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GROUP TRANSFORMATION FOR PHASE SPACE FLUIDS 

J.R. BURGAN, J. GUTIERREzf A. MUNIER, E. FIJALKOW, M.R. FEIX 

CRPE/CNRS - UNIVERSITE D'ORLEANS 

INTRODUCTION 

We want to study the time behaviour of Systems where long 

distances forces are prédominant. Such is the case of plasmas, 

accelerator beam (where we are dealing with Coulomb forces plus elec- 

tromagnetic confinning external fields) and self gravitating gas 

(galaxy, cluster of stars etc...) where the Newtonian attraction 

compete against the thermal (ballistic)expansion. In many cases we 

can disregard the small irregularities due to the grain structure of 

the matter (with grain as big as a star in a galaxy) and describe the 

interaction through a continuous field obtained by the solution of 

the Poisson équation. This is the well known Vlasov Poisson structure 

where the global description is obtained by considering the distribu- 

tion function f (x,v, t) in the 6 dimensional phase space in contra- 

diction to a regular gas where we can usually deal with the first 

moments of f with respect to v (particles density, momentum, energy 

density etc...). Consequently we call phase space fluids such Systems. 

A discussion of the relative properties of thèse a priori very différent 

fluids is given in 111 and 121. From the model's maker point of view 

adopted hère they présent great similarities. 

The non linear solution of the Vlasov Poisson Systems are 

of course very difficult to obtain analytically and most of the 

studies resort to numerical simulation. As soon as we introduce nume- 

rical algorithme the problem is raised of the correction of the long 

time behaviour. From our expérience with differential équations this 

problem is best solved if we can find asymptotic séries based on a 

systematic study of the différent terms. As a matter of fact we begin 

to mix both analytical and numerical method and find in this case possi- 

bility of following some Systems during thousands of period. 
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Our group is developping ideas along this line and preliminary en- 

couraging results are exposed in 131 141. 

Another "cornerstone" upon which this paper is built is 

the existence of singular solutions of the équations. As indicated by 

their names singular solutions are to be opposed to the regular (usual) 

solutions. Singular solutions hâve a spécial ordinarily simple strucutre 

which is preserved during the motion. The problem is to know if thèse 

singular solutions are never représentative of the others (which at 

the beginning do not possess the spécial structure) or on the contrary 

are very représentative of the regular solutions which could for example 

go asymptotically to the singular solutions. There questions are of 

course pratically unanswered. In plasma physics the BGK structures 151 

provides examples of such singular solutions. They are periodic steady 

state eventually moving at a constant velocity and self supporting. 

Their stabilities is a very complex problem 111 and they can 
be "transient 

asymptotic" solution as shown by numerical experiments 161. 

Steady state structures are usually not too difficult to 

obtain (although their number and their variety is a puzzle in plasma 

physics). Solutions involving the time are still more difficult. 

Recently the group technique has been used both in plasma physics (but 

on fluid models of non linear waves rather that on Vlasov-Poisson 

System) and on models which represent one dimensional équivalent of 

Navier Stakes fluid Systems (Burger's, Kortweig De Vries équations etc...) 

Although in there cases self similar group techniques solve the problem 

it is fair to mention that usually the problem had been already solved. 

Such is the case of the famous solitons structures 181 191. Incidently 

the method must be traced back to Boltzmann who use it to solve the 

heat diffusion équation. 

Some confusion exists about the usefulness of the group 

method and the way the method should work. Usually we check tht symetry 

of the équations with respect to continuous transformation group. We 

subsequently, use this symmetry to reduced by one the number of variables. 

Numerical solutions are easier and sometimes analytical solutions are 

possible. But of course since we hâve eliminated from the very beginning 
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one degree of freedom ve cannot say how thèse solutions are 

affected by a modification of the initial (or boundaries) conditions. 

We will consider the self similar transformations of the 

phase space and more precisely we will consider the transformation 

which will be justified later on. The meaning of the 

transformation is such that the x,v?t dépendance can be condensed 

into a t,yT\ transformation where � and r) are the rescaled coordinates 

of the phase space and describe motion ao simple that the time behaviour 

can be consequently taken into account by this rescaling. In (1) T is 

an arbitrary time and it is convenient to consider that the initial time 

is not t = 0 but t = T. From the following considération it is clear 

that we are going simply to obtain généralisation of the BGK (steady 

state) structures. 

In fact an interesting new point of view is to introduce 

both a rescaling like (1) and keep a time variation through the intro- 

duction of a new also rescaled time. In fact we will introduce the follo- 

wing transformations 

with a proper choice of 0(t), A(t), B(t) and C(t) \nder a slightly 

différent form. This transformation has an old story Introduced by 

1101 it has been rediscovered by R.H. Lewis 1111. Our group has pointed 

out some of the interesting properties both from theoretical and 

pratical point of view 131 1121. Now it appears under a new aspect and 

we will learn how to use the freedom left (2) being really a continuous 

Lie group of 
transformation. to solve some problems. 
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Now we end up this lengtly introduction with the title 

of the différent sections. In I we will review quickly some of the 

results of the classical self similar group theory applied to the 

Vlasov Poisson System (with the absorption of the time variation 

in the rescaling of the new phase space). In JT we will introduce 

the complète time phase space rescaling and will show the mathematical 

group structures. In III we will apply it to a very intriguing 

problem of cosmological theory the 
structure of a self gravitating 

System when the gravitational constant G varies with time, and we will 

show that the Dirac hypothesis with G varying inversely with the âge of 

the universe corresponds to a very simple problem. In IV it will be 

shown that the problem of the motion of a charged particle in a unifarm 

in space, time varying magnetic f ield. is very 
similar to the precee- 

dings. In V we will généralise the group transformation introduced 

in III to the quantum case and in VI we will come back to the Vlasov 

Poisson System for plasmas (we will study non Linear oscillations for 

plane cylindrical and spherical geometry) self gravitating gas and the 

problem of the expansion of a beam under the space charge forces. 
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I - SELF SIMILAR GROUP 

We consider a one dimensional collisionless phase space 

fluid described by the Vlasov Poisson System. This fluid may be an 

electronic plasma (where for simplicity we suppose a motionless ion 

background of density No) or a one species population beam. The two 

cases are respectively labelled P and B. The gravitational case 

labelled G is identical to the B case with a 
chaînée 

of sign in the 

Poisson law. Consequently we hâve three independent variables x,v, 

and two fonctions f(x,v;t) the phase space distribution and E(x, t) 

the electric field connected by the following Systems of équations 

For simplicity we took e = m = 
£ = 1 

As we mentionned already we introduce the transformation group 

To get the formai invariance of the System we must consider the four 

following invariants. 

in (4) a is a real arbitrary number. T is a characteristic time and 

it is useful to consider the time origin at t = T. At this time 

We obtain after substitution for the Vlasov Poisson System 
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From 
(5) 

we see that the transformation is possible in the B case 

but not in the plasma case because the variable t is still présent 

in (5). Nevertheless a solution can be found in the following way 

we translate the time origin at T writing t = T+T. Assuming T -+ °° 

and keeping T finite (otherwise as large as we like) we see that 

9.(t/T )2 - N0.AIoreover to avoid the trivial time indépendant solution 

in (5) we must let ct - - with a/T =6, The transformation (4) becomes 

and the Vlasov Poisson system becomes 

Now équations (5) and (7) should be discussed and f possible solved 

in the B and P case. This has been partly done in 1191 and 1201. An 

interesting solution is obtained taking a = -1 for the B case. Assuming 

that the self consistant field has the form 

we get for the solution of F 

This is the"phase space stick"structure discussed in 120 and generalised 

for a plasma in 1431. We see immediately that unphysical boundaries 

conditions appear at � = ± - where particles whith infinité velocity 

are allowed to appear. It has been shown in \te\ that thèse difficulties 

can be partly overcame through the concept of contamination which is 

based on the fact that particles on the extremities do not contribute 

to the field (as long as symetry is conserved). In fact this concept 

is going to be generalised and reiatroduced injjf and we will not discuss 

it any longer for the moment. 
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II - A USEFUL GROUP OF TRANSFORMATION 

A) Dérivation of the transformation 

Let us consider the transformations given by (2) where 

x and v are the coordinate and velocity of a particle. We hâve 

We impose on'the transformation two conditions 

1) The phase space élément should be conserved i.e. 

implying that the Jacobian of the transformation must be unity ; 

this imposes 

computing dv/dt and taking (9) into account. 

2) We want to keep the Hamiltonian formalism.Consequently 

Yld 19 = /7J and the new force ez àkf\/AQ must be a function of Ç and 9 

only. Consequently, in the expression of aW/d9 the friction term 

i.e. the sum of the second and third terms in the left handside of 

(10) must be zéro. 

on the other hand from a direct dérivation of n in (2) 
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x and v being canonically conjugate we must again equal to zéro 

(B + -t-) v and consequently B = - dC/dt. From this last relation 

and (11) we deduce 

which together with (9) defines completely the transformation cha- 

racterised by the arbitrary function C(t). The "new field" Ë. acting 

on the particle in the new phase space, new time system is given 

by (12) 

Sometimes we will need the divergence of e for Coulomb forces i.e. 
» 

forces for which 

From (14), x = � C and the relations 

we obtain 

in the B and G cases with d the dimensionality of the system 

(d = 1, 2, 3 respectively for one, two, three dimensional Systems) 

The case of an electronic plasma with a continuous ion neutralizing 

background of density No introduces a supplementary term 
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We will use extensively Eqs. (16) and (17). In the Vlasov description 

�L �ft | -jF.J 
is replaced by 5..[(JJ"l.6) dl{ 

The fact that é\ Â*?- d7d"i/ 

shows that f(ît, \J, t) - F Y? ', ^/�) 
and the Hamltonian équations 

= a 0 E= d^l/dO means that in the new phase space (with the 

new time) we keep invariant the Vlasov équation 

B) Group structure of the transformation 

Each élément of the transformation is characterised by 

the function C(t) which transforms x,v, in Ç,r\,0. We can reiterate 

with another transformation characterised now by D(8) which 

transforms � 11 6 in A y T. For a dimensional system introuucing 

the unit matrix of rank d,i.e. I. We hâve for the product of the two 

transformations, for the new time, 

For the new phase space the matrix transforming directly x_,v in 

Aj\i written. 

The "new field" is given by 

But � = DÀ and the two last terms of (21) can be written 
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Taking into account 

(22) can be written 

From (19) (20) (21) and (23) we see that the successive applications 

characterised by C(t) and D(0) are équivalent to the application 

characterised by CD. This demonstrates the abelian group structure 

of the transformation. Moreover being characterised by an arbitrary 

function C(t) the group is continuous. 

C) Time and Forces renormalisation 

In the new time, new phase space the motion équations are 

invariants and we can use ail the mathematical models developped up 

to now the only change will be in the computation of the force 

through Poisson law from (16) or (17). The new field is now the sum 

of three fields. 

The self consistent field of the System given through 

Poisson low is'computed in the same way except a multiplying factor 

C 4-d which varies with time. 

� In the P case the background ion field is multiplied 

by C . 

- Moreover we must introduce a transformation field given 

by 

On the other hand the new time is given by 

and we see that the time is rescaled. Since we want study the long 

time behaviour of the System we can choose C(t) such that 0 varies 

very slowly with t. In fact we can sélect C(t) in such a way that 6 

goes to a limiting value 
0* 

when t - °°. We consequently proceeds to 



a renormalization of the time. This implies C(t) -+ °° with t and, 

of 
course,this 

time renormalization is obtained at the expense 

of a force increase. We show that in some physical problems we 

can sélect C(t) to renormalize) i.e. hâve a new time going to a finite 

limit, or at least si ow down considerably the time without introducing 

inf inities in the forces. 

III - GRAVITATIONAL SYSTEM WITH TIME VARYING GRAVITATIONAL CONSTANT 

We hâve seen that one conséquence of the transformation 

was to introduce a function C(t) which,elevated at a proper power, 

scales the force. If a physical constant describing the interaction 

decreases with time C(t) can be selected as time increasing with 

a balance between the two effects while 8 may go to a finite limit. In 

fact,for the Dirac hypothesis fthe problem of the dynamical évolution 

is very much simplified as if the Dirac law was an example invented to 

show the iâteres tof the group method. The Dirac hypothesis [141 1151 

states that the gravitational constant varies with time accordingly 

where t is the âge of the uni verse. We prefer to �hift the time and 

consider the présent time as origin. Then replacing t by t+ T with 

T = Q-I 

From (16) considering a 3D system we can consider that in the new 

phase space the field is affected by the factor G(t) C(t). Taking 

G(t) C(t) = Go gives C(t) = 1 + fit and consequently the transforma- 

tion field vanishes But the new time 6 is now. 

and goes to the finite limit 0, when t - 00. Consequently the study 

for ail time of a N body gravitating problem in the Dirac's hypothesis 
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is identical to the study of a N body gravitating System where G 

remains constant during a finite time interval equal to fi We 

hâve been able to renormalize the time without introducing infinities 

in the force due to the time decreases of G. The Dirac law is the 

only one which allows to get rid of the variation of G without intro- 

ducing a transformation field. Ue hâve two possibilities : either 

we stick to the x,v� space and introduce (25) or we consider the 

£ j.r|,0 space and consider G as strictly constant. 

We will, of course, refrain from claiming that one space 

is more physical than the other. We must simply point out that 8 is 

the éphémères time computed with the hypothesis of constant G. This 

time should be compared with the time given by an atomic clock,i.e. 

a time connected to the motion of électrons governed by electrostatic 

forces. The comparison of the two times was made by Van Flandern. 

Although it is very difficult get rid of the différent corrections, 

this last author claims a residual différence between the two times 

supporting the Dirac's ideas with an fi = 101 years. 

Coming back to the more technical problems of computing 

orbits when G varies with time,we consider the motion of mass point 

in 3 dimensions attracted by the origin with a gravitational constant 

given by 

We sélect C(t) to be able to deduce the asymptotic properties and 

more precisely 

- To avoid increasingin time transformation field and G(e) 

� Within this last constraint to compress the time as much 

as possible with, if possible,a limiting 8,, 
Table 1 gives the 

choice of C(t), the expression in the new variables 8^Ç,of the trans- 

formation field, of the gravitational constant and^f inally, the 
relation 

between 6 and t. 
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TABLE 1 

For a..:?1the transformation field is zerc� G(0) 
is 

constant or goes to zéro and 6 - 
î - 

As 
a conséquence £ goes to a 

limiting value 
^ and 

the asymptotic trajectory is x 
= ^ (1+fit) 

with x increasing proportionally to the time. 

In the case 1/2 �a �1 the gravitational constant 

decreases exponentially with 0 and the dominant field is fi 74 t. 

The asymptotic solution for � is consequently. 

Combining with x = CÇ the selected value of C(t) in this case and 

coming back to the time t, we find that again x increases as fit. 

Consequently for a � 1/2 the asymptotic state corresponds to freely 

going particles with a uniform velocity. This is not surprising 

since G(t) - 0 when t -»- but this last condition is not sufficient. 

Indeed for a � 1/2 we will see that another type- of trajectory is 

possible. G(0) being a constant and the répulsive transformation field 

going to zéro for 0 - 
°°,we 

can predict two typer of trajectories. For 

the open one the gravitational field goes to zéro as Ç -2 while the 

transformation field goes to zéro as Ç/02^ and in the case of � 

varying at least as 8 the transformation field, although going to 

zéro is still dominant. 
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The asymptotic time évolution is given by solving 

Seeking a solution of (29) of the form � = A8 we obtain 

Since for a � 1/2^3 � 1 the domination of the 

transformation field is enhanced. Now introducing x = C� = ACe 

and expressing 6 as a function of t we obtain again an asymptotic 

solution in t for x. 

But, of course, the initial conditions of the problem 

can be such that in the plane the trajectories are of closed type 

The transformation field decreasing with 0 the asymptotic trajec- 

tory is an ellipse in � and altough G(t) - 0 the particle is still 

influenced by the center of attraction, turning around it with a 

distance going to infinity as (1+fit) . 

IV - MOTION OF A CHARGED PARTICLE IN A UNIFORM IN SPACE, TIME 

VARYING MAGNE TIC FIELD 

If a time varying G(t) is a simple hypothesis, the 

problem of a time varying magnetic field is certainly important from 

a practical point of view. Let as assume a uniform in space time 

varying magnetic field^B(t) 
= B(t) e.where e is a unit vector. Now 

a time varying B implies an electric field E = - 9A/3t. Since the 

vector potential is 

we deduce 

(30) must be handled with care. The electric field dépends obviously 

of the point of origin and is zéro on the line parallel to "e* and passing 

through that origin. A priori B(t) being uniform it seems possible 

to take any point as the origin. The paradox is raised if we consider 

more carefullyhow the uniform magnetic field can be created. 
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Hère we consider a solenoid of length L and redius R where both 

L and R go to infinity. This configuration imposes a cylindrical 

symetry in the induced field and the axis of the Solenoid is 

naturallv the line where E = 0. From 

we obtain 

Introducing (30) we see that 

If we take C(t) in such a way that B(t) C 2 (t) = Bo 

(33) cancels and we obtain 

and we hâve to treat the motion of a particle in a constant magnetic 

field Bo with the usual transformation field. Note that now C(t) is 

imposed by the relation 

We investigate more precisely the case where 

and we list on table II the value of the transformation field and 

the relation between 6 and t. [ln aH cônes the new magnetic field 

is Bo and C(t) = 
(l+fit)a ] . 
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TABLE II 

In the new phase space for a � 1/2 the transformation field goes 

to zéro and the asymptotic trajectory is a circle (since B = Bo). 

Consequently, although the magnetic field goes to zéro, the particle 

will always feel its présence. 

The case a = li/2 is quite interesting,(34) is written 

Decoupling the motion in a first one perpendicular to the magnetic 

field (characterised by �l and �2) and another parallel (this last 

one is a trivial displacement at uniform velocity) we get the 

eigenfrequencies of the perpendicular motion w2 

Solutions of (38) are .(¡ w = 1 E Bo+ Yst-Ji1 J . We must 

remember that due to the choice of units e = m = 1. Bo stands for the 

cyclotron frequency (e/m) Bo. We find two possibilities. 
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1°) Bo � � ail theeigenvalùes are real and the 

particle undergoes oscillations in the £ plane. In the x plane 

x increase as aJL* Slt. 

2°) Bo � fi two of the eigenvalues are complex and one 

corresponds to a growing instability in �. The particle has an 

asymptotic motion closer to the free motion. For B0 
= 0 we recover 

of course the ballistic motion. 

The asymptotic solutions for the case 1/2 �a � 1 is 

obtained noticing that the force is répulsive and that for 6 - 0 

the motion is dominated by the transformation field 

We seek a solution of the form ^ - A and 
obtain (3 = {cC-L)f(^oc - i) 

Taking into account the relation between 0 and t. this gives an 

asymptotic solution for x = C� of the form x « fit indicating that 

the final-- motion of the particle is a ballistic free motion. 

The last case a � 1 implies an attractive force. If we 

suppose that th� transformation field is still dominant (we will 

check a posteriori) we get the same équation (39) and the same value 

for 3 (but now is positive and the particle falls on the origin). 

The transformation field decreases like {9(-^)'J*�-^' _ (0f -8j "i« -4. 

while the magaetic force decreases as the velocity i.e. (9* -6) "*�*-"�� "^ 

The ratio of the two forces (transformation/magnetic) varies as 

lQf-9) and indeed for 
6 - Of the transformation field is the 

dominant 
one £ -� 

0 as (0^- 9) �K*'(;'(i'3t"') and x = C� varies as 

fit împlymg 
in the regular x space a ballistic motion for large t. 

Figures 1 to 5 illustrâtes this différent concept. 

Figure 1, 2 and 3 shows what happens when a =.45. In ail cases -Q--4., 

For Bc = 10 the particles are nicely trapped in the plane indi- 

cating an expanding spiral motion in x. Notice that for Bo = 0.1 



Fig. 1 
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the particle gets on its circular orbit around 6 = 140. Such a value 

corresponds to t � 1012. This is an astonishing long time (and inci- 

dently supposes that the field stays uniform on the very large 

corresponding distances). 

4 4 and 5 illustrâtes the case a = .55. Hère the 

case B 
= 

10 is the interesting one. We see 14 révolutions in the t 

plane followed by the rather sudden escape of the particle". Again 

the corresponding time is very large 6 = 8. t 
= 357 and practical 

space and time limitations will limit the possibility of seeing thèse 

transitions Nevertheless if is interesting to see that the Ç n 8 

space with its high degree of compression in space and time is indeed 

the best suited for description of the motion. 

V - THE GROUP OF TRANSFORMATION IN QUANTUM KECHANICS 

A) Transformation of the Schroedinger équation 

Let suppose one dimensional (to simplify) motion of a 

particle in a potential V(x). The description is through the 

Schroedinger équation 

we introduce the 
transformation ïrxC but dealing with the 

Schroedinger formalism we cannot yet consider a relation 
between � 

and x and v (we will see later on). 

Now we introduce the following transformation on ty 

with 

Computing -�i/0k ~ 3 //�// and introducing thèse results we obtain 

for the Schroedinger équation (40). 
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the "new Schroedinger équation" we want to write 

consequently in (43) = (44) we must suppress the temr in 

moreover equating the first terms in the right hand side of (43) 

and (44) 

Finally getting rid of the terms in i� 

Combining (46) (47) and (48) we obtain 

while the potential V in (45) becomes 

We see that as in the classical case the new potential is the sum 

of the rescaled physical potential V plus a transformation potential. 
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If we introduce the fields 

i - � r - 9. r- -3 A 

(52) is strictly identical to (14) 

B) Introduction of the Wigner distribution function 

How can we recuperate the second of équation (31) i.e. 

the relation between � and v and x ? The question is interesting and 

is answered by considering the Wigner distribution function 1161 -fCXiV). 

It must be pointed out that the ^nysical meaning of this fonction 

is not clear since this function has not ail the good properties 

characterizing such a distribution (the biggest difficulty being that 

f can be negative). From a Schroedinger � function Wigner defines 

a distribution in phase space through the relation 

from (41) 

We introduce (52) in (51) and use (50) 

we introduce C -0 A and notice (49) that B C = 1 . We pbtain 

Defining as in the classical case 

and the phase space distribution is invariant as in the classical case. 

This is indeed the great advantage of the Wigner distribution: 
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The classical concepts can be used but of course the Wigner dis- 

tribution does not obey a classical Vlasov équation. 

C) Application to the problem of quantum Harmonie 

oscillator with varying frequency 

To end this section an quantum transformations let us 

consider a potential for a one dimentional oscillator given by 

the classical problem involves the solution of the équation 

Although the following resuit has already been established by 

Eewis and Riesenfeld 1171 let us show that if we know a solution 

of (58) we can solve the quantum case. We transform the équation 

through a given C(t) and from (57) and (51) we get 

If we choose C+jfL C. =� 0/ V - O ancj the problem is reduced to 

the problem of free particles. But a difficultyoccurs if C(Tj = 0 

\ov fc -~Y 6 goes to infinity and we cannot pass t = T. 

Since another easy to solve problem is the quantum oscillator 

with a fixed frequency 0. (t) = W2 we can sélect C as a solution of 

and we hâve 
y=iiOLç 

a problem with a known solution. We must 

simply solve (59). It can be shown that if C(0) � t) the solution 

of (59) never goes to zéro. 
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VI - VLASOV POISSON SYSTEM 

A) One dimensional problem beam 

We go back to the Vlasov Poisson system. We begin by 

considering a one dimensional beam problem B with an initial 

condition as indicated on Fig. 6. It must be pointed out that we 

hâve put a limit V0 on the modules of the possible velocities. 

Although physically such an absolute eut off does not exist the number 

of particle with velocities greater than 
saySVT 

is very small and 

can be supposed equal to zéro. Moreover the beam is limited in space 

from x=-Ltox=L and is homogeneous in this interval. To compute 

its évolution we sélect a C(t) 

such that C(0) = 1 and (dC/dt) -0 exfc 

(t = 0). At initial time 

t = 0 =0 the two phase spaces 

x, v and Ç, r\ coincides. The 

Poisson équation (17) can be 

written 

FIG. 6 

In 
thetplane 

at 6 = 0 F Lf , "\) - F("jJ /�** - L � | � £ |_ 

and the 
density] F d-it 

= N 

We sélect C such that*. 

with C(0) = 
1, dC/dt (0) = 0 . We get of course 

If we remember that we took e = m = co = 1 we see that Q,2 is 

simply the plasma frequency associated to a density half of the 

initial density of the beam. Now the possibility of selecting such 

C(t) has two important conséquences. 

The new field c is zéro and since the beam is uniform 

it will stays zéro. Being homogeneous and with no field acting on it 

the plasma is on a steady state with no time évolution. 
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In fact things are more complex. The steady state 

character of the beam implies a infinité length of the beam. If 

boundaries exist,as they do; we must use the concept of contamina- 

tion already introduced in 181. We briefly remind it. 

Due to the one dimensional character of the problem 

supposing moreover a space symmetry, particles outside a limited 

région do not create any field r.nside; this property remaining true 

in cylindrical. and spherical symmetrical structures. As long as 

thèse particles do not penetrate physically into this zone 'fhey will 

not influence the behaviour of the particles in this zone . VJhen 

particles located initially respectively in the inner and outer zones 

cross a "contamination process" is generated. Obviously the évolution 

of the contaminated zones is given by the évolution of the two boun- 

daries and more precisely by the (symétrie) trajectcjfies of point 

A and B of Fig. 6. Now the trajectory of point A for example is a 

simple uniform motion (in the �, n, espace) with 

and the régions |Ç| � 
ÇA 

is the uncontaminated zone. The interesting 

point is that:when t - 00 6 - limit et and the contamination will 

stop if L � V0 6, leaving the central zone 1 ç � L 
-\Qg always 

uncontaminated. Introducing (31) in (13) we obtain the relation 

between 8 and t 

and when t m- 1 A � ~^% . The percentage of uncontaminated particles 

in Fig. 6 is consequently 4 - "^ va mSLL 

Fig. 7 and 8 shows an illustration of this concept. It 

can be noticed that in the usual phase space we hâve a simple expansion. 

Fig. 3 indicates that 
îndeed ai 

is an invariant. The computer experi- 

ments are of Lagrangian type with plane superparticlesthe motion of 

which is computed through Newtor. and Coulomb law. 
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[Evolution in the phase spaces xv (right) and xv (left) of an horizontal water bag rod. At t = 0 the cutt off velocities are ± Vo and the 
rad length is 2 L. We define Q as the plasma frequency corresponding to the density A Vo = 1/2 of the density at t = 0. (A being the value 
of the phase space density inside the bag). The problem is entirely characterized by the value of the parameter La/Vo (hère equal to 2). 
Figures are respectively given for Qt = a) 0 ; b) 0.5 ; c) 1.0; d) 1.5; e) 2.0. The uncontaminated zone is indicated only on the xv phase 
space and is a rectangle delineated by the straight lines ± Vo and the two vertical hnes whose abscisses are given by 

± xJL = 1 - V,12 QL(t(1 + t2) + Arc tg r). 

Hère for r -» ao the percentage of uncontaminated particles go to 1 - zV014 QL = 0.607 3.] 

FiG.0 
� Même diagramme xv que pour la figure 1 avec indication de l'évolution de 7 groupes de particules dont les vitesses initiales sont 

Vo, ± 2 V013, ± y a/3 et 0. On voit que dans la zone non contaminée û est un invariant. 
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B) One dimensional problem-plasma 

For a plasma the corresponding Poisson équation (17) 

is written 

Starting from a uniform électron plasma P as in Fig. 6 

with an initial density n^ for the électrons and N 
for 

the mO�Û.t5nless ions 

we sélect C(t) satisfying C(0) = âJr(o) = 0 and 

introducing the plasma frequency -O-p 
= N. e. /m Ê. the solution is 

We see two things 

If 
ne/No 

� 
1/2, C(t) will take the value 0 and for 

this value of the time, will be infinité. We will not be able to 

compute the behaviour beyond. 

If 
nD/No� � 1/2 C(t) 

is always positive but does not 

increase with timejwhen t - 00,8 + 00 and the contamination is alwavs 

total, irrespective of the System. The time of total contamination is 

L/V in the 8 scale. For the uncontaminated zone the density varies 
° 

-1 
as n = n C (t) 

The results are very similar to the cold plasma case 1181 with 

density in the centre oscillating at frequency �p. We notice that 

since C(U � �0im^(.�«» e-'7 o�J we always hâve total contamination 

before n(t) blows up in the case n /N � 1/2. o o 
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C) One dimensional problem-gravitating gas 

The case of gravitating gas with an initial situation 

described as in Fig.6 is similar to the B case except a sign 

in front of N 
= \Fdrn 

and a solution for C(t) given by 

fi is now the Jean's frequency associated to a" density equal to 

half the initial density of the System. 

As in the B case the System is stationary in the �, n 

phase space with 

n being an invariant in the uncontaminated zone. Of course the 

contamination becomes total in a time always smaller than Çl 

since the relation between 9 and t is now 

If 2L is the length of the system the time of total contamination 

is given by the solution of the équation L/V 
0 = 6. 

At time t 

the density in the incontaminated zone is N("f-..i2}.t2-;-1 and 

for a sufficiently large N a very large increase of the density 

is consequently possible.Fig. 9 shows the situation for L SX./ U�� 4.. 

The invariance of n and the shrinking of the uncontaminated zone 

are well illustrated. 



Figure 9 : Evolution in 

the phase spaces x, v (right) and x, v (left) for a limited 

gravitational horizontal "stick" solution. At initial time 

the boundaries are x = x = + L, v = v = + V . Hère the 

parameter characterizing the problem is ISi/V * 4. 

Figures, obtained using 3 000 a particle code are res- 

pectively given for Qx = a) 0. ; b) 0.3 c) 0.6 ; d) 0.9. 

In this case, the collapse and the crossing of ail particles 

in the neighbourhood of the center bring a total contamina- 

tion for JÎT = 0.92. It can be seen that, as long as the 

particles remain uncontaminated, v is an invariant. We 

indicate the évolution of seven groups of particles with 

initial velocities + V , + 2/3 V , + 1/3 V , and 0. 
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D) Homogeneous Systems in cylindrical and spherical 

geometry (Beam and gravitational gas) 

An advantage of our group transformation analysis 

is that the results can be generalised to cylindrical and 

spherical geometry altough it must be pointed out that in 

order to apply the contamination concept we must deal with 

Systems where the particles from outside do not create a 

field for the particle inside who implies a cylindrical and 

a spherical geometry in respectively 2 dimensional and 3 dimen- 

sional problems. N being the initial density in the B and G 

cases with N/2 = fi and n. and N 
o 

fi 
p the 

électrons and ion 

density in theT case#Ve must select C(t) satisfying; in two 

dimensions (cylindrical)'. 

O-t- 

in three dimensions (spherical) 

in ail cases C(t) and dC/dt for t = 0 are respectively ] and 0 

DI) The two dimensional beam problem 

In �he 2D B problem the relations between C,' t and 6 

are given by the following parametric solutions. 
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C(t) 1 and C(t) an always increasing function with time goes 

to infinity when t - °°. � goes to a finite limit S\-�t = VTr 

and the contamination is only partial provided,of course, we can 

put a limit 
V 

to the velocities and that R/V � 
� 0el The density 

in the uncontaminated zone is NC and this gives the law of 

decrease in the density under the influence of space charge and 

ballistic effect for a cylindrical beam. 

D2) The two dimensional gravitating problem 

In the two dimensional G problem, relations (73) and (74) 

are just inversed. 

C(t) � 1 and C(t) an always decreasing function, with time 

equal zéro for -0Lt,=Vtr. Before that time/total contamination 

has taken places and up to that time we can follow the density 

increase in the center. 

D3) The three dimensional beam problem 

In the3dimensional B problem 

Equation (72) B can be easily integrated giving 

c(t) � 1 is always increasing. (9 goes to the finite limit v 6 SL 

and the contamination is partial. NC -3 gives the évolution of 

the density in the center of the spherical System. 



D4) The three dimensional gravitational problem 

In the 3D G problem, the intégration is quite similar 

to the preceeding one. We get 

C(t) �� 1 is always decreasing. Contamination is total in a time 

always smaller than -CL't^ = IV \/J/F . 

E) Plasma case : two and three dimensions 

The plasma case is a little bit more difficult. We must 

solve(71)P,d being the dimension (d = 2 or 3) 

Deriving (81) we get and cl1n/^t2- 

Introducirig d^/^taken from (71) and (72) in (82) 

we write P = dn/dt 

Introducing (84) in (83) we obtain the first degree équation 

(P function, n variable) 
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The solution of which being 

We must distinguish between d = 2 and d = 3 

d = 3 gives no problem in the last intégration of (86) 

K 
is obtained noticing that for t = 0 n m- m. a~�L d n-/dt -~P= 0 

We finally obtain the relation between t and n 

The denominator of (88) cancels for n = n . It is easy to find 

the other values for which it is zéro. One is négative and 

without interest, the other is 
(taking S\-=i,~i) 

If rL. and if 11, �1 7), 4. A Consequently the density is 

periodic and oscillâtes between thèse two values. The period 

is given by twice the intégral (88) taken between the values 

n o 
and n, 1 

(or n, 1 and n0). 
In contradistinction to the plasma 

case riç can be as small as we like without appearance of a maximum 

n going to infinity (In the plane case 
n 

= 
n /(2n -1). 

d = 2 is the last case to be treated. In (86) 
(_,~a/�L iM 

i *. 
Again we get K throught t=0 //71-'7'La*el'I?=0. 

' 
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t is obtained by intégration between 
n 

and n 

As in the preceeding case the expression between bracketscancels 

for x = 
n 

and x = 
n, 

(one greaterthe other smaller than 
N ) 

the 

density oscillâtes between thèse two values and is periodic with 

the half period given by the intégral (91) taken from 
n 

to 
n. 

(or 
n. 

to 
n ) . 

As in the 3 dimensional cases no restrictions are 

put on the value of n ;and n infinity appear. (88) and (91) indicate 

that in cylindrical and spherical geometry the frequency of oscil- 

lation is a function of n in contradistinction to the resuit ob- 
o 

tained for plane geometry as given by (67) 
where fi is 

the oscilla- 

tion frequency and does not dépend of n . 

Nevertheless in the linearised limit we recover n 

the 3 cases the plasma frequency � . The equation for C can be 

written 

we suppose that Il. = II. (A t- E. ) = XI.* (..4+ ê- ) 
and e is small 

since n is very close to N . Introducing fi t = ~5 we rewrite (92) 

we write C = 1 + � and linearize neglecting terms in i))2 1jJ3... (92) becomes 

The solution of (94) with � = 0 

Introducing (95) in n = 
N ( J + £ ) C4 + t) 

-J.... and reta:LIli-I1g only 

the first terms in � we get 

(96) describes the usual linearised plasma oscillations phenomena. 



- 3] - 

APPENDIX 

SELF ADJUSTED TRANSFORMATION 

1-. INTRODUCTION 

We show in this appendix that the time rescaling of formulas 

(13) is a particular case of a more general theory of self adjusted 

transformation where we work directly in 4 dimensional space time 

with the. coordinates and the time expressed as function of a 

parameter We indicate that it is possible to find a generalised 

canonical transformation for x y z*-««l "),. 

2. CONFIGURATION SPACE C 

Let «=^o�y the generalized coordinates (1,4 =- t, h, "lit) 

they are indépendant variables in C space 

is then the set of ail the points M of coordinates q. 

Let us now hâve a relation ship between the q . This is 

the same as to give a parameter À, the variation of which des- 

cribes a curve in C. Thus each point M can be said to belong to 

a curve I of C, the position of M or Pis given by �, and the 

curve r itself dépends on the initial position of M. 

A tangent vector along the curve H is 

Thus : give a set of curves (i.e. a parametrization, 

i.e. trajectories), and get a tangent space. 

The tangent base is ��. 

Any tangent vector can read then x= 4 �=Tâ2 

The dual tangent base is ci 9' 

is the usual définition of exte rior differentÍal. 



- 32 - 

The exterior derivative of a scalar function f, along 

a vector field u is defined as : 
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2. PHASE SPACE W 

According to Lagrangian formulation mechanics in Space- 

time trajectories dépend upon intégration of 4 second order partial 

differential equationl, thus dépend on 8 parameters. 

Therefore we are bound to work in an 8 dimensional space 

(space and there coordinates, and momentum and Energy coordinates) 

Mechanical lows in 1E space are then given by 

- the knowledge of the Hamiltonian function H(p,q) 

- the application of a variational principe on the 

1 form 

this gives us the trajectories in phase space 

which is nothing else than 

Hamilton's équations 

3. GENERALIZED CANONICAL TRANSFORMATION 

We know that Hamilton's équations are invariant under 

any canonical transformation which means that if we go over to 

new coordinates 
°i�^lp) 

and new rnomenta 
K [ ^ , p) in such 

a way as to hâve a canonical transformation, then 

and we see that the parameter is still À. 

We are now interested in transformationswhich are canonical 

in coordinates and moments but which also change the parameter to 

a new one; 7* 
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Therefore the transformation is defined by 

relationship between � and "X 

(renormalized parametrization) 

and by 

generating function . 

We restrict ourselves now to transformations �9 t(çîi\) 

where the new coordinates do not dépend on the momenta. The trans- 

formation is then 

change of parameter 

change of coordinate 

generating function 

If we write then 

Then the new momenta are given by 

and the new Hamiltonian is 

The tangent space is generated by the Jacobian 

then if we define 
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note that in (q,p) space, directional derivative is defined by the )^ 

parameter, while in (q,p) space, it is defined by the parameter À. 

Straight forward calculations give 

If Hamilton's équations hold 
in Q ( A)^p^) space, d % , H J 

� O 

and fp, HjrO» they hold too in 
cj(À)jp~(Â) space. But evi- 

dently the trajectories do not correspond in the two spaces. 

4. APPLICATION TO PLASMA PHYSICS 

We choose the following generating function 

where p will be the momentum, canonical conjugate of the time 

variable t, this is the energy. 

TrCare spatial momenta 

;xLare the spatial coordinates 

We hâve then 

Therefore 

we use now, along a trajectory, t as the parameter, thus A = t 

and we like to hâve, on the transformed curve X � ^- 

Therefore, when we dérive 
-f,- a (t}\) 

we hâve 
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we obtain 

this is a ¡5torder partiel differential équation, which we can 

integrate . 

for A � t and for a judicious choice of constant "a we hâve : 

if we now consider Vlasov's equation ; 

Maxwell's equations: 

with initial condition ; 

and with normalization relation 

Let us make the transformation : 

as we hâve seen in paragraphe (3), Hamilton's équations in the 

new coordinates give a new Lorentz force 

this results directly from the variation of the action S(x,t) 

which 
becomes j ($f;©Jin the new space and is related by 
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The transformation law for the Halmitonian function 

can be written : 

We see that the energy is not conserved in the transformation and 

if H doestfiot dépend on t, H do dépend on 6. This peculiarity is 

due to the fact that we are dealing now with a new time parameter 9 

which is not uniform. 

We are able now to see that if the new electromagnetic field is 

defined as 

Then Vlasov's équation is the same in the new variables. 

The new electromagnetic field does not dépend on n, which was to 

be expected, since we like to hâve in the new variables a field 

depending only on the variables 
(gr - 

Clearly, two of Maxwell's équations are also immediately 

satisfied : 

The charge density becomes 

and the current density becomes 

The normalizing condition is also conserved, since the trans- 

formation is canonical and lets volume élément of phase space 

invariant. 
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CONCLUSION 

We hâve seen in the body of the paper that the time 

rescaling was an interesting concept allowing to predictJana- 

tytically or numerically,certain asymptotic properties of a 

physical System. Usually we work in coordinate-momentum space 

and the time t is considered as the parameter, coordinates and 

momentum being expressed as function of t. Nevertheless, in 

some situations (especially in problems involving general rela- 

tivity) it is simple to consider the time as a coordinate and 

to express everything as a function of a new parameter (proper 

time). We hâve shown that a rescaling of this parameter leaving 

invariant the canonical transformation formalism is also possible. 
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