��Person��Person.mbx

-mailbox PATH, -mbx PATH

specifies the pathname of a mailbox.

-user Person.Project

specifies the mailbox of a given user.

-save PATH, -sv PATH

specifies a savebox PATH.sv.mbx

-log

specifies the user's logbox, [hd]��Person.sv.mbx
STRING

If STRING contains a single period, it is interpreted as a

Person.Project identifier; otherwise, it is interpreted as a

pathname.

Control arguments:
-brief, -bf

Shorten informative messages from read-mail.

-interactive-messages, -im

Include interactive messages, as from the send_message command.

-list, -ls

List mailbox contents before entering request loop.

-long, -lg
Print full informative messages. (default)

- no_interactive_messages, -nim

Ignore interactive messages. (default)

-no-list, -nls

Do not list msgs before entering request loop. (default)

-no_print, -npr
Do not print msgs before entering request loop. (default)

-no_prompt

Suppress the prompt in the request loop. (default is "read_mail:")
-own

Read only messages sent by the user.

-print, -pr
Print messages before entering the request loop.

-prompt STR

Set the request loop prompt to STR.

267 -

-quit
Exit read_mail after performing any operations given by the -list,

-print, or -request control arguments.

-request STR, -rq STR

Execute the requests in STR before entering the request loop.

-request_loop, -rql
Enter the read_mail request loop even if there are no messages
in the mailbox

-totals, -tt

Print the number of the messages in the mailbox, and return. This

argument is incompatible with -print and -list.

Default setting control arguments:
These arguments can be used to set defaults for the behavior of various

read_mail requests. Their effect is to change the behavior of a particular

request so that it behaves as if the specified control argument is always

given. The defaults can all be overridden by using the negative form of

the control argument.

Default setting for the print (pr) request:

-no_header, -nhe

-header, -he

Default setting for the reply (rp) request:
-fill, -fi

-include_authors, -iat

-include_original, -io ,
-include_recipients, -irc

-no_fill, -nfi

-no_include_authors, -niat

-no_include_original, -nio

-no_include_recipients, -nirc

Notes:

Request lines use () for iteration, "" for quoting, and [] to invoke

read_mail active requests, listed below ("List of active requests").

Any request line which befgins with ".." will be passed directly to the

Multics command processor with the leading ".." stripped off. This is

the recommended method for executing Multics commands from within the

read_mail subsysem, as the execute request is cumbersome.

Message specifiers:

Message specifiers (SPECS) are message numbers ("17"), ranges

("6:9"), string matches ("/STR/" or "/STR1/��/STR2/"), and expressions

involving any of the keywords first (f), last (1), next (n), previous

(p), current (c) and ail (a), such as "6:last-3" or "all/STR/". A full

description can be obtained with the read_mail request "help msg_specs".

Messages are not actually deleted from the mailbox until the "quit"

request is issued, so that "deleted" messages can be retrieved with the

"retrieve" ("rt") request.

268

List of requests:

Only the most important aspects of the requests are documented here; in

particular, many requests take more control arguments. For further

information on these requests, use the read_mail 'help' request.

? lists the available read_mail requests and active requests.
. identifies read_mail with version number, recursion level, mailbox

pathname, message count, and current message number.

delete SPECS , dl SPECS .
Delete specified messages.

help STR

Print information about request names or topics. A list of available

topics is produced by the request "help *".

list SPECS -CA's , ls SPECS -CA's

Produce a summary listing of specified messages.

print SPECS -CA's , pr SPECS -CA's

Print specified messages. -CA can be -header (-he) or -no_header

(-nhe), among others.

quit -CA's , q -CA's

Exit read_mail. -CA's can be -no_modify (-nm) to not change the

mailbox, -force (-fc) to ignore newly arrived messages.
retrieve SPEC S , rt SPEC S

Un-delete specified messages.

append SPECS PATH

Write msgs at the end of an existing ASCII segment.

copy SPECS PATH, cp SPECS PATH

Copy msgs intact to another mailbox.

forward SPEC ADDRESSES -CA's

Forward msgs specified by one specifier. ADDRESSES can be -user

Person.Project, -mbx PATH, or STRING, as above.

log -CA SPECS

Copy msgs to user's logbox, adding sender information to the message
header if not already present. -CA can be -delete (-dl).

preface SPECS PATH

Write msgs at the front of an existing ASCII segment.
save -CA SPECS PATH, sv -CA SPECS PATH

Save msgs in a mailbox, adding sender information to the message
header if not already present.

write -CA SPECS PATH, w -CA SPECS PATH

Write messages to the end of a new or old ASCII segment. -CA can be

-truncate (-tc) to specify that the segment is to be truncated first.

execute STR's, e STR's

Concatenate all STS's together and execute result as a Multics

command line. Active requests are replaced by their values

before string is constructed.

reply SPECS -CA's , rp SPECS -CA's

Send replies to the senders and recipients of specified messages by

calling the send_mail subsystem.

List of active requests:
execute STR's, e STR's

Concatenate STR's, execute as a Multics active function, and return

its value.

269

current -CA's

Return the number of the current message.
first -CA's

Return the number of the first message.
last -CA's

Return the number of the last message.
next -CA's

Return the number of the next message.

previous -CA's

Return the number of the previous message.
all -CA's

Return a string consisting of all the message numbers.

mailbox, mbx

Return the absolute pathname of the mailbox being read.

270

ready

06/20/80 ready, rdy

Syntax: rdy

Function: types out an up-to-date ready message whose format is

optionally set by the general_ready command. The default ready message
if general_ready is not used gives the time of day and the amount of

CPU time and page faults used since the last ready message was typed.
If the user is not at the first command level, i.e., if some

computation has been suspended and the stack frames involved not

released, the default ready message also contains the number of the

current command level.

Notes: See the descriptions of ready_on, ready_off, and general_ready
in MPM Commands and Active Functions, AG92.

271

ready_off

02/13/76 ready_off, rdf

Syntax: rdf

Function: turns off the ready messages printed at command level.

272
1

ready_on

02/13/76 ready_on, rdn

.
Syntax: rdn

Function: prints a ready message after each command line has been processed.

273

release

02/13/76 release, rl

Syntax: ri -control_arg

Function: releases,the stack history preserved after a quit signal or unclaimed

signal.

Control arguments: .

-all, -a

to release the stack history preserved (and not already released) after all

previous quit and/or unclaimed signals rather than after only the most

recent quit or unclaimed signal.

274

release resource

04/24/81 release_resource, rlr

Syntax: release_resource type STR1 ... STRn -control_arg .

Function: The release_resource command releases a resource into the

free pool. A resource may only be released by its accounting owner

or privileged processes.

Arguments:

type
is a resource type defined in the resource type description table

(RTDT).
STRi

is the unique identifying name of the particular resource being
released. If STR looks like a control argument (i.e., if it is

preceded by a hyphen), then it must be preceded by -name or -nm.

Control arguments:

-priv

specifies that the user wishes to perform a privileged release of

this resource from the accounting owner, even though the user may
not be the accounting owner (see "Access Restrictions" below).

Access Restrictions: The use of the -priv control argument requires
execute access to the rcp_admin_ gate.

275

rename

01/10/77 rename, rn

Syntax: rn -control_arg pathl namel ... -control_arg pathN nameN

Function: renames entries.

Arguments:

pathN

specifies the old name that is to be replaced; it can be a pathname or an

entryname. The star convention is allowed.

nameN

specifies the new name that replaces the entryname portion of pathN.
The equal convention is allowed.

Control arguments:

-name, -nm

causes the next path and name to be taken literally, without applying the

star or equal conventions and disregarding special characters such as ��.

276

reorder archive

06/01/76 reorder_archive, ra

Syntax: ra -control_argl pathl ... -control_argN pathN

Function: reorder the contents of an archive segment according to a list ,

specified by the user.

Arguments:

pathN
is the pathname of an archive segment; the archive suffix need not be given.

Control arguments:

-console_input, -ci

indicates user will list component names in order desired.

See "Notes."

-file_input, -fi

indicates that a list of component names is to be found in the segment named

XXX.order where XXX is the name of the archive segment. See "Notes" below.

Notes: When -ci control argument is used, user enters component names separated

by line feeds in order desired. A period (.) on a line by itself terminates

input; a two character line, .q, terminates the command without reordering the

archive.

When -fi control argument is used, archive is reordered according to order

specified.in XXX.order. Errors in the list terminate the command without

altering the archive.

277

reserve-resource

01/18/79 reserve_resource, rsr

Syntax: rsr -resource (-rsc) resource_description .

Function: reserves a resource or group of resources for use by the calling

process. The reservation takes effect immediately and lasts until cancelled by
the cancel_resource command or by process termination.

Control arguments:
-resource STR, -rsc STR

this control argument must be present. The string, STR specifies a

description of the resources to be reserved. If this resource description
contains spaces or special characters, it must be enclosed in quotes. This

resource description can also have control arguments and is described in

detail below.

Examples: rsr -rsc "tape_drive -attr track=9,den=1600 -rsct tape_vol u309"

Resource Description:
A resource description describes certain devices and volumes by name or by

attributes and an optional number. It has the following format:

-resource_type resource_specl ... -resource_type resource_specn

That is, a series of at least one resource spec where all but the first must be

preceded by the -resource_type or -rsct control argument. The first one may or

may not be preceded by the control argument.

The format of a resource_spec is as follows:

volume_type namel names

or:

device_type names

or:

device_type -control_args

where:

volume_type
can be either tape_vol or disk_vol.

device_type
can be either tape_drive or disk_drive.

Control arguments:
-attributes STR, -attr STR

for tape drives STR can consist of a string of attributes with values

separated by commas with no spaces. The attributes allowd for tape drives

are: model=, track=, and den=. For disk drives the only attribute allowed

is: model=.

278

-number N, -nb N

is the number of identical resources of the type desired.

Example:

tape_vol 50102 u309 -rsct tape_drive -attr track=9,den=800 -nb 2

This describes four resources: two tapes, 50102 and u309; and two tape drives,
both being 9-track and capable of 800 bpi operation.

279

resource status

04/24/81 resource_status, rst

Syntax: resource_status type STR1 ... STRn -control_args

Function: The resource_status command prints selected information ,

about the status of a given resource. This command can also be invoked

as an active function (see "Notes" below).

Arguments:

type
is a resource type defined in the resource type description table

(RTDT).
STRi

is the unique identifying name of the particular resource desired.

If STR looks like a control argument (i.e., if it is preceded by a

hyphen), then it must be preceded by -name or -nm.

Control arguments:

-access_class, -acc

prints the AIM,access class or access class range of the resource

(see "Notes" below).

-acs_path

prints the pathname of the ACS for this resource (see "Notes"

below) .

-all, -a

specifies that all information maintained about this resource is to

be printed. This control argument is not allowed in an active

function invocation.

-alloc

specifies that the state of the user allocation switch for this

resource is to be printed.

-attributes, -attr

prints the current and protected attributes of this resource.

-charge_type, -crgtp

prints the charge type for this resource.

-comment, -com

prints the user-settable comment associated with this resource.

-location, -loc

prints the location field associated with this resource.

-lock

prints the status of the resource lock for this resource. In an

active function invocation, "true" is returned if the lock is on;
"false" is returned if it is off.

-mode, -md

prints the user's effective mode to the resource.

-owner, -ow

prints the name of the owner of the resource.

280

-potential_access_class, -pacc
- prints the potential access class or potential access class range

for this resource (see "Notes" below).

-potential_attributes, -pattr

prints the potential attributes of this resource.

-priv

specifies that a privileged call is to be made to obtain the status

of this resource (see "Access Restrictions" below).

-release_lock, -rll

prints the status of the lock which prevents the owner from

releasing this resource. In an active function invocation, "true"

is returned if the lock prevents the owner from releasing the

resource; "false" is returned otherwise.

-uid

prints the unique identifier of this resource.

Notes: When invoked as an active function, this command returns the

value requested by the specified control argument (only one control

argument may be specified in this usage).

Access Restrictions: The use of the -priv control argument requires
execute access to the rcp_admin_ gate.

Syntax as active function: [resource_status type name -control_arg]

281

resource_usage

02/13/76 resource_usage, ru
'

Syntax: ru -control_arg

Function: prints a report of resource consumption for current billing period.

Control arguments: (One of the following)

-total, -tt

prints only total dollar figures including the user's dollar limit stop and

his month-to-date spending.

-brief, -bf

prints the information selected by the -total control argument, preceding
this information with a header and following it by total dollar figures

depicting the user's interactive, absentee, and I/0 daemon usage.

-long, -lg

prints the most comprehensive picture of the user's resource usage.

Notes: If no control argument is specified, all dollar charges are printed but

resource usage expressed as time is not printed.

282

revert_output

08/10/77 revert_output, ro

Syntax: ro -ssw switchname ... -all

Function: reverts the most recent file_output, syn_output, or terminal_output
attachment, or all such, for each I/0 switch specified.

Control arguments:
-ssw switchname

to specify an I/0 switch. If no switchnames are specified, the default is

user_output.
-all

reverts all fo, so and to attachments for all switches, or for the

switchnames specified.

Examples:
ro -ssw user_output -ssw error_output

reverts both switches.

283

run

06/22/79 run

Syntax: run -control_args main_program program_args

Function: provides temporary environment for execution of programs.

. Arguments: z

main_program

pathname of the main program for the run.
'

program_args

arguments passed to the exec_com or main program.

Control arguments:

-exec_com path, -ec path

specifies the exec_com to be executed.

-no_exec_com, -nec

invokes the main program directly.
-limit n, -li n

interrupts run every n seconds of virtual CPU time.

-copy_reference_names, -crn

starts run with copy of reference names initiated before run and

automatically terminates segments initiated only with the run unit.

-new_reference_names, -nrn

uses a different reference name table and automatically terminates

segments initiated only within the run unit. (DEFAULT)

-old_reference_names, -orn

uses original reference name table directly and does not automatically
terminate segments initiated during the run unit.

Notes:

-crn, -nrn, and -orn are mutually exclusive.

If neither -exec_com nor -no_exec_com control arguments are given, the

exec_com segment main_program.run.ec is searched for in the same directory as

the main program. If it is not found, the main program is invoked directly.
When an exec_com is used, the main program name, if any, is passed as the

first argument and the exec_com is responsible for invoking the main program.

284

runoff

08/30/79 runoff, rf

Syntax: rf paths -control_args

Function: types out text segments in manuscript form.

Arguments:

paths
are pathnames of input segments or multisegment files; the runoff suffix

need not be given.

Control arguments:
-ball N, -bl N

convert output to a form suitable for an N typeball.
-character, -ch

create entryname.chars, listing page and line numbers of special characters,

normally not printable, that must be drawn in by hand.

-device N, -dv N

prepare output compatible with device N.
-from N, -fm N

start printing at the page numbered N.

-hyphenate, -hph
call user-supplied procedure to perform hyphenation.

-indent N, -in N

set initial indentation to N.

-no_pagination, -npgn

suppress page breaks.

-number, -nb

print source segment line numbers in output.

-page N, -pg N ,
change the initial page number to N.

-parameter arg, -pm arg

assign arg as a string to the internal variable "Parameter".

-pass N

make N passes over the input.
-segment, -sm

direct output to the segment or multisegment file named entryname.runout,
where entryname is the name of the input segment.

-stop, -sp
wait for a carriage return before each page.

-to N

finish printing after the page numbered N.

-wait, -wt

wait for a carriage return before the first page.

Control requests: are defined below. If the request has a

default, it is in parentheses following the definition.

The following conventions are used to specify arguments of

control requests.
integer constant

285

c character

cd character pair

exp expression (either numeric or string)
n integer expression
+/-n +/- indicates update by n; if sign not present, set to n

f segment name

t title of the form 'partl'part2'part3'

.ad right justify text (on)

.ar arabic page numbers (arabic)

.bp begin new page

.br break, begin new line

.ce c change special character from % to c (%)

.ce n center next n lines (1)

.ch cd.... note "c" in chars segment as "d"

.ds double space (off)

.ef # t defines even footer line #

.eh # t defines even header line #

.eq N next N lines are equations (1)

.ex text call command processor with "text"

.fh t format of footnote demarcation line (underscore)

.fi fill output lines (on)

.fo # t '
equivalent to-- .ef # t, .of # t

.fr c controls footnote numbering-- "t" reset each page,
"f" continuous, "u" suppress numbering

.ft delimits footnotes

.gb xxx "go back" to label xxx ,

.gf xxx "go forward" to label xxx

.he # t equivalent to: .eh # t, .oh # t

.if f exp segment f.runoff inserted at point of request;
value of "exp" assigned to "Parameter"

.in +/-n indent left margin n spaces (0)

.la xxx define label xxx .

.li n next n lines treated as text (1)

.11 +/-n line length is n (65)

.ma +/-n equivalent to-- .ml +/-n, .m4 +/-n (4)

.mp +/-n print only every nth page (1)
,.ms +/-n multiple space of n lines (1)

.ml +/-n. margin above headers set to n (4)

.m2 +/-n margin between headers and footers set to n (2)

.m3 +/-n margin between last text line and last footer set to n (2)

.m4 +/-n margin between first footer and page bottom set to n (4)

.na does not right justify (off)

.ne n need n lines; begin new page if not enough remain (1)

.nf does not fill output lines;

print them exactly as entered (off)

.of # t defines odd footer line #

.oh # t defines odd header line #

.op next page number is odd

.pa +/-n begin page n

.pi n skip n lines if n remain; otherwise

skip n on next page before any text (1)

.pi +/-n set page length to n lines

.rd read one line of text from the user_input I/0 switch

286

and process it in place of .rd line

.ro roman numeral page numbers (arabic) -

.rt "return" from this input segment

.sk n skip n page numbers (1)

.sp n space n lines (1)

.sr sym exp assign value of "exp" to variable named "sym"

.ss single space (on)

.tr cd.... translate nonblank character c into d on output

.ts n process next input line only if n is not zero (1)

.ty xxx write "xxx" onto error_output I/0 switch

.un n indent next text line n spaces less (left margin)

.ur text substitute values of variables in "text", ,
and scan line again

.wt read one line of text from user_input I/0 switch and

discard it

.* comment line; ignored

. comment line; ignored, but included in chars

output segment

Built-in symbols: runoff has over 50 internal variables,
which are available to the user. In addition, the user can

set his own variables with the .sr control request. See the

runoff command in the MPM Commands for the list of built-in

symbols.

Expressions: can be either arithmetic or string and consist

of numbers and operators in appropriate combinations. The

operators and order of precedence are--

A (bit-wise negation), -(unary)

*,/, (remainder)

+,- (binary)

=, �� ��, /, ��, f �� (ail are comparison operators
that yield -1 for true or 0 for false)

�� (bit-wise AND)

1 (bit-wise OR), = (bit-wise équivalence)
Parentheses for grouping.

The values can have the following forms --

String

�� string��=�� basicstring�� 1 �� concatenation�� ��substr��; ��basicstring��="xxx"
�� concatenation��=�� string���� basicstring��; �� substr��=�� string�� (x,y)

escape sequences - *b,*t,*n,*s,*",**,*cnnn (BS,HT,NL,space,",*, nnn)

Arithmetic adecimal number; # followed by octal digits - an octal number;
followed by hexadecimal digits - a hexadecimal number

- 287

runoff abs

11/13/81 runoff_abs, rfa

Syntax: rfa paths -rf_args -dp_args -control_args

Function: submits an absentee request to process text segments using the runoff

command.

Arguments:

paths
are the pathnames of segments to be processed by runoff.

rf_args
are control arguments accepted by the runoff command.

dp_args
are control arguments (except -delete and -indent) accepted by the

dprint command.

Control arguments:

-queue N, -q N _
is the priority queue of the request. The default queue is defined

by the system administrator. See the Notes for a description of the

interaction with the dprinting of output files.

-hold

do not dprint or delete any output files.

-output_file path, -of path

put absentee output in segment path.
-limit N, -li N

specifies time limit in seconds for the absentee job.

Notes:

Control arguments and paths can be mixed freely and can appear anywhere
on the command line after the command.

Unpredictable results can occur if two absentée requests are submitted

that simultaneously attempt to compile the same segment or write into

the same absout segment.

If the -indent control argument is given to this command, it is

interpreted as the runoff control argument; not as the dprint control

argument.

If the -queue control argument is not specified, the request is

submitted into the default absentee priority queue defined by the site

and, if requested, the output files will be dprinted in the default

queue of the request type specified on the command line. (If no

request type is specified, the "printer" request type is used.)

If the -queue control argument is specified, and, if requested, the

output files will be dprinted in the same queue as is used for the

absentee request. If the request type specified for dprinting does not

288

have that queue, the highest numbered queue available for the request

type is used and a warning is issued.

289

runoff_compose.differences

10/13/77 Differences between compose and runoff

This info file gives the differences between runoff and compose.
A "title" response is recommended, followed by a "search" for the section

of interest. The sections are not in any particular order.

Title Delimiter:

In order to implement free format header and footer blocks (a-llowing artwork

and other text features), it is necessary to define a standard title part
delimiter character in a manner similar to the Symbol Delimiter. This title

part delimiter character is chosen as the vertical bar ("1") and may be changed

by the user with the change-title-delimiter control. Any ��title�� not

beginning with the current title delimiter character will be rejected with a

diagnostic message.

Builtin Mapping:
Ad -�� AlignMode = "both"

Ce -�� --

CharsTable -�� ExcepTable
Charsw -�� ExcepOpt
ConvTable -�� --

Date -�� Date

Device -�� Device

DeviceTable -�� --

Eq -�� --

Eqcnt -�� Eqcnt

ExtraMargin -�� ExtraMargin
Fi -�� FillMode

FileName -�� FileName

Filesw -�� OutputFileOpt
Foot -�� Footcnt

FootRef -�� -- .

Fp -�� --

Fr -�� FootReset = "r"

From -�� From

Ft -�� FootnoteMode

Hyphenating -�� Hyphenating
In -�� Indent

InputFileName -�� InputFileName

InputLines -�� InputLines
LinesLeft -�� LinesLeft

L1 -�� �� PageWidth

Lez �� --

Mal -�� VMargTop
Ma2 -�� VMargHeader
Ma3 -�� VMargFooter
Ma4 -�� VMargBottom
Ms -�� LineSpace

MultiplePagecount -�� PageSpace

NestingDepth -�� Insertlndex

290 -

N1 -�� PageLine .

NNP -) NextPageNo
NoFtNo -�� FootReset = "u"

NoPaging -�� Galley

Np -�� PageNo
PadLeft -�� --

Parameter -�� Parameter

Passes -�� Pass

Pi -�� PictureCount

PI -�� PageLength
Print -�� Print

Printersw �� OutputFileOpt and

Device = "ascii" ,

PrintLineNumbers -�� LineNumberOpt
Roman -�� --

Selsw -�� -- .

SpecCh -��-�� SymbolDelimiter
Start -�� --

Stopsw -�� StopOpt
TextRef -�� --

Time -�� Time

To -�� To

TrTable -�� TrTable

Un -�� Undent

WaitOpt -�� Waitsw

Symbol Delimiter:

The conventional use of the symbol delimiter (%) as a reference to the page
counter has been removed; however, the remainder of the symbol delimiter parsing
algorithm is unchanged from the algorithm used in runoff. This means that

constructs for nesting and/or concatenation of variable values and literal

strings should continue to work as they did for runoff.

File Suffixes:

.runoff -�� .compin

.runout -�� .compout
.chars -) .compx

Control Arguments:

-check, -ck

-device name , -dv name ("ascii") .

-exception_graphics, -excep
-from n , -fm n (1)

-galley nl ,n2 , -gl nl ,n2 (l,end-of-file)

-hyphenate n , -hyph n , -hph n (3)
-indent n , -in n (0)

-input_file path, -if path (path is required)

-linespace n , -ls n (1)

-noart, -noa

-nofill, -nof

-number, -nb

-number-brief, -nbb

-output_file path , -of path ([wd]��input-file.compout)

-pages n n,n , -pgs n n,n (n is required)

-parameter string, -pm string (string is required)

-pass n (1)

-stop, -sp

291

-to n (end-of-file)

-wait, -wt

Control Mapping:
.ad .alb .ar .srm ar .bp .brp
.br .brf .cc .cdl .ce .bbe n

.ch .tre .ds .ls 2 .ef .fle

.eh .hle .eq .bbe n .ex .exc

.fh .hlf .fi .fin .fo .fla

.fr t .ftp .fr f .ftr .fr u .ftu

.ft .bbf/.bef .gb .go .gf .go

.he .hla .if .ifi .in .inl

.la .la .li .bbl n .11 .pdw

.ml .vmt .m2 .vmh .m3 .vmf

.m4 .vmb .ma .vmt/.vmb .mp .ps

.ms .ls .na ail .ne .brn

.nf .fif .of .flo .oh .hlo

.op .brp o .pa .brp nl+ _n .pi .bbp n

.pl .pdl .rd .rd .ro .srm ro

.sk .brs .sp .spb .sr .srv

.ss .ls 1 .tr .trf .ts .ts

.ty .ty .un .unl .ur .ur

.wt .wt

292

save-on-disconnect

03/13/80 save_on_disconnect

Syntax: save_on_disconnect

Function: reverses the effect of the no_save_on_disconnect command,

re-enabling process preservation across hangups in the user's process.

Notes: This command is only meaningful if process preservation was in

effect for the process at login time, either by default or because the

-save-on-disconnect control argument was specified on the login command

line.

293 °

send_mail 1

10/27/83 send_mail, sdm [Info Honeywell modifiee CNET].

ATTENTION: Segment d'info Honeywell avec modif CNET.

Cette modif (provenant en fait de l'INRIA) consiste en l'insertion d'une

nouvelle section, intitulee "New control arguments", concernant le

courrier inter-Multics.

Syntax: sdm addresses -control_args

Function: Send a message to one or more addresses, which are described

below. It accepts text from the terminal, and optionally enters a request

loop before sending to allow the user to edit or modify the message.

Notes:

In default mode, send_mail prompts "Subject:" and accepts a subject line

from the terminal, then prompts "Message:" and accepts the message text.

The text is terminated by "." on a line to send the message, " f" to

enter the send_mail editor, or "
fq" to enter the request loop.

Request lines use () for iteration, "" for quoting, and [] to invoke

send_mail active requests.

Arguments: An address is any of the following:
-mailbox path, -mbx path

send to the mailbox specified by path.
-user Person_id.Project_id

send the message to the specified user.

string
If string contains either "��" or "��", it is interpreted as a mailbox

pathname (as in -mbx path); otherwise, it is interpreted as a

Person_id.Project_id.

Any address may be followed by the sequence "-comment string", which

causes string to be appended to the address in the header as a comment.

Control arguments:
-abort

Do not send message unless it can be sent to all recipients. (DEFAULT)

-acknowledge, -ack

Request an acknowledgement from the recipients.
-brief, -bf

Suppress "Mail delivered to ..." when message is sent.

-cc addresses

Specifies that addresses are secondary recipients of the message and adds

them to the cc header field.

-fill

Reformat message text according to "fill-on" and "align-left" mode in

compose.

294

-from addresses

Specifes that addresses are the authors of the messages and adds them to

the From field. (DEFAULT-- the user invoking send_mail)

-header, -he

Generate a header. See "List of header fields". (DEFAULT)

-in_reply_to string, -irt string
Add an In-Reply-To field containing string.

-input_file path, -if path
Take message text from the specified file, rather than from the console.

-line_length N, -11 N

Cause filling (fill request and -fill control arg) to be done with this

line length. (DEFAULT-- 72)

-log
Send a copy of the message to the user's logbox.

-long, -lg
Print "Mail delivered to ..." when message is sent. (DEFAULT)

-message_id, -mid

Add Message-ID field to header.

-no_abort
Send message even it it can't be sent to all recipients.

-no_acknowledge, -nack

Do not request an acknowledgement. (DEFAULT)

-no_fill, -nfi

Do not reformat the message text. (DEFAULT)

-no_header, -nhe

Add only those header fields to the message explicitly requested by the

user.

-no_log
Do not send a copy of the message to the user's logbox. (DEFAULT)

-no_message_id, -nmid

Do not add a Message-ID field to the header. (DEFAULT)

-no_prompt
Do not prompt the request loop. (DEFAULT-- prompt with "send_mail":)

-no_request_loop, -nrql _
Send the message immediately without entering the request loop. (DEAFULT)

-no_subject, -nsj
Do not prompt for a Subject field. (DEFAULT-- prompt)

-prompt string
Set the request loop prompt to string.

-reply_to addresses, -rpt addresses

Add addresses to the Reply-To field.

-request string, -rq string
Execute the requests in string after reading message text.

-request_loop, -rql
Enters the request loop before sending the message. ,

-save path, -sv path
Send a copy of the message to path.sv.mbx.

-subject string, -sj string
Sets the subject of the message to string. (DEFAULT-- prompt for subject)

-terminal_input, -ti

Prompt "Message:" and reads the text. (DEFAULT)

295

-to addresses

Specifes that addresses are primary recipients of the message and adds

these addresses to the To header field.

New control arguments:
-at host_id

recipient (identified in the immediately preceding argument)
resides on specified host. The host_id argument may be the

standard host name, host abbreviation, or decimal host number.

This control argument must follow a user name and may be used

to temporarily override the -local or the -host control

arguments.
Available host_ids at CNET: IRIA for Rocquencourt, CICB for Rennes,
CICG for Grenoble, CICT for Toulouse, CCVR for Cray-one.

-host host_id addrs

recipients specified by addrs are resident on the specified
DSA host. Each addr argument represents a user and must meet

the requirements of a user name on the respective host.

The host_id argument may be the standard host name, host

abbreviation, or decimal host number.

-local addrs

recipients specified by addrs are resident on the local

Multics host. Each addr argument can be specified as either a

Multics pathname or a User_id (Person_id.Project_id).

List of requests:
This list lists only the most important features of each request. For

more detailed information, use the send_mail request "help request_name"
to see the info file on a particular request.

? List the available send_mail requests.
. Identify send_mail with version number, recursion level, and message info.

..line

Execute line as a Multics command without further processing by the

send_mail request processor.

help string
Print information about send_mail requests or topics. For a list of

topics, use the 'help *' request.

list, ls

Print a message summary with lines, subject, and destinations.

print -control_arg , pr -control_arg
Print the message. -control_arg can be -header (-he) or -no_header

(-nhe).

quit -control_arg , q -control_arg
Exit send_mail. -control_arg can be -force (-fc), which causes send_mail
to be exited even if the message was modified since last sent.

send addresses -control_args
Send message to addresses or to primary and secondary recipients if no

addresses. -control_args can be -abort, -acknowledge (-ack), -brief

(-bf), -header (-he), -long (-lg), -message_id, (-mid), -no_abort,

-no_acknowledge (-nack), -no_header (-nhe), -no_message_id (-nmid),

-no_notify (-nnt), or -notify (-nt) to override command line options.

fill -control_arg , fi -control_arg
Reformat message text as in compose "fill-on" and "align-left"" mode.

296

-control-arg can be -line_length N (-11 N) to specify a line length for

'this request.

qedx -control_arg , qx -control_arg
Invoke qedx editor on the message. -control_arg be either -header (-he)
or -no_header (-nhe).

append path
Write the message at the end of the ASCII segment, path.mail.

copy path, cp path

Copy the message to the mailbox, path.mbx.

log
Save the message in the user's logbox.

preface path
Write the message at the front of the ASCII segment, path.mail.

save path, sv path
Save the message in the savebox, path.sv.mbx.

write path -control-arg , w path -control_arg
Write the message to the end of the ASCII segment, path.mail.

-control-arg can be -truncate (-tc) or -extend (-ex).

apply -control_arg strings, ap -control_arg strings
Put the message into a temporary segment, concatenate all the strings and

. the pathname, and pass the result to the Multics command processor.

-control-arg can be -header (-he) or -no_header (-nhe)
execute strings, e strings

Execute strings as a Multics command line after evaluating send_mail
active requests. As an active request, return the result of evaluating

strings as a Multics active string.

HEADER REQUESTS

These requests (except for remove) print the contents of the specified
header fields if invoked with no arguments.

cc addresses

Add addresses to the secondary recipients and cc field.

from addresses

Add addresses to the list of authors and From field.

in_reply_to string , irt string
Put string in the In-Reply-To field.

message_id, mid

Print Message-ID field, creating it if necessary.

remove addresses -control_args -

Delete addresses from specified header fields. -control_args can be -cc,

-from, -reply_to and -to and affect the following addresses.

reply_to addresses , rpt addresses

Add addresses to the Reply-To field.

subject strings , sj strings
Set the subject of the messages to strings. As an active request, returns

the subject, re-quoted.
to addresses

Add addresses to the primary recipients and To field.

List of header fields: -

297

Redistributed-Date, Redistributed-By, and Redistributed-To

specify info about the forwarding of the message.
Date (required)

shows the date and time the message was sent.

From (required)
contains the list of authors. (DEFAULT-- user of send_mail command)

Subject
describes the message contents. Supplied by the user.

Sender .
shows the actual sender of the message if different from From.

Reply-To
lists addresses to which a reply should be sent.

To lists the primary recipients.
cc lists the secondary recipients.

Acknowledge-To

gives an acknowledgement address if acknowledgement was requested. The

presence of the field requests acknowledgement.

In-Reply-To
describes the message to which this one is a reply, if any.

Message-ID
contains a unique character string identifier from send_mail.

- 298

send_message

06/30/80 send_message, sm

Syntax: sm Person_id.Project_id message
or:

sm -pathname path message

Function: sends messages (one or more, always sent one line at a time)
to a given user on a given project.

Arguments:

Person_id
is the registered name of the recipient.

Project_id
is the name of the recipient's project.

message
is an optional string. If message is missing from the command line,

send_message types "Input." and accepts lines that it sends, one

line at a time, with each newline character. In this case, input is
terminated by a line consisting solely of a period.

Control arguments:

-pathname path, -pn path
causes messages to be sent to a mailbox specified by pathname. The
mbx suffix is assumed.

Notes: For a description of the mailbox, refer to accept_messages and

print_mail.

299

send_message_acknowledge

06/17/81 send_message_acknowledge, sma

Syntax: sma Person_id.Project_id message
or: sma -pn PATH message

Function: operates like the send_message command and requests that the

recipient's process return an acknowledgement when the message is read.

Arguments:

Person_id

registered name of the recipient.

Project_id
name of the recipient's project.

message

string up to 132 characters; if omitted, send_message_acknowledge types

"Input." and accepts lines that it sends, one at a time, with each newline

, character. In this case, input is terminated by a line consisting of a

period.

Control arguments:

-pathname PATH, -pn PATH , ,

specifies a mailbox pathname.

Access required: append and wakeup extended access on a mailbox in order to

send an interactive message.

Notes: Parentheses, quotes, brackets, and semicolons in the command line

have their usual command language interpretation.

300

send message_express

06/17/81 send_message_express, smx

Syntax: smx Person_id.Project_id message
or: smx -pn PATH message

Function: operates like send_message, but adds message,to the recipient's
mailbox only if the message will be printed immediately (i.e., if the recipient
is currently accepting messages).

Arguments:

Person_id

registered name of the recipient.

Project_id
name of the recipient's project.

message

string up to 132 characters; if omitted, send_message_express types "Input."
and accepts lines that it sends, one at a time, with each newline character.

In this case, input is terminated by a line consisting of a period.

Control arguments:

-pathname PATH, -pn PATH

specifies the pathname of a mailbox.

Access required: append and wakeup extended access on a mailbox in order to

send an interactive message.

Notes: Parentheses, quotes, brackets, and semicolons in the command line have

their usual command language interpretation.

301

send-message_silent

06/17/81 send_message_silent, sms

Syntax: sms Person_id.Project_id message
or: sms -pn PATH message

Function: operates like the send_message command but does not print
an error message if the message cannot be sent or will not be

received immediately.

Arguments:

Person_id

registered name of the recipient.
Project_id

name of the recipient's project.
message

string up to 132 characters; if omitted, send_message_silent types

"Input." and accepts lines that it sends, one at a time, with each

newline character. In this case, input is terminated by a line

consisting of a period.
.

Control arguments:

-pathname PATH, -pn PATH

specifies the pathname of a mailbox.

Access required: append and wakeup extended access on a mailbox in

order to send an interactive message.

Notes: Parentheses, quotes, brackets, and semicolons in the command

line have their usual command language interpretation.

302

set acl l

12/22/80 set_acl, sa

Syntax:
sa path model User_il ... modeN User_idN -control_args

Function: manipulates the access control lists (ACLs) of segments,

multisegment files, and directories. See "Access Control" in the MPM

Reference Guide for a discussion of ACLs.

Arguments:

path
is the pathname of a segment, multisegment file, or directory. If

it is -wd or -working_dir, the working directory is assumed. The

star convention can be used and applies to either segments and

multisegment files or directories, depending on the type of mode

specified in modeN.

modeN

is a valid access mode. For segments or multisegment files, any or

all of the letters rew; for directories, any or all of the letters

sma with the requirement that if modify is present, status must also

be present. Use null, "n" or "" to specify null access.

User_idN
is an access control name that must be of the form

Person_id.Project_id.tag. All ACL entries with matching names

receive the mode modeN. If no match is found and all three

components are present, an entry is added to the ACL. If the last

modeN has no User_id following it, the Person_id of the user and

current Project_id are assumed.

Control arguments:
-chase

causes links to be chased when using the star convention. (Links
are always chased when path is not a starname.)

- no_chase
causes links to not be chased when using the star convention. This

is the default.

-brief, -bf

suppresses error messages of the form "No match for User_id on ACL

of ��path��", where User_id does not specify all components.

-no_sysdaemon, -nsd

suppresses the addition of a "rw *.SysDaemon.*" term when using

-replace.

-replace, -rp
deletes all ACL terms (with the exception of a default

"rw *.SysDaemon.*" term unless -no_sysdaemon is specified) before

adding the terms specified on the command line. The default is to

add to and modify the existing ACL.

-sysdaemon, -sd

when -replace is specified, adds a "rw *.SysDaemon.*" ACL term

303

before adding the terms specified. (Default)

Either of the following control arguments can be specified to

resolve an ambiguous choice between segments and directories that

occur only when modeN is null and the star convention is used in

path--

-directory, -dr

specifies that only directories are affected.

-segment, -sm

specifies that only segments and multisegment files are affected.

This is the default.

Access required: The user needs modify permission on the containing

directory.

Notes: The arguments are processed from left to right. Therefore, the

effect of a particular pair of arguments can be changed by a later pair
of arguments.

The strategy for matching an access control name argument is defined by
three rules--

1) A literal component, including "*", matches only a component of

the same name.

2) A missing component not delimited by a period is treated the same

as a literal "*" (e.g., "*.Multics" is treated as "*.Multics.*").

Missing components on the left must be delimited by periods.

3) A missing component delimited by a period matches any component.

304

set-fortran-comnion

10/25/77 set_fortran_common, sfc

Syntax: sfc paths -control_arg

Function: initializes FORTRAN common blocks.

Arguments:

paths
are pathnames of FORTRAN object segments containing references to desired

common blocks.

Control arguments:

-long, -lg

prints a warning whan an already allocated common block is smaller than one .

encountered in the list of object segments.

305

set-iacl-dir

08/30/79 set_iacl_dir, sid

Syntax: sid path model User_idl ... modeN User_idN -control_arg
.

Function: adds entries to a directory initial ACL or modifies the access mode

in a directory initial ACL entry.

Arguments:

path

directory in which the initial ACL should be changed; can be

-working_dir or -wd. The star convention can be used.

modeN

mode associated with User_idN. It can be any or all of the letters sma, or

null, n, or "" for null access. If m is given, s must also be given.

User_idN
access control name of the form Person_id.Project_id.tag.

Control arguments:

-ring N, -rg N

identifies ring number (default is current ring). It can appear anywhere on

the line, except between a mode and its associated User_id, and affects the

whole line.

Notes: Type "help acl_matching" for the User_id matching strategy.

306

set_iacl_seg

08/30/79 set_iacl_seg, sis

Syntax: sis path model User_idl ... modeN User_idN -control_arg

Function: adds entries to a segment initial access control list (initial ACL)
in a directory or modifies the access mode in an existing segment initial ACL

entry. ,

Arguments:

path
directory in which the segment initial ACL should be changed; -wd or

. -working_dir for the working directory. The star convention can be

used.

modeN

mode associated with User_idN; it can consist of any or all of the letters

rew, or null, n, or "" for null access.

User_idN
access control name of the form Person_id.Project_id.tag.

Control arguments:

-ring N, -rg N

identifies ring number (default is current ring). It can appear anywhere on

the line except between a mode and its associated User_id, and affects the

whole line.

Notes: Type "help acl_matching" for the User_id matching strategy.

307

set resource

04/24/81 set_resource, setr
'

Syntax: set_resource type STR1 ... STRn -control_args

Function: The set_resource command is used to modify parameters of a

resource.

Arguments:

type
is a resource type defined in the resource type description table

(RTDT).
STRi

is the unique identifying name of the particular resource being
modified. If STR looks like a control argument (i.e., if it is

preceded by a hyphen), then it must be preceded by -name or -nm.

Control arguments:

-access_class accr, -acc accr

sets the initial AIM access class parameters, where accr is the

access class range. Users at any authorization within the access

class range inclusive are allowed to read and write to the resource

(provided they also meet other access requirements).

-acs_path path

specifies the pathname of the access control segment (ACS) for this

resource. The ACS is not created by this command, but must be

created by the accounting owner, and the desired access control list

set (see "Notes" below). If this control argument is not given, the

accounting owner of the resource is given rew access by default.

-alloc STR

sets the allocation state of the resource to free or allocated,
where STR must be either "on" or "off". If this control argument is

not given, the allocation state is free. on sets the allocation

state to allocated; off sets the allocation state to free.

-attributes STR, -attr STR

specifies the desired values for the attributes of this resource

(see "Notes" below).

-charge_type name, -crgtp name

specifies the name of the billing algorithm used to account for the

use of this resource.

-comment STR, -com STR

specifies the desired value of the comment string for this resource.

-location STR, -loc STR

specifies a descriptive location for the resource, to aid the

operator in locating it when it is stored in a special place (e.g.,
a vault, a different room, etc.).

-lock STR

locks or unlocks the resource, preventing or allowing use of that

308

resource, where STR must be either "on" or "off". If this control

argument is not specified, the lock is off. on prevents any use of

the resource; off allows use of the resource.

-priv

specifies that a privileged call is to be made to obtain the status

of this resource (see "Access Restrictions" below).

-release_lock STR, -rll STR

specifies whether this resource may be released by the owner, or may

only be released by a privileged process (see "Access Restrictions"

below). If this control argument is not specified, the resource may
be released by the owner (does not require special privilege). on

resources may only be released by privileged process; off resources

may be released by owner.

Notes: If multiple resources are specified to the set_resource
command and an error occurs in the modification of one of these

resources, none of the resources specified are modified.

Access Restrictions: The user must have write effective access to the

resource named to perform any modification on the status of the

resource. In addition, the user must have execute effective access

to the resource named to modify protected attributes. Only the

accounting owner may modify the ACS path. The user must have execute

- access to the rcp_admin_ gate in order to use the -access_class,

-release_lock, -location, -charge_type, or -lock control arguments.

309

set_search_paths

07/08/80 set_search_paths, ssp

Syntax: ssp search_list search_paths -control_arg

Function: allows a user to replace the search paths contained in a

specified search list.

Arguments:

search list
is the name of a search list. If this search list does not exist,
it is created. A warning message is printed if a search list is

created and it is not system defined.

search_paths
are search paths to be added to the specified search list. The

search paths are added in the order in which they are specified in

the command line. The search path can be an absolute or relative

pathname or a keyword. (For a list of acceptable keywords see

add_search_paths in Commands and Active Functions, AG92.) If no

search paths are specified, then the specified search list is set

as if it were being initialized for the first time in the users

process.

Control arguments:
-brief, -bf

suppresses a warning message for the creation of a search list not

defined by the system.

-default, -df

replaces the search list with its system-defined default. No

search_paths can be specified with this control argument.

Notes: The specified search list is replaced by the specified search

paths. It is an error to create a new empty search list.

For a complete list of the search facility commands, see the

add_search_paths command description in Commands and Active Functions,
AG92.

310

set search rules

10/08/80 set_search_rules, ssr

Syntax: set_search-rules path -control_arg

Function: sets the dynamic linking search rules of the user to suit

individual needs with only minor restrictions. ��

Arguments:

path
is the pathname of a segment containing the ASCII representation of

search rules. Search rules are absolute pathnames and any of the

keywords listed below in "List of Keywords", one search rule per
line. If path is not specified, the search rules must be reset to

the default search rules by the -default control argument.

Control arguments:
-default, -df

resets the search rules to the default search rules, as set for a

new process.

List of keywords:

initiated_segments
checks the already initiated segments.

referencing_dir
searches the containing directory of the segment making the

reference.

working_dir
searches the working directory.

home_dir
searches the home directory.

process_dir
searches the process directory.

site-defined

expand into one or more directory pathnames. (An example of a

site_defined keyword is system_libraries.) See the

get_system_search_rules command for an explanation of the values of

these keywords. The "default" keyword can be used to obtain the

site-defined default rules.

Notes: A maximum of 21 rules is allowed. Leading and trailing blanks

are allowed, but embedded blanks are not allowed.

If the user decides not to include the system libraries in the search

rules, many standard commands cannot be found.

See also the descriptions of the print_search_rules,

get_system_search_rules, add_search_rules, and delete_search_rules
commands.

311

set_tty

01/11/82 set_tty, stty

Syntax: stty -control_args

Function: modifies the terminal type associated with the user's

terminal and/or various parameters associated with terminal I/O. The

type as specified by this command determines character conversion and

delay timings; it has no effect on communications line control.

Control arguments:

-all, -a

is the equivalent of specifying the four control arguments -print,

-print_edit, -print_frame, and -print_delay.

-buffer-size N, -bsize N

specifies the terminal's buffer size to be used for output block

acknowledgement where N is the terminal's buffer size in characters.

-brief, -bf
_ may only be used with the -print control argument and causes only

those modes that are on plus those that are not on/off type modes

(e.g., 1179) to be printed.

-delay STR, -dly STR

sets the delay timings for the terminal according to STR, which is

either the word "default" or a string of six decimal values

separated by commas. If "default" is specified, the default values

for the current terminal type and baud rate are used. The values

specify vert_nl, horz_nl, const_tab, var_tab, backspace, and vt_ff,
in that order. (See "List of delay types" below.)

-edit edit-chars, -ed edit_chars

changes the input editing characters to those specified by

edit_chars. The edit_chars control argument is a 2-character string

consisting of the erase character and the kill character, in that

order. If the erase character is specified as a blank, the erase

character is not changed; if the kill character is omitted or

specified as a blank, the kill character is not changed.

-initial-string, -istr

transmits the initial string defined for the terminal type to the

terminal.

-input_flow_control STR, -ifc STR

sets the input_suspend and input_resume characters to those

specified in STR, which is a string of one or two characters.

If STR contains two characters, the first character is the

input_suspend character and the second one is the input_resume
character. If STR contains only one character, it is the

input_resume character and there is no input_suspend character.

-io-switch STR, -is STR

specifies that the command be applied to the I/0 switch whose name

is STR. If this control argument is omitted, the user_i/o switch is

assumed.

312

-modes STR

sets the modes for terminal I/0 according to STR, which is a string
of mode names separated by commas. Many modes can be optionally

preceded by "A" to turn the specified mode off. Modes not specified
in STR are left unchanged. For a list of valid mode names, type:

help tty_modes.gi

-output_etb_ack STR, -oea STR

sets the output_end_of_block and output_acknowledge characters to

those specified in STR, which is a string of two characters. The

first character of STR is the end_of_block character and the second

one is the acknowledge character.

- output_suspend_resume STR, -osr STR

sets the output_suspend and output_resume characters to those

specified in STR, which is a string of two characters. The first

character of STR is the output_suspend character and the second is

the output_resume character.

-print, -pr

prints the terminal type and modes on the terminal. If any other

control arguments are specified, the type and modes printed reflect

the result of the command.

-print_delay, -pr_dly

prints the delay timings for the terminal.

-print_edit, -pr_ed

prints the input-editing characters for the terminal.

-reset, -rs

sets the modes to the default modes string for the current terminal

type.

-terminal_type STR, -ttp STR

sets the terminal type of the user to STR, where STR can be any one

of the types defined in the terminal type table (TTT). The default

modes for the new terminal type are turned on and the initial string
for the terminal type, if any, is transmitted to the terminal.

Refer to the print_terminal_types command for information on

obtaining a list of terminal types currently in the TTT.

-frame STR, -fr STR

changes the framing characters used in blk_xfer mode to those

specified by STR, where STR is a 2-character string consisting of

the frame-begin and the frame-end character, respectively. These

characters must be specified in the character code of the terminal,
and may be entered as octal escapes, if necessary. The frame-begin
character is specified as a NUL character to indicate that there is

no frame-begin character; the same is true for a frame-end

character. These characters have no effect unless blk_xfer mode is

on. It is an error to set the frame-end character to NUL if the

frame-begin character is not also set to NUL.

-print-frame, -pr_fr

prints the framing characters for the terminal.

List of delay types:

vert_nl
is the number of delay characters to be output for all newlines to

° 313

allow for the linefeed (-127 ��= vert_nl ��= 127). If it is negative,
its absolute value is the minimum number of characters that must be

transmitted between two linefeeds (for a device such as a

TermiNet 1200).

horz_nl
is a number te be multiplied by the column position to obtain the

number of delays to be added for the carriage return portion of a

newline (0 ��= horz_nl ��= 1).

const_tab
is the constant portion of the number of delays associated with any
horizontal tab character (0 ��= const_tab ��= 127).

var_tab --

is the number of additional delays associated with a horizontal tab

for each column traversed (0 ��= var_tab ��= 1).

backspace
is the number of delays to be output following a backspace character

(-127 ��= backspace ��= 127). If it is negative, its absolute value

is the number of delays to be output with the first backspace of a

series only (or a single backspace).

vt_ff
is the number of delays to be output following a vertical tab or

formfeed (0 ��= vt_ff ��= 511).

314

set-tty.gi

11/04/83 Les options du stty

Vous trouverez ci-dessous une liste de 28 arguments de la commande stty
(ou : set_tty) pour lesquels il existe une info. en francais.

Ces "arguments" s'emploient :
- les uns comme "arguments de controle" proprement dits,

par exemple : stty -edit ��edit_chars��
- les autres comme des "modes" accompagnant l'argument de

controle "-modes",

par exemple : stty -modes Acapo,crecho

Pour acceder a cette info, veuillez taper la commande indiquee.
En general, cette commande est de la forme : help nom_de_l'argument

par exemple : help can
ou bien : help echoplex
etc...

LISTE DES ARGUMENTS - can,capo,crecho,ctl_char,default:
can : Superposition de caracteres. Commandez :.help can

capo : Majuscules et minuscules. "
: help capo

crecho : Echo [CR] en reponse a [LF]. "
: help crecho

ctl_char : Caracteres de commande ASCII. "
: help ctl_char

default : Groupe de six modes implicites.
"

: help defaut

LISTE DES ARGUMENTS (SUITE) - delay,echoplex,edit,edited,erkl:
delay (dly) : Valeur des delais. Commandez : help delay

echoplex : Echo. " : help echoplex
edit (ed) : Caracteres d'effacement. " : help edit_chars
edited : Caracteres inconnus du terminal. " : help edited

erkl : Validation des carac. d'effacemt. " : help erkl _

LISTE DES ARGUMENTS (SUITE) - esc,frame,hndlquit,iflow,lfecho:
esc : Validation du caractere " ". Commandez : help esc

frame (fr) : Debut et fin de trame. "
: help framing_chars-

hndlquit : Comportement en cas de break. " : help hndlquit
iflow : Controle de flux en entree. "

: help iflow
lfecho : Echo [LF] en reponse a [CR]. "

: help lfecho

LISTE DES ARGUMENTS (SUITE) - ll,oflow,pl,polite,prefixnl:
11 : Longueur de la ligne. Commandez : help ligne
oflow : Controle de flux en sortie. "

: help oflow

pi : Longueur de la page. "
: help pl

polite : Interruption d'entree par sortie. " : help polite

prefixnl : Position sur interruption.
"

: help prefixnl

LISTE DES ARGUMENTS (SUITE) - rawi,rawo,red,replay,reset:
rawi : Traitement en entree. Commandez : help rawi

rawo : Traitement en sortie. "
: help rawo

red : Couleur du ruban. " : help ruban

315

replay : Reimpression apres interruption.
" : help replay

reset (rs) : Retour aux modes normaux. "
. help reset -

LISTE DES ARGUMENTS (SUITE) - scroll,tabecho,tabs:
scroll : Controle de fin de page. Commandez : help scroll

tabecho : Tabulations en entree. "
: help tabecho

tabs : Tabulations en sortie. " : help tabs

316

short message_format

05/26/77 short_message_format, smf

Syntax: smf -pn mbx_path _

Function: causes messages from send_message to be printed in short format.

Successive messages from the same sender are preceded by .:= instead of by a

header giving the sender's name. '

317

sort

03/29/76 sort, merge

Syntax:
sort input_specs output_spec -control_args

merge input_specs output_spec -control_args

Function: Sort (Merge) one or more files

according to the values of one or more key fields.

This info file applies to both the sort and the merge;
see the section "Differences Between Sort and Merge".

Arguments:

input_specs

Specify each input file (up to 10) as -

-if pathname Pathname in Storage System, or

-ids "attach_desc" Attach description.

output_spec

Specify just one output file as -

-of pathname Pathname in Storage System, or

-of -replace Replace input file by output file, or

-ods "attach_desc" Attach description.

Control arguments:
-ci Sort (Merge) Description input via terminal, or

-sd pathname Pathname of Sort Description (sort command only), or

-md pathname Pathname of Merge Description (merge command only).
-td pathname Pathname of directory to contain work files; -

default is user's process directory (sort command only).

-file_size f Estimated total amount of data to be sorted,
in millions of bytes (sort command only).

Examples:
1) sort -ci -if in -of -rp Sort Description from user's terminal;

input file is named in;

output file will replace input file.

Input. The Sort requests the Sort Description.

keys: char(10) 0; The single key is a character string
whose length is 10 bytes,
and which starts at the first byte
of the record (word 0, bit 0).

. A line consisting of "." terminates

the Sort Description from a terminal.

2) sort -sd sort_desc -td ��udd��pool
Sort Description entered from a segment;

work files will be contained in the

directory ��udd��pool;
no input or output file is named.

318

Assume the segment sort_desc contains -

key : bin(17) 1; The key is fixed binary aligned, and

occupies the second word of the record.

exits: input_file user$input Input_file exit procedure is user$input.

output_file user$output; Output_file exit procedure is user$output.

3) sort -ids "tape_ansi_ V" -ods "record_stream_ -target vfile_ b" -ci

Input file specified by attach description
for a magnetic tape in ANSI format;

output file specified to be unstructured

(the Sort's record output will be

transformed into stream output).

4) merge -md merge_desc -if a.in -if b.in -of =.out

Merge Description entered from a segment;

input files are named a.in and b.in;

output file will be named b.out.

Syntax of the Sort (Merge) Description:

keys: ��key_description�� ... ;
exits: ��exit_description�� ... ;

If -ci is used, the additional line "." terminâtes input.
There may be up to 32 keys described.

Syntax of a Key Description:

��datatype�� (��size��) ��word_offset�� [(��bit_offset��)]] [descending]
where -

��datatype�� Data type of a key field; can be -

char, bit, fixed bin, float bin, dec, float dec.

��size�� Length of the key field (in decimal),
in units appropriate to the data type.

��word_offset�� Offset in words from the beginning of the record.

Words are numbered (in decimal) starting at 0.

��bit_offset�� Offset in bits from the beginning of the word.

Bits are numbered (in decimal) starting at 0.

descending Rank in descending order for this key field.

Syntax of an Exit Description:

��exit_name�� ��user_name��
where -

��exit_name�� Name of the exit point -

input_file (sort command only)

output_file (sort command only)

compare

input_record (sort command only

output_record

��user_name�� Name of the entry point of the user procedure,
in the same form as a command name.

Writing an Exit Procedure:

See the MPM descriptions of the subroutines sort_ and merge_
for a complete description of how to write a user exit procedure;
or type "help sort_" or "help merge_" for a summary.

319 `

Functions:

Sort or merge one or more files of records which are not ordered,

to create a new file of ordered (or "ranked") records.

Files Supported:
An input or output file can be specified
either by a pathname or by an attach description.
Its organization must be structured (record I/0 is used).
Records can be either fixed length or variable length.
If the user names an input file or an output file,
it must be in the Multics Storage System.

(It can be either a segment or a multisegment file.) .

If the user supplies an attach description,

any I/0 module available at the installation can_be used,

provided it supports sequential record I/0.

Input: The user can specify up to 10 input files.

The organization can be either sequential or indexed.

Alternatively, the user must name an input_file exit procedure,
which is then responsible for releasing records to the Sort.

Output: The user can specify one output file.

The organization must be sequential.

Alternatively, the user must name an output_file exit procedure,
which is then responsible for retrieving records

(ranked by the Sort) from the Sort.
'

Sort Description:
-

In addition to the arguments to the sort or merge command,
a Sort (Merge) Description is necessary
to specialize the Sort (Merge) for a particular execution.

It can be supplied either via the user's terminal, or via a segment.
A Sort Description can include the following statements -

keys Specifies key fields, used for ranking records.

exits Names user-written exit procedures.

Keys Statement: Up to 32 key fields can be specified.
Use any PL/I data type - except varying string, complex, or pictured.

Ordering can be ascending, descending, or mixed.

The original order of records with equal keys is preserved.

If key fields are not described via the keys statement,
then the user must name a compare exit procedure.

Exits Statement: User-written "exit procedures" can be supplied
at specific points in the sorting process.
The following exits are supported:

input_file Reads input file, releases records to the sort.

output_file Receives records in ranked order, writes output file.

compare Compares two records, decides which ranks first.

input_record Process each input record (delete, insert, or alter).

output_record Process each output record (delete, insert, alter,

or summarize data).

320

Differences Between Sort and Merge:
The merge command has the following restrictions -

1) -replace cannot be used for the output file.

2) -td and -file_size cannot be specified.
3) The following exit points are not provided -

input_file

output_file

input_record .

321

sort_seg

03/01/76 sort_seg, ss

Syntax: ss path -control_args

Function: orders the contents of a segment according to the ASCII collating

sequence.

Arguments:

path

pathname of input segment.

Control arguments:

-segment path, -sm path

places sorted units in a segment whose pathname is path; incompatible with

the -replace control argument.

-replace, -rp

replaces original contents of input segment with the sorted units; this is

the default.

-unique, -uq
deletes duplicate sort units from the sorted results; default is to retain

duplicated units.

-delimiter STR, -dm STR

uses STR concatenated with a newline character as the string delimiter;
default is a single newline character.

-block N, -bk N

makes the sort unit a block of N strings where N must be a positive integer;
default for N is 1.

-descending, -dsc

makes the sort in descending order, according to the ASCII collating

sequence; incompatible with the -ascending control argument.

-ascending, -asc

makes the sort in ascending order, according to the ASCII collating

sequence; this is the default.

.-field field_spec, -fl field_spec

specifies field (or fields) when sorting within a sort unit (see "Notes").

-ordered_field field_spec, -ofl field_spec

specifies mixed ascending and descending fields. (see "Notes")

-all, -a

entire sort unit is considered when sorting; this is the default.

Notes: The field_spec of the -field control argument is a pair of field

specifications, S and L. S is the start position of the field in the sort unit

(i.e., S is 1 if the field begins at the first character). L is the length of

the field, in characters. Both S and L must be positive integers.
The first pair, SI Ll, defines the primary sort field, the second pair, S2 L2,
defines the secondary sort field; and so forth. The use of -field control

argument is incompatible with the use of the -all control argument.

The field_spec of the -ordered_field control argument is given in threes, S,

322

L, and 0. S and L are the same as for the -field control argument. 0 is either

the string "asc" for an ascending field or "dsc" for a descending field.

Use of -ordered_field control argument is incompatible with the -ascending,

-descending, and -field control arguments.

323

start

02/17/76 start, sr

Syntax: sr -control_arg

Function: resumes execution of the user's process from the point of

interruption after a signal has suspended execution. It restores the

attachments of the user_input, user_output, and error_output I/0 switches, and

the mode of user_io to their values at the time of interruption.

Control arguments:

-no_restore, -nr
does not restore the standard I/0 attachments.

Notes: The start command can be used to resume execution after an unclaimed

signal, if the condition that caused the unclaimed signal either is innocuous

or has been corrected.

The start command can be issued after a quit signal.
The release command discards the machine conditions for a suspended execution

instead of restarting them.

324 ��

status

01/29/81 status, st

Syntax: st paths -control_args

Function: prints selected detailed status information about specified

storage system entries.

Arguments:

paths
are the pathnames of segments, directories, multisegment files, and

links for which status information is desired. The default pathname
is the working directory, which can also be specified by -wd or

-working_directory. The star convention can be used.

Control arguments: The following control arguments can be used with

any type of entry, and can appear anywhere on the line after the

command name and are in effect for the whole line.

-author, -at

prints the author of the entry.
-chase .

prints information about the branch targets of links instead of the

links themselves. An error occurs for a null link or a link to a

null link.

-chase_if_possible, -cip

prints information about the targets of links where branch targets
exist, and for null links and links to null links prints information

about the ultimate link in the chain. This control argument does

not affect the processing of non_links.

-date, -dt

prints all the relevant dates on the entry.

-date_time-dumped, -dtd

prints the date-time-dumped by the hierarchy dumper. ,

- date_time_entry_modified, -dtem

prints the date-time-entry-modified.

-date_time_used, -dtu

prints the date-time-used.

-date_time_volume_dumped, -dtvd

prints the date-time-dumped by the volume dumper.

-directory, -dr

selects directories when using the star convention.

-link, -lk

selects links when using the star convention.

-name, -nm

prints all the names on the entry.

- no_chase

prints link information about links. (Default)

-no-chase-if_possible, -ncip

325

prints link information about links. (Default)

-primary, -pri��
��

prints the primary name on the entry.

-segment, -sm

selects segments when using the star convention.

-type, -tp

prints the type of entry: segment, directory, multisegment file, or

link.

List of type specific control arguments: The following control_args
can only be used for segments, multisegment files, and directories.

-àccess, -ac

prints the user's effective mode, ring brackets, access class (if
different from the default), and safety switch (if it is on).

- access_class

prints the access class.

-bit_count, -bc _

prints the bit count.

-bc_author, -bca

prints the bit count author of the entry.

-copy_switch, -csw

prints whether the copy switch is on or off.

-current_length, -cl

prints the current length in pages.

-damaged_switch, -dsw

prints whether the damaged switch is on or off.

-date, -dt

prints all the dates on the entry: i.e., date used, date contents

modified, date branch modified, date dumped.

-date_time_contents_modified, -dtcm

prints the date-time-contents-modified.

-device, -dv

prints the logical volume on which the entry resides.

-length, -ln

for segments: prints the bit count, the number of records used, the

current blocks (if different from records used), and the maximum

length in words;
for multisegment files: prints the number of records used by the

whole file, the sum of the bit counts of all components, and the

number of components;
for directories: prints the number of records used and the bit

count.

-logical_volume, -lv

prints the logical volume on which the entry resides. This control

argument is the same as the -device control argument.

-long, -lg

prints ail relevant information about the object.

-max_length, -ml

prints the maximum length of a segment.

- mode, -md

prints the user's effective mode.

-records, -rec

prints the records used.

326

-ring_brackets, -rb

prints the ring brackets. ,

-safety_switch, -ssw

prints whether the safety switch is on or off.

-unique_id, -uid

prints the entry's unique identifier.

List of control arguments for segments:

-comp_volume_dump_switch, -cvds

prints whether the complete volume dump switch is on or off.

- incr_volume_dump_switch, -ivds

prints whether the incremental volume dump switch is on or off.

-usage_count, -use

prints the number of page faults taken on the segment since

creation.

List of control arguments for links:

-link_path, -lp

prints the target pathname.

-long, -lg

prints all relevant information about the link.

Notes: If no control argument is specified, the following information

is printed for segments, multisegment files, and directories-- names,

type, date used, date modified, date branch modified, bit count,

records used, user's mode, access class.

If no control argument is specified, the following information is

printed for links-- the pathname of the entry linked to, names, date

link modified, date dumped. The -mode, -device, and -length control

arguments are ignored for links. ,

Zero-valued dates (i.e., dates that have never been set) are not

printed. In addition, attributes in the default state are not printed.

Syntax as active function: [st path -control_args]

327

SwitCh off

01/15/81 switch_off, swf

Syntax: swf keyword paths -control_args

Function: turns off a specified switch for one or more entries. For

an MSF, the switch of the MSF directory (when possible) and those of

all the components are turned off.-

Arguments :

keyword

specifies the name of a switch. See "List of keywords" below.

paths
are the pathnames of segments, MSF's and directories for which

it is possible to set the specified switch. The star convention

is allowed,.and includes links only if -chase is specified.

Control arguments:
-chase

.

includes links and chases them when using the star convention.

- no_chase _
does not include links when using the star convention. (Default)

Access required: modify on the parent.

List of keywords:

copy_switch, csw

(segments) If ON, allows processes lacking write access to modify
a copy of the segment in the process directory.

damaged_switch, dsw

(segments) If ON, the segment is assumed to have been damaged

by a device error or system crash.

complete_volume_dump_switch, cvds

If ON, the entry is dumped during a complete volume dump of the

physical volume on which it resides.

incremental_volume_dump_switch, ivds

If ON, the entry is dumped during an incremental dump cycle
of the volume dumper.

perprocess_static_switch, ppsw

(object segment) If ON, the segment's internal static storage
is not initialized when a run unit is created.

safety_switch, ssw

If ON, the delete command and delete_ subroutine query the user

before deleting the entry.

transparent_paging_device_switch, tpds
If ON, storage system pages of the entry are never allowed to

reside on the bulk store unit.

328

switch on

01/15/81 switch_on, swn

Syntax: swn keyword paths -control_args

Function: turns on a specified switch for one or more entries. For

an MSF, the switch of the MSF directory (when possible) and those of

all the components are turned on.

Arguments:

keyword

specifies the name of a switch. See "List of keywords" below.

paths s

are the pathnames of segments, MSF's and directories for which

it is possible to set the specified switch. The star convention

is allowed, and includes links only if -chase is specified.

Control arguments:
w

-chase

includes links and chases them when using the star convention.

- no_chase
does not include links when using the star convention. (Default)

Access required: modify on the parent.

List of keywords:

copy_switch, csw

(segments) If ON, allows processes lacking write access to modify
a copy of the segment in the process directory.

damaged_switch, dsw

(segments) If ON, the segment is assumed to have been damaged by
a device error or system crash.

complete_volume_dump_switch, cvds

If ON, the entry is dumped during a complete volume dump of the

physical volume on which it resides.

incremental_volume_dump_switch, ivds

If ON, the entry is dumped during an incremental dump cycle of

the volume dumper.

perprocess_static_switch, ppsw

(object segment) If ON, the segment's internal static storage
is not initialized when a run unit is created.

safety_switch, ssw

If ON, the delete command and delete_ subroutine query the user

before deleting the entry.

transparent_paging_device_switch, tpds ,

If ON, storage system pages of the entry are never allowed to

reside on the bulk store unit.

329

tape_archive

10/02/80 tape_archive, ta

Syntax: ta key table_path args

Function: manages offline archival storage of files on magnetic tape.

Arguments:

key

specifies the archivai operation. Valid keys are listed below.

table_path
is the pathname of the table of contents for the tape_archive. If the table

does not exist, it is created.

args
are additional arguments that vary according to the key used.

Notes:

Requests to move files between the storage system and tape are not performed

immediately, but are queued within the table until the "go" key is performed by
the user.

The cancel key can be used to cancel a pending request before the tapes are

processed.

List of generic arguments for keys:

paths
are pathnames of segments. The star convention is honored.

components
are names of components of the archive. The star convention is honored.

List of file management keys:
a table_path -control_args paths

appends a file to the archive.

ad table_path -control_args paths
like a, but deletes the file from the storage system when done.

adf table_path -control_args paths
like ad, but deletes forcibly.

r table_path -control_args paths

replaces a file in the archive.

rd table_path -control_args paths
like r, but deletes the file from the storage system when done.

rdf table_path -control_args paths
like rd, but deletes forcibly.

u table_path -control_args paths

updates a file in the archive if the DTBM has changed.
ud table_path -control_args paths

like u, but deletes the file from the storage system when done.

udf table_path -control_args paths

330

like ud, but deletes forcibly.
x table_path -control_args components

extracts a file from the archive.

xf table_path -control_args components
like x, but forcibly deletes an existing file of the same name from the

storage system.

d table_path -control_args components
deletes a file from the archive.

df table_path -control_args components
like d, but deletes forcibly.

cancel table_path -control_args components
cancels outstanding requests for a component.

List of control arguments for file management keys:
-mode ascii, -mode ebcdic, -mode binary

causes a file to be archived using the specified recording mode.

-single_name, -snm

causes additional names on a file not to be recorded/extracted.

List of miscellaneous keys:
t table_path components -control_args

prints a table of contents for the archive.

go table_path -control_arg
causes the volume set to be mounted and all queued requests to be performed.

alter table_path parameter value .
alters the specified parameter to the specified value.

compact table_path
schedules compaction of the volume set.

load_table table_path -io_module modulename -retain all volume_ids
causes a copy of the current online table to be retrieved from the tapes.

direct table_path -control_args
enters an interactive mode in which each line typed is interpreted as a key
followed by the arguments to that key.

List of control arguments for the t key:
-brief, -bf

prints contents in short form.

-long, -lg

prints long form of contents.

-no_header, -nhe

omit header information; list components only.

-header, -he

prints header information only, if no components specified.

-pending
lists only those components with pending requests.

-all, -a

lists all components, even those previously deleted or replaced but still

physically resident on the volume set.

List of control arguments for the go key:

-long, -lg
. causes printing of a message as each operation is being performed on the

tape.
-retain all

331

leave volume set mounted after go request completes.
-retain none '

demount volume set after go request completes. (DEFAULT).

List of control arguments for the direct key:
-retain all

leave the volume set mounted between go requests. Demount volume set and

exit direct mode only when quit request is given.
-retain none

demount the volume set and exit direct mode after the go request completes.

(DEFAULT).

List of parameters for the alter key:
module tape_ansi_/tape_ibm_

changes the tape I/0 module used.

warning_limit fraction

prints warning whenever tape waste exceeds fraction.

auto_limit fraction

schedules compaction whenever waste exceeds fraction.

volume old_volume new_volume -alternate ,
volume -number N new_volume -alternate ..

changes the specified reel ID..

compaction off ��.',:..
unschedules an upcoming compaction.

density N '

sets the density of the volume set to N bpi.

List of requests accepted in direct mode:

(In addition to the above requests)
save

save pending requests.

quit .

discard requests since last "save" and exit without processing tape.

go
causes processing of the volume set, and exists direct mode, unless -retain

all was specified.

causes tape_archive to identify itself.

..command_line
causes command_line to be passed to the command processor.

332

tape_control _1 anguage .gi

12/22/80 Tape Control Language

The TCL source file, written in the Tape Control Language (TCL) is

the control file that governs file transfer with the tape_in or

tape_out commands. For information on these commands, type:

help tape_in or help tape_out

The file is actually a program, written by the user, the contents of

which describe the file transfer. When the user issues the tape_in
or tape_out command, the control file named in the command line by
the path argument is compiled and, if the compilation is successful,
the generated code is interpreted to accomplish the desired file

transfer(s). The same control file can be used with both the tape_in
and tape_out commands.

Notes on creating a TCL control file:

The TCL control file consists of a list of statements of the form:

��keyword��: ��argument(s)��;
or

��keyword��;

These statements are combined to form file-groups and file-groups are

combined to form volume-groups. A TCL control file consists of one

or more volume-groups.

Notes on file-group: A file-group is a list of statements that define

one file transfer. A file-group must begin with a File statement and

must contain a path statement. In addition, it may contain one or

more local statements. A file-group is terminated by a global

statement, an End statement, or another File statement.

Notes on volume-group: A volume-group is a series of statements

that specify the file transfer(s) to be performed between the storage

system and a particular tape volume-set. A volume-group must begin
with a Volume statement, contain one or more file-groups, and

terminate with an End statement. In additon, a volume-group may

optionally contain one or more global statements, which apply to

all the file-groups within the volume-group that follow the global
statement.

List of TCL control file statements:
All TCL control files must have at least four statements-- a Volume

statement, a File statement, a path statement, and an End statement.

All other TCL statements are optional.

Volume: ��volid��;

specifies the tape volume to be used in file transfer. This

333

statement causes a tape volume whose volume identifier is

��volid�� to be mounted on a 9-track drive. The "Volume" keyword

must begin with an upper case letter. ��volid�� must consist of

from 1 to 6 ASCII characters. If ��volid�� contains any of the

following characters, it must be enclosed in quotes.
1. any ASCII control character

2. : ; , or blank

3. the sequence /* or */
4. if ��volid�� itself contains a quote character, the quote

itself must be doubled and the entire ��volid�� string
enclosed in quotes

(See the tape_ansi_ and tape_ibm- info files for more details
. on volume specifications.)

File: �� fileid��;

specifies the tape file to be read or written. The "File" keyword
must begin with an upper case letter. The tape file is

identified by ��fileid�� and must be from 1 to 17 characters for

ANSI labeled tapes, and a valid DSNAME for IBM labeled tapes.
The File statement marks the beginning of any local attributes

for a given tape file transfer.

path: ��pathname��;

specifies the pathname of the storage system file to be read

or written. ��pathname�� can be either a relative or absolute

pathname.
End; .

marks the end of the TCL statements for that volume. "End"

must begin with an upper case letter followed by a semicolon.

List of global statements:

A global statement changes a volume-group default.

(See Tape Defaults below.) °

Block: �� blklen��;

specifies the tape file (maximum) physical block length, in bytes,
to be used with subsequent file-groups.

Density: �� den��;
indicates the density in which the volume is to be recorded.

This statement may appear only once within a volume-group or

an error is indicated.

Expiration: ��date��;

specifies the expiration date of files to be written (created).

��date�� is of a form acceptable to the convert_date_to_binary

subroutine, for example, "09/12/79".
Format: �� form��;

specifies the tape record format to be used with subsequent

file_groups.

Mode: ��mode��;

specifies the tape mode and character code to be used with

subsequent file-groups.
Record: ��reclen��;

specifies the tape file (maximum) logical record length, in

. bytes, to be used with subsequent file-groups.

Storage: ��structure��;
states the internal (logical) structure of the storage system

334

file(s) to be specified by subsequent file-groups. An

unstructured file is referenced as a series of 9-bit bytes,

commonly called lines; a sequential file is referenced as

sequence of records, each record being a string of 9-bit bytes.
��structure�� must be either unstructured or sequential.

Tape: ��tape-type��;

specifies the kind of tape that is processed. This statement

may appear only once within a volume-group or an error is

indicated.

List of local statements:

A local statement overrides the volume-group defaults in

effect at the time a file-group is evaluated. A local statement

has no effect outside of the file-group in which it occurs and

may appear anywhere within the file-group.
block: ��blklen��;

expiration: ��date��;
format: �� form��;
mode: ��mode��;
record: ��reclen��;

storage: ��structure��;
these local statements operate exactly as do their global
statement counterparts, except that they affect only the

file-group in which they occur.

generate;
causes the entire contents of a file on an ANSI tape to be

replaced while retaining the structure of the file itself and

incrementing the file generation number.

modify;
causes the entire contents of a file on an ANSI or IBM

labeled tape to be replaced while retaining the structure of the

file itself.

number: ��number��;

specifies the file sequence number of the file to be used in

the file transfer. ��number�� must be either an integer between 1

and 9999 inclusive, or the character "*".

replace: ��fileid��; -

replaces an ANSI or IBM standard labeled tape. The file to

be overwritten is identified by ��fileid�� in the replace local

statement and the new file to be written is identified by
��fileid�� in the File statement.

storage_extend; -

extends an already existing file in the storage system.

tape_extend;
allows new data records to be appended to an existing file on

an ANSI or IBM standard labeled tape without in any way altering
the previous contents of the tape file.

Tape Defaults:

If no Tape statement is specified in the control file, ANSI standard

labeled tape will be assumed. If, however, a Tape statement is

specified, the tape characteristics for that tape-type will preside
as default until overridden.

Tape-type ANSI: (this is the default)

1) density: 800 bpi
2) file expiration: immediate

335

3) storage system file format: unstructured

4) mode: ascii character code

5) tape file record format: variable length records, blocked

6) physical block length: 2048 characters (maximum)

7) logical record length: 2048 characters (maximum)

Tape-type ibmsl, ibmnl, ibmdos:

1) density: 1600 bpi

2) file expiration: immediate

3) storage system file format: unstructured

4) mode: ebcdic

5) tape file record format: variable length records, blocked

6) physical block length: 8192 characters (maximum)

7) logical record length: 8188 characters (maximum)

Control File Comments:

Comments may be inserted anywhere within the TCL program by

surrounding the comment text with the comment delimiters. /* is the

delimiter that begins a comment, and */ is the delimiter that

terminates a comment.

Notes:

To read files on a labeled tape, where the file names are not known,
the ��fileid�� "*" can be used in the TCL File statement with tape_in

only.

If it is wished to append a file to a given tape volume, it is not

necessary to know how many files are on the tape if the tape is

labeled. In such a case, the character "*" can be used in the TCL

number statement if a valid file name is specified in the TCL File

statement. This appending feature cannot be used to create a

completely new volume.

Either tape_in or tape_out supports processing of unlabeled tapes,

provided that the tapes are structured according to the OS standard.

For a more comprehensive description of the tape_io commands and

the TCL, see the MPM Peripheral I/0, Order No. AX49.

336

tape_in ��

11/13/81 tape_in, tin

Syntax: tape_in path -control_args

Function: transfers files from magnetic tape to the

storage system.

Arguments: .

path
is the pathname of the control file that governs the file

transfer. If path does not end with the tel suffix, it is

assumed.

Control arguments:
-check, -ck

specifies that only semantic checking be done on the TCL control

file. No tapes are mounted if this option is specified.
-ring _

mounts volumes of the volume-set with write permit rings.
- severityN, -svN

causes the compiler's error messages with severity less
than N (where N is 0, 1, 2, 3, or 4) not to be written into the

"error_output" I/0 switch. The default value for N is 0.

Notes on the TCL source file:

The control file that governs the file transfer is actually a

program, written by the user, in the Tape Control Language (TCL).
the contents of this control file describe the file transfer. The
same control file can be used with both the tape_in and tape_out
commands.

For additional information on the TCL, type help tcl.gi.
See also the MPM Peripheral I/0, Order No. AX49.

337

tape_out

11/13/81 tape_out, tout

Syntax: tape_out path -control_args

Function: transfers files from the storage system to magnetic tape.

Arguments:

path
is the pathname of the control file that governs the file

transfer. If pathname does not end with the tel suffix, it

is assumed.

Control arguments:

-check, -ck

specifies that only semantic checking be done on the TCL control

file. NO tapes are mounted if this option is specified.

-force, -fc

specifies that the expiration date of a tape file to be

overwritten is to be ignored. This control argument extends

unconditional permission to overwrite a tape file, regardless of

the file's "unexpired" status. This unconditional permission

suppresses any query made by the I/O module to inquire about

tape file's expiration date.

-ring
mounts volumes of the volume-set with write permit rings.

-severityN, -svN

causes the compiler's error messages with severity less

than N (where N is 0, 1, 2, 3, or 4) not to be written into the

"error-output" I/0 switch. The default value for N is 0.

Notes on the TCL source file:

The control file that governs the file transfer is actually a

program, written by the user, in the Tape Control Language (TCL).
The contents of this control file describe the file transfer. The

same control file can be used with both the tape_in and tape_out
commands.

For additional information on the TCL, type help tcl.gi.
See also the MPM Peripheral I/0, Order No. AX49.

338

teco

04/20/76 teco

Syntax: teco path outpath

Function: character-oriented text editor provides simple editing requests,
macro definitions, iterations, and conditional statements.

Arguments:

path

input segment.

outpath

output segment.

Notes: This command invokes the editor, searches for a start_up macro, and

executes it. The default start_up macro reads the segment path into the buffer

and puts the pointer at the beginning of the buffer. If outpath is given, q* is

set to outpath, otherwise, it is set to path. If neither path or outpath is

given, nothing is done. For more information about the editor, see the

Tools PLM, Order No. AN51.

New Entry Point: teco$macro macro_name This entry point invokes teco, searches

for a macro whose name is macro_name and executes it. The argument macro_name
must be supplied. Additional arguments may be provided and are available to

teco commands through the pushdown stack. As an example, the command line:

teco argl arg2 arg3
is equivalent to--

teco$macro start_up argl arg2 arg3
It differs from the standard entry point in several ways.

First, if the teco commands executed encounter an error condition, the

invocation of teco is aborted with an error message. Second, if an "eq" command

is executed, teco never reachs its command level and no prompt message (Z) is

printed. Finally, if teco command level is reached without errors, the macro

mode is disabled and teco functions normally.
This entry point is useful for application programs written in teco, such as

abbreivation editors.

New Features:

Q-register q" is set to the value of the last quoted string seen by teco.

For the "n" command, q" is set to the actual text matched.

The "n" command is a search command that searches forward for a qedx-type
regular expression. It is identical in syntax to the "s" command.

The teco command edits segments of any length. The buffer size is determined

by the length of the text being edited.

Multics "e" commands:

eb/path/ where /path/ is a quoted string, copies the segment path
to ==.bak and then writes text to the segment path. The

command takes arguments and interprets them like the

. 339

. "t" command, except that no arguments is equivalent to

heb/path/.

ec/cmd/ where /cmd/ is a quoted string, passes the quoted string
to the Multics command processor.

ei/path/ where /path/ is a quoted string, inserts the segment

path immediately to the left of the text pointer.
em/macro/ where /macro/ is a quoted string, uses the teco search

rules to find macro.teco and executes it. Any arguments to

the "em" command are available to the macro invoked.

eo/path/ where /path/ is a quoted string, writes text to the

segment path. The command takes arguments and interprets them

like the "t" command, except that no arguments is equivalent

to.heo/path/..
-

eq exits from teco. - .

esn/name/ where n is a text q-register name and /name/ is a quoted

string, calls the segment name passing it the arguments to

the "es" command and the text q-register n. The segment
called can modify the text q-register and return a numeric

value.

Multics vs. PDP-10 teco:

Multics teco treats the entire segment as a single buffer.

There are no equivalents to the PDP-10 append, yank, "n" search, or "w"

commands, or any need for them.

Exiting from teco does not automatically write the buffer back to the

segment. The "eo" or "eb" command must be used.

A search that fails does not change the current text pointer position.
Multics q-register names are one character in length and can be any one of

the 95 printable ASCII characters, including blank.

Multics quoted string are of the form:

/string/ or qn
where / is any character except a letter or a digit and n is a q-register

name. The form qn allows the contents of a q-register to be specified as a

quoted string.
Multics command lines are terminated by the two character sequence dollar

sign ($) newline. The altmode character is not used in Multics.

The Multics "s" command always gives an error message if the search fails.

Multics teco uses to denote the logical or operator.
Multics teco treats -1�� as an error.

Multics teco expressions are evaluated somewhat differently.
See the documentation or use the "=" command to print out the value of a

questionable expression. Multics teco "=" command takes zero, one, or two

arguments.
The numeric value of a text q-register is equal to the number of characters

of text.

Multics error messages can be of two forms, long or short.

Short messages are eight characters and long ones are up to fifty characters.

The user can control error message length.

340 '

ted

01/29/81 ted 2.6

Syntax: ted ted_com -control_args

Function: ted can be used to create and edit ASCII segments. ted can

do many kinds of text processing. ted can be used recursively to a

depth of 14 and it can be called as an active function.

Arguments:

ted_com
If supplied, the contents of the named segment is read into buffer

exec and then executed. If the contents of b(exec) is exhausted,
then request lines will be read from user_input unless the -com

option was present.

Control arguments:
-reset level .

used to break out of a ted_com loop and return to ted request level.

"level" is a 2-digit number specifying the level to be returned to.

If level is not specified, then the most recent invocation is used.

This argument is mutually exclusive with all others.

-abort, -com

This causes ted to execute a ted_com so that if it has an error, it

will exit instead of returning to ted request level.

-pathname XXX, -pn XXX

Begin execution by reading segment XXX into b(0).

-arguments ARGS, -ag ARGS

This causes all remaining arguments to be made available to a

ted_com. The arguments may be referenced either in buffers (argl),

(arg2), etc. or as line 1, line 2, etc. of buffer (args).

-read

This causes the read option to be set on. (Default)

- no_read
This causes the read option to be set off. SEE: o

-safe

causes ted to place its work segments in your default working direc-

tory so as to be able to survive loss of the process.
-restart

If ted was called with the -safe option and the system crashed, the

terminal goes off-line, etc. this call is used to restart where you
left off. You must restart in the same level as when you called ted

-safe. Due to the great variety of reasons why the system crashes,

occasionally the restart will not work. This is infrequent.

-status, -st

causes a list of the environments which exist. [This is an interim

facility at this point in time.

This argument is mutually exclusive with all others.

341

-blank

This requires a blank to be necessary between multiple requests on a

line. Due to the fact that a,c,i,d,r,e,w, requests use up the rest

of the line, the blank is required just after the request character.

This is the suggested mode of operation.

-part_blank
This requires the blank on only the a,c,i,d,r,e,w requests.

- no_blank
This requires no extra space. (default)

-label .

Enable tracing of labels processed.

- no_label
Disable tracing of labels. (default)

- trace_edit

Display each ted request line in EDIT mode before it is executed.

-trace_input

Display each line of INPUT mode data before it is inserted.

-trace

Combination of -trace_edit and -trace_input.

- no_trace
No tracing. (default) _

-debug, -db

Tells ted to type out "Edit." before accepting the first line from

user_input. Useful for detecting when a ted_com "falls" back to

request level.

-break

Enable break processing.

-no_break
Disable break processing. (default)

-pause
This call is used to interrupt a ted_com execution. This causes ted

to believe it has just encountered a breakpoint. The next time a

request line is fetched, the input routine will enter the break

sequence.
This argument is mutually exclusive with all others.

-Jset XX...

Set the collating sequence for the J sort request. When XX... is

present, each X represents a mapping pair in one of these forms:

CC map first character to second

X-��YC map range of characters to second

X-��YX-��Y map range of characters to range of characters. Ranges
must be of equal size.

(When a character is mapped to '777 it means to ignore it.)
C is any of 3 forms

'ooo ooo is 3 octal characters

'Z Z is any character

Z Z is any character except ' (which must be entered as '')
X-��Y means the contigious characters X through Y. (X��Y in the

9-bit collating sequence. X and Y are any of the C forms.

when XX... is absent it sets to (uppercase=lowercase):
'000-��'177'000-��'177'200-��'777'777a-��zA-��Z

-Jshow

342

Display the current collating sequence for the J sort.

Notes: This info segment is used by both the help command and the help

request of ted. Only the external entries are known to the help com-

mand. All the rest is formatted in a way which is used by the help

request. The whole segment may be dprinted for user browsing.

List of requests: Only the most important aspects of the requests are

documented here. The default address is shown inside a "[]" pair at

the beginning of the explaination. If nothing is there, there no

address is allowed. If there is "." or "$" then 1 address is allawed.

If there is ".,." or "1,$" then 2 addresses are allowed. If there is
"*" it is a special case which does not fit the rules just stated. RE

stands for a regular expression. (B) stands for a buffer name.

[.] ignore rest of line

%(B) etc

[] call a buffer, with optional arguments
line .
A# line

[*] execute line if buffer status is/is not true. May test for

buffer empty, on specified line or within specified range.

*/RE/ line

A*/RE/ line

[.,.] execute line if regexp is found/not found in addressed range
:C

[] label define, must be at BOL

[.] print current line number

[*] evaluate
��x

[] transfer of control (goto), x may have the form "C", "(str)",

"+n", "-n"

A��X

[] goto if error during rest of line's execution, x is the same

form as above. ,

1 xxx .
[] call external request ted_xxx_

[] return from buffer

a TEXT f

[.] append
!a

[.,.] bulk append, terminated by "." line

b(B)

[] change current buffer

b(B,adr,adr)

�� [] change current buffer to a window of a buffer

!b(B)

!b(B,adr,adr) -

343

[] remember current buffer, then change to new one

b()

[] change to remembered buffer

Ab(B)

[] not-buffer (delete buffer)

c TEXT f

[.,.] change
!c

[.,.] bulk change .
d

[.,.] delete
e line

[] execute command line

!e

[] print, then execute a command line (also E)
.. line

[] execute command line without input function expansion, BOL

only

f(B)

[] file-out into a buffer, auto reversion

!f(B)

[] file-out to a buffer, no auto reversion (also F) .

! f�� NL ��

[] revert previous form of file-out (also F)

g=/RE/

[1,$] global, linenumber of all lines which match RE

gd/RE/

[1,$] global, delete all lines which match RE

gp/RE/
[1,$] global, print all lines which match RE

g!p/RE/
[1,$] global, print/linenumber sll lines which match RE

g*SELECTION ACTIONs

[1,$] global, do ACTIONs on all lines which match SELECTION

h/T,c,c.../

[.,.] process out pseudo-tab

help
online information

i TEXT f

[.] insert

[.] bulk insert

j/spec/

[1,$] sort

!j/spec/
[1,$] sort, with settable collating sequence (also J)

k(B)

[.,.] kopy
!k(B)

!k(B,adr)

[.,.] kopy-append to end of/specified place in any buffer (also K)
1

344

[] linefeed to user_output
!1

[] linefeed to error_output (also L)

m(B)

[.,.] move

!m(B)

!m(B,adr) _

[.,.] move-append to end of/specified place in any buffer (also M)

n

[*] nop
o

[] option/modes

P

[.,.] print

!p

[.,.] print with linenumbers (also P)

q
[] quit

!q
[] quit, without modified buffer check (also Q)

r path
[.] read a segment into current buffer

!r path
read w/abbrev expansion of pathname (also R)

r (B)
r (B,adr,adr)

[.] read ail or part of a buffer into current buffer

nr path
[] not-read (force pathname)

s/RE/REPL/

[.,.] substitute occurances of RE with REPL

!s/RE/REPL/

[.,.] no-fail substitute

t/xxx/

[] type string to user_output
!t/xxx/

[.] type string to error_output (also T)

u/RE/

[.,.] lowercase what matches RE

!u/RE/

[.,.] uppercase what matched RE

v

[1,$] inverse form of global, i.e. do when NO match

w path _
[1,$] write from current buffer into a segment

!w path
[1,$] write w/abbrev expansion of pathname (also W) .

w (B)

[1,$] write from current buffer into another buffer

wm

[] write-modified (BLANK mode only)
x

345 '

[] status of ail buffers .

!x(B) .

!X�� NL��

[] status of named/current buffer

xm

[] status of ail modified buffers (BLANK mode only)

y
[.,.] replace SPs with HTs where possible, remove trailing

whitespace

zdump

[.,.] dump octal/ASCII .

z.fi.ad

[.,.] fill/adjust .
z.fi.na

[.,.] fill/no-adjust
zif ... line

[*] execute line if result of evaluation is not "0" or "false

b

invoke buffer (input function)
r

read line from user_input without NL (input function)

evaluate (input function)

346

terminate refname

06/25/81 terminate_refname, tmr

Syntax: tmr ref_names -control_args

Function: removes a segment or a single reference name (tmsr) from the

user's address space and resets links to the terminated segment. It is

commonly used prior to initiating a different version of a program.

Arguments:

ref_names
are the reference names of segments to be terminated.

Control arguments:

-brief, -bf

suppresses the error message normally printed when a segment to be

terminated is not known (initiated).

-long, -lg
does not suppress the above error message. (Default)

-name STR, -nm STR

specifies an entryname (terminate) or reference name (tmr and tmsr)
STR that begins with a minus sign, to distinguish it from a control

argument.

List of terminate commands with short names:

terminate, tm

terminate_segno, tms

terminate_refname, tmr

terminate_single_refname, tmsr

Notes: The tmr command allows termination by reference name rather

than by pathname. The segment itself is terminated, not merely the

reference name specified.

Caution must be exercised not to unintentionally terminate a segment of

the command language interpreter or another critical piece of the

environment. Fatal process errors usually result from such an action.

347

texto

05/31/83 texto

ACCES A TEXTO:

Ajouter (dans le start_up) la regle de recherche suivante

asr ��udd��Chemdata��Texto

puis taper la commande

texto

ASSISTANCE DOCUMENTATION:

Dominique SOURGEN Centre de Calcul piece 014d tel 638 5057

Francoise GILLET Centre de Calcul piece 018d tel 638 5514

CARACTERISTIQUES PRINCIPALES:

texto est un progiciel de gestion documentaire developpe par la

societe Chemdata de Lyon.
Les caracteristiques principales en sont

---�� mode conversationnel
---�� utilisable par non-informaticiens

---�� souplesse de structure (fichiers modifiables a tout

moment)

___�� 2 procedures d'interrogation

simple (resultats donnes immédiatement

composee (chaque question genere un ensemble

de reponses memorise et reutilisable)
---�� editions elaborees
�� possibilites de creer des index, d'effectuer des tris,

de creer des sous-fichiers

FONCTIONNEMENT:

3 types de fichiers
---�� le CATALOGUE memorise divers types de documents

utilitaires

*documents de parametres (permettent de structurer

les fichiers documentaires)
*documents d'edition (definition des modeles d'edition)

*dialogues (enchainement de commandes texto pour
utilisation ulterieure)

---�� les FICHIERS DOCUMENTAIRES sont les fichiers proprement
dits

Ils sont structures grace aux documents de parametres.
Ils sont composes d'une suite de documents numerotes.

ce sont des fichiers sequentiels indexes Multics.

---�� les INDEX pouvant etre

*des fichiers inverses permettant une interrogation

rapide et economique sur de gros volumes

*des index de tris pour presenter des editions triees

EXEMPLES D'APPLICATION TEXTO:
---�� fichiers de documentation interne de l'entreprise

fichiers d'adresses

348

fichiers de rapports scientifiques ...
---�� fichiers'de gestion de bibliothèque

gestion de la reception et de la ventilation

des revues
---�� constitution de banques et de bases de donnees

349

time

12/30/80 time

Syntax: time dt

Function: returns a four-digit time of day in the form "hh:mm" where

00 �� = hh �� = 23 and 00 �� = mm �� = 59.

Arguments:
dt

is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current time is used.

See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time

commands and active functions.

Syntax as active function: [time dt]

350 -

topics

02/04/81 General Information

The Multics help system includes a number of info segments that

contain general information about features or use of the system. The

info_names of these segments end with a suffix "gi.info" (gi for

general information). For example, acl_matching.gi.info describes how

Access Control List (acl) entries are matched with User_ids in access

control commands such as set_acl. As with all info_names, when typing
"help" with the info_name of one of these gi segments, you need not

type the suffix ".info". In addition, you may also leave off the

suffix ".gi". So, to get the info segment on acl_matching, you need

only type .

help acl_matching

gi Info_names: .

To get a complete list of the info segments whose names have the

suffix "gi.info", use the list_help command:

list_help gi

If you want a list of info segments that pertain to a particular

subject, type a word (or a string of characters that is part of a

word) that describes that subject and the list_help command will print
a list of all info_names containing that word or partial word. For

example, if you want a list of info segments that describe the Multics
mail facility, type

list_help mail

For more information about the list_help command, including its method

for matching character strings, type

help list_help

351

total_output_requests

12/07/81 total_output_requests, tor

Syntax: tor request_types -control_args

Function: prints the total number of requests in one or more I/0
Daemon queues.

Arguments:

request_types
name the request types whose totals are to be listed. The default

is to list totals in the queues of the default printer request type.

Control arguments:

may only be given when invoked as a command.

-brief, -bf.

omits request types which are empty.

-long, -lg
includes request types which are empty. (default)

-all, -a

lists totals for all I/0 Daemon request type queues.

-inhibit_error, -ihe

suppresses error messages for request type queues to which the user

does not have access. Totals for such queues are printed as *****.

Access required: To use tor for a given request type, you must have s

(status) extended access to the queue segments for that request type.

Syntax as an active function: [tor request_type]

Notes: When invoked as an active function, tor returns the count of

entries in each queue defined for the request type. A request type

may have up to 4 queues, numbered from 1 through 4. The tor active

function returns 1, 2, 3 or 4 numbers, representing the totals entries

in queues 1, 2, 3 and 4 respectively. If an error occurs while

accessing any of the queues, a * is returned for the total in that

queue.

No control arguments may be given when tor is invoked as an active

function.

Examples:

! tor -all -brief

printer: 0 0 3 2
-

manuals: 0 3 .

352

fllx8: 0 2

hdsa_prt: *****

Incorrect access on entry. hdsa_prt queue 1

mit_pps_2sided: 0 0 1 0

punch: 2

353

trace_stack

12/22/80 trace_stack, ts

Syntax: ts -control_args

Function: prints a detailed explanation of the current process stack

history in reverse order (most récent frame first).

Control arguments:
-brief, -bf

suppresses listing of source lines, arguments, and handlers. This

control argument cannot be specified if -long is also specified as a

control argument.

-long, -lg

prints octal dump of each stack frame.

-depth N, -dh N .

dumps only N frames.

-stack_ptr PTR, -sp PTR

starts tracing from stack frame at PTR where PTR is a virtual

pointer acceptable to cv_ptr_. PTR points to thé stack frame at

which tracing is to begin.

Notes: The trace_stack command is most useful after a fault or other

error condition. If the command is invoked after such an error, the

machine registers at the time of the fault are also printed, as well

as an explanation of the fault. The source line in which it occurred

can be given if the object segment is compiled with the -table

option.

For a description of stack frames, see "Multics Stack Segments" in

the MPM Subsystem Writers' Guide.

354

truncate

11/13/81 truncate, tc

Syntax: tc -control_arg path length
or: tc segno length

Function: truncates a segment to a specified length, and resets the bit count

accordingly.

Arguments:

path
is the pathname of a segment. The star convention is NOT allowed.

segno
is an octal segment number.

length
octal integer indicating the length of the segment in words after

truncation; zero by default.

Control arguments:

-name, -nm

specifies that the octal number following it is a pathname.

Access required: write access on the segment to be truncated.

Notes: If the segment is already shorter than the specified length,
its length is unchanged, but the bit count is set to the specified
length.

This command should not be used on segments that are (or are

components of) structured files.

355

vfile_adjust

9/16/75 vfile_adjust, vfa

Syntax: vfa path -control_arg

Function: adjusts a storage system file that may have been left in an

inconsistent state by an interrupted opening. ,

Arguments:

path
is the pathname of a single file to be adjusted.

Control arguments:

(one specified if and only if file is unstructured)

- set_nl

append a newline char if file does not end with one

-use_nl
truncate file after last new_line character set_bc set bitcount and truncate

at last nonzero byte in the file

- use_bc N

truncate at byte specified by bitcount of component N (last nonzero

component if N not specified)

Notes: a sequential or blocked file is adjusted by truncation after the last

complete record. An indexed file is adjusted by completing any interrupted

operation.
The condition of a file can be determined by using the vfile_status command.

See documentation of the vfile_ I/0 module in the MPM Subroutines for further

details.

356

/f//e_sfafus

9/16/75 vfile_status,vfs

Syntax: vfs path

Function: prints the apparent type and length of storage system files.

Additional info is provided for structured files.

Arguments:

path
is the pathname of a file. The star convention is allowed.

Notes: for structured files (sequential,blocked, or indexed), the state of the

file is printed (if busy). The following statistics are also provided for

indexed files--

1. number of records in the file, including those of zero length
2. number of nonnull records, if different from the above

3. total length of the records (in bytes)
4. number of blocks in the free space list for records

5. height of the index tree (zero for empty files)
6. number of nodes in the index (each occupies a single 1K page)
7. total length of all keys (bytes)
8. number of keys
9. number of duplicate keys
10. total length of duplicate keys
Additional information about a file can be obtained using the status command.

See documentation of the vfile_ I/0 module in the MPM Subroutines for further

details.

357

walk subtree

05/10/78 walk_subtree, ws

Syntax: ws path command_line -control_args

Function: executes a command line in a given directory (starting node) and in

inferior directories.

Arguments:

path

starting node; -wd specifies working directory.

command_line
command line to be executed. Command lines containing blanks must be quoted.

Control arguments:
-first N, -ft N .

where N is the first level in the storage system hierarchy at which the

command line is to be executed; by default N is 1.

-last N, -lt N

where N is the last level in the storage system hierarchy at which the

command line is to be executed; by default N is 99999.

-brief, -bf

suppresses printing the names of directories in which the command is

executed.

-bottom_up, -bu

starts execution of the command line at the last level and proceeds upward

through the storage system.

Notes: The command has a cleanup handler. If, after the user quits out of the

command, she types rl, her working directory is changed back to what it was

before walk_subtree was invoked.

358

where

07/16/81 where, wh

Syntax: wh names -control_args

Function: uses the standard search rules to search for a given segment
or entry point.

Arguments:
names

are segment and entry point names. The star convention is NOT

allowed.

Control arguments:
-all, -a

lists the pathnames of all segments and entry points with the

specified names that can be found using the current search rules,
the user's effective access to each segment or entry point, and the

name of the search rule used to find each segment or entry point.
-brief, -bf

prints only the pathname of each entry found. (Default)

-entry_point, -ep
searches for entry points. If a name argument does not contain a

dollar sign ($), the where command searches for the entry point
name$name.

-inhibit-error, -ihe

does not print an error message if no segments can be found for a

given name. For the where command, no output is printed; for the

active function, null string is returned.

-long, -lg

prints the name of the search rule used to find each segment and the

user's effective access to the segment, in addition to the pathname.
This control argument is incompatible with -all.

- no_inhibit_error, -nihe

prints an error message if no segments can be found for a given
name. (Default)

-segment, -sm

searches for segments. This is the default, unless name contains a

dollar sign.

Notes: The command prints out the full pathname of the segment, using
its primary name and the entry point name if one is requested. If the

segment or entry point is not in the search path, an error message is

printed.

The primary name of a storage system entry is the name that is first in

the list of names on that entry.

If the -all control argument is not specified, the where command prints

359

information only about the first matching segment or entry point
encountered (using the standard search rules).

The -entry_point and -segment control arguments are mutually exclusive.

If one of these control arguments is used, all the name arguments are

assumed to be of the type specified.

If neither the -entry_point nor -segment control argument is specified,
the where command scans the name arguments. Any name arguments that

contain a dollar sign are assumed to be names of entry points; all

others are assumed to be names of segments.

Syntax as active function: [wh name -control_args]

Notes on active function: The active function returns the pathname
of the segment, as found by the search rules. Only one name can be

specified. The -all, -brief and -long control arguments are not

allowed. Unless -inhibit_error is specified, an error occurs if no

segment can be found.

360

where_search_paths

01/17/79 where_search_paths, wsp

Syntax: wsp search_list entryname -control_args

Function: finds occurrences of an entryname in a search list.

Arguments:

search_list
is the name of the search list to search.

entryname
is the entryname to search for.

Control arguments:

-all, -a

print all occurrences of the entryname in the search list.
The default is to just print the first occurrence.

Access required: To find an entryname in the search list, the user must have s
access on the containing directory or non-null access to the entry.

Syntax as an active function: [wsp search_list entryname -control_args]

361

who

05/22/81 who

Syntax: who User_ids -control_args

Function: lists User_ids and other information about current users

of the system.

Arguments:

User_ids
are match names where:

Person_id
lists users with the name Person_id.

.Project_id
lists users with the project name Project_id.

Person_id.Project.id
lists users with the specified person and project.

Control arguments:
-absentee, -as

lists absentee users. Absentee users are denoted in the list by
an asterisk (*) following Person_id.Project_id.

-brief, -bf

suppresses the printing of the header. Not allowed for the active

function.

-daemon, -dmn

lists daemon users.

-interactive, -ia

lists interactive users.

-long, -lg

prints the date and time logged in, the terminal identification and

the load units of each user, in addition to the user's name and

project. The header includes installation identification and the

time the system was brought up. If available, the time of the next

scheduled shutdown, the time when service will resume after the

shutdown, and the time of the previous shutdown are printed. Not

allowed for the active function.

-name, -nm

sorts the output by the name (Person_id) of each user.

-project, -pj
sorts the output by the Project_id of each user.

Notes: If the control_args -interactive, -absentee, or -daemon are not

specified, the default is to list all three types of users. If one or

more of these control_args is specified, only users of the specified

type(s) are listed.

If the who command is specified with no arguments, the system responds
with a two-line header followed by a list of interactive users sorted

- 362

according to login time.

If the -project and -name control arguments are omitted, the output is

sorted on login time. Both arguments cannot be used together, because

the sort is performed on one key at a time.

If a User_name is specified, the header is suppressed even if the -long
control argument is specified.

It is possible to prevent the user's own name from being listed by all

users' invocation of who; to do this, the user should contact the

project administrator.

Syntax as active function: [who User_ids -control_args]

Notes on active function: The active function returns a list of

Person_id.Project_id pairs, requoted and separated by spaces. Control

arguments can be used to select and sort.

363

working-dir

07/23/80 working_dir, wd

Syntax: wd

Function: returns the pathname of the working directory of the process
in which it is invoked.

Syntax as active function: [wd]

364

year

12/30/80 year

Syntax: year dt

Function: returns the two-digit number of a year of the century from

01 to 99.

Arguments:
dt

is a date-time in a form acceptable to convert_date_to_binary_.
If no argument is specified, the current year is used.
See date_time_strings.gi.info for valid dt arguments.

Notes: See the MPM Subroutines for a complete description of

convert_date_to_binary_. See date_and_time.info for other date/time
commands and active functions.

Syntax as active function: [year dt]

- 365

V- LISTE ALPH,48ETIQUE Df TOUTES LES COMMANDES 9-'INFORMATION GENERALES

1 FAST.gi (FAST)
2 absentee.gi (abs,absentee)
3 access_isolation.gi (access_isolation)
4 acl_matching.gi (acl_matching)
5 acl_primitives.gi (acl_primitives,acl_entries.gi)
6 aim_use.gi (aim_use)
7 allocation_storage.gi (allocation_storage) -

8 apl_context_editing.gi -

9 audit_.gi
10 autobaud (autobaud.gi)
11 bad_area_format.gi (bad_area_format)
12 basic_files.gi (basic_files)
13 canonicalization (canonicalization.gi)
14 card_access_control.gi (card_access_control)
15 card_input.gi (card_input)
16 channel_names.gi
17 cobol_implementation.gi (cobol_implementation,cobol.implementation.gi)
18 cobol_mcs.gi (cobol_mcs,cobol.mcs.gi)
19 compose.artwork.gi (compose.art.gi,comp.artwork_.gi,comp.art.gi)
20 compose.macros.gi (documentation.macros.gi)
21 control_arguments.gi (control_args.gi) .
22 copy_on_write.gi (copy_on_write)
23 correspondence.gi (correspondence)
24 damaged_keyed_files.gi
25 damaged_segments.gi (damaged_segments)
26 date_time_strings (date_time_strings.gi)
27 dict.gi (dict)
28 documentation.gi (doc.gi)
29 ed.gi
30 editing.gi
31 ep_basic.gi (ep_basic)
32 extende.d_access.gi (ext_access)
33 external_storage.gi
34 fast_topics.gi (fast_topics)
35 fort_options.gi (fort_options)
36 fortran.gi
37 fortran_77.gi

-

38 gcos.gi .

39 graphic_fonts.gi
40 hardcore_wait_events.gi
41 help_infos.gi (help_infos)
42 help_system.gi (help_system)
43 hunt_dec.gi
44 info_seg.gi
45 instance_tags.gi (instance_tag.gi)
46 ioa_control.gi (ioa_control,format_line_control.gi,fl_control.gi)
47 linkage_errors.gi
48 linking.gi (linking)
49 lister.gi
50 listform_segment.gi (listform_segment)
51 listin_segment.gi (listin_segment)
52 load_control.gi (load_control) .

53 logical_volumes.gi
54 ltsm.gi

366

55 lv_attaching.gi
56 mail_system.gi (mail_system,mlsys.gi)
57 manuals.gi (manuals)
58 master_directories.gi
59 mode_string_.gi
60 modules.gi (modules,module.gi)
61 new_audit.gi
62 new_fortran_conversions.gi
63 new_fortran_differences.gi (new_fortran.differences)
64 new_fortran_extensions.gi (new_fortran.extensions)
65 new_fortran_optimizer.gi (nfopt.gi)
66 order_manuals.gi (order_manuals)
67 pascal.gi
68 pllr24 (pllr24.gi)
69 print_mail (print_mail.gi)
70 printed_output (printed_output.gi)
71 probe.gi
72 process_overseers.gi (po.gi)
73 process_preservation.gi
74 protection_notices.gi
75 questions.gi
76 request_ids.gi (request_ids)
77 set_tty.gi (stty.gi)
78 severity_indicators.gi
79 speedtype.gi (speedtype)
80 star_equal.gi (star_equals,star_equals.gi) .

81 star_system_links.gi
82 static_handlers.gi (static_handlers)
83 tape_control_language.gi (tcl.gi)
84 topics.gi (topics,topic.gi)
85 tss_basic.gi (tss_basic)
86 tss_fortran.gi (tss_fortran)
87 tty_modes.gi
88 util.fortran.gi
89 virtual_entries.gi (virtual_entries)
90 virtual_pointers (virtual_pointers.gi)
91 volume_names.gi

367

VI- LISTE ALPHABETIQUE DE TOUTES LES COMMANDES EXPLOITABLES PAR HELP

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

