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SUMMARY

A method has been developed and used to obtain theoretical
predictions of the current collected from a continuum, incompressible
flowing low charge density plasma by an electrostatic probe having
spherical or cylindrical symmetry. The solutions for the low density
continuum case, i.e. with mean free path << probe radius << Debye
‘length, are calculated for Reynolds numbers from 0.1 to 100 for
cylinders, 0.1 to 60 for spheres, for charged particle Schmidt
nuﬁbers from O to 10°P, and for scaled probe potentials from -12 to 10
for arbitrary ion-to-electron temperature ratios. Each current
collection result has been computed to a relative accuracy of 27
or better in a; average time of approximately 20 minutes on the
CDC 6600 at CNES, including a relatiQe accuracy of 0.4% or better
at stationary conditions compared with the analytic solution. The
charge transport equations are solved using upwind difference methods
developed for time independent situations. Numerical solutions of
the Navier-Stokes equations by other authors are used for the
neutral flow, The electric potential profiles used for the
?ylinder are logarithmic, obtained by using the Laplace potential
at the equator of a prolate spheroid, approximated for radii <<
ma jor axis. The electric potential profiles used for the sphere are

proportional to r~?, the Laplace potential.

The numerical results show that: (1) For a probe at retarding



potentials, ﬁhe effects of the flow increase with poﬁential, and
the usual retarding potential method for temperature-determinatibn
of electrons leads to large errors, (2) For small potentials, the
effect of the flow is to smooth the '"knee'" of the probe character-
istics and to render more imprecise the de;ermination of the
Spaée potential., (3) At a large enough attracting potential, the
linear dependence for probe current from stationary theory is
recovered as one would expect. (4) The probe surface current
dgnsities become unsymmetrical when flow‘is increased. (5)
Recirculation in the neutral wake behind the body has larger effects
on downstream than upstream probe surface current density. (6) In
the presence of flbw, the profiles of net charge density can include
several regions of alternmating sign downstream of the probe.
Computed chérge densities and probe surface current densities
are presented graphically. Computed probe characteristics are

presented in graphical and tabular form. A listing is included of

the Fortran programs used to obtain these results,
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List of Symbols

J

k

diffusion coefficient

magnitude ‘of electron charge

shape constant

total collected current for sphé?iéal probe; total collected
current per unit length for cylindrical probe.

local current density

Boltzmann's constant

Ko(x) modified Bessel function of zero order

L

N

R

Re

Sc

probe length

number denéity -

radius

Reynolds number based on diameter, ZQDRp/v
surface area
Schmidt number,v/D -
temperature . : _ ’ -
flow velocity
potenfial
Debye length, (e-,c,kTe/ezl‘Im)!5
mean free path
mobility
stream function
kinematic viscosity

angle



Nondimensional Symbols

1= 1I/14, total current, Id = eN_ DSP/Rp

j= JRP/NDD, local current
L = major to minor axis ratio of prolate spheroid used to

model cylindrical probe; for relation between L and A see p. 1ll.
n = N/qw, number density :

Re = quRp/v, Reynolds number
Ra =.2qup/D, diffusion Reynolds number
Sc¢ = yv/D, Schmidt number
T u= U/qm, flow velocity
Q= eV/kTe, potential

€ = T/Te’ temperature ratio

A= L/Rp; length of cyiindrical probe. For relation between
A and L see page 11.

Subscripts

a ambipolar

b boundary

¢ charged particle
d diffusion

e electron

i1 iom

K iteration number

k ,4,m grid point
o at space potential

p probe
r radial component

axial component
angular component

o at infinite radius
Note: Additional symbols are defined as they occur in the text.
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—~ CHAPTER I . S L

1. INTRODUCTION

A method has been developed and used to calculate the space
charge density profiles near spherically and cylindrically
symmetric electrostatic probes immersed in a flowing low charge density
continuum plasma, and thereby to calcﬁlated the current collected
by such probes from the surfounding plasma. A low density

continuum plasma is one in which mean free path << probe radius

<< Debye length.

An electrostatic probe is a piece of conducting material
that is inserted into a plasma on a mechanical support which
provides electrical connection from the probe to external
circuitry (Fig. 1.1). The probe potential is varied, slowly
enough to eliminate transient effects, over a range that
normally includes the plasma potential. The electric current
collected by the probe from the plasma is recorded as a function
of probe potential. The shape of this curve, known as the ‘'probe
characteristic', depends on the composition, the flow velocity and
the thermodynamic state of the plasma, and therefore information
about these plasma state parameters can often be obtained from one
simple curve. Compared to many other diagnostic tools the probe is
distinguished by the possibility of direct local measurements of
plasma parameters. These facts enable the experimenter to use plasma

probes as instruments to measure the state parameters of plasmas



that exist either in the laboratory é; in nature. Figure 1.2
shows the general appearance of a probe characteristic. Two
phenomena which appear in‘figure 1.2, i.e. secondary ionization
caused by accelerated electrons and electron emission from
probe surface due to ion bombardment, are not studied in the

present work.

Two important examples of low density continuum plasmas
exist in nature, that is planetary lower ionospheres and strato-
spheres , and electrostatic probes are frequently carried by
planetary probes or balloons in order to investigate their surround-

ings.

The local disturbances created in the ionosphere or strat-
osphere by the entire planetary probe or balloon can often be
analysed using theories developed for electrostatic probes,
since the vehicle itself cénstitutes a conducting object immersed
in a plasma; in this case there is no external connection to allow
current to drain off, and the planetary probe or balloon will
arrive at an equilibrium or "floating" potential at which it

collects no net current (Fig. 1.2).

'_Recent developments of flowing afterglow plasmas, flowing |
gaseous lasers, diffusion flame plésmas, discharge physics and
a;mospheric electricity have created a need for probe measuremegts
in conditiqns of low charge density (< 10%cm™) and medium neufral

pressure (>1 torr) plasma, i.e. under conditions in which the Debye
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" length may be relatively large. but the mean free path is relatively
small. The approximate range of probe conditions in these various
flowing plasmas is shown in figure 1.3. Also, in probe

measurements it 1s always advantageous to use the smallest probe

size consistent with electrical and mechanical constraints, in

order to get minimum pl?sma disturbance and maximum localization of
‘measurements. In this work, we develop a numerical method to obtain
the probe characteristic for the limit in which ionization is

~slight enough that Debye length >> probe radius, so that‘the electric
potential profile surrounding the probe obeys Laplace's equation.

Numerical solutions by other authors are used for the neutral flow.

In order to solve the partial differential equations arising
in this problem, we have developed an "upwind difference method"
for the time independent case, in order to obtain faster

computation time and stability of calculations (Chapter 4).

In Chapters 5 and 6, we present results of computations
carried out for cylinders in cross-flow and spheres in flow. We
use the numerical results to demonstrate that the usual retarding
potential method for electron temperature measurement leads to
serious error in flowing continuum cénditions. We also examine the
charge density distributions around spheres and cylinders in the
presence of flow. Then we find that the profiles of net charge
density can include se&eral regions of alternating sign

downstream of the probe. Comparisons with experiments and other
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theories are discussed in Chapt. 7. The application of the

present work

to the limit Rp/)‘D-m is discussed in Aﬁpendix A.
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1.1 SUMMARY OF INCOMPRESSIBLE FLOWING CONTINUUM PROBE THEORIES

A summary of probe theories for both spheres and cylinders in
incompressible flowing plasmas is shown in figure 1.4. The
present work is for Debye ratio Rp/)\D = 0 (Chapts. 5 and 6) and »

(Appendix A), values for which no previous theories exist.

The general theory for probes in flowing plasmas has been first .
done by Lam (1964). He assumed that under the condition AD/RP<< Re-%,
the neutral flow affects the charge density only in the quasi-neutral
region, since the plasma sheath is much smaller than the neutral flow
boundary layer. He obtained a general expression for flow effects
on current-voltage characteristics. Clements and Smy (1969)(1970)
obtained approximate solutions for spheres and cylinders by comb-
ining the model of Lam with an assumed circular sheath edge
centered downstream of the probe center. Huggins (1974) used the
same model with an approximate thick sheath solution by Keil (1968)
to extend the theory to Rp/xD ~ 1 for spheres. Hirénb (1973)
obtained an approximate solution for cylinders by applying the
model of Lam with his own approximate neutral flow solution at
the front stagnation point. Yastrebov (1972) obtained solutions

for the sphere front stagnation point by using the incompressible

nonviscous flow solution for Rp/lDz 1.

All of these theories deal primarily with conditions in which the
neutral Reynolds number Re is comparable with the charged particle
diffusion Reynolds number Ra, i.e. the charged particle

Schmidt number Sc_ = Ra/Re is of
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order unity. But the important range of tﬁe diffusion Reynolds
number is 0 to 104, i.e. 0.1 to 10° times larger than the neutral
Reynolds number , in the applications indicated in figure 1.3 for low
density plasmas. Kodera (1975) used the analytical solutions of
Van Dyke (1964, p.159) to estimate the neutral flow for Reynolds
numbers 0 to 10° at the front stagnation point. He obtained

solutions for RP/XD-O, and Ra from O to 104,

A large number of references exist on the problem of a
flat-plate probe in a continuum flowing plasma. These have been reviewed

by Chung,Talbot and Touryan (1974):
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CHAPTER II
2. STATEMENT OF THE PROBLEM

I; érder to define a mathematical model for the plasma, the"
following assumptions have been made:

1. The plasma consists of two species of charged particles,
one positive and one negative together with neutrals. Far from
the probe, the net charge density approaches zero. Linear
relations between current density and gradients are assumed for both
species. In many experimental situations, thermal contact
7between species is weak enough to allow significant temperature
differences to exist between them if one of them acts as an
energy source or sink . Therefore, an ar#itrary temperature ratio
is allowed in the theoretical model. In most applications the

electrons have the weakest thermal contact with other species. -
2, We assume an unbounded, steady state, constant-property
frozen-chemistry plasma with no magnetic field.

3. The plasma is slightly ionized, so that the mean free
paths between ions or electrons and neutral particles are much

smaller than the mean free path between ions and electrons.
4. The neutral flow is assumed incompressible.

5. The probe surface is assuﬁed fully charge absorbing.

/'
6. We assume that the Einstein relation p = E% between

diffusion coefficent D and mobility yu is valid for all charged

species, where e is magnitude of electron charge, k is Boltzmann's
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constant and T is temperature,

7. - We assume that Debye length KD >> probe radius Rp>> all
charged particle mean free paths, so that the electric potential
near the probe obeys Laplace's equation,

8. We assume that the diffusion coefficient and mobility
are constant everywhere. This means that the so-called
"cooling effect', (Chapkis and Baum 19715 in which the probe cools
the local ;lasma, thereby locally changing the diffusion coefficient
and mobility, is not considered in this theory.

9. The plasma is slightly ionized, so that the coupling

between the charge transport problem and the neutral flow is neglected.
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CHAPTER III R
3. BASIC EQUATIONS AND BOUNDARY CONDITIONS

éqgording to the above assumptions (Chap. 2), the governiﬁg

equations and boundary conditions (Lam 1964) then are:

g =NU-p N, W-D VN v-_.11=o 3.1)
J =N U+p N W-D, VN v:-3 =0 (3.2)
®V=0 (3.3)
R=R: N, =0,N =0,V=1V

P. i p

(3.4)

R = w: N, = N N -N ,V=-0
) e we

i’
where N is the number density, V is the potential, R is the radius

and J is the current per unit area. Subscripts i, e, p, =

refer to the ions, electrons, probe surface and infinite radius respectively.

The total ion or electron current I collected by the probe is given by:

I=te [ J-ds . (3.5)
evaluated over the probe surface S, where the differential area

vector dS is oriented outwardly. We introduce nondimensional

variables as follows;

JR
- P =L =N
j NQD bl A Rp ] n &
2U=R U v
a——R I em— = e
Ra p "% > P T kT
@ e
=T - eD - R
€ T > BT kT » T R

= R
v pV
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The governing equations and boundary conditions then reduce

eiRa
ei ii=_2—ni B_'niWCP'ei\Vni; \V'ii= 0 (3.6)
; Ra,-
de =7 P B¥R Wo-wWR; V-3, =0 (3.7
W = 0 : ' (3.8)

r=1 n =01 =0, p=¢

T = ni~1,ne~1,¢~0 (3.9)

Using equation (3.8) and assuming that the flow is incompressible,
1-e-VV’JE,= 0, we obtain from equations (3.6)‘and (3.7.

Ra

i
€ —5 U-\Wn, -Vn, cWp- ey \'at n, =0 (3.10)
Ra :
€ =
7 U°wn +wn, W - WP n, 0 (3.11)

From the governing equations (3.8), (5.10) and‘(3.11), we have
an uncoupled situation for ng and n,. Also, equation (3.10) is
similar to equation (3.11), but with cp/ei and Rai replaced by -g
and Rae, respectively, If we solve equation (3.10) for ion density

this solution can then be applied to the equation (3.11) for electron

density. Equations (3,10) and (3.11) cannot be solved by analytic

methods because u in these equations is obtained from numerical

results by other authors. Their solution by numerical methods is

discussed in Chapter 4.

3.1 CYLINDRICAL COORDINATES ’ -
A cylindrical coordinate system (r,8,z) with axis along the

center of the cylinder is chosen with 6=0 as the downstream radius.
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The fluid motion and electric potential field are assumed to be
two-dimensional and hence independent of the coordinate z. The

fluid motion 1s described by radial and transverse components of velocity

(ur,ue) . The velocity components are expressed in terms of a

dimensioniess stream function y(r,8) by the equations

123 -1l
Yr T % " "o (3.12)

Since we want a fine computational grid close to the probe surface
and we also need a large outer boundary radius for computations, we

transform the radial coordinate using the relation s= gnr, as follows:

3 .. & __3 ., 3
38 T3’ asz'rar(rar’

Equation (3.11) then becomes, removing subscripts:

Ra_exp( s) 2n 3n, _3ndp 3 , 3®n_ Fn._
2 (5 3s% U6 267 " 3s 35 28 36~ C 357 T 308" 0 313

The -appropriate solution of Laplace's equation (3.8) for the
cylindrical case can be obtained from the solution for the equatorial plane of a prolate
spheroid, approximated for radii << major axis (Moon and Spencer 1961

P. 240, Chang and Laframboise 1975).

For a spheroid of equatorial radius (semi-minor axis) Rp and
half-length (semi-major axis) LRp, with L>>1, this potential is:

Q= cpp(l -4nr /4a2L) (3.14)

do _ ¥ 1 o (3.15)

dr  4n2LT

By inspection of (3.15), we see that we may apply a non-dimensional
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scaled potential mp/LnZI, as a parameter in solving (3.13) for a
cylindrical problem. This is important because it enables us to
treat together all sufficiently long cylindrical probes. In using
our results to interpret probe measurements, L must be related to
the probe length-to-radius ratio A. Clearly A X 2L; the.exact
relation between A and L will depend slightly on e.g. whether the
probe support is insulating or conducting. With this kept in

mind, we assume A = 2L in what follows,

The neutral flow solutions of Takami and Kellar (1969) and
Dennis and Chang (1970) were used to provide (us, ue) in (3.13).
Takami and Kellar (1969) solved the Navier-Stokes equations
numerically for steady two-dimensional viscous flow of an incomp-
ressible fluid past a circular cylinder for Reynolds numbers from
1 to 60 (Fig. 3.1). Dennis and Chang (1970) have extended the work of
Takami-Kellar to Reynolds numbers from 0.1 to 100 (Fig. 3.2).

The numerical values of (us, ue) of Takami - Kellar and Dennis-Chang
were used during the numerical solution (Ch. 4) of esquation
(3.13)-AThese authors have not provided sufficient information to
pérmit us to evaluate the effects of errors in their solutions on
our results. However, for Reynolds numbers of 7, 20 and 40,
neutral flow solutions from both of these papers are available
(Figs: 3.1, 3.2). For Re = 40, we have calculated total probe
current using both flow solutions. 1In this calculatiqn we also
used the values Sc=10 and ¢p==0. The two results agreed to within
2%, even though grid§ of 40x 40 and 60x 60 points were used

respectively.
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3.2 SPHERICAL COORDINATES

A spherical polar coordinate system (r,0,E) with the origin
at the center of the sphere is chosen with 6= 0 as the downstream
radius. Both the fluid motion and electric potential field are
axially symmetric and hence independent of the azimuthal coordinate
€. The fluid motion is described by radial and transverse components
of velocity (ur,ue) in a plane through the axis of symmetry. The

velocity components are

w1
Yr 12 sin6 26 * Y9 T rsin® ar (3.16)

Equation (3.10) then becomes, after removing subscripts:

Ra exp((s) (, 3m, . 3m B0 3mdp  _Fn, dn, ¥n on, _
2 (g 3s¥ Y5230 "35 35 26 20 ~ 3t T ast 3z T S0t 8 3¢ =0
(3.17)

Boundary condiﬁions are the same as in equations (3.9).
The appropriate solution of Laplace's equation (3.8) is-

o=, do__ B (3.18)
The neutral flow solutions of Dennis and Hudson (1973) were used
in (3.17). Dennis and Hudson (1973) solved the Navier-Stokes
_equations numerically for steady flow past a sphere for Reynolds
numbers from 0.1 to 60 (Fig. 3.3). The numerical valges of (us, ue)
of Dennis and Hudson were used during the numerical solution

(Ch. 4) of equation (3.17).
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CHAPTER IV

4, NUMERICAL. METHODS AND CALCULATION PROCEDURE

According .to Chapter 3, we need to solve the elliptic partial
differential equations (3.13) and (3.17) by numerical methods.
In this chapter, we present new '"upwind difference' methods
(Sec. 4.1) developed for time-independent situations in order

to obtain faster computation time and stability of calculations.

The local current fluxes are calculated by an extrapolation
method (Sec. 4.2) and the total currents are calculated by Simpson's
integration rule with Richardson's extrapolation method (McCormick

and Salvadori 1964) (Sec. 4.2).
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4,1 TIME INDEPENDENT UPWIND DIFFERENCE METHODS

The usual methods for numerically solving elliptic partial
differential equations with wvariable coefficients are the
Successive Over-Relaxation Method, the Alternating Direction
Implicit Method and the Quasi-Linearization Method (Smith 1965).

Eéch method involves writing %£ and g;; in finite-difference
approximation form and solving for n approximately using the iterative
method called relaxatiop (Smith 1965), in which the values of n at

points in the computational grid are successively replaced by 1linear

combinations of the surrounding values.

. . 2 )
The usual finite-difference approximation of %;? is

- 2n
d2n _ "m1t Tpo1 m | :
= —3 +0 (&) (4.1)
The usual expressions for the difference %& are as follows.
(L) forward difference: leads always to stable solutions
dn_ Cwl”Tm o - 4.2)
dx Ax .

(i1) backward difference: always leads to stable solutions

n =-n

dn m m-1 ' , -

(i11) centered difference: leads to a solution stable only for

small enough Ax (Fukuda 1969)

n -n .
dn . Bl Tl o) : (e



where =X =X = x - X
bx m m-1 m+1 m

The usual way for solving elliptic part al differential
equations uses centered differences, because the accuracy is higher
than for the other two methods. However, numerical instabilities
occur in this'centered difference ﬁethod because of round off error
and the 'hereditary error' (Fukuda 1969) for large Ax. The
backward and forward difference methods always lead to a stable

solution for any Ax (Fukuda 1969).

We suppose that the (s,8) space is divided into a grid of LxM
points separated by distance increments h. Then we can write the
coordinate distances as s = ¢h and 6 = mh where m = 0,1,2,...,M
and 4 = 0,1,2,...,L.. Thus any point on the grid is uniquely
identified by the indices (4,m). A portion of such a grid spaée

is shown in Fig.‘4.1.

Next we write the partial differential equation in finite-
" difference form. We now consider the problem of solving the

. The substitution procedure for n is

equation for n 4.0
: ?

4,m
determined by substituting the chosen difference expressions into
the given equation and solving the result for LT in terms of the

surrounding values. Relaxation schemes may be divided
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into two classes: (1) simultaneous relaxation, and (2) successive

relaxation.

Since rela:.:ation is an iterative procedure, some method is
needed to identify the order of approximation. We thus label n
with the superscript K to indicate the Kth guess nK. If the method
is convergent, nK should approach the true solution n at all points
a8 K = . In the simultaneous relaxation, the (K+ 1)th guess

) K+1 K K
can then be computed according to (Smith 1965) nL,m = nz,m+ dRL,m s

where RN _ is the residual, which is equal to the difference between the result

L,m

farn in terms of surroumnding values, and the previous walue n » and ¢ is a constant

K

4m 4,m
which depends on the finite-difference form and the constants in

the differential equation. Then in the simultaneous relaxation, the

entire new field nK+1 is calculated using residuals computed from

L4,m

the old field.'

However, it is clear that once a new guess has been made at
a given point, the new values can be used to modify the residuals
at the surrounding points. Thus, the residuals can be computed
sequentially starting from grid point (l.1) and working to the
right along the grid to point (L-1,1), then skipping to the second
interior row of points and working from point (1,2), to L-1, 2), etc.,
as shown in fig 4.1, This scheme is called successive relaxation.
In this case the residual at (f,m) is computed using two old guesses
and two new guesses at surrounding péints (L+1,m), (£-1,m),

(¢, m1) and (4,m-1) as shown in fig. 4.1. In this method, the

error decreases twice as fast as in the case of simultaneous
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relaxation (Smith 1965).

Upwind difference methods were introduced by Leith (1965) for
'solving time dependent differential equations. The results show
that the solutions are well stabilized during the calculations.

We have developed upwind methods for our governing equations with
convection term for the time-independent case, in order to obtain
fagter computation time and stability of calculations, In the

partial differential equation as follows

Rz—a_g-\Vn+\vn-v<p-\v=n= 0o N (4.5)

calculation instabilities occur when Ra is relatively large in

all centered difference methods. This is believed to be caused

by loss of diagonal dominance(Greenspan 1975, p. 218).

In our equation (4.5), u sometimes contains a wake (region of recir-
culation) behind the probe (Figs.3.1-3.3), and this might also be

an important source of instability in calculations by other authors.

The idea of upwind difference methods is based on the observation
that in a convective situation, physical information is transported
from the upwind direction, so that some combination of numerically
stable forward differences may give the most useful approximation
of the Qi-vnﬂ term. Also, we shall see that the methods are very

easy to apply to the successive relaxation procedure.
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4.1.1 LOWER ORDER METHOD

The grid structure of the method is shown in figure 4.2 with
the local wind vector u at the central point (4,m). Here we use
rectangular coordinates x and y. In figure 4.2, the wind direction
has been chosen such that u > 0 and uy > 0. The (u- \wn) term in (4.5) can
be approximated by either of the following backﬁard

difference expressions:

u
Cuewn = X - ho . -
urwn = (n!”m n,c-l,m) * 3y (“z,m nl,,m-l) B, (4.6a)

or

- Ltwm = % (Mym-1”Pg-1,m-0 F % (Pget,m™ M-1,0-1 = B
) - (4.6b)
We first consider the purely convective situation in which no
diffusion or potential gradients exist, and (4.5) reduces to u-wn=0.
We wish the information to be transported only from the upwind
direction, so we require that our substitution process have the

following properties:

If u, = uy then n!"‘n = n!,-l,m-l .

If u, = 0 then n""m = nl,,m-l 4.7
If u, = 0 then Dym " n!‘_l’m

The following linear combinations of (4.6a) with (4.6b) have these

-

properties, u, e
AEt By T
. 4.8)
u, /ax+ uy/A}’ IR - '

If u, > uy then u-wn =
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Uy
Rty
1f “x<“y then u-.\ywyn = : 4.9
- u,/Ax + uy/Ay

The fact that (4.8) and (4.9) satisfy the conditions (4.7) can
be readily verified by assuming u-wn = 0, substituting (4.8) and
(4.9) into this relation, and solving for Ny
?

These relations also have another important feature, which we

can see as follows.

u,4x
We define q = |~~— | , and we then obtain: (i) if v >u (q<1)

Uy Ay
then u -\yn = |2 | (n, + (q-1)n - qn ] - (4.10)
2 AX 4,m £-1,m 9 £-1,m-1 :
(11) If ux <u, (@> 1) — - '
then u-\yn = i | [qn, - (g-1)n -n ] (4.11)
= ax LT (TN 1 T el -] y

If we again assume u.\Yn=0 and equations (4.10) and (4.11)

for n.t.,m we obtain if q < 1,

- - 4
then nj,,m = (1-q) nz-l,m+ qnz-l,m-l (4.109)
ifq>1,

then n = (1- 4.119

1 1
4,m q) nz’m’l + q nz'lym'l.

i.e, ifq>1, n becomes just the value of n at the upsi:feam

4,m
point A in figure 4.2, as determined by linear interpolation
between the values nz-l,m-l and n!,,m-l' Ifq<1, n!“m then
becomes the value at the corresponding upstream point on the

left-hand vertical boundary between (£4-1, m-1) and (£-1, m).
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Similar relations can be obtained easily for the other three

and n

cases; (a) 1if u_ <0, uy < 0, we replace nz-l,m’ nz-l,m-l, 4,m-1

b and n ol respectively, (b) if u > 0, uy <0

Y Morl,m® Pgrl,mel L,

and n , respectively

we replace these values by nz-l,m’ nz-l,m+l 2,ml

(c) 1if u <0, uy > 0, we replace these same values by nb+1,m’

nb+1,m-1 and nz,m-l’ respectively, We therefore have an algorithm
which is always in accord with the essential physics of our
situation, i.e. in the purely convective limit it causes information
always to be transferred in the downstream direction along stream-

lines. A similar method by Carlson (1967 p. 240) exists for

problems involving time and one spéce variable.
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4.1.2 HIGHER ORDER METHOD

The interpretation of (4.10’) and (4.11’) in terms of linear
interpolations suggests that a more accurate method can be obtained
by simply replacing these interpolations by higher-order ones,

involving more than two collinear points (figs. 42,4.3). For the

sake of illustration, we consider this time the case when u, <0,

uy, < 0 and q>1. We first fit the density values Del,mbl’

“z,m+1 and nb+1,m+1 with a parabola as follows.
\
n=nz’m+1+A1§+A2§2, where € = (x-xz) /bx.
We then have: . : )
nz-l,m+1=nl,,m-l-1-A1+A° > (4.12)
and:
Berl,ml - Pg,m1’ Mt e
y
Solving, we obtain:
"orl,mel T o1, mel
A1 =
2
n +n - 2n
Ay = £-1,m1 ﬁ_ﬁ-;,nﬂ-l L,m+1 (4,13)

cand ny =0, o+ A q'+4y g2, where ¢/ = 1/q

Next, we fit n and n with another parabola.

L,m+1, g1, m+1 #2,m+1

Similarly, we obtain S a .
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\,
- vy 1_ ‘ r_ 143
n - N ’ .
-Al' - .M-Z,m'i-lz 4,m+1 ) > (4.14)
;o Pp2,me 1 Y "l T 21 me 7
Aa ) 2 J —_

Again when u-wn= 0, we recover, as we should, the following:

’ = . =
if q 0 then n, = n,c,ml-l and nk2 nL,uH—l’

r = =
if q 1 then n . n,&l—l,m{-l and n, nﬁ-l,nﬂ-l .

The best way of also satisfying. the conditions corresponding to
(4.10’) and (4.11") is:
= - -qg’l ’
Pgm T k2t (kp T M) (-9 (4.15)
Therefore, we obtain
_ Lq’-1) 2 _ 1 _ It
n (o 1G9° -20" -2+, ,(1-q")q

L,m 2

AILPYCIEL e ‘12'[“&1,,,,,.10 -3q"%+4q"] (4.16a)

|uy ] -
AY

and u-wn = (n‘e o Ba) where Bj isthe right hand side of (4.16a).

~ For q<1l, from the same mathematical process, we obtain

< La-1) 2 _ o .
nz,m 2 [_n2+1,m(3q 2q 2)+nﬁ+1,m-1(1 9q
_ e N
2T 3D [y g (1-3+49)] | (4.16b)

and u‘\wn = L;E—‘- (n!.,m- B,) where B, istheright hand side of (4.16b).

In special cases where. T nz n is near an edge or a corner,
»

so that the point (4+2,mtl) or (4+1,m+2) is outside our domain, . -

. et op—
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'Similar relations can be obtained easily for the other three

cases: (a) ux>0, uy>0 (b) u, <0, uy>0 and (c) u, >0, uy<0.

Therefore, the numerical method in our éase is to express the
Wen, V¢ *\Wn terms by central differences and u-wn by the higher order upwind
difference form and to use successive relaxation to solve the
charge transport equation (3.13) or (3.17) for n (we call this 7
method "upwind difference method" in later chapters). In applying
these methods to (3.13) and (3.17), x and y are replaced by 8 and

s, respectively, and u, and u, are replaced by ug and u,, respectively.
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4.1.3 ACCURACY OF NUMERICAL METHOD

In order to estimate the accuracy in our numerical methods,
we numerically solved two problems which have known analytic

solutions. These problems involve the usual convection-diffusion

equation:
URppn _ 3%n  3°n  3%n, _ : '
D ax (a—x§+ W*- g;zz') =0 %.170

where we have assumed uniform flow in the x direction. An analytic

solution of (4.17) (Dennis et al 1973) for spherical coordinates is

Rar
2

n=1+ %— exp[ (cos & -_1)] | ' (4.18)

where Ra =URp/D,r =,/%*+y°+2° and n - 1 when r = » (point
source in uniform flow). An analytic solution for cylindrical

coordinates is (Dennis et al 1968).
n=-1+Czex1;>|:-li;—r cose]Ko(B;—r) : (4.19)

where Ko(w) is the modified Bessel function of zero order, and

r= —F:—y? (line source in uniform flow). For example in
cylindrical coordinates, if we solve equation (4.17) numerically
with boundary conditions obtained using numerical values of equation
(4.19), we can obtain the relative error in our numerical methods.
We solve (4.18) and (4.19) numerically in the domain (ra<r<rb,

0<o<m). . T,

Now the boundary conditions from (4.19) are:
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_ Ra Tra Ra Ta
r=romy T 1 + 2exp [-—2- cos 6 ] K ( 2
- . = Ra rp Ra ry
T oW 1+ 2exp [ cos 6 ] K, ( - )

with similar boundary conditions from (4.18). 1In either case v;e

also have:

=0, 8=180°: =—==0

= 1, r,. = 25 to define our

b

where we choose C; = 2, Ra = 10, r,

two test problems. With this choice the variation in each solution
over the chosen domain is of the same order as the solution itself.
The values which the analytic solutionsthen have at r = 1, & =0° and
180° are 2.181 and 1.0 respectively for the cylinder, 3 and 10,
respectively for the sphere.

The uniform flow in tt;e (r,8) coordinates is uy ==-gsin Bm s
u = cos em .

We again transform the radial coordinate using the relation
; = inr., In figure 4.4, we show the relative error between
analytic solutions and numerical solutions for a) cylindrical
coorc!inates b) spherical coordinates, for A= As =1/30. From
figure 4.4, we find the maximum error at 6= 0° and §=40°-50°.
We also find that the error at the determination of local current
fluxes to the inner boundary r=1 is smaller than 0.1% in both

spherical and cylindrical cases. The reason for the larger errors

downstream than upstream is the larger density gradients in these
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analytical solutions " downstream. The maximum relative

error of both spherical and cylindrical cases is shown as a function
of A0 in figure 4.5 (where AB=As for each calculation, A8= BL- Bz_l
and As= {n T in ro-1 ). From the slopes of the lj.nes in figure
4.5, we have obtained graphical estimates of the actual order of

the methods. For the sphere, we obtained O(AGI'OG) for the lower

1.48

order method and 0(AB8 )} for the higher order method. For the

1'22)for the lower order method and 0(A61'57)

cylinder we obtain 0(A©
for the higher order method. For the lower order method, we can say
the order of the method is slightly better than 1, but for the
higher order method the order of the method is about 1.5. The
computation time on the CDC 6600 computer by our numerical

methods is shown as a function of the number of grid points iﬁ
figure 4.6. The computation time at 30x 30 grid points is less

than 200 sec and 140 sec by our numerical method with the upwind

higher order difference and the lower order difference, respectively.

Iterative times for the sphere and the cylinder were approximately 1.6

‘iterations/sec and 3.1 iterations/sec using the higher-order method,

K+1 K

and the iteration was stopped in the condition 2'.'|n£“m--n‘e”ln

[ <10-4,

[ MG ——
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4.2 NUMERICAL INTEGRATION AND DIFFERENCE METHODS

4,2.1 LOCAL CURRENT DENSITY

The local current density from equations (3.6) and (3.7)

is defined as B

dn _dn ds dn

In order to obtain a second order difference approximation for

equation (4.20) we fit n n , and n using a parabola as

1,m° 2,m 3,m

follows
n=Ay s®+ As + Ag

ny o= Ag = 0 from boundary condition, at probe surface (Eq. 3.4)

1,

% om = Ay (88)® + A (ns)

Ny g = 4A; (As)® + 2A,(ps)

O %E = A, + 2A;s

j= gs c=0 = Ao t O(As%) = fﬂg‘?é:2242-+ 0(as®) - (4.21)
Similarly, we fit a parabola through nl,m’ n3,m aﬁd nS,m to obtain
immediately

Equations (4.21) and (4.22) have an error of 0(As®) and O[ (24s)2],
respectively. Therefore we may use the Richardson extrapolation
method (McCormick and Salvadori 1964) to obtain a more accurate

value of the local current density. If j, and j; are the two
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approximate expressions for j given in (4.21) and (4.22), respectively,
then the Richardson extrapolation method yields, to second order:

32n2’m - 12n3’m-+ n

124s

i=(43 -3)/3 = 2.8 , (4.23)



4,2,2 TOTAL CURRENT

The total current for the sphere and current per unit length

for the cylinder are from Chapter 3, Eq. (3.5) as follows:

iﬂ%f" j®)sin 6 d8 (sphere)
0
(4.24)
Lo |
i = j;) j®de (cylinder)

In order to obtain the most accurate possible value of i, we
used integration by Simpson's rule with intervals A8 and 2A6.
We then carried out Richardson extrapolation on the results obtained in

this way (McCormick and Salvadori, 1964).
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4.3 CALCULATION PROCEDURE

The block diagram of a calculation is shown in Fig. 4.7.
The charge transport equations (3.13) and (3.17) are solved using
the upwind difference methods which we have developed in Sec. 4.1.

Boundary conditions are from Eqs. (3.9), (4.18) and (4.19) as

follows:
s = 0: n, o= 0 (from kinetic theory, Lam 1964)
8 = 0° and 18C° -g—g— =0 (from symmetry)
8 =8 = in Ty ® .

LT 1- (1 n, ) ( Lzl )JE exp [-'Rz—a(rz- r!,-l) (1 -cos em)j"

(cylinder)

n Y(1 - Cos em)] (sphere)

4om - 1-(1-nz_1’m)(::,_-_];) exp[-R2 T, T,
where we have used Eq. (4.19) with the approximation:

Ko( x) =~ ( )!5 exp(-x) for large x (Dennis et al 1968). The
boundary conditions at s= s, are from (4.18) and (4.19), which we
assume to give the ratio of the two values nz-l,m and n“”m (Dennis
et al 1968, 1973). This procedure is based on the fact that at
large radii, the disturbance in number density due to the probe

can be expected to approach that of a sink (negative sourcé) in a

uniform flow. These boundary conditions are solved together with

the charge transport equation for each iteration in our calculations.

The iterative calculation was continued until sufficient
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convergence was attained. This decision was made by requiring

K+1 K

- -3
s~ "g.m | < 10-2.

Z |n

In order to achieve the fastest possible convergence the successive
relaxation was done in a generally upstream to downstream order
during each iteration, The calculation procedure for local currents
and total currents was checked by trying several values of the grid
intervals A8 and As, and several positions of the outer boundary Ty -
The Qalues of A8, As and rb which we used for calculation of
densities, local currents and total currents are shown in Table I.
One more check.of the calculation procedure involves the limit in
which Ra (=S¢ x Re) is small. 1In this condition, the numerical
values of total currents and local currents are in good agreement
with the analytical values from the stationary(no-flow) theory (Appendix B).
Each total and local current collection result has been computed

to a relative accuracy of 2% and 5% or better, respectively, in an

average time of approximately 20 minutes on the CDC 6600. In the

spherical case the calculations yielded a relative accuracy of 0.4% or
better in comparison to the analytical solution at stationary

conditions. In flowing conditions these accuracigs refer only

to the solution of the charge transport equation, and not to the

accuracy of the numerical Navier-Stokes solutions used as input to

the calculations. The accuracy of the latter has been discussed

in Sec. 6.3. 1In the cylindrical case the results cannot be cémparedvdﬂnthe

stationary(no-flow) limit for reasons discussed in Appendix B.
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CHAPTER V

5. RESULTS AND DISCUSSIONS FOR CYLINDER IN CROSS-FLOW

5.1 CHARGE DENSITY PROFILES

Numerical results for charge density contours are shown in
Fig. 5.1 using the solutions of Eqs. (3.12) to (3.15). The effect
of the neutral wake (recirculation region, Figs; 3.1, 3.2) is
shown in Fig. 5.1a for a cylinder at space potential with charged-
particle Schmidt number Scc= 102, The neutral wake for the cylinder in
cross flow occurs for Re 27 (Takami et al 1969). Figure 5.la
shows that for a flow with wake (Re= 20), the charge density is
larger in the Trear stagnation regi;n thap in the case of flow without
a wake (Re= 0.4 in Figure 5.la). The reason is that in the case
with wake, the recirculation of the neutral flow brings charge

to the rear stagnation region.

The effect of charged particle Schmidt number is shown in
Fig. 5.1b for Reynolds number 40. We see that the effect of the
wake in the rear stagnation region increases as the Schmidt number
increases. The effécts of surface potential on flow with wake and
flow without wake are shown in Fig. 5.1lc (Re =40, Scc= 1) and 5.1d4
(Re= 0.4, Scc=102) for both attracting potential ((pé/e np=4)
and retarding potential (¢p/e LnA=-4), For the attracting
potential, the effect of the potential tends to symmetrize the charge
density profile around the body for both flow with wake and flow

without wake,
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If we only have two species (ions and electrons)ina plasma, we
can numerically subtract density profiles between ions and electrons.
We may thereby find the net charge density profile (ni-ne) for a

cylindrical probe.

Usually the diffusion Reynolds number for ions is much larger
than that for electrons. Therefore, we can numerically subtract
density profiles between two different values of Ra for the same
Reynolds number. The general appearance of some typical net charge
density profiles is shown in Fig. (5.2): (a) for a stationary
case (b) for flow without wake, (c¢) and (d) for flow with wake.
Figure (5.2) shows that in the presence of flow, the net charge
density profiles can include several regions of alternating sign
downstream of the body. In the case when a wake is present, these
net charge density profiles show more complicated dependence on the
Reynolds number and the ion or electron Schmidt numbér. This
phenomenon may be a very important problem in interactions between
an antenna, electrost#tic probe or mass spectrometer and a balloon
or planetary probe. The measured plasma parameters can be affected
by these several regions of alternating sign of the net charged

particle density downstream of the balloon or planetary probe,
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5.2 LOCAL CURRENT DENSITY

Numerical results for ion or electron local current density j
at the probe surface are shown as functions of angle 6, where we
define 6= 0 at the rear stagnation point, in Fig. 5.3 for various
surface potentials, (a) and (b) for Re=0.1, Scc=10'3 and 104
respectively, (¢) for Re=1, Scc=10'3, (d) and (e) for Re=10,
Scc=10 and 10° respectively, (f) for Re= 40, Scc=10, (g) and
(h) for Re=100, Scc= 0.1 and 10 respectively. Figure 5.3 shows
that for flows without a wake (Fig. 5.3(a) - (¢)), the effect of the
attracting surface potential is to symmetrize the local current
collection and of the retarding surface potential is to unsymmetrize
it. For flows with a wake (Fig. 5.3(d) - (h)), we observe largg
current collections at the rear stagnation region. The effect of
the Vattracting surface potential in these cases is to symmetrize
the current collection at large potentials, and also to increase the

asymmetry of the collection at small potentials.

Figure 5.4 shows the influence of the Reynolds number on the
_1ocal current angle dependence for Scc= 1, cpp/e mA=0 (a), &
(b), -2 (¢) and for Scc=102, (pp/e InA=0 (d), & (e), -2 (§).
Figures 5.4 (a) - (f) show more clearly the effect of the wake on
the local current collection. As noted earlier (Sec. 3) a wake
exists for the cylinder when Re 2 7. We find that the minimum
point of the local current is always close to the flow separation

point and this minimum point is not moved appreciably when probe
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potential is changed.

The local currents are shown as functions of the angle in
Fig. 5.5 for various charged particle Schmidt numbers, for Re= 0.4
(a) cpp/e nA=0, (b) 4, (c) -2, and for Re=20, (d) q;p/e nA
= 0, (¢) 4 and (f)-2. Figure 5.5 shows that the effect of the
charged-particle Schmidt number on the local current is larger in

the front stagnation region than in the rear stagnation region.

The above numerical values of the local current density can '

be used to estimate ion collection by a mass spectrometer orifice

electrode located in a blunt surface under continuum conditions, for

instance in rocket or balloon measurements up to the D-region, in

flames or in flowing afterglows (Parker 1974, Chang 1975).
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5.3 TOTAL PROBE CURRENT

The numerical results for the ion or electron currents per
unit length are shown as functions of the charged particle
Schmidt number in Fig. 5.6 for various scaled surface potentials
cpp/e 4n A at Reynolds number Re=40. Figure 5.6 shows that for
retarding potentials (¢p/€ n A< 0), the effect of charged
particle Schmidt number increases with the potential., For large
enough attracting potentials, the currents become only slightly

affected by the charged particle Schmidt number.

Figure 5.7 shows the ion or electron currents per unit length
for various scaled probe potentials at Sc, = 100. Figure 5.7 shows
that the effect of the flow increases with retarding surface
potentials and decreases with increasing attracting surface
potential. Also, in these two figures there is a slight decrease
of current as either Re or Scc increases, for larger values of
attracting surface potentials (cpp/e gnA 2 6 in both Figs. 5.6

and 5.7).

Figure 5.8 shows logarithmic current-potential characteristics
for various charged particle Schmidt numbers for (a) Re=2,
(b) Re=7, (¢) Re=10, (d) Re=20 and (e) Re=100. Figure 5.9 shows
similar characteristics for various Re at Scc = 103, In
comparison with the usual exponential dependence from

stationary collisionless probe theory (Mott-Smith and Langmuir,
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1926; not shown), we see that misuse of the usual retarding

potential method for the temperatufe determination would lead to

increasing Te overestimates as the flow effects increase (See also Sec.6.3). Alsc
we observe that the effept of the flow is to smooth the 'knee" of

the probe characteristics and to render more imprecise the determ-

ination of the space potential.

Logarithmic current-potential characteristics are shown in
Fig. 5.10 for various Reynolds numbers at a diffusion Reymolds
number of 10°. Figure 5.10 shows ghat the model developed by Lam
(1964) (Sec. 1;1)‘cannot be appiied to a low density plasma |
(AD >> Rp), for the currents have a large dependence on Re even
if Ra is constant. The previous work (Hoult 1965) which extended

Lam's model to the low density plasma case should be reconsidered.

Figures 5.11 and 5.12 show currents vs probé potential for
various charged particle Schmidtvnumbers at Reynolds number 0.4,
and for various Re at Scc==10 respectively. At a large enough
attfacting potential, Figs._5.11~and 5.12 show that the linear
dependence I¢q$ from stationary theory (Appendix B) is recovered.
This point is important for the determination of the electron or
ion temperature (Appendix B).

Nondimensional current at space potential is shown as
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a function of the Reynolds number in Fig. 5.13 for various

charged particle Schmidt nmbers, and as a function of the charged
particle Schmidt number in Fig. 5.14 for various Reynolds numbers.
Figures 5.13 and 5.14 show that the effects of flow on nondimensional
current at space potential increase rapidly as Re and Scc

increase.

Computed values of probe current are presented in tabular
form in Table II. As we discussed in Chap . 3, the above solutions
for total current, local current density and density contour maps
can be applied to both ions and elfctrons, but with wp/eiznA and
Raj for ions ) replaced by-¢p/ZnA and Rae, respectively, for

electrons.
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5.4 APPLICATION TO PRESENCE OF MAGNETIC FIELD

An important application of the present results is to a
cylindrical probe with its axis parallel to an imposed magnetic
field (Fig. 5.15). We can use unchanged the results described in

this chapter except that D, and De are replaced by Dh and Dej.’

i
respectively, where we again assume that the neutral flow is not
affected by the magnetic field, i.e. we have a slightly ionized
plasma, and D.L is the diffusion coefficient perpendicular to the
magnetic field, D = D/[1+(wBTB)2] ,(Bohm et al, 1949). Here wp =
eB/m is the cyclotron angular frequency, and Th is the mean time ketween
collisions with neutrals. The usual Reynolds number is then replaced

by a magneto -diffusion Reynolds number which is defined as:

2U R
= =P _ 2
Ramag D Re Sc/[1+ (mB TB) ]
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CHAPTER VI

6. RESULTS AND DISCUSSION FOR SPHERE

6.1 CHARGE DENSITY PROFILES

Numerical results for charge density contours are shown in

Fig. 6.1 for charged particle Schmidt numbers of 0, 1, and 10

at Re=5, where the solution for Scc==0 is just the diffusion
profile n=1-1/r. Figure 6.1 shows that the charge density
around the sphere becomes unsymmetrical when the charged particle
Schmidt number increases. The effect of a wake on the charge
density distribution is shown in Fig. 6.2. Figure 6.2 shows that
for the flow Qith wake (Re =40), the same phenomenon as in the
case of cylinder in cross-flow (Fig. 5.1) occurs in the rear
stagnation region. 1In both cases this concentration of charge

behind the body occurs at larger values of Scc.

Effects of surface potential on charge density profiles are
shown in Fig. 6.3 at Re=35, Scc= 1 for the surface potentials
¢p/e==-4, 0, and 4. Figure 6.3 shows that the effect of an
attracting potential is to symmetrize the charge density profile
around the body. For retarding potentials, the effect of the
potential is to unsymmetrize the charge density profile. Figure 6.4
shows density-angle dependence for two different distances from
the probe surface, (a) r=4.22 (b) r=1.1275, at Re=5, Scc=1.
From Fig. 6.4, we see again that the effect of surface potential
changes is to symmetrize or desymmetrize the charge density

profiles around the body.
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672 LOCAL CURRENT DENSITY
| Numerical results for the :I;on or electron iocal current
density at the. probe surface are shown as a function of the angle 6
in Fig. 6.5 for various surface potentials, (a) for Re= 20, Scc= 1
(b) for Re =60, Scc= 1. Figure 6.5a shows that for flow without a
wake, the effect of the attracting surface potential is to
symmetrize the current collection and the effect of the retarding
;surface potential is to unsymmetrize the current. The corresponding
diagrams for the cylinder are Figs 5.3(a) - (d). For the flow with
wake (Fig. 6.5b), we observe a wake collection effect in the rear
stagnation region as in the case of the cylinder in cross-flow
(Fig. 5.3(e) - (h)). The effect of attracting surface potential
(Fig. 6.5) in the wake 1s not to symmetrize the current colléctiont,
but to increase the asymmetry of the collection as in the case of the
cylinder in cross-flow (Fig. 5.3). Figure 6.6 shows the influence
of the Reynolds number on the local current angle 'dependence
for (a) q:p/e=0, (b) 2 and (c) -4 at Scc=103. In Fig; 6.6, we
show the stationary solution (Eq. B1) together with the solutions
for nonzero Reynolds numbers. Figure 6.6 shows that in the front
stagnation region, the loéal currents are larger than the stationary
value. In the rear stagnation region, the local current is smaller
than the stationary value in the flow without wake and sometimés is
larger in flow with wake. -

The locai currents are Sh_own as functio‘ﬁs of the angle in Fig.6.7

for various charged particle Schmidt numbers at Re = 40, for (a) 4
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(pp/e=0, (b) cpp/e=2 and (c) q;p/e=-2. Figure 6.7 shows that

the wake effects increase with the charged particle Schmidt

number,
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623 TOTAL PROBE CURRENT

~ Numerical results for the ion or electron currents are shown
as functions of the charged particle Schmidt number in Fig. 6.8
for various surface potentials ¢p/e at the Reynolds number Re= 5.
Figure 6.8 shows that for retarding potentials (¢p/e<:0), the
effect of the charged particle Schmidt number increases with the
potential. For attracting potentials, the currents become less

affected by charged particle Schmidt number.

Figure 6.9 shows ion or electron currents for various probe
potentials at Scc==100. Figure 6.9 shows that the effects of the
flow increase with retarding surface potentials and decrease with

increasing attracting surface potential.

Figure 6.10 shows logarithmic current-potential characteristics
forrvarious charged particle Schmidt numbers at Re=60. Figure 6.11
shows similar characteristics for various Re at Scc==16. The i
result for Scc==0 is the anélytic solution from the stationary (no-flow)
theory (Eq. B.1). The dotted lines in Figs. 6.10 and 6.11
represent the usual exponential characteristic from the
stationary collisionless probe theory (Mott-Smith and Langmuir,

1926), Comparison of our continuum results with this

stationary collisionless curve shows that the usual retarding

potential method for temperature determination will lead to an
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increasing Te overestimate as flow effects increase. Again, we
also observe that the effect of the flow is to smooth the 'knee"
of the probe characteristics and to render more imprecise the

determination of the space potential.

Figure 6.12 shows the diffusion Reynolds number dependence of
the total current for various surface potentials at Re=0.5. From
the figuré, we can obtain an idea of the limitations of the stationary
probe theory. For example, for diffusion Reynolds numbers above
rabout 0.5 at space potential, we need to use these numerical

results instead of the stationary theory.

Nondimensionél current at space potential is shown asa function
of Reynolds number in Figure 6.13 for various charged particle
Schmidt numbers, and as a function of the charged particle Schﬁidt
number in Fig. 6.14 for various Reynolds numbers. Figs. 6.13 and
6.14 show tﬁat the effects of flow on nondimensional current at

space potential increase rapidly as Re and Scc increase.

Computed values‘of probe current are presented in tabular form
in Table III. As we discussed in Chap. 3, the above solutions
for total current, local current density and density contour maps
can be applied to both ions and electronms, gut with qb/ei and Ray

for ions replaced by ~Op and Rg , respectively, for electrons.
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CHAPTER VII

7. COMPARISON WITH EXPERIMENTS AND OTHER THEORIES

No good experimental comparisons can be made with this work
at the present time because of the difficulty of measuring small
gaé velocities (Barker 1922, Eckert and Soehngen 1952). However,
‘we can apply experimental data on forced-convection heat or mass
" transfer to compare with our solutions for the space potential(f%:O),
because these problems are mathematical analogues of ours. To show this we
rewrite equation (2.10) for ¢p = 0¢

Re Sc

—— 4-wn, -\venc =0 : (7.1)

The equations of mass transfer and heat transfer, respectively,

to a sphere or cylinder in flow are;

Be.SC uw.gm-wN =0 (mass) 7
RezPr us\WI-W°T = 0 (heat) : 7

where Pr is the Prandtl number (= cv/0), ¢ is thermal conductivity, c

is specific heat, and T is mass density of the diffusing constituent.

Comparing Eqs. (7.1) (7.2) and (7.3), we see that all of these

problems are mathematical analogues of each other. As a result, the
form of the current dependence on Re and Sc. in the flasma probe
problem is the same as that of the heat transfer on Re and the Prandtl
number Pr, or that of the mass transfer on Re and the Schmidt number,
respectively (Parker, 1974). The usual nondimensional forms of the

heat and mass transfer are the Nusselt number Nu and the Sherwood



number Sh, respectively , where Nu = 2Rphﬂr(§” -T ),

h = total heat transfer, and Sh = 2pr/qu, b = total mass

surface
transfer .

In Appendix A we show that a fourth problem also falls into
this category, namely the electrostatic probe problem in the
quasineutral limit Rp/xD-*w. In this case, we replace i= f(Re, Scc)
at space potential by ia=;f(Re, Sca), where Sca==v/Da, and Da is
the ambipolar diffusion coefficient. 1In this condition, there is

no potential dependence in the probe current.
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7.1 CYLINDER IN CROSS-FLOW

In Fig. 7.1, the numerical results for the ratio j/i of
the ion or the electrom local currents to the total current per
unit length are compared with the heat transfer theory of
Dennis et al (1968) and the heat transfer experimental data of
Eckert and Soehngen (1952) for Scc==0.73 (or Pr = 0.73). Both
| the present work and the work of Dennis et al are for Re= 20,
The dotted lines are the experimental results of Eckert and Soehngen
at Re= 23 (Eckert and Soehngen determined Re by the empirical
expression for total Nusselt number Nu= 0.43+ 0.48,\/?. If we
instead use our numerical total Nﬁsselt number results, this
value is 25.) with the correction ﬁx'thé finite length effect

which is suggested by Jensen and.Kurzius (1969).

The theory of Dennis et al (1968) is based on their numerical
neutral-flow solution (Dennis and Shimshoni 1965), and on
- solving Eq. (7.3) by a series truncation method. But this series
truncation method causes calculation difficulty at larger
values of the Reynolds number and the Prandtl number (Dennis et

al 1973).

The wake effect in the rear stagnation region is apparent
in both the experimental work and the present work in Fig. 7.1 and
we observe differences between the present numerical values and

experimental values of up to about 50%. This may be partly due to
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differences in location of separation pointrof the neutral flow
in the two cases. The disagreement between the work of Dennis
et.alré;d the present work may be due to computational instability
in the numerical method of Dennis et al in the wake region
(Chapter 4)., On the basis of numerical tests (Sec. 4.3) of our
own calculation, we believe that our results are accurate to
within 5%. The ratio j/i of local current density to the total
current per unit length is shown as a function of angle in Fig. 7.2
for Re =100, Raa=104, RP/AD-—*w. The points are the combustor
)duct experimental results of Tsuji and Hirano (1973) for Re= 87 - 144,
Ra_= (8.87 - 14.4)x10°® and Rp/)‘D ~ 10°, A}so shown in Fig. 7.2
is the arrangement of test cylinder and local current probe
used in their experiment. The largest disagreement with the
experiment occurs in the range 8=95° - 145°, Causes of this may
include the following:

(1) The dimensions of the experimental chamber were only
56 and 5.6 probe diameters parallel and perpendicular to
the cylinder axis, respectively, so that the boundary layer of
the chamber may have significantly disturbed the neutral flow
around the test cylinder.

(2) Edge effects on the local current probe (Fig. 7.2) may
have affected the local current density measﬁrements.

(3) Rp/)\D ~ 10° may not>be large enough for a good
éomparison with a theory for RP/xD-*m, because the local cﬁrréntdenSity

for this theory has no potential dependence and the experimental
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results still show a substantial dependence (Tsuji and Hirano 1973).

The total current at space potential is compared with
various heat and mass transfer experiments in Fig. 7.3. 1In this
diagram, the experimental values are corrected for finite length
effects (Jensen and Kurzius 1969). Differences up to 507
between the results are apparent. On the other hand, our results '
for this case appear to be accurate to 2%. This disagreement
might be due to a basic instrumental difficulty in measuring
velocities at these Reynolds numbers (Barker, 1922, Eckert and
Soehngen 1952). Another possibility of error in heat transfer data
might be from the thermal conductivity vs temperature relationship
(Kassoy, 1967). The experiméntal calibration of Tsuji and Hirano
(1973) for Re = 87 - 167 shows:

{ « Re0.52

This relationship agrees well with the present result for
RP/)\D - o, that is {1 « Reo'5 for larger Schmidt numbers (Appendix A

and Fig. 5.13).
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7.2 SPHERE IN FLOW
Numerical results for ion or electron local currents at

space potential are compared with the heat transfer theory of

Denﬁis et al (1973) in Fig. 7.4 for Re = 20, 0.5 and 0. The
solutions disagree with each other even if we consider the
difference of the value of Sc (according to the result for total
current (Fig. 6.14), we expect the current for Sc = 0.73 to be a

few percent smaller than for Sc=1, and their values in fig. 7.5

are always larger than ours). Furthermore, local current density
values in the rear stagnation region must always be smaller than

in the stationary (Re=0) case because the effect of flow without

a wake is always to carry charge away from the rear stagnation
region. The solution of Dennis et al for Re=20 in fig. 7.4 élearly
violates this requirement. This result may be due to computational
instability of their numerical method in the rear stagnation

region (see Chapter 4.1). Total currents at space ﬁotential are
compared with various heat énd mass transfer experiments in Fig. 7.5.
The theory of Rimmer (1968) agrees well at smaller Reynolds numbers
with the present results. At larger Reynolds numbers (Re > 1), the
Rimmer theory becomes inapplicable because it is based on the small
Reynolds number solution of the Navier-Stokes equation and the
numerical solution of Dennis et al may be affected by instabilities
as described above. The theory of Gupalo and Ryazantsev (1972
agrees reasonably well with oﬁrs at larger Reynolds numbers (ReX 60).

Their work is based on an analytic neutral flow solution

(Van Dyke 1964, p. 159) which is applicable at Reynolds numbers up to 120.
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The present results for local current density at the front
stagnation point are compared in Fig. 7.6 with other theories for
charged particle Schmidt numbers Sc, = 1 and 100. The present
results agree well with the results of‘Kodera (1975), Dennis
et al (1973), Gupalo and Ryazantsev (1969) and Rimmer (1968, 1969)
for smaller charged particle Schmidt numbers and also with
Kodera (1975) and Eckert and Drake (1972 p. 413) at larger
charged particle Schmidt numbers. They do not agree well with
Eckert and Draké (1972) at smaller charged particle Schmidt numbers,
nor with Gupalo and Ryazantsev (1969) at larger charged particle

Schmidt numbers,
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CHAPTER VIIT _ = __
8. CONCLUDING REMARKS |
A'méthod has been developed and used to obtain éheoretical |

predictions of the current collected from a continuum, low density
flowing plasma by an electrically conducting electrostatic probe
having spherical or.cylindrical symmetry; the results for the

cylinder have the advantage of being applicable to a magnetoplasma
measurement. The probe characteristic has been determined for

both sphéfical an& cylindrical geometries for charged Schmidt numbers
7uprto 105, for Reynolds numbers from 0.1 to 100 for the cylinder

and 0.1 to 60 for the sphere, for nondimensional probe potentials

from -12 to 10 and for arbitrary ion-to-electron temperature ratios.
Each current coliection restilt has been computéd to a relative
accuracy of 2% or better in an average time of approximately 20
minutes on the CDC 6600 including a relative accuracy of 0.4% or
better at stationary conditions compared withthe analytic solution
(Eq. B.1). Numerical solutions by other authors (Figs. 3.1 and 3.2
for the cylinder and Fig. 3.3 for the sphere)

have been used for the neutral flow. The electric potential profiles
-used for the cylinder are logarithmic, obtained by using the Laplace
potential at the equator of a prolate spheroid approximated for

radii << the major axis. This leads to a scaling for probe

potential which makes the results applicable to all large enough
values of probe length to diameter ratio. The electric potential profiles
used for the sphere are proportional to r-1, obtained by using the
Laplace potential., The charge transport equations are solved using an

upwind difference method developed for time independent situations.
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The numerical results for the total current show that
(1) For a probe at retarding potentials, the effects of Re and
Scc increase with the potential and the usual '"retarding potential"

method for temperature determination leads to large errors

(Sec. 5.3 and Sec. 6.3, Figs. 5.8, 6.10 and 6.11).

. (2) For small potentials, the effects of Re and Scc decrease with

increasing attracting potential and the effect of the flow is to

smooth the 'knee' of the probe characteristics and to render more

-imprecise the determination of the space potential (Figs. 5.8, 6.10,

and 6.11).

(3) At large enough attraéting potential, the linear dependence
for probe current i « ¢p frém the stationary theory is recovered
aslone wéuld expect (Fig. 5.11 and 5.12). Therefore, an improved
method for probe measurements can be applied to the determination

of the electron or ion temperature (Sec. 5.3, Appendix B).

(4) The probe current has only very slight dependence on both

Re and Scc at large attracting surface potentials (Sec. 5.3 and Sec.

6.3, Figs. 5.8, 6.10 and 6.11).

(5) Comparison between the present work and‘experihents

shows good agreement in many but not all cases. (Chapter 7,
Figs. 7.3, 7.5 and 7.6). ﬁxplaﬂations are proposed for cases

showing substantial disagreement.

(6) The present theory for a cylinder in a cross-flow can be applied

with minor changes to a magneto-plasma with field aligned with

e



the cylinder axis (Sec. 5.4).

The numerical results for the charge density distribution
‘around the body show that:
(1 the charge density profiles near a body become unsymmetrical
when Sc; and Re are increased (Sec. 5.1 and Sec. 6.1, Figs. 5.1,
6.1, and 6.2).
(2) A wake (recirculation region) in the neutral flow behind the body
can have large effects on the charge density profiles downstream.
V(Sec. 5.1, and Sec. 6.1, Figs. 5.1 and 6.2).
(3) the effects of surface potential on the charge density profiles
of a body are larger downstream than upstream (Sec. 5.1 and Sec. 6.1,
Figs. 5.1 and 6.3).
(4) at large enough attracting potentials the charged particle
density profiles become symmetrical (Sec. 5.1 and Sec., 6.1, Figs.
5.1, 6.3 and 6.4).
(5) in the presenceof flow, the profiles of net charge density
can include several regions of alternating sign downstream of
the body (Sec. 5.1 and Fig. 5;2).
(6) the numerical results of local current density can be used to
estimate ion collection by a mass spectrometer on a rocket or
balloon up to thevD region, or in flames and flowing afterglows.

(Sec. 5.2, Figs. 5.3, 5.4, 5.5; Sec. 6.2, Figs. 6.5, 6.6 and 6.7).
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APPENDICES

APPENDIX A: Application of Theory to Quasi-Neutral Conditionms !
RP/XD-' ©
Our numerical treatment of Eqs.’(3.13) and (3.17) can also
be applied to large Debye ratio continuum plasmas, i.e. Rp/)‘D-m’
In this limit we can assume Nj o~ Ne ~ N. Then from Egs. (3.1}

and (3.2), we obtain (Lam, 1964)

3=3

e’ -1]—1 = (Di - De) N+ (“e+ “'i) NwW (A-1)
J

= + Pe-D9)  w (A-2)
(p,e+ u.i)N p,e+ by N

2

be

and Je - m— J=NU -D, WN (A-3)
~ e { =~ —~
Mi
J,+ ———— J=NU -D. UN A-4
~1i ue-'— ui —~ —~ a ( )

Depy + Dipe

where Da =
“‘e+ “‘i

Now we take the divergence of either (A-3) or (A-4). We recall that

Y-u= 0 and V-_.Ie= v-Jy = 0. In non-dimensional form, we obtain:
Rey Co
3 g_'wn-van=0 (A-5)
where :
- ZUQR ZUQR v
Ra_ = —F = Re S¢_ = ———& x =
a Da a v Da

We note that D = 2D, when T, =T , D -D when T >>T,.
a i i e’ "a e e i



In this quasineutral problem the boundary conditions are

(Lam, 1964, Eq. 4.2):
n—-1asr-»o

*
n=0atr=r ~1 (sheath edge)

) *
Lam then shows that r = 1 in the limit as Rp/)‘D - o (See discussion
following Eq. 6.13 in Lam, 1964). Our situation therefore is
équivalent to that for space potential in Chapters 5 and 6,

but with Scc replaced by Sca. Therefore no potential dependence

will exist in probe characteristics in the limit Rp/)\D-oca,



APPENDIX B: Application to Plasma Diagnostic Method

The exact analytic current-voltage characteristic previously
obtained by Fendell (1970) and by Chapkis and Baum (19715 for
spheres in the continuum Laplace limit Xc << RP << AD, has been
obtained by Chang and Laframboise (1975) for arbitrarily shaped

"probes in the same limit. This is

P -9
= —2P . = P -
_ie 1- expeqb) ’ 1 {1- exp(¢$/ei)]ei (B-1)

At a large attracting potential, Eq. B.l immediately yields

ie = ¢p or ii = -¢p/ei. (note: Equation B.l cannot be used to
provide the stationary limit for our results for cylinders in flow
(Sec. 5.3), because these are in terms of the scaled surface
potential ¢p/LnA instead of ¢p. However, if we have a large attract-
ing potential, we obtain 1e==¢p/£nA or ii= -c,pp/ei 4nA from the
analysis of Chang and Laframboise (1975, Sec. III) in the limit L-e),

We have also seen that this limiting linear behaviour is also
recovered at large enough probe potentials in the flowing case

(Sec. 5.3, 6.3, figs. 5.8-5.12, 6.10 and 6.11). We now propose a

plasma diagnostic method based on this limiting behaviour. The method

first requires measurement of currents L I, and I; at three

potentials Vlf’ sz and V3f relative to floating poteﬁtial Vv,

where ij = Vj-Vf. These potentials are arranged so that V, and

V, are large and positive, and V; is large and negati&e. Therefore,

from eq. B.1 we obtain approximately:



L, = ¢+ 9 (B-3a)
1, = @pe + &g ' (B-3b)
&5 13 = P3¢ ¥ (B-3¢)

where Pe is the floating potential of the probes relative to
space. We solve (B-3a) and (B-3b) to obtain:

L% e

0 = -
£ i -1,
I.V.,-1.V
o v, - 2V1e " T1V9¢ | (B-4)
L-I

From equation (B-4), we obtain the floating potential Vf relative

to space. The electron reference current I, can now be obtained from

the probe current at space potential by using the relation
Ie = Ioe ie (0, Re, Sce) with ie = ie(-¢p, Re, Sce) provided by

the results in Sections 5 and 6.

The electron temperature now can be obtained from Egs.
(B-3a) and (B-3b) as

ke LoeMieVae)
e -1,

(B-3)

From Eqs. (B-3c), (B-4) and (B-5), we obtain the ion to electron

temperature ratio as

(I,Vyq - 1,V,.) .
213 "1"23 - (e

I3V

'-!I._.:-l

W
D
e e
The current-voltage characteristic at large enough attracting
potential, ipc=¢p, is in good agreement with available experimental
results for both sphere and cylinder geometry (Chen et al, 1970,

1971).
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APPENDIX C. Computer Program Listings

R42C
THEORY OF ELECTROSTATIC PROBES IN A FLOWING CONTINUUM PLASMA

SUH=SOMNIC s INCOMPRESSTIALE FLOW
POATENTIAL PROFILE =LAPLACE POTFNTI AL
NEUTRAL FLCw PROFILE=NUMERICAL SOLUTION OF NAVIER-STOKES EQUATION

SPHFR ICAL PRONDE
HI=1ON DENSITY UT,UR=FLNW FIELD,S=STRFAM FUNCTION.R=RADIOUS,

PJUSLGCAL CURTZENT, PI=TOTAL CURRENT 4F=SURFACE POTENTIAL,
RE=DIFFUSICN REYNOLDS NUMBER/24.+ITER=SITERATIVE TIME.EPS=RFESIDUAL

. noon

anannn

NN

8%

56
10

REAL NI JUTHURSIReTDPILTIRND,PI?2,C +CQyDQAWPI +Q1,00C,PIJ

NDIMENSION MI(L125:65) 4UT(1235665) UR{125¢65) 4T2(65)R( 65)
1+CO(1254+65)D0(125)+PI(H65)+QQ(125:.65):01(125465),P3J -

RD=0Ne03

N=63

TN=3.141615/(N=3,)

I TVAX=4000
FPSMAX=],0F-3

NP1 .-N+1 .
NP 4=N-2 .
NP 2=MN-1

NP 3=N+2

F=19

K=123

KPR 1=K+1

KP2=K~1

KPPI=K+2

KP4=K=2

KPS=K+3

FLOW PROFILE )
(UR(TI+J)sl 241200, }=34N)
(UT{T+sJ)e1=2+120)4J=3,N)

DO~

-

« 00001 .

WHNe ~~ e CGION
- Ty

® e TLLZ v~
Re~RWi 19
Vr+T wuw

“ 04

T=OO0= | 4w (nZ § NONO

o« XN HUHUHNHUDI~Ce we 'l

1-2.)) .
¢3J1I(RIT)oI=1,KP3 )

N
OA
&n
-0
#*
~

ION CFNSITY PROFILE
ROUNDAKY CCNDITIOMS

N 2 J=1,NP3
MI(1+J)=0,0
NI(24J)=0.0

NS 2 1=3.KP3

NI( Ted)=le~1e/RI(T)

PNDe CRDER UD=WIND DIFFERENCE METHOD
UP=STND DIFFERINCE FACTOR

DN 47 J=4,4,NP2
NN 97 1=23,K

97 OCI.J)=(ARSI(UT(IWJIZUR(T4J))))*RD/TD
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LOCAL CURRFENT

CUFRENT

UL

J=3N
WRITE(E«SNIIIPI(I) e I=3eN)

TOTAL CURRENT

WRPITF(R206)

nOo S1
1 PI(IIZ(32.7NI(Red)=~12.*NI(443J)4NI(6+J))7(12+%RD)

UL

/3.

Ll ']
* ") e -
Nl e @
Qw~n G
ZW N\ Z
oMC o~ .
Sy e &
H M H
OO=L ) =
. <L e
O0OLL~wOX
He:nrkunpe
- -y
O Q=
acazxzec

AR PI2=PI24TO*2.%(PJ(2%]1~1)44,%xPJ(2x1+1)+PI(2%[+3))

SC PINI=PI1+TD(PI(JI~1)+4.2PJ(J)+PI(J+1)})/3,

WERITE (/S22 1P12

WRITC(6,207)
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N
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N e
-
-
[ T2
-
av
(S
=8
-0
COoe
»nm
LI ]
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-
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-0 g
axC
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N

$§2 PJIILJI)I=PI(I)I*TLI(Y) ~ -
WRITF (6.211)
WRITE (6501 M(PJII( J)eJd=3.N)
P13=CeC

. DO A7 J=4,NP2,2
47 PI3=PI34TD3(PII(JI=1)+8,%PJJ(J )+PII(J+1))/ 3,
WO ITE(6,502)P13
B14=0,0
DD a6 J=2,MNPB,2
A6 PlAZPTAITNR2 . 2(PJI(25J=1)+4,%PJJ(2%J+1)+PIJI(2%J+3)) /3., —
WRITE(6.502)P14 -
WRYITF(6+212) -
PICC=(16.%PI3-P14)/1S,
WEITE(H,S00)IPICCPI3,PLA
GO TO 1
201 FOFMAT({4SHOCONVERQGEMNCE CONDITION HAS BFEN REACHED AFTER.I[3.10HITER
1ATIONS)
203 FORMAT(15HONO CONVENRGENCF)
204 FNRHAT(OHICISTENCE)
2C6 FOFMAT(SHOFLUX)
207 FURMAT(14HOPROBE CURRENT)
208 FNRMAT(4HN UT)
209 FUEMAT(AMHO UR)
210 FORMAT(4HO NIT)
211 FNRMAT(:i4HOLNCAL NUSSFLT)
212 FCRMAT(14MOTOTAL NUSSELT)
215 FORMAT({4HO RE)
SC3 FORMAT(7EL]l .S)
3C0 FUPMAT( 4)
§C0 FORMAT( «6)
301 FOFRMAT( 10.,5/9F10.57)
S01 FORMAT(
§C2 FORMAT{(
S0A& FORMAT(
(

7E
F1
12
11
F1
12
505 FC MAT(F1

11
Ce
F1
g1
Oe
£l
Oe

SENTRY
EEXERTRERREREXRBREERRFRIRRARXRIERESE  THIS [S END OF JOB S 4k RsnkErRdAs3ss XS ESRESEEEEEER
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THEORY OF ELECTROSTATIC PROBES IN A FLOWING CONTINUUM PLASMA

SUB-SONTC,, INCOMPRESSIRALE FLOW

POTENTIAL PROFILE =LAPLACF POTENTIAL
NEUTRAL FLOW PROFILE=NUMERICAL SOLUTION OF NAVIER=-STOKES EQUATION

CYLINDRICAL PROBE
CYLINDECR IN CROSS-FLOW

NI=JON DENSITY ,UT.UR=FLNOW FIELDS=STREAM FUNCTIONLR=RADIOUS,
PJ=LCCAL CURREMT.RPI=TCTAL CURFFNT 4F=SUFFACE POTENTITAL,
RESDIFFUSION REYNOLDS NUMBER/2,.,ITER=ITERATIVE TIMELEPS=RES IOUAL

REAL NI UT URSeRsTDPI1+RNDPT2,
DIMENSTION NI(H65,65%) UT(6S5+65) s UR
1sCO(65465) DRQIES) PI(65) S
2,TT(65)

N=63

TD=3.,141615/60, -
FN=2s141€15/60. ’
ITMAX=2000

RE=25C0 : .
CD=4,116 ’
CPSMAX=1,0E~3

NF 1=N+1

NP S=N/2e¢~=1s -

NP 6=N/2. %1 .
NPa=N-2

NP 2=N=-1}

NP 3=N+2

65+,65)
6S)

(6565) R (65)

PJ +G1,QQsPJIJT
.
5e65) e PIJI(6S5)

TT
(
(

PWNe

]
o]
T

FLOY PROFILE

READ(1+4300)C(S{TI+J)sI=34NP2)sJ=4,NP2)
DO 53 J=1.NP3
T(JI=SSIN((J=3.)*TD)
TT(J)ISCCS((JI=3.)%TD)
S(2eJ)=0. )
SINGIIZ{EXP(RNDENDA) I 2T J)=Cl *(1e=(U=3.)2TD/3.,141615) /2.
SIMP3, J)=(FXP{REEN) I®T(II-COE(1a=(J~-3.)xTD/3.141615)/2,
S(NP] ¢ J)=(EXP(RD®NP2) I 2T (J)-CD* (1 e~(J~3)*TD/3.141615)/2.
83 S(1.,J)=0,0
DU 54 1=2.NP3
S(I.N)=0,0
S(1+3)=0,0
S{T«NP3)==S(1iNP4)
S{TeNP1)==S{I,NP2)
5(Je2)==S(1,4)
4 S(Te1)==S(1+5)
WRITF(3,20%)
DO 10 I=1,8P3
1C R (1)=EXP(FD®( 1=2.))
CRITE(324204)
WEITO (343010 (R(I)eI=1.NP3 )
N 21 I=3.N
NO 21 J=3eN
UT(IeJ)==(Be*(S{T#1¢J)=S(I=14J)0=(S{142:,J)=S({1=-2+J)))/(RDO=2R(1)%12)
21 UN(T1+4J)=(Be%(S(TeJ4+1)=~S{leJ=1))=(S(1,U+2)=S(1+J=2)))/7(TO=R(1)%12,.)
WRITF(3.208) ’
WRITF(3.,209)

ICN PENSITY PROFILFE
8NUNDARY CCNOITIONS
DN 2 J=14NF3

NI{1¢3)=Cel
NI{(2sJ)=Ce0



1+J))/RD

8459
RE*AZS(UT(I..J4))/TD

»E
R(

0.5 -
URDEQ.UP-WIND NDIFFERENCE METHOD

UP-4L:D DIFFERENCE FACTOR
(AESC(UP(1,J)/UT(14+J))))*TD/RD

3sN
4 ¢NP2

1

J

1+J)

a7
SG7 Q(I.J)=(ASS((UT(I+JI/UR(T+J))))IERD/TD

DO 2 1=3eN
DO 97 J=4,MP2

2 NI(
N0 9A 1=3.N

2ND .

Do

nDa ve
6 QQ(T.J)
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cC-28 :
1AT IONS) . - -
2C3 FOARMAT () SHOND CONVERGENCE) -
204 TOKMAT(OHOVISTENGT)
205 FORMAT(1HHOSTEARM FUNCTION)
20/ FURMAT (SHOFLUX)
207 FOPMATI1AHOPRNIBE CURRENT)
208 FORMAT({aK) UT)
209 FORAAT(AHO UR) : . .
210 FOPMAT(AaNMN NI)
220 FOFMAT(aH) EF)
300 FUORKMAT{EEL13.H)
SOC FORMAT(FINGOIF10F,F1046)
301 FORMAT{1I2F1CS/12F105/712F1C45/12F10.5/712F10.5/5F10.5/)
501 =0ﬂMAT(|lEl?.a/llFlz S/LIE12e3/711E1265/711L12,5/76E12.5/)
502 FOKMAT(F10.6
215 FORMAT{4HN kf)
504 FUPMAT(F10.3)
STOP
END

SENTRY
EENREE RN EEBR I FER AR IR S A SRR RN TR SRR THIS IS END OF J0D8 REEXERXREREEREEERERE K LR AR SRR KRR KSR KRS
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TABLE I Choices of 46,48 and LI for various Reynolds

numbers.
Re ¥.Y-] A. rb
0.1 ®/30 0.06 122
0.5,1 /30 0.06 54

Sphere
5,10 Y30 0.06 38
20~60 60 0.03 38
0.1~1 Y60 T/60 58
2 /a0 ™40 30
Cylinder

5~ 40 %60 /60 30
70~100 a0 40 30

TABLE II Cylindrical Probe : Computed values of probe current per
unit length for values of Reynolds number from 0.1 to 100.
In some entries, values of exponents are omitted,and are
implied by exponent vqlues in preceding rows,

Re=0.1 Re=0.4
¢ /e s sce10* 10° 10° 104 10° 102
10 9.901 9. 964 10.814 9.967 9.929 9.974
8 7.950 7.979 9.298 8.140  7.949 7.998
6 6.052 5,975 7.889 6.422 5.996 6.001
4 4,29 4.010 6.606 4.876 4.163 3.989
2 2.797 - 2.220 5.460 3.561 2.601 2.142

0 1.6 9.559x181  4.460 2.480 1.451 8.381x15
-2 9.31md 3,320 3.602 1.727 . 7.s58ex1d® 2,511

-4 5.115 1.0%6 2.879 1.169 3.844 6.530x10%
-6 2.775 ‘2.903x18%  2.277 7.856x180 1,941 1.509 °
-8 1.505 7472018 1,779 5.265 9.776x13%  3.079

<10 S.7ix1d® 1.766 1.367 3.506 4,900

=12 4,479 1.025 2.316 2,463



Tabea peoy s

2
.30-1 | Rew5
¢P fe1nn searc® 10° 10% 10° 10%
10 10,173 9.905 9.967 9.999 9.977
8 8.496 7.964 7.979 8.182 7.889
6  6.906 6.099 5.977 6.626 3.982
4 5,499 4.404 4.025 5.263 4.2%
2 4.282 2.981 2.311 4.108 2.877
0 3272 1.908 1.102 3.160 1.845
-2 2,459 117 460118l 2,401 1.151
-6 1,822 7.00718 1,783 1.804 7.123x108!
-6 1,334 4316 7.012a00%  1.342 4,426
-8 9.626x18'  2.643 2,588 9.846x18'  2.769
<10  6.801 ° 1.631 9.139x18°  7.071 1.741
<12 4.645 1.018 3.126 4.906
Re=7 ) Re=10
'¢Ple 1n2 sce10* 10° 10? 10 10° 102 10
10 11.513 9.905 9.810 9.832 9.669 9.940
8  10.468 8.281 7.842 7.970 8.368 7.752 7.925
6 9.567 6.824 5.992 5.951 7.059 5.990 5.909
4 8.626 6.824 4.363 4.002 5.908 4.464 4.012
2 7.818 5.549 3.039 2.344 4.910 3.225 2.438
o 7.083 3.550 2.046 1.202 4.050 2.290 1.335
-2 6,415 2,800 1.350 s.708x180  3.332 1.584 7.082x15!
- s.810 2.191 8.845x18 2,650 2.630" 1.093 3.750"
-6 s.264 1.698 - 5.791 . 1.217 - 2.209 7.502x18'  1.9m1
- 47N 1.300 3.796 5.48418° 1,777 5.115 9.878x10°
2.414 1.414 3.450 ° 5.071 '

<10 4.326 9.772x18  2.486




Tﬁb\&z F")‘

5
Re=20 Resl0
¢Plclna Scw10° 102 10 1 10° 10 ‘10 1
10 120.1% 9.303 9.773 9.972 11.912 9.482 9.488 - 9.92
8 9.06 7.606 7.747 7.982 11.003 8.022 7.555 7.912
6 8.033 6.096 5.800 5.961 10.153 6.720 5.785 s:980"
4 7.180% 4.820" 4.063 3.948 9.362 5.580 4.260 3.941
2 6.2n 3.721 2.670 2.172 8.630 4.568" 3.033 2.317
0 s.s27 2.849 1.67 9.703x18"  7.954 3.768 2.107 1.216
-2 4,865 2.160 1.029 3.785 7.33 3.0m 1.444 6.016x15"
% 4277 1.623 6.301x13'  1.408 6.765 2.488 9.843 2.934
-6 3.78s 1.206 3,870 4610182 6.2644 2.005 6.684 1.385"
-2 3,205 8.8  2.1383 1.496 5.769 1.602 4.518 6.366x15°
.10 2.886 6.341 1,470 4.211 5.337 1.265 3.024 2.903
Re=100
¢ jein & se=10® 10 1 18
10 10.582 9.236 9.600 9.844
) 88 9.550 7.691 7.720 7.923
6 8.7 6.288 5.748 5.936
4 s.a1s 5.083 3.989 3.921
2 7.3 3.996 2.591 2.088
0 6.737 3.116 1.590 8.538x18!
-2 6.135 2.402 9.43318'  2.93:1
-4  s.s88 1.829 5.490 8.872x132
-6 5.093 1.3% .15 2.302
- 4.668 1.012 1.692 5.150x18°
10 4,249 7.225x18'  8.620015% 1.050



TABLE III Spherical Probe : Cuwut.od values of probe current for

values of Reynolds nunber from
,values of exponents are omitted,and are implied by

Jxponsnt valuas in preceding rows.

5 to 60. In soms entries

Re=5 Re=20
¢ se=10 102 10 102 10 1 0
blg
10 11.292 9.985 10,404 9.747 " 10.000
8 9.881 8.185 . s.os 8.260 8.000
6  8.566 6.573 5.968 7.648 6.375 5.997 6.003
4 7.378" 5.252 6.264 6.456 4.815 3.980 4.078
2 6.316 3.985 "2.887 5.502 3.666 2.7% 2.313
0 5.378 3.1 1.997 4.577 2.806 1.823 -1.000
-2 4.651 2,266 1.263 3.780 2.087 1.186 3.130018!
4 4.006 1.681 8.005x28"  3.164 1.572 7.22008"  7.46110%
-6 3.439 1.226 4,937 2.624 1.191 4280 1,490
-8 2,94 s.796x18  2.9m 2,190 89700180 2.489 . 2.68318°
<10 2.513 6.202 1.775 1.83 4.548 1.401 4.536x10*
Reedd Rew60
'Y /. $e=10° 10 1 10° 10 1 )
10 10.067 9.851 10.996 9.891 10.000
&8 9.15 8.146 9.796 8.100 8.000
6 8.158 6.493 5.666 8.81) 6.791 5.73 6.003
4 7.2 5.251 4173 8171 5.778 4,391 4,015
2 6.2 4.198 3.025 6.931 4.650 3.278 2.313
0 5.697 3.345 2.141 6.235 3.804 2.344 1.000
-2 4.815 2.488 1.415 5.508 2.960° 1.638 31308
-6 4.038 1.849 9.478x18' s.0m 2.506 1.203 7.461x15°
-6 3.329 1.485 5.927 4,256 1.868 7.660u18" 1.490
-8 2.649 1.091 3.608 3.726 1.415 5.110 2.683185°
-10 2,227 734518 2,146 3.243 1.082 3.314 &.53610"
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flowing plasmas. In sll of these applications, typical Reynolds
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J4%5 FICIRE 3.2 Streamlince for stesdy flow 'past a circular cylinder.

/ Values of the dimensionless stresm functies,¥, are sbowm
_:!‘.‘. for each streamline. Values of Y for the closed stresmlimes,
—— Y _,sre given folloving the Reynolds nusber,wbere sppropriate
/—\m . iurttu fros the centre of the wake.(a)Re=S;(b)Rew7;(c)Rew
10; ¥ _e-0,.0002; (d)Re=20;: ¥ =-0,008,-0.0058; (¢)Re=bD: ¥ «0.0328
__/_\_m / @’_“m +=0.0846,+0. 0164, -0.0082; (F)Re=70: ¥ _=»-0,07,-0.06,-0.055,
=0.023; (3)Re=100: § =-0.1,-0.06,-0.05,-0.035.( fros Deants

and Chang 1970 )

PICURE 3.) Streamlimes for :(A)l-d,(b)lc—lo.(e)lenzo.(‘)l.—‘b(mlou‘
stresmlines, starting fros the centre,are¥ =-0.0003 and \¥=
«0,0001).( from Dennis asd Walker 1971,Denmis and fudson 1973 )
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PIGURE 4.2 Grid structure and upwvind difference methods.
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PIGURE 4.3 Interpolation procedure for higher order upwind difference
msthods.

—-———{0—-——-—- — - —
____E'.;-____;_--

Cylinder
rc =1
rb =25
Ra=10
Cr 2
AS=K/30
U  ae=¥30

FIGURE 4.4 Contour map of relative error G between analytic
solutions and numerical higher order upwind
difference solutions. (a) cylinder (b) sphere.
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FIGURE 4.4b Contour map c¢f relative error G between nmlytté solutions and

numerical higher order upwind difference solutions.
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Ravier-Stokes
Equation

y(r.e)

Initial Value

n(r,0)=1- -'7

Farabolic

Charge Transport

|

Laplace's
Equation

*(r,9)

i Equation

Derivative
+Richardson Metbod
o

Dp-Wind

Methed

Y

Difference

Density Profile

n(r,e)

FIGURE 4.7 Block diagram of mathematical methods.

Local Current

ite)

probless.

sre given in Sec.4.1)

upvind difference test

and cutoff condition

FIGURE 4.6 Computation time on CDC 6600 for
Tihe per iteration

Simpson Method
+Richardson Method

Total Current
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FICURE 5.1 Charge density comtour saps for cylinder in cross-flow
o (a) Comparision for flov without wake ( Res0.4) and flow with
wake ( Re=20 ) at spsce potential, s:c-lcz.
* where we define nR0,.9999 equal to 1.0,

O
e
e

—dee

FIGURE 5.1b Comparision of charged particle Schmidt number effects on
charge density at Re=4O,space potential.




lo* 28

FIGIRE 5.1c Comparision of surface potrential eifects on charge densirv for flow
with Hlke.Re-AO,SCC-L

FIC!'RF S.1d Comparison of surface potenthlzeffe:ta on charge densitv for
flow without wake, Re=0.4, ~1c‘-10 .
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(a) (b)

=> (e) (d)

"
+

4

+

+
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FIWHE 5.2 General appearance of net charge densitv ( n, - n \ contour
map. (a) stationarv case (b) flow without wlk% (c\e(d\ flow with
wake (sphere Rex 20, cvlinder Rex 7).

7 Re =0.1
% //snA-s Scc= 103

o 30 60 90 o° 120 150 180

FIGURE 5.3 Angle dependence of local current to cvliinder in cross-
flow for various g’urhce potentials. We define the rear
stagnacion point as 6=0 . (a) Re=0.1,Sc 10" (k) Res0.1,
Se 10" (c) Res1,5c =107 () Re=10,5c =10 (e Res10,Sc
“167 (£) Re=40, Se_=10 (z) Re=100.5c_=0.1 (h} Re=100,Sc_
=10 . ¥f{fects of wake are observed in Fig.S5.3(d\-«(h) at

the rear stagnation region.
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°°
FIGURE 5.3b Angle dependence of local current for various surface
potentials. Re-O.l.Scc'lo .

0 30 60 90 120 150 180

e’

FIMRE 5.3¢c Angle dependence of locsl current for various surface
potentials, Re=l, s:c-lo .



FIGURE 5.3d Angle dependence of local current for various surface

potentials. Re-lO.ScCIIO.

0o ——g__.—; e e

o 30 60 90 120 150 180
eo

FIC'RE S.3e Angle dependence of local current for various surface

potentials. Re=10, Sct-loz.




0 ==_—-—-4_-‘g-—¢——' | l
o 30 90 120 130 180
"0
FIGURE 5.3f Anple dependence of local current for various surface
potentials. Re=40, s:c-lo.
‘!\

o 30 60 90 e° 120 130 180

FIGURE 5.3 Angle dependence of local current for various surface

potentials. Re=100, Scc-O.l .
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FIG'RE 5.3h Angle dependence of local current for various surface

potentials. Re=100, Scc-l() .

i |
° 30 60 90 120 150 180
eo

1 current to cvlinder im cross-

FICURE 5.4 Angle dependence of loca
flow for various Reynolds numbers. (a) Sc.=1, ¢ /€in A =0

®) sc =1 #/un At (&) Sc=1,8K1n A =2 (d) S 10
%kln A -o (e) sc =102 %Mn A % () se_ =102 q/nn
Ae-2.
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e

Jll;ﬂllLlllllJlllJ
[ ] 30 60 90° 120 150 180

FIMURE 5.4b Angle dependence of local current for various Revnolds
numbers.Sc =1, ?p/‘ lInA =4,

1

. %e/.nw-:

ll

o 30 60

JJilllllJll]
90

o 120 150 180
L

FICIME 5.4c Angle dependence of local current for various %evnolds

numbers. .‘:cc'l. Qp/l InA = -2,
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15—
~ Sce=10? Re =10%
-~ Q/. = 0
n 0

10—
J
40
- 102
- 40
s 20 7
- ' 7,5,2,1,0.4
L %)
//‘ /
e
- - i .':-’ - 0.4
o T s XA | T
) 30 60 90 120 150 180
eo
FIGURE 5.4d Angle dependence of local current for various Revnolds
numbers. Scculoz, ¢ /€ =0 .
P
15—
~ $c.=102 Re=10
= 70
w02 Q foinn-4
- ‘o
70
1
j al 04
= 1 °

oJlllJlllllllllllJ
0 30 60 90eo 120 150 180

FICURE S5.4e Angle dependence of local current for various Revnolds
numbers . Scc-loz. g/i InA=4,




i $ce=102 Re =¥

_ g/.m-z

-

T
Y

% .

° /€ et e 11
[ ) ® 60 90 120 150 190

4

FIGURE 5.4f Angle dependence of local current for various Reynolda
numbers . s:c-loz, ‘p/l InA = -2,

FIGORE 5.5 Angle dependence of local current to cylinder in cross-
flow for various charged particle Bchdidt numbers.(a)Res
0.4, ‘," InA =0 (b)Re=0.4, ¢P/c In A=s (c)Re=0.4, QF/q
In A=-4 (d)Re=20, Qpl!ln A=0 (e)Re=20, ’p/‘ln Ae2 (f)Re=
20, Q,mn Mt . »
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FIGURE 5.5b Angle dependence of local current for varicus charged
particle Schmidt numbers. Re=0.4, ¢P/c inh =4,

Re=0.4
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FIGURE 5.5c Angle dependence of local current for various charged
particle Schmidt numbers. Re=0.4, Qp/! InA ==4 .,
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FIGURE 5.5d Angle dependence of local current for various charged
particle Schmidt numbers. Re=20, gll In A= 0, -
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FIGURE 5, 5e Angler dcﬁendcnc(of local c—t;rrent for various charged
particle Schmidt numbers. Res20, ¢P/¢ InaA=2.
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FIGURE 5.5f Angle dependence of local current for various charged
particle Schaidt numbers. Re=20, Qpn In g e-b .
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FIGURE 5.6 Nondimensional probe current { -1/1d as a function of
charged particle Schaidt number for various surface

potentials for cylinder in cross-flow with Re=&0.
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FIGURE 5.7 Nondimensional probe current as a function of Revnolds
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number for varfous surface potentials for cylinder in
cross-flow with Se = 102 .
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FIGURE 5.13 Bondimensional probe current as a2 function of Reymolds
nusber for various charged particle Schmidt numbers for
cylinder in cross-flow at epace potential.
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FIGURE 5.14 Nondimensional probe current as a function of charged
particle Schaidt number for various Reynolds numbers
for cylinder in cross-flow at space potential.
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FIGURE 5.15 Application of present theory to magneto-plasme (Sec. 5.4 ).

0. .O .
"FIGURE 6.1 Charge density contour map for sphere in flow for
various charged particle Schmidt numbers at Re=5 (flow
without wake). *vhere we define n»0.9999 as 1.0, .
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PIGURE 6.2 Charge density coutour map for sphere in flow for
various charged particle Schmidt nusbers at Re=k0 (

flow with wake ).
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FICURE 6.3 Surface potential effects on charge density contour
map at la-S.Scc-l .
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FIGURE 6.5 Angle dependence of local current to sphere for various

surface potentials(a) le-zo.Sce-l (db) u-so.ug-x .
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FICURE 6.5b Angle dependence of local current for various surface
potentials, Rew60, ﬁcccl .
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YIGURE 6.6a Angle dependence of local current to sphere for various
Reynolds numbers , Scc-lo2 (s) ‘PII-D (®) gﬁ'z (©) %
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FIGURE 6,6b Angle dependence of local current for various Reynolde
numbers, Scc-loz. ‘PIQ-Z . '
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FIGURE 6.6c Angle dependence of local current for various Reynolds
2 |
numbers at s:=-10 . gﬁ 4.
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FIGURE 6.7 Angle d..pﬂ\dcnce of local current to sphere for various
charged particle Schuidt nusbers at Remk0 (2) Qpn-o (bY
@ Me2 (c) @ M=-2 .
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FICURE 6. 70 Angl; dependence of local current gw wvarious charged
particle Schmidt numbers at Res40, ”/0-2 .
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FIGURE 6.7c Angle dependence of loui current for various charged

particle Schmidt nusbers at Re=40, .P e=-2 .
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FIGURE 6.8 Nondimensional probe current as a function of charged
particle Schmidt number for various surface potentials
for sphere,Res5 .
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FICURE 6.9 Nondimensional probe current as s function of Reynolds
number for various surface potentisle for sphere at
5c =107,
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FIGURE 6.10 Romdimensional current-voltsge charactetistics for

variouvs charged perticle Schwidt nusbers for ephere.
fe=60. The result for k¢-0 1s given by £q. 8.1 .
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PICURE 6.11 Nondimensional current-voltage characteristice for various
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FIGIRE 6.12 Nondimensional current as & function of diffusion
Reynolds mumber for various surface potentials at Re~
0.5 .
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Reynolds nusbers for sphere. Sce-lo. The result for Re=0 is

given by Bq. 8.1 .
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FIGURE 6.13 Nondimensional probe current as a function of Reynolds
number for various charged particle Schmidt numbers

for sphere in flow at space potentisl.
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FIGURE 6.14 Nondimensiunal probe current as a function of charged
particle Schmidt number for various Reynolds numbers
for sphere in flow at space potential.
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FICURE 7.) Comparision of total current of present work with other
theories and sxperiments at space potential .l’bw-o.
cylinder in cross-flov.Theories:(1)— present work for 3c =1
and 10° (2)+++ Demnis ot aW(1968)for Sc _=0.73 and 10°
(3)4 Friedlander(1957 for Sc‘-l. Experiments: (a)oooDobry and
. Finn (1956)for $c_=1200 (b)ese Collins and Willisms 1939 for
Scc-0.73 (¢)=— experimentsl correlations of Jensen end Rurzius(1969).

— Present work ‘t‘v‘
33— -~= Donnis ot al 590.73
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PIGURE 7.4 Comparison of locsl current of present work with theory
of Dermis et al (1973) for sphere at spsce potential QP-O

and RP/%-O. (8) Rew20 (b) Re=0.5 (c) Re=0.
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FIGURE 7.5 Comparison of total curreat of present work with other
theories and experiments for a sphere at space potential with
: R_/3\=0. Theory:(1)—=— presest work at $c =1 (2)---=-
Rimmer(1968,1969) at se‘-0.7 (3)+ + Dennis et al(1973)at $c.=0.73
(&4)ymoe—Gupalo and Ryasantsev (1969)at s:c-l (5)eee Yuge
(1956)at S:C-O.u (6) == - = Williams (1954)at scc-o.n.
Experiment:(s) oo Yuge(1960) at 5‘,-0.73-
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rtGUi.! 7.6 Comparison of front stagnatien current dsnsity ;“ of present
work with other theories for a sphere at epace potential with
I'I%-O.(l)— present work for s:c-l and 10° (2)=e=== Eckert

and Drake (1972 for Sc =1 and 10% (eme— Kodera(

1975) for Sc el and 102 (4)awe-=Gups 10 snd Ryssantsev (1969)for
s:c-l and 10° (5)+ + Dennis et al (1973) st lc=-0.73 .
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