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SUMMARY 

A method has been developed and used to obtain theoretical 

prédictions of the current collected from a continuum, incompressible 

flowing low charge density plasma by an electrostatic probe having 

spherical or cylindrical symmetry. The solutions for the low density 

continuum case, i.e. with mean free path « probe radius « Debye 

length, are calculated for Reynolds numbers from 0.1 to 100 for 

cylinders, 0.1 to 60 for sphères, for charged particle Schmidt 

numbers from 0 to lOS, and for scaled probe potentials from -12 to 10 

for arbitrary ion-to-electron température ratios. Each current 

collection resuit has been computed to a relative accuracy of 2% 

or better in an average time of approximately 20 minutes on the 

CDC 6600 at CNES, including a relative accuracy of 0.4% or better 

at stationary conditions compared with the analytic solution. The 

charge transport, équations are solved using upwind différence methods 

developed for time independent situations. Numerical solutions of 

the Navier-Stokes équations by other authors are used for the 

neutral flow. The electric potential profiles used for the 

cylinder are logarithmic, obtained by using the Laplace potential 

at the equator of a prolate spheroid, approximated for radii « 

major axis. The electric potential profiles used for the sphère are 

proportional to r-1, the Laplace potential. 

The numerical results show that: (1) For a probe at retarding 
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potentials, the effects of the flow increase with potential, and 

the usual retarding potential method for température détermination 

of électrons leads to large errors, (2) For small potentials, the 

effect of the flow is to smooth the "knee" of the probe character- 

istics and to render more imprécise the détermination of the 

space potential. (3) At a large enough attracting potential, the 

linear dependence for probe current from stationary theory is 

re.covered as one would expect. (4) The probe surface current 

densities become unsymmetrical when flow is increased. (5) 

Recirculation in the neutral wake behind the body has larger effects 

on downstream than upstream probe surface current density. (6) In 

the présence of flow, the prdfiles of net charge density can include 

several régions of alternating sign downstream of the probe. 

Computed charge densities and probe surface current densities 

are presented graphically. Computed probe characteristics are 

presented in graphical and tabular form. A listing is included of 

the Fortran programs used to obtain thèse results. 
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List of Symbols 

D diffusion coefficient 

e magnitude 'of électron charge 

h shape constant 

I total collected current for spherical probe; total collected 

current per unit length for cylindrical probe. 

J local current density 

k Boltzmann's constant 

K 
o (x) 

modified Bessel function of zéro order 

t probe length 

N number density 

R radius 

Re Reynolds number based on diameter, 
2U CD R p Iv 

S surface àrea 

Se Schmidt number, v/D 

T température 

U flow velocity 

V potential 

ÀD. 
Debye length, (e o kT e /eaN oo 

)* 

\ mean free path 

� mobility 

�stream function 

V kinematic viscosity 

e angle 
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Nondimensional Symbols 

i= I/Id, total current , Id = eN^ DSp/Rp 

j = JRp/N D, 
local current 

L « major to minor axis ratio of prolate spheroid used to 

model cylindrical probe; for relation between L and A see p. 11. 

n = N/N , number density 

Re = 2U 
R p Iv, 

Reynolds number 

Ra = � 2U 
CD R P ID, 

diffusion Reynolds number 

Se = v/D, Schmidt number 

u = U/U , flow velocity 

cp 
= eV/kT , potential 

e = T/T , température ratio 

A = 
ji/Rpî length of cylindrical probe. For relation between 

A and L see page 11. 

Subscripts 

a ambipolar 

b boundary 

c charged particle 

d diffusion 

e électron 

i ion 

K itération number 

k ,2, m grid point 

o at space potential 

p probe 

r radial component 

z axial component 

e angular component 

» at infinité radius 

Note: Additional symbols are defined as they occur in the text. 
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CHAPTER I - 

1. INTRODUCTION 

A method has been developed and used to calculate the space 

charge density profiles near spherically and cylindrically 

symmetric electrostatic probes immersed in a flowing low charge density 

continuum plasma, and thereby to calculated the current collected 

by such probes from the surrounding plasma. A low density 

continuum plasma is one in which mean free path « probe radius 

« Debye length. 

An electrostatic probe is a pièce of conducting material 

that is inserted into a plasma on a mechanical support which 

provides electrical connection from the probe to external 

circuitry (Fig. 1.1). The probe potential is varied, slowly 

enough to eliminate transient effects, over a range that 

normally includes the plasma potential. The electric current 

collected by the probe from the plasma is recorded as a function 

of probe potential. The shape of this curve, known as the "probe 

characteristic", dépends on the composition, the flow velocity and 

the thermodynamic state of the plasma, and therefore information 

about thèse plasma state parameters can often be obtained from one 

simple curve. Compared to many other diagnostic tools the probe is 

distinguished by the possibility of direct local measurements of 

plasma parameters. Thèse facts enable the expérimenter to use plasma 

probes as instruments to measure the state parameters of plasmas 
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that exist either in the laboratory or in nature. Figure 1.2 

shows the general appearance of a probe characteristic. Two 

phenomena which appear in figure 1.2, i.e. secondary ionization 

caused by accelerated électrons and électron émission from 

probe surface due to ion bombardment, are not studied in the 

présent work. 

Two important examples of low density continuum plasmas 

exist in nature, that is planetary lower ionosphères and strato- 

sphères , and electrostatic probes are frequently carried by 

planetary probes or balloons in order to investigate their surround- 

ings. 

The local disturbances created in the ionosphère or strat- 

osphère by the entire planetary probe or balloon can often be 

analysed using théories developed for electrostatic probes, 

since the vehicle itself constitutes a conducting object immersed 

in a plasma; in this case there is no external connection to allow 

current to drain off, and the planetary probe or balloon will 

arrive at an equilibrium or "floating" potential at which it 

collects no net current (Fig. 1.2). 

Récent developments of flowing afterglow plasmas, flowing 

gaseous lasers, diffusion flame plasmas, discharge physics and 

atmospheric electricity hâve created a need for probe measurements 

in conditions of low charge density (� 108cm"3) and médium neutral 

pressure (� 1 torr) plasma, i.e. under conditions in which the Debye 
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length may be relatively large but the mean free path is relatively 

small. The approximate range of probe conditions in thèse various 

flowing plasmas is shown in figure 1.3. Also, in probe 

measurements it is always advantageous to use the smallest probe 

size consistent with electrical and mechanical constraints, in 

order to get minimum 
plasma 

disturbance and maximum localization of 

measurements. In this work, we develop a numerical method to obtain 

the probe characteristic for the limit in which ionization is 

slight enough that Debye length » probe radius, so that the electric 

potential profile surrounding the probe obeys Laplace's équation. 

Numerical solutions by other authors are used for the neutral flow. 

In order to solve the partial differential équations arising 

in this problem, we hâve developed an "upwind différence method" 

for the time independent case, in order to obtain faster 

computation time and stability of calculations (Chapter 4). 

In Chapters 5 and 6, we présent results of computations 

carried out for cylinders in cross-flow and sphères in flow. We 

use the numerical results to demonstrate that the usual retarding 

potential method for électron température measurement leads to 

serious error in flowing continuum conditions. We also examine the 

charge density distributions around sphères and cylinders in the 

présence of flow. Then we find that the profiles of net charge 

density can include several régions of alternating sign 

downstream of the probe. Comparisons with experiments and other 
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théories are discussed in Chapt. 7. The application of the 

présent work to the limit 
R /\Tr*a� 

is discussed in Appendix A. 
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1.1 SUMMARY OF INCOMPRESSIBLE FLOWING CONTINUUM PROBE THEORIES 

A summary of probe théories for both sphères and cylinders in 

incompressible flowing plasmas is shown in figure 1.4. The 

présent work is for Debye ratio 
R /\ 

= 0 (Chapts. 5 and 6) and oe 

(Appendix A), values for which no previous théories exist. 

The general theory for probes in flowing plasmas has been first 

done by Lam (1964). He assumed that under the condition 
Xn/R « 

Re , 

the neutral flow affects the charge density only in the quasi-neutral 

région, since the plasma sheath is much smaller than the neutral flow 

boundary layer. He obtained a general expression for flow effects 

on current-voltage characteristics. Cléments and Smy (1969)(1970) 

obtained approximate solutions for sphères and cylinders by comb- 

ining the model of Lam with an assumed circular sheath edge 

centered downstream of the probe center. Huggins (1974) used the 

same model with an approximate thick sheath solution by Keil (1968) 

to extend the theory to 
R /\ ~ 

1 for sphères. Hirano (1973) 

obtained an approximate solution for cylinders by applying the 

model of Lam with his own approximate neutral flow solution at 

the front stagnation point. Yastrebov (1972) obtained solutions 

for the sphère front stagnation point by using the incompressible 

nonviscous flow solution for R 
/X~^l. 

Ail of thèse théories deal primarily with conditions in which the 

neutral Reynolds number Re is comparable with the charged particle 

diffusion Reynolds number Ra, i.e. the charged particle 

Schmidt number 
Se 

= Ra/Re is of 
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order unity. But the important range of the diffusion Reynolds 

number is 0 to 104, Le. 0.1 to 102 times larger than the neutral 

Reynolds number, in the applications indicated in figure 1.3 for low 

density plasmas. Kodera (1975) used the analytical solutions of 

Van Dyke (1964, p.159) to estimate the neutral flow for Reynolds 

numbers 0 to 103 at the front stagnation point. He obtained 

solutions for 
R /\n � 0, 

and Ra from 0 to 104. 

A large number of références exist on the problem of a 

flat-plate probe in a continuum flowing plasma. Thèse hâve been reviewed 

by ChungjTalbot and Touryan (1974). 
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CHAPTER II 

2. STATEMENT OF THE PROBLEM 

In order to define a mathematical model for the plasma, the 

following assumptions hâve been made: 

1. The plasma consists of two species of charged particles, 

one positive and one négative together with neutrals. Far from 

the probe, the net charge density approaches zéro. Linear 

relations between current density and gradients are assumed for both 

species. In many expérimental situations, thermal contact 

between species is weak enough to allow significant température 

différences to exist between them if one of them acts as an 

energy source or sink . Therefore, an arbitrary température ratio 

is allowed in the theoretical model. In most applications the 

électrons hâve the weakest thermal contact with other species-, 

2. We assume an unbounded, steady state, constant-property 

frozen-chemistry plasma with no magnetic field. 

3. The plasma is slightly ionized, so that the mean free 

paths between ions or électrons and neutral particles are much 

smaller than the meàn free path between ions and électrons. 

4. The neutral flow is assumed incompressible. 

5. The probe surface is assumed fully charge absorbing. 

6. We assume that the Einstein relation � = kT between 

diffusion coefficent D and mobility jj. is valid for ail charged 

species, where e is magnitude of électron charge, k is Boltzmann's 
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constant and T is température. 

7r We assume that Debye length 
X~ » 

probe radius 
R » 

ail 

charged particle mean free paths, so that the electric potential 

near the probe obeys Laplace's équation. 

8. We assume that the diffusion coefficient and mobility 

are constant everywhere. This means that the so-called 

"cooling effect", (Chapkis and Baum 1971) in which the probe cools 

the local plasma, thereby locally changing the diffusion coefficient 

and mobility, is not considered in this theory. 

9. The plasma is slightly ionized, so that the coupling 

between the charge transport problem and the neutral flow is neglected. 
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CHAPTER III 

3. BASIC EQUATIONS AND BOUNDARY CONDITIONS 

According to the above assumptions (Chap. 2), the governing 

équations and boundary conditions (Lam 1964) then are: 

J - N U - 4 Ni 
W" 

Di 
7 

Ni; v - i = 0 (3.1) 

J « N U+u, N 7V-D VN;VJ =0 (3.2) 

^V,= 0 (3.3) 

R-R: N. = 0, N = 0, V = V �����f 

(3.4) 

where N is the number density, V is the potential, R is the radius 

and J is the current per unit area. Subscripts i, e, p, » 

refer to the ions, electrons, probe surface and infinité radius respectively. 

The total ion or électron current I collected by the probe is given by: 

I = te JJ* J- dS (3.5) 

evaluated over the probe surface S, where the differential area 

vector dS is oriented outwardly. We introduce nondimensional 

variables as follows; 

JRp .AN 

2UqbRp u eV 
Ra - 

D 
u - 

u cp = kT 
eo e 

e = T eD JL 
T » �* - kT 

' 
R 

e P 

\7 R p 



- 18 - 

The governing équations and boundary conditions then reduce 

to: 
ciRai 

j = -2e n 
+ 

ne ^"^V NV ' J-e 
= ° (3.7) 

Vfcp =0 (3.8) 

r = 1: 
nt - 

0, ne = 0, 
cp = cp p 

r-eo: 
ni-1, ne-1, cp-O (3.9) 

Using équation (3.8) and assuming that the flow is incompressible, 

i.e. \v � u = 0, we obtain from équations (3.6) and (3.7). 

Ra 

2 U'\\In +\\In -\Vcp-\V3 n 
= 0 (3.11) 

From the governing équations (3.8), (3.10) and (3.11), we hâve 

an uncoupled situation for n. and n . Also, équation (3.10) is 

similar to équation (3.11), but with 
cp/ei 

and Ra. replaced by -cp 

and Ra , respectively. If we solve équation (3.10) for ion density 

this solution can then be applied to the équation (3.11) for électron 

density. Equations (3.10) and (3.11) cannot be solved by analytic 

methods because u in thèse équations is obtained from numerical 

results by other authors. Their solution by numerical methods is 

discussed in Chapter 4. 

3.1 CYLINDRICAL COORDINATES 

A cylindrical coordinate system (r,0,z) with axis along the 

center of the cylinder is chosen with 9=0 as the downstream radius. 
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The fluid motion and electric potential field are assumed to be 

two-dimensional and hence independent of the coordinate z. The 

fluid motion is described by radial and transverse components of veloclty 

(u ,u ) . 
The velocity components are expressed in terms of a 

dimensionless stream function \|r(r,9) by the équations 

Since we want a fine computational grid close to the probe surface 

and we also need a large outer boundary radius for computations, we 

transform the radial coordinate using the relation s = jjn r, as follows: 

os or ' as2 or or 

Equation (3.11) then becomes, removing subscripts: 

Ra exp( s) on 
on _ on �g . âS * £ . , ÔÎ £ . â!^. 0 (3 I3ï 2 Us OS + ue oe os as 06 â6 �îe-r 

The appropriate solution of Laplace's équation (3.8) for the 

cylindrical case can be obtained from the solution for the equatnrial plane of a prolate 

spheroid, approximated for radii « major axis (Moon and Spencer 1961 

p. 240, Chang and Laframboise 1975). 

For a spheroid of equatorial radius (semi-minor axis) Rp 
and 

half-length (semi-major axis) LRp, 
with L»l, this potential is: 

�p = cp 
(1 - 

jfcnr / £ n2L) (3.14) 

dr Zn 2L r 

By inspection of (3.15), we see that we may apply a non-dimensional 
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scaled potential 
cp /Xn 2L 

as a parameter in solving (3.13) for a 

cylindrical problem. This is important because it enables us to 

treat together ail sufficiently long cylindrical probes. In using 

our results to interpret probe measurements, L must be related to 

the probe length-to-radius ratio A. Clearly A � 2L; the exact 

relation between A and L will dépend slightly on e.g. whether the 

probe support is insulating or conducting. With this kept in 

mind, we assume A = 2L in what follows. 

The neutral f low solutions of Takami and Kellar (1969) and 

Dennis and Chang (1970) were used to provide (u , ufi) 
in (3.13). 

Takami and Kellar (1969) solved thé Navier-Stokes équations 

numerically for steady two-dimensional viscous flow of an incomp- 

ressible fluid past a circular cylinder for Reynolds numbers from 

1 to 60 (Fig. 3.1). Dennis and Chang (1970) hâve extended the work of 

Takami-Kellar to Reynolds numbers from 0.1 to 100 (Fig. 3.2). 

The numerical values of 
(u , u ) 

of Takami- Kellar and Dennis-Chang 

were used during the numerical solution (Ch. 4) of équation 

(3.13). Thèse authors hâve not provided sufficient information to 

permit us to evaluate the effects of errors in their solutions on 

our results. However, for Reynolds numbers of 7, 20 and 40, 

neutral flow solutions from both of thèse papers are available 

(Figs: 3.1, 3.2). For Re = 40, we hâve calculated total probe 

current using both flow solutions. In this calculatiqn we also 

used the values Se = 10 and 
çp = 

0. The two results agreed to within 

2%, even though grids of 40x40 and 60x60 points were used 

respectively. 
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3.2 SPHERICAL COORDINATES 

A spherical polar coordinate system (r,9,§) with the origin 

at the center of the sphère is chosen with 0=0 as the downstream 

radius. Both the fluid motion and electric potential field are 

axially symmetric and hence independent of the azimuthal coordinate 

Ç. The fluid motion is described by radial and transverse components 

of velocity 
(u ,u ) 

in a plane through the axis of symmetry. The 

velocity components are 

Ur 
= 
1-2 sine Ô-9 ' U9 

= 
r sin e - Õr (3.16) 

Equation (3.10) then becomes, after removing subscripts' 

2 Us OS ese' os ds de ae aS2 bS be2 ae 

(3.17) 

Boundary conditions are the same as in équations (3.9). 

The appropriate solution of Laplace's équation (3.8) is' 

*- £ � o?=-r £ (3.18) 

The neutral flow solutions of Dennis and Hudson (1973) were used 

in (3.17). Dennis and Hudson (1973) solved the Navier-Stokes 

équations numerically for steady flow past a sphère for Reynolds 

numbers from 0.1 to 60 (Fig. 3.3). The numerical values of 
(u , ufl) 

of Dennis and Hudson were used during the numerical solution 

(Ch. 4) of équation (3.17). 
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CHAPTER IV 

4. NUMERICAL METHODS AND CALCULATION PROCEDURE 

Accordingto Chapter 3, we need to solve the elliptic partial 

differential équations (3.13) and (3.17) by numerical methods. 

In this chapter, we présent new "upwind différence" methods 

(Sec. 4.1) developed for time-independent situations in order 

to obtain faster computation time and stability of calculations. 

The local current fluxes are calculated by an extrapolation 

method (Sec. 4.2) and the total currents are calculated by Simpson's 

intégration rule with Richardson's extrapolation method (McCormick 

and Salvadori 1964) (Sec. 4.2). 
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4.1 TIME INDEPENDENT UPWIND DIFFERENCE METHODS 

The usual methods for numerically solving elliptic partial 

differential équations with variable coefficients are the 

Successive Over-Relaxation Method, the Alternating Direction 

Implicit Method and the Quasi-Linearization Method (Smith 1965). 

Each method involves writing � 
and 

-7-5- 
in finite-difference 

approximation form and solving for n approximately using the itérative 

method called relaxation (Smith 1965), in which the values of n at 

points in the computational grid are successively replaced by linear 

combinations of the surrounding values. 

dsn 
The usual finite-difference approximation of -r-g- is 

2 n + n m-1 - 2n 

UX-2 AX2 
+ ° (^) (4.1) 

The usual expressions for the différence 
� 

are as follows. 

(i) forward difference:leads always to stable solutions 

(ii) backward différence; always leads to stable solutions 

(iii) centered difference:leads to a solution stable only for 

small enough e (Fukuda 1969) 

dn Vl2LcVl 
+ o (,àx2) (4.4) 
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where Ax = 
x m xm-i = xMi- 1 - XM 

The usual way for solving elliptic partial differential 

équations uses centered différences, because the accuracy is higher 

than for the other two methods. However, numerical instabilities 

occur in this centered différence method because of round off error 

and the "hereditary error" (Fukuda 1969) for large Ax. The 

backward and forward différence methods always lead to a stable 

solution for any Ax (Fukuda 1969). 

We suppose that the (s, 9) space is divided into a grid of LxM 

points separated by distance incréments h. Then we can write the 

coordinate distances as s = jîh and 9 = mh where m = 0,1,2,...,M 

and jfc = 0,1,2,...,L. Thus any point on the grid is uniquely 

identified by the indices ( £ ,m). A portion of such a grid space 

is shown in Fig. 4.1. 

Next we write the partial differential équation in finite- 

difference form. We now consider the problem of solving the 

équation for n.. The substitution procédure for n. is 

determined by substituting the chosen différence expressions into 

the given équation and solving the resuit for 
n. X,m 

in terms of the 

surrounding values. Relaxation schemes may be divided 
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into two classes: (1) simultaneous relaxation, and (2) successive 

relaxation. 

Since relaxation is an itérative procédure, some method is 

needed to identify the order of approximation. We thus label n 

with the superscript K to indicate the Kth guess n . If the method 

is convergent, n should approach the true solution n at ail points 

as K CD. In the simultaneous relaxation, the (K+ l)th guess 

K+l K K 
can then be computed according to (Smith 1965) n. 

X,m 
= n, 

1 m 
+ oR. 

a, m 
, 

where 
R, X,ni 

is the residual, which is equal to the différence between the resuit 

for n, In terms of surroundLng values, and the previous value n� , and �y is a constant 

which dépends on the finite-difference form and the constants in 

the differential équation. Then in the simultaneous relaxation, the 

entire new field 
n. 

is calculated using residuals computed from 

the old field." 

However, it is clear that once a new guess has been made at 

a given point, the new values can be used to modify the residuals 

at the surrounding points. Thus, the residuals can be computed 

sequentially starting from grid point (1.1) and working to the 

right along the grid to point (L-1,1), then skipping to the second 

interior row of points and working from point (1,2), to( £ ,-l, 2), etc., 

as shown in fig. 4.1. This scheme is called successive relaxation. 

In this case the residual at (t,m) is computed using two old guesses 

and two new guesses at surrounding points ( £ + l,m), ( £ -l,m), 

(1, mfl) and (t,m-1) as shown in fig. 4.1. In this method, the 

error decreases twice as fast as in the case of simultaneous 
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relaxation (Smith 1965). 

Upwind différence methods were intrcduced by Leith (1965) for 

solving time dépendent differential équations. The results show 

that the solutions are well stabilized during the calculations. 

We hâve developed upwind methods for our governing équations with 

convection term for the time-independent case, in order to obtain 

faster computation time and stability of calculations. In the 

partial differential équation as follows 

calculation instabilities occur when Ra is relatively large in 

ail centered différence methods. This is believed to be caused 

by loss of diagonal dominance(Greenspan 1975, p. 218). 

In our équation (4.5), u sometLmes contains a wake (région of recir- 

culation) behind the probe (Figs.3.1-3.3), and this might also be 

an important source of instability in calculations by other authors. 

The idea of upwind différence methods is based on the observation 

that in a convective situation, physical information is transported 

from the upwind direction, so that some combination of numerically 

stable forward différences may give the most use fui approximation 

of the (u-\vn) term. Also, we shall see that the methods are very 

easy to apply to the successive relaxation procédure. 
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4.1.1 LOWER ORDER METHOD 

The grid structure of the method is shown in figure 4.2 with 

the local wind vector u at the central point (t,m). Hère we use 

rectangular coordinates x and y. In figure 4.2, the wind direction 

has been chosen such that u � 0 and u � 0. The (u \\In) term in (4.5) can 

be approximated by either of the following backward 

différence expressions: 

or 

u.NVn = g (n n (n n 

(4.6b) 

We first consider the purely convective situation in which no 

diffusion or potential gradients exist, and (4.5) reduces to u«\vn=0. 

We wish the information to be transported only from the upwind 

direction, so we require that our substitution process hâve the 

following properties: 

If 
u - x 0 

then n n m- 1 
(4.7) 

If 
uy m 0 

then 
n, = n. , 

The following linear combinations of (4.6a) with (4.6b) hâve thèse 

properties. 
UX + 02UY 

If u � u thenu.\vn = � ^ �- (4.8) 
x y """ 

UJÇ/AX+ uy/Ay 
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If il, � 
Uy 

then u«\vn 
lt:,y ÙS. 

(4.9) 
Ujj/ax + uv/Ay 

The fact that (4.8) and (4.9) satisfy the conditions (4.7) can 

be readily verified by assuming u � \vn = 0, substituting (4.8) and 

(4.9) into this relation, and solving for n.. 

Thèse relations also hâve another important feature, which we 

can see as follows. 

We define q = J . , and we then obtain: (i) if u �u (q�l) 
UxuY x y 

then u-\vn 
1 ; [n, _+ (q-l)n.. - qn...] 

(4.10) 

(ii) 
Ifux�uy (q�l) 

luxl 

If we again assume u-\Vn=0 and équations (4.10) and (4.11) 

for n, 
we 

obtain if q � 1, 

then 
n. 

= (1 - q) 
n.. + qn, .. 

(4.10') 

if q� 1, 

then n. = (1_1) n, 1 + q 1 
(4.11') 

i.e. if q � 1, 
n. A, m 

becomes just the value of n at the upstream 

point A in figure 4.2, as determined by linear interpolation 

between the values 
n. - 

and 
n... If q � 1, n. " 

then 

becomes the value at the corresponding upstream point on the 

left-hand vertical boundary between (t-1, m-1) and (1-1, m). 
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Similar relations can be obtained easily for the other three 

cases; (a) if u 
� 0, 

u 
� 0, 

we replace 
nn 1 , n.. , and n 

by Vl,m' nnil 
and 

n. l, respectively, (b) if u � 0, u � 0 

we replace thèse values 
by n, . , n. , 

and 
n, ,, 

respectively 

(c) if u � 0, u � 0, we replace thèse same values by n. , 

n. - 
and 

n, - , 
respectively. We therefore hâve an algorithm 

which is always in accord with the essential physics of our 

situation, i.e. in the purely convective limit it causes information 

always to be transferred in the downstream direction along stream- 

lines. A similar method by Carlson (1967 p. 240) exists for 

problems involving time and one space variable. 
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4.1.2 HIGHER ORDER METHOD 

The interprétation of (4.10') and (4.11') in terms of linear 

interpolations suggests that a more accurate method can be obtained 

by simply replacing thèse interpolations by higher-order ones, 

involving more than two collinear points (figs. 42,4.3). For the 

sake of illustration, we consider this time the case when ux �0, 

il, 
� 0 and q�l. We first fit the density values n 

n. ,, 
and 

n. - 
. with a parabola as follows. 

n-n 
t,mf- eA., §+A2 §2, 

where = (x-x £ )/Ax. 

We then hâve: 

and : 

Solving, we obtain: 

AI - 
Vl.mt-r nA-l,mfl 

2 

A 
nX-l,mfl+nx+l,mfl" 2n 

(4,13) 

and 
nk, 

= 
n^ ^^A,^ q'+Ag q 12 where q7 - 1/q 

Next, we fit 
n.. , n , ., 

and n with another parabola. 

Similarly, we obtain 
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a ' "l+2,nn-l + n ,t,mrl 2n 
�2 - 

Again when u-\vn=0, we recover, as we should, the following: 

lf q'- - 0 then 
nk, = n^^ and n^ - n^, 

if q' = 1 
then kl 

= 
n^^ and n^ = n^^ . 

The best way of also satisf.ying. the conditions corresponding to 

(4.10') and (4.11') is: 

n nk2 
+ 

(nkl- nk2)(1 - q") (4.15) 

Therefore, we obtain 

n (g 2 -1) [n 1 (3q2 - 
2q' - 2) + 

n (1 - 
,'),' 

' 
+ 

V2,*!'"! 
+ 

VcVii-n(1-3q'" + 
4q (4.16a) 

and u'\vn = - (n m - es) where as is the right hand side of (4.16a). - y ..t.,m 

For q �1, from the same mathematical process, we obtain 

nA,m " (q-l) 2 [ ( 2 ( 

+ 
Vi.-*2««+! EVi.»i(1-3'B 

+ 4q) (4.16b) 

and u-\vn = -»�*� (n - B4) where 
B4 is the right 

hand side of (4.16b). 

In spécial cases where. 
n. A, m 

is near an edge or a corner, 

so that the point (A+2,mfl) or (A+l,mf2) ts outside our domain, 
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we use n. 
m é. 

instead of équation (4.16a) or (4.16b). 

Similar relations can be obtained easily for the other three 

cases: (a) u � 0, u �0 
(b) ux � 0, u � 0 and 

(c) ux � 0, uy � 0. 

Therefore, the numerical method in our case is to express the 

^n, �57cp'\vn terms by central différences and u -NjTn by the higher order upwind 

différence' form and to use successive relaxation to solve the 

charge transport équation (3.13) or (3.17) for n (we call this 

method "upwind différence method" in later chapters). In applying 

thèse methods to (3.13) and (3.17), x and y are replaced by e and 

s, respectively, and 
u and uy 

are replaced by u. 
and 

u , respectively. 
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4.1.3 ACCURACY OF NUMERICAL METHOD 

In order to estimate the accuracy in our numerical methods, 

we numerically solved two problems which hâve known analytic 

solutions. Thèse problems involve the usual convection-diffusion 

équation: 

URpln £ n 

where we hâve assumed uniform flow in the x direction. An analytic 

solution of (4.17) (Dennis et al 1973) for spherical coordinates is 

where Ra =UR 
/D,r 

= J xa + y3 + za and n 1 when r » (point 

source in uniform flow). An analytic solution for cylindrical 

coordinates is (Dennis et al 1968). 

n - 1 + G, exp [ Sp cos e ] K Ea r (4.19) 

where K o (w) is the modified Bessel function of zéro order, 
and 

r - J x 8 + y8 (line source in uniform flow). For example in 

cylindrical coordinates, if we solve équation (4.17) numerically 

with boundary conditions obtained using numerical values of équation 

(4.19), we can obtain the relative error in our numerical methods. 

We solve (4.18) and (4.19) numerically in the domain (r �r�r,, 

0�e�ir). ��"'"�. 

Now the boundary conditions from (4.19) are: 
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r = r : n, = 1 + 2exp [= cos 9 ] K (-2 ) 

r - b nb .9m 1 + 2exp [Ra 2 rb cos e m K 0 ( R?) 

with similar boundary conditions from (4.18). In either case we 

also hâve: 

9 9 = 180° : on 0 

where we choose Ca = 2, Ra = 10, r = 1, rb 
= 25 to define our 

two test problems. With this choice the variation in each solution 

over the chosen domain is of the same order as the solution itself. 

The values which the analytic solutions then hâve at r = 1, 9 =0° and 

180° are 2.181 and 1.0 respectively for the cylinder, 3 and 10 

respectively for the sphère. 

The uniform flow in the (r,9) coordinates is u. =-sin 9 , 

u cos 0 . r m 

We again transform the radial coordinate using the relation 

s = ln r. In figure 4.4, we show the relative error between 

analytic solutions and numerical solutions for a) cylindrical 

coordinates b) spherical coordinates,for A9 = As « TT/30. From 

figure 4.4, we find the maximum error at 9=0° and e = 40° -500. 

We also find that the error at the détermination of local current 

fluxes to the inner boundary r= 1 is smaller than 0.1% in both 

spherical and cylindrical cases. The reason for the larger errors 

downstream than upstream is the larger density gradients in thèse 
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analytical solutions downstream. The maximum relative 

error of both spherical and cylindrical cases is shown as a function 

of 6e in figure 4.5 (where A0 = As for each calculation, 
ùe- E) t- 9... 

and As = Xnr - Xnr . ). From the slopes of the lines in figure m m-1 

4.5, we hâve obtained graphical estimâtes of the actual order of 

the methods. For the sphère, we obtained 0(Ó,91.06) for the lower 

order method and 0(Ó'e1.48) for the higher order method. For the 

cylinder we obtain 0(6g1.22)for the lower order method and 0(Ó'e1.57) 

for the higher order method. For the lower order method, we can say 

the order of the method is slightly better than 1, but for the 

higher order method the order of the method is about 1.5. The 

computation time on the CDC 6600 computer by our numerical 

methods is shown as a function of the number of grid points in 

figure 4.6. The computation time at 30x30 grid points is less 

than 200 sec and 140 sec by our numerical method with the upwind 

higher order différence and the lower order différence, respectively. 

Itérative times for the sphère and the cylinder were approximately 1.6 

iterations/sec and 3.1 iterations/sec using the higher-order method, 

and the itération was stopped in the condition 
£ ' |n. A, m - n. A, m1 

I £ l0"4. 
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4.2 NUMERICAL INTEGRATION AND DIFFERENCE METHODS 

4.2.1 LOCAL CURRENT DENSITY 

The local current density from équations (3.6) and (3.7) 

is defined as 

J dr 'r=l ds dr s=0 ds �s=0 
(4.20) 

In order to obtain a second order différence approximation for 

équation (4.20) we fit 
n, , n_ , 

and 
n3 using a parabola as 

follows 

n » As s2 + A4 + Ag 

n l,m = 
As 

= 0 from boundary condition, at probe surface (Eq. 3.4) 

n2 m " A3(ûs)3 + M^s) 

n3,m 
= 

4As(AsOa + 2A4(ûs) 

:. j = ddn L-o - A4 + 0(6s2) = 
^C ^^ 

+ 0(6s2) (4.21) 

Similarly, we fit a parabola through 
n. 1 ,m n3 

and 
ns 

to obtain 

immédiate ly 

.i-sU- 

4n 3,m 
- 

"5'm + 0[(26s)2J (4.22) 

Equations (4.21) and (4.22) hâve an error of 0(ass) and 0[(2As)8], 

respectively. Therefore we may use the Richardson extrapolation 

method (McCormick and Salvador! 1964) to obtain a more accurate 

value of the local current density. If jx and ja are the two 
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approximate expressions for j given in (4.21) 
and (4.22), respectively, 

then the Richardson extrapolation method yields, to second order: 

j (4j, ja) /3 
= 
32n 

2,m 
-12n 

3,m n S,m (4.23) 
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4.2.2 TOTAL CURRENT 

The total current for the sphère and current per unit length 

for the cylinder are from Chapter 3, Eq. (3.5) as follows: 

i"%rn 
j(6)sine de (sphère) 

0 

(4.24) 

. i 2TT 
0 217 j(8)de (cylinder) 

In order to obtain the most accurate possible value of i, we 

used intégration by Simpson's rule with intervais 68 and 26e. 

We then carried out Richardson extrapolation on the results obtained in 

this way (McCormick and Salvador!, 1964). 
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4.3 CALCULATION PROCEDURE 

The block diagram of a calculation is shown in Fig. 4.7. 

The charge transport équations (3.13) and (3.17) are solved using 

the upwind différence methods which we hâve developed in Sec. 4.1. 

Boundary conditions are from Eqs. (3.9), (4.18) and (4.19) as 

follows: 

s = 0: n 
1 ,m 

=0 (from kinetic theory, Lam 1964) 

9 - 0° and 180° : §| - 0 (from symmetry) 

s = 
s, = Anr, : 

n = 1 - (1 - n 
� 

r exp 
C-T^V r ) (l - cos 8 ) 

(cylinder) 

where we hâve used Eq. (4.19) with the approximation: 

K(x) a 
( 1) k exp(-x) for large x (Dennis et al 1968). The 

boundary conditions at 
s = s, 

are from (4.18) and (4.19), which we 

assume to give the ratio of the two values 
n.. 

and n (Dennis 

et al 1968, 1973). This procédure is based on the fact that at 

large radii, the disturbance in number density due to the probe 

can be expected to approach that of a sink (négative source) in a 

uniform flow. Thèse boundary conditions are solved together with 

the charge transport équation for each itération in our calculations. 

The itérative calculation was continued until sufficient 
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convergence was attained. This décision was made by requiring 

In order to achieve the fastest possible convergence the successive 

relaxation was done in a generally upstream to downstream order 

during each itération. The calculation procédure for local currents 

and total currents was checked by trying several values of the grid 

intervais AS and As, and several positions of the outer boundary r, . 

The values of 68, As and 
r, 

which we used for calculation of 

densities, local currents and total currents are shown in Table I. 

One more check of the calculation procédure involves the limit in 

which Ra (=Sc x Re) is small. In this condition, the numerical 

values of total currents and local currents are in good agreement 

with the analytical values from the stationary(no-flow) theory (Appendix B). 

Each total and local current collection resuit has been computed 

to a relative accuracy of 2% and 5% or better, respectively, in an 

average time of approximately 20 minutes on the CDC 6600. In the 

spherical case the calculations yielded a relative accuracy of 0.4% or 

better in comparison to the analytical solution at stationary 

conditions. In flowing conditions thèse accuracies refer only 

to the solution of the charge transport équation, and not to the 

accuracy of the numerical Navier-Stokes solutions used as input to 

the calculations. The accuracy of the latter has been discussed 

in Sec. 6.3. In the cylindrical case the results cannot be compared with the 

stationary(no-flow ) limit for reasons discussed in Appendix B. 
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CHAPTER V 

5. RESULTS AND DISCUSSIONS FOR CYLINDER IN CROSS-FLOW 

5.1 CHARGE DENSITY PROFILES 

Numerical results for charge density contours are shown in 

Fig. 5.1 using the solutions of Eqs. (3.12) to (3.151. The effect 

of the neutral wake (recirculation région, Figs. 3.1, 3.2) is 

shown in Fig. 5.la for a cylinder at space potential with charged- 

particle Schmidt number Se slO2. The neutral wake for the cylinder in 

cross flow occurs for Re s (Takami et al 1969). Figure 5.la 

shows that for a flow with wake (Re = 20), the charge density is 

larger in the rear stagnation région than in the case of flow without 

a wake (Re=0.4 in Figure 5.1a). The reason is that in the case 

with wake, the recirculation of the neutral flow brings charge 

to the rear stagnation région. 

The effect of charged particle Schmidt number is shown in 

Fig. 5.1b for Reynolds number 40. We see that the effect of the 

wake in the rear stagnation région increases as the Schmidt number 

increases. The effects of surface potential on flow with wake and 

flow without wake are shown in Fig. 5.1c (Re=40, Se =1) 
and 5.1d 

(Re - 0.4, Se - 102) 
for both attracting potential 

(çp 
le tnA = 4) 

and retarding potential 
(cp p le 

jfcnA=-4). For the attracting 

potential, the effect of the potential tends to symmetrize the charge 

density profile around the body for both flow with wake and flow 

without wake. 
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If we only hâve two species (ions and électrons) in a plasma, we 

can numerically subtract density profiles between ions and électrons. 

We may thereby find the net charge density profile (n. - n ) 
for a 

cylindrical probe. 

Usually the diffusion Reynolds number for ions is much larger 

than that for électrons. Therefore, we can numerically subtract 

density profiles between two différent values of Ra for the same 

Reynolds number. The general appearance of some typical net charge 

density profiles is shown in Fig. (5.2): (a) for a stationary 

case (b) for flow without wake, (c) and (d) for flow with wake. 

Figure (5.2) shows that in the présence of flow, the net charge 

density profiles can include several régions of alternating sign 

downstream of the body. In the case when a wake is présent, thèse 

net charge density profiles show more complicated dependence on the 

Reynolds number and the ion or électron Schmidt number. This 

phenomenon may be a very important problem in interactions between 

an antenna, electrostatic probe or mass spectrometer and a balloon 

or planetary probe. The measured plasma parameters can be affected 

by thèse several régions of alternating sign of the net charged 

particle density downstream of the balloon or planetary probe. 
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5.2 LOCAL CURRENT DENSITY 

Numerical results for ion or électron local current density j 

at the probe surface are shown as functionsof angle 9, where we 

define 0=0 at the rear stagnation point, in Fig. 5.3 for various 

surface potentials, (a) and (b) for Re = 0.1, Sc = 1d3 and 104 

respectively, (c) for Re = l, 
Sccm icp, 

(d) and (e) for Re = 10, 

Se =10 
and 108 respectively, (f) for Re=40, Se =10, (g) and 

(h) for Re=100, Se =0.1 
and 10 respectively. Figure 5.3 shows 

that for flows without a wake (Fig. 5.3(a) - (c», the effect of the 

attracting surface potential is to symmetrize the local current 

collection and of the retarding surface potential is to unsymmetrize 

it. For flows with a wake (Fig. 5.3(d) - (h)), we observe large 

current collections at the rear stagnation région. The effect of 

the attracting surface potential in thèse cases is to symmetrize 

the current collection at large potentials, and also to increase the 

asymmetry of the collection at small potentials. 

Figure 5.4 shows the influence of the Reynolds number on the 

local current angle dependence for 
Se = 1, 

cp /e 
in A= 0 (a), 4 

(b), -2 (c) and for Se - 103 , rn le ln A- 0 (d), 4 (e), -2 (f). 

Figures 5.4 (a) - (f) show more clearly the effect of the wake on 

the local current collection. As noted earlier (Sec. 3) a wake 

exists for the cylinder when Re � 7. We find that the minimum 

point of the local current is always close to the flow séparation 

point and this minimum point is not moved appreciably when probe 



- 46 - 

potential is changed. 

The local currents are shown as functions of the angle in 

Fig. 5.5 for various charged particle Schmidt numbers, for Re = 0.4 

(a) 
cp p le 

InA-0, (b) 4, (c) -2, and for Re-20, (d 
cp. p le 

tnA 

= 0, (e) 4 and (f)-2. Figure 5.5 shows that the effect of the 

charged-particle Schmidt number on the local current is larger in 

the front stagnation région than in the rear stagnation région. 

The above numerical values of the local current density can 

be used to estimate ion collection by a mass spectrometer orifice 

électrode located in a blunt surface under continuum conditions, for 

instance in rocket or balloon measurements up to the D-region, in 

fiâmes or in flowing afterglows (Parker 1974, Chang 1975). 
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5.3 TOTAL PROBE CURRENT 

The numerical results for the ion or électron currents per 

unit length are shown as functions of the charged particle 

Schmidt number in Fig. 5.6 for various scaled surface potentials 

cp p le 
An A at Reynolds number Re = 40. Figure 5.6 shows that for 

retarding potentials 
(cp /e 

in A� 0), the effect of charged 

particle Schmidt number increases with the potential. For large 

enough attracting potentials, the currents become only slightly 

affected by the charged particle Schmidt number. 

Figure 5.7 shows the ion or électron currents per unit length 

for various scaled probe potentials at Se = 100. Figure 5.7 shows 

that the effect of the flow increases with retarding surface 

potentials and decreases with increasing attracting surface 

potential. Also, in thèse two figures there is a slight decrease 

of current as either Re or 
Se c 

increases, for larger values of 

attracting surface potentials 
(cp p le 

in A ^ 6 in both Figs. 5.6 

and 5.7). 

Figure 5.8 shows logarithmic current-potential characteristics 

for various charged particle Schmidt numbers for (a) Re=2, 

(b) Re=7, (c) Re = 10, (d) Re = 20 and (e) Re = 100. Figure 5.9 shows 

similar characteristics for various Re at Se = 103. Tn 
c 

comparison with the usual exponential dependence from 

stationary collisionless probe theory (Mott-Smith and Langmuir, 
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1926; not shown), we see that misuse of the usual retarding 

potential method for the température détermination would lead to 

increasing T 
overestimates 

as the flow effects increase(See also Sec.6.3). Aise 

we observe that the effect of the flow is to smooth the "knee" of 

the probe characteristics and to render more imprécise the déterm- 

ination of the space potential. 

Logarithmic current-potential characteristics are shown in 

Fig. 5.10 for various Reynolds numbers at a diffusion Reynolds 

number of 103. Figure 5.10 shows that the model developed by Lam 

(1964) (Sec. 1.1) cannot be applied to a.low density plasma 

(XD » R p), 
for the currents hâve a large dependence on Re even 

if Ra is constant. The previous work (Hoult 1965) which extended 

Lam's model to the low density plasma case should be reconsidered. 

Figures 5.11 and 5.12 show currents vs probe potential for 

various charged particle Schmidt numbers at Reynolds number 0.4, 

and for various Re at Se 
c = 

10 respectively. At a large enough 

attracting potential, Figs. 5.11 and 5.12 show that the linear 

dependence 
I9cp 

from stationary theory (Appendix B) is recovered. 

This point is important for the détermination of the électron or 

ion température (Appendix B). 

Nondimensional current at space potential is shown as 
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a function of the Reynolds number in Fig. 5.13 for various 

charged particle Schmidt tunbers, and as a function of the charged 

particle Schmidt number in Fig. 5.14 for various Reynolds numbers. 

Figures 5.13 and 5.14 show that the effects of flow on nondimensional 

current at space potential increase rapidly as Re and Se 

increase. 

Computed values of probe current are presented in tabular 

form in Table II. As we discussed in Chap . 3, the above solutions 

for total current, local current density and density contour maps 

can be applied to both ions and électrons, but with cp ICiLnA and 

Rai for ions replaced by-m ILnh and Ra , respectively, for 

électrons. 
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5.4 APPLICATION TO PRESENCE OF MAGNETIC FIELD 

An important application of the présent results is to a 

cylindrical probe with its axis parallel to an imposed magnetic 

field (Fig. 5.15). We can use unchangedthe results described in 

this chapter except that 
D. 

and D are replaced by D. 
and D , 

respectively, where we again assume that the neutral flow is not 

affected by the magnetic field, i.e. we hâve a slightly ionized 

plasma, and D is the diffusion coefficient perpendicular to the 

magnetic field, D 
= D/[l+(u3gT )2] ,(Bohm 

et al, 1949). Hère uju = 

eB/m is the cyclotron angular frequency, and 
T B 

is the mean time between 

collisions with neutrals. The usual Reynolds number is then replaced 

by a magnéto - diffusion Reynolds number which is defined as: 

2U R 

Ra^g = ^=Re Sc/Ci+O^V2] 
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CHAPTER VI 

6. RESULTS AND DISCUSSION FOR SPHERE 

6.1 CHARGE DENSITY PROFILES 

Numerical results for charge density contours are shown in 

Fig. 6.1 for charged particle Schmidt numbers of 0, 1, and 10 

at Re=5, where the solution for 
Se c 

= 0 is just the diffusion 

profile n=l- 1/r. Figure 6.1 shows that the charge density 

around the sphère becomes unsymmetrical when the charged particle 

Schmidt number increases. The effect of a wake on the charge 

density distribution is shown in Fig. 6.2. Figure 6.2 shows that 

for the flow with wake (Re = 40), the same phenomenon as in the 

case of cylinder in cross-flow (Fig. 5.1) occurs in the rear 

stagnation région. In both cases this concentration of charge 

behind the body occurs at larger values of Se . 

Effects of surface potential on charge density profiles are 

shown in Fig. 6.3 at Re = 5, 
Se c =1 

for the surface potentials 

cpp/e- -4, 
0, and 4. Figure 6.3 shows that the effect of an 

attracting potential is to symmetrize the charge density profile 

around the body. For retarding potentials, the effect of the 

potential is to unsymmetrize the charge density profile. Figure 6.4 

shows density-angle dependence for two différent distances from 

the probe surface, (a) r = 4.22 (b) r = 1.1275, at Re = 5, Se =1. 

From Fig. 6.4, we see again that the effect of surface potential 

changes is to symmetrize or desymmetrize the charge density 

profiles around the body. 
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6.2 LOCAL CURRENT DENSITY 

Numerical results for the ion or électron local current 

density at the probe surface are shown as a function of the angle 9 

in Fig. 6.5 for various surface potentials, (a) for Re = 20, Se 
=1 

(b) for Re = 60, Se =1. Figure 6.5a shows that for flow without a 

wake, the effect of the attracting surface potential is to 

symmetrize the current collection and the effect of the retarding 

surface potential is to unsymmetrize the current. The corresponding 

diagrams for the cylinder are Figs 5.3(a) - (d). For the flow with 

wake (Fig. 6.5b), we observe a wake collection effect in the rear 

stagnation région as in the case of the cylinder in cross-flow 

(Fig. 5.3(e) - (h)). The effect of attracting surface potential 

(Fig. 6.5) in the wake is not to symmetrize the current collection, 

but to increase the asymmetry of the collection as in the case of the 

cylinder in cross-flow (Fig. 5.3). Figure 6.6 shows the influence 

of the Reynolds number on the local current angle dependence 

for (a) 
cp /e = 0, 

(b) 2 and (c) -4 at 
Se =10a. 

In Fig. 6.6, we 

show the stationary solution (Eq. BU together with the solutions 

for nonzero Reynolds numbers. Figure 6.6 shows that in the front 

stagnation région, the local currents are larger than the stationary 

value. In the rear stagnation région, the local current is smaller 

than the stationary value in the flow without wake and sometimes is 

larger in flow with wake. 

The local currents are shown as functions of the angle in Fig.6.7 

for various charged particle Schmidt numbers at Re = 40, for (a) 
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cp 
p le = 0, 

(b) çp 
p le = 2 

and (c) cp 
p le = -2. 

Figure 6.7 shows that 

the wake effects increase with the charged particle Schmidt 

number. 
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6.3 TOTAL PROBE CURRENT 

Numerical results for the ion or électron currents are shown 

as functions of the charged particle Schmidt number in Fig. 6.8 

for various surface potentials 
cp /e 

at the Reynolds number Re = 5 . 

Figure 6.8 shows that for retarding potentials 
(cp /e � 0) , 

the 

effect of the charged particle Schmidt number increases with the 

potential. For attracting potentials, the currents become less 

affected by charged particle Schmidt number. 

Figure 6.9 shows ion or électron currents for various probe 

potentials at 
Se =100. Figure 6.9 shows that the effects of the 

flow increase with retarding surface potentials and decrease with 

increasing attracting surface potential. 

Figure 6.10 shows logarithmic current-potential characteristics 

for various charged particle Schmidt numbers at Re= 60. Figure 6.11 

shows similar characteristics for various Re at Se = 10. The 
c 

resuit for 
Se = 

0 is the analytic solution from the stationary (no-flow) 

theory (Eq. B.l). The dotted lines in Figs. 6.10 and 6.11 

represent the usual exponential characteristic from the 

stationary collisionless probe theory (Mott-Smith and Langmuir, 

1926). Comparison of our continuum results with this 

stationary collisionless curve shows that the usual retarding 

potential method for température détermination will lead to an 
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increasing T 
overestimate 

as flow effects increase. Again, we 

also observe that the effect of the flow is to smooth the "knee" 

of the probe characteristics and to render more imprécise the 

détermination of the space potential. 

Figure 6.12 shows the diffusion Reynolds number dependence of 

the total current for various surface potentials at Re=0.5. From 

the figure, we can obtain an idea of the limitations of the stationary 

probe theory. For example, for diffusion Reynolds numbers above 

about 0.5 at space potential, we need to use thèse numerical 

results instead of the stationary theory. 

Nondimensional current at space potential is shown as a function 

of Reynolds number in Figure 6.13 for various charged particle 

Schmidt numbers, and as a function of the charged particle Schmidt 

number in Fig". 6.14 for various Reynolds numbers. Figs. 6.13 and 

6.14 show that the effects of flow on nondimensional current at 

space potential increase rapidly as Re and Se 
increase. 

Computed values of probe current are presented in tabular form 

in Table III. As we discussed in Chap. 3, the above solutions 

for total current, local current density and density contour maps 

can be applied to both ions and électrons, but with 
cp 1 1. 

and 
Rai 

for ions replaced by -cpp 
and R% , respectively, for électrons. 
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CHAPTER VII 

7. COMPARISON WITH EXPERIMENTS AND OTHER THEORIES 

No good expérimental comparisons can be made with this work 

at the présent time because of the difficulty of measuring small 

gas velocities (Barker 1922, Eckert and Soehngen 1952). However, 

we can apply expérimental data on forced-convection heat or mass 

transfer to compare with our solutions for the space potentia1(f. 
P =0) 

because thèse problems are mathematical analogues of ours. To show this we 

rewrite équation (2.10) 
for m 

= 0: 

Re Se 

2^ H'Wç-tfriç = 0 
(7.1) 

The équations of mass transfer and heat transfer, respectively, 

to a sphère or cylinder in flow are; 

2 u �\VT1-\VST1 = 0 (mass) (7.2) 

Re2Pr u-WT-X^T = 0 
(heat) (7.3) 

where Pr is the Prandtl number (= cv/o), a is thermal conductivity, c 

is spécifie heat, and � is mass density of the diffusing constituent. 

Comparing Eqs. (7.1) (7.2) and (7.3), we see that ail of thèse 

problems are mathematical analogues of each other. As a resuit, the 

form of the current dependence on Re and Scc in the plasma probe 

problem is the same as that of the heat transfer on Re and the Prandtl 

number Pr, or that of the mass transfer on Re and thé Schmidt number, 

respectively (Parker, 1974). The usual nondimensional forms of the 

heat and mass transfer are the Nusselt number Nu and the Sherwood 
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number Sh, respectively , where Nu = 2R h/o"(T - T ) . 

h = total heat transfer, and Sh 
= 2R b/D VJ 

b = total mass 

transfer . 

In Appendix A we show that a fourth problem als o falls into 

this category, namely the electrostatic probe problem in the 

quasineutral limit R 
hD-=. 

In this case, we replace i=f(Re, Se ) 

at space potential by i 3. = f(Re, 
Se 

â ), 
where Se 

a = v/D , a. 
and 

D a 
is 

the ambipolar diffusion coefficient. In this condition, there is 

no potential dependence in the probe current. 
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7.1 CYLINDER IN CROSS-FLOW 

In Fig. 7.1, the numerical results for the ratio j/i of 

the ion or the électron local currents to the total current per 

unit length are compared with the heat transfer theory of 

Dennis et al (1968) and the heat transfer expérimental data of 

Eckert and Soehngen (1952) for 
Se =0.73 

(or Pr = 0.73). Both 

the présent work and the work of Dennis et al are for Re = 20. 

The dotted lines are the expérimental results of Eckert and Soehngen 

at Re= 23 (Eckert and Soehngen determined Re by the empirical 

expression for total Nusselt number Nu= 0.43+ 0.48,/ Re. If we 

instead use our numerical total Nusselt number results, this 

value is 25.) with the correction for the finite length effect 

which is suggested by Jensen and Kurzius (1969). 

The theory of Dennis et al (1968) is based on their numerical 

neutral-flow solution (Dennis and Shimshoni 1965), and on 

solving Eq. (7.3) by a séries truncation method. But this séries 

truncation method causes calculation difficulty at larger 

values of the Reynolds number and the Prandtl number (Dennis et 

al 1973). 

The wake effect in the rear stagnation région is apparent 

in both the expérimental work and the présent work in Fig. 7.1 and 

we observe différences between the présent numerical values and 

expérimental values of up to about 50%. This may be partly due to 
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différences in location of séparation point of the neutral flow 

in the two cases. The disagreement between the work of Dennis 

et.al and the présent work may be due to computational instability 

in the numerical method of Dennis et al in the wake région 

(Chapter 4). On the basis of numerical tests (Sec. 4.3) of our 

own calculation, we believe that our results are accurate to 

within 5%. The ratio j/i of local current density to the total 

current per unit length is shown as a function of angle in Fig. 7.2 

for Re = 100, Ra 
=104, R p /\�-�a�. 

The points are the combustor 

duct expérimental results of Tsuji and Hirano (1973) for Re = 87-144, 

Raa=(8.87 -14.4)x103 
and 

R p/kD t- 1�. 
Also shown in Fig. 7.2 

is the arrangement of test cylinder and local current probe 

used in their experiment. The largest disagreement with the 

experiment occurs in the range 8 = 95° - 1450. Causes of this may 

include the following: 

(1) The dimensions of the expérimental chamber were only 

56 and 5.6 probe diameters parallel and perpendicular to 

the cylinder axis, respectively, so that the boundary layer of 

the chamber may hâve significantly disturbed the neutral flow 

around the test cylinder. 

(2) Edge effects on the local current probe (Fig. 7.2) may 

hâve affected the local current density measurements. 

(3) 
R /\n c* 103 

may not be large enough for a good 

comparison with a theory for 
R /\ 

because the local current density 

for this theory has no potential dépendance and the expérimental 



- 61 - 

results still show a substantial dependence (Tsuji and Hirano 1973). 

The total current at space potential is compared with 

various heat and mass transfer experiments in Fig. 7.3. In this 

diagram, the expérimental values are corrected for finite length 

effects (Jensen and Kurzius 1969). Différences up to 50% 

between the results are apparent. On the other hand, our results 

for this case appear to be accurate to 2%. This disagreement 

might be due to a basic instrumental difficulty in measuring 

velocities at thèse Reynolds numbers (Barker, 1922, Eckert and 

Soehngen 1952). Another possibility of error in heat transfer data 

might be from the thermal conductivity vs température relationship 

(Kassoy, 1967). The expérimental calibration of Tsuji and Hirano 

(1973) for Re = 87 - 167 shows: 

i oc Re 

This relationship agrées well with the présent resuit for 

Rp/ÀD - 
», that is iRe 0.5 for larger Schmidt numbers (Appendix A 

and Fig. 5.13). 
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7.2 SPHERE IN FLOW 

Numerical results for ion or électron local currents at 

space potential are compared with the heat transfer theory of 

Dennis et al (1973) in Fig. 7.4 for Re = 20, 0.5 and 0. The 

solutions disagree with each other even if we consider the 

différence of the value of Se (according to the resuit for total 

current (Fig. 6.14), we expect the current for Se = 0.73 to be a 

few percent smaller than for Sc=l, and their values in fig. 7.5 

are always larger than ours). Furthermore, local current density 

values in the rear stagnation région must always be smaller than 

in the stationary (Re= 0) case because the effect of flow without 

a wake is always to carry charge away from the rear stagnation 

région. The solution of Dennis et al for Re= 20 in fig. 7.4 clearly 

violâtes this requirement. This resuit may be due to computational 

instability of their numerical method in the rear stagnation 

région (see Chapter 4.1). Total currents at space potential are 

compared with various heat and mass transfer experiments in Fig. 7.5. 

The theory of Rimmer (1968) agrées well at smaller Reynolds numbers 

with the présent results. At larger Reynolds numbers (Re � 1), the 

Rimmer theory becomes inapplicable because it is based on the small 

Reynolds number solution of the Navier-Stokes équation and the 

numerical solution of Dennis et al may be affected by instabilities 

as described above. The theory of Gupalo and Ryazantsev (1972) 

agrées reasonably well with ours at larger Reynolds numbers (Re� 60). 

Their work is based on an analytic neutral flow solution 

(Van Dyke 1964, p. 159) which is applicable at Reynolds numbers up to 120. 
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The présent results for local current density at the front 

stagnation point are compared in Fig. 7.6 with other théories for 

charged partie le Schmidt numbers 
Se = 

1 and 100. The présent 

results agrée well with the results of Kodera (1975), Dennis 

et al (1973), Gupalo and Ryazantsev (1969) and Rimmer (1968, 1969) 

for smaller charged particle Schmidt numbers and also with 

Kodera (1975) and Eckert and Drake (1972 p. 413) at larger 

charged particle Schmidt numbers. They do not agrée well with 

Eckert and Drake (1972) at smaller charged particle Schmidt numbers, 

nor with Gupalo and Ryazantsev (1969) at larger charged particle 

Schmidt numbers. 
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CHAPTER VIII 

8. CONCLUDING REMARKS 

A method has been developed and used to obtain theoretical 

prédictions of the current collected from a continuum, low density 

flowing plasma by an electrically conducting electrostatic probe 

having spherical or cylindrical symmetry; the results for the 

cylinder hâve the advantage of being applicable to a magnetoplasma 

measurement. The probe characteristic has been determined for 

bpth spherical and cylindrical geometries for charged Schmidt numbers 

up to 105, for Reynolds numbers from 0.1 to 100 for the cylinder 

and 0.1 to 60 for the sphère, for nondimensional probe potentials 

from -12 to 10 and for arbitrary ion-to-electron température ratios. 

Each current collection resûlt has been computed to a relative 

accuracy of 2% or better in an average time of approximately 20 

minutes on the CDC 6600 including a relative accuracy of 0.4% or 

better at stationary conditions compared with the analytic solution 

(Eq. B.l). Numerical solutions by other authors (Figs. 3.1 and 3.2 

for the cylinder and Fig. 3.3 for the sphère) 

hâve been used for the neutral flow. The electric potential profiles 

used for the cylinder are logarithmic, obtained by using the Laplace 

potential at the equator of a prolate spheroid approximated for 

radii « the major axis. This leads to a scaling for probe 

potential which makes the results applicable to ail large enough 

values of probe length to diameter ratio. The electric potential profiles 

used for the sphère are proportional to r-1, obtained by using the 

Laplace potential. The charge transport équations are solved using an 

upwind différence method developed for time independent situations. 
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The numerical results for the total current show that : 

(1) For a probe at retarding potentials, the effects of Re and 

Se increase 
with the potential and the usual "retarding potential" 

method for température détermination leads to large errors 

(Sec. 5.3 and Sec. 6.3, Figs. 5.8, 6.10 and 6.11). 

(2) For small potentials, the effects of Re and 
Se decrease 

with 

increasing attracting potential and the effect of the flow is to 

smooth the "knee" of the probe characteristics and to render more 

imprécise the détermination of the space potential (Figs. 5.8, 6.10, 

and 6.11). 

(3) At large enough attracting potential, the linear dependence 

for probe current i 
aç 

from the stationary theory is recovered 

as one would expect (Fig. 5.11 and 5.12). Therefore, an improved 

method for probe measurements can be applied to the détermination 

of the électron or ion température (Sec. 5.3, Appendix B). 

(4) The probe current has only very slight dependence on both 

Re and 
Se at large attracting surface potentials (Sec. 5.3 and Sec. 

6.3, Figs. 5.8, 6.10 and 6.11). 

(5) Comparison between the présent work and experiments 

shows good agreement in many but not ail cases. (Chapter 7, 

Figs. 7.3, 7.5 and 7.6). Explanations are proposed for cases 

showing substantial disagreement. 

(6) The présent theory for a cylinder in a cross-flow can be applied 

with minor changes to a magneto-plasma with field aligned with 
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the cylinder axis (Sec. 5.4). 

The numerical results for the charge density distribution 

around the body show that: 

(11 the charge density profiles near a body become unsymmetrical 

when 
Se 

and Re are increased (Sec. 5.1 and Sec. 6.1, Figs. 5.1, 

6.1, and 6.2). 

(2) A wake(recirculation region) in the neutral flow behind the body 

can hâve large effects on the charge density profiles downstream. 

(Sec. 5.1, and Sec. 6.1, Figs. 5.1 and 6.2). 

(3) the effects of surface potential on the charge density profiles 

of a body are larger downstream than upstream (Sec. 5.1 and Sec. 6.1, 

Figs. 5.1 and 6.3). 

(4) at large enough attracting potentials the charged particle 

density profiles become symmetrical (Sec. 5.1 and Sec. 6.1, Figs. 

5.1, 6.3 and 6.4). 

(5) in the présence of flow, the profiles of net charge density 

can include several régions of alternating sign downstream of 

the body (Sec. 5.1 and Fig. 5.2). 

(6) the numerical results of local current density can be used to 

estimate ion collection by a mass spectrometer on a rocket or 

balloon up to the D région, or in fiâmes and flowing afterglows. 

(Sec. 5.2, Figs. 5.3, 5.4, 5.5; Sec. 6.2, Figs. 6.5, 6.6 and 6.7). 
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APPENDICES 

APPENDIX A: Application of Theory to Quasi-Neutral Conditions � 

W-" 

Our numerical treatment of Eqs. (3.13) and (3.17) can also 

be applied to large Debye ratio continuum plasmas, i.e. 
R /�-.». 

In this limit we can assume Ni neN e L- N. Then from Eqs. (3.1) 

and (3.2), we obtain (Lam, 1964) 

J = J - J (D, - D ) 
VN+ 

(p, + p..) 
NW (A-l) 

J (De D i) VN 

(M'e+M'i�N M- +M.i 
N 

and J - 4e J = NU - Da VN (A-3) -e 
M-e+M^i - - 

a 

J + Pi J = NU - D- 17N (A-4) 

4e+ 4j 

Now we take the divergence of either (A-3) or (A-4). We recall that 

V- u = 0 and V«J = 7- J j 
= 0. In non-dimensional form, we obtain: 

Ra \ 

-s- U'-çm-^n = 0 (A-5) 

where 

2U R 2U R 

Ra = co p - Re Se = co p x � 
a 

Da 
a v Da 

We note that D 
= 2D. 

when T = T , D - D when T 
» T .. 
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In this quasineutral problem the boundary conditions are 

(Lam, 1964, Eq. 4.2): 

n - 1 as r ... ce 

n - 0 at r r 1 (sheath edge) 

Lam then shows that r -» 1 in the limit as 
Rp/ÀD 

... (See discussion 

following Eq. 6.13 in Lam, 1964). Our situation therefore is 

équivalent to that for space potential in Chapters 5 and 6, 

but with Se replaced by Se . Therefore no potential dependence 

will exist in probe characteristics in the limit 
Rp/Xrv-*». 
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APPENDIX B: Application to Plasma Diagnostic Method 

The exact analytic current-voltage characteristic previously 

obtained by Fendell (1970) and by Chapkis and Baum (1971) for 

sphères in the continuum Laplace limit 1 « R 
« \n, has 

been 

obtained by Chang and Laframboise (1975) for arbitrarily shaped 

probes in the same limit. This is 

Sî = 1 - exp(�pp) 
i 

LI - exp (rn le.) J ei 

At a large attracting potential, Eq. B.l immediately yields 

i e = cp 
or 

i. 
= 

-cp 
/e.. 

(note: Equation . 
B.l cannot be used to 

provide the stationary limit for our results for cylinders in flow 

(Sec. 5.3), because thèse are in terms of the scaled surface 

potential a ItnA instead of cp . However, if we hâve a large attract- 

ing potential, we obtain i 
= cp /XnA 

or 
i. = -cp /e. 

inh from the 

analysis of Chang and Laframboise (1975, Sec. III) in the limit L-»eo). 

We hâve also seen that this limiting linear behaviour is also 

recovered at large enough probe potentials in the flowing case 

(Sec. 5.3, 6.3, figs. 5.8-5.12, 6.10 and 6.11). We now propose a 

plasma diagnostic method based on this limiting behaviour. The method 

first requires measurement of currents L^, la and 13 at three 

potentials Vlf, v 2f 
and 

V3f 
relative to floating potential V , 

where 
V., 

= 
V. - Vf. 

Thèse potentials are arranged so that V1 and 

Va are large and positive, and V3 is large and négative. Therefore, 

from eq. B.l we obtain approximately: 
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i « cplf + cpf (B-3a) 

i2 * �P2f + CPf (B-3b) 

si 3 
= 

"^f " 'f (B-3c) 

where 
cpf 

is the floating potential of the probes relative to 

space. We solve (B-3a) and (B-3b) to obtain: 

1 2 

From équation (B-4), we obtain the floating potential V- 
relative 

to space. The électron référence current I 
can now be obtained from 

the probe current at space potential by using the relation 

1e - 1 i (0, Re, Se ) with i = i (-cp , Re, Se ) provided by 

the results in Sections 5 and 6. 

The électron température now can be obtained from Eqs. 

(B-3a) and (B-3b) as 

e 
II L2 

From Eqs. (B-3c), (B-4) and (B-5), we obtain the ion to électron 

température ratio as 

Ti Di (I2V13 - 11v 23) 

The current-voltage characteristic at large enough attracting 

potential, i ec(p , is in good agreement with available expérimental 

results for both sphère and cylinder geometry (Chen et al, 1970, 

1971). 
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APPENDIX C. Computer Program Listings 

R42C 

THEORY OF ELECTROSTATIC PROSES IN A FLOWING CONTINUUM PLASMA 

SUH-SPNIC t INCOMPRESSI HL FLOW 
pnTliNTIAL PROFIlF. =LAPLACE POTFNTIAL 
NCUTRAL FLCw l'ftDF ILE =NUMER I C AU SOLUTION OF NAVIER-STOKES EQUATION 

SPMFFICAL PRfinE 

NI=ION DFNS!TY,UT,UR=FLOW FI ELD . S= STRF AM FUNCTI ON , R = R AD I OUS . 
PJ=LC;CAL CUR^t'NT.PIïTOTAL CURRENT ,F=SU«FACF POTFNTIAL. 

RE=DIFFUSICN «EYNGLDS NUVIOER/ 2.. I TE^= I TER AT I VE T I ME . £ PS = KFS I DUAL 

R^AL NI .UT.UR.S.R.TO.Pt l .HO.Pl?.Q .CO.DQ.PJ .01 .OO.PJJ.Tl ,T2 
OI VHNSION NI ( 12 5.65) ,UT( ( 125.65) Ulî ( 1 25.65) .T2�65 ).R( 125) .Q( 1 25.65) 

l,C0�125,65).D0(125).PJ(fcS�.a0(125.65).Ql(125.65).PJJ(65).Tl�65) 

N=63 
TD=3. 141615/�N-3. ) 
I TMAX=4000 
!'"PSMAX=I.0F-3 
NP1-N+1 
NP4=N-2 
NP2=N-l 
NP3=N«-2 
F=lf) 
K=123 
KPIïK+! 
KP2=K-1 
*l'3sK + 
KP4=K-? 
KP5=K+3 

FLOW PROFILE 

�îFAn�5.30C�� �UR� loi 91 ;�.120), J=3,N) 
WPITF (6,209) 
PfAD(5.300)( �UT� I .J) .1=2.1 20) ,J = 3,N) 
f'ldTF.(6.2\JRI 
10 53 J=l .NP3 
Tl � J)=SIM � J-3. )*TD� 

5T T3( j)=rrs� � J-3. )*T0) 
OH 55 J=I.NP3 
n0 55 1=121 ,�P3 
UR� I . J)=T2� J�«-0. 00001 

55 UT(I , J)=-T1 ( J) 
OH 56 I=121.KP3 
UT� I. 1)=0. 

56 UT([,M = Oi 
PU 10 1=1. KP3 

10 � �» ( I �=F*P� RD*( 1-2.)) 
*RITF�*,204) 
WRÏTE�6.301 )�«� I � .1=1 .KP3 ) 

ION CFNSITY PROFILE 

POUNnAKY CCNOITIONS 

no 2 J=!.NP3 
N I ( 1 . J ) = 0 . 
NI (2. J) =0.0 
nrî 2 1=3. KP3 

2 NI ( I . J)=l .-l ./R(I) 

2N0. TROr-R UP-WIND OIFFC^TNCE METHOO 
UC-VIM) DIFFERENCIA FACTO� 

Oïl «*7 J = 4.NP2 
1" 97 1=3. 

97 0� I. J) = ( ASS((UT{ I .J)/URt I . J) ) ) �*RD/TD 
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On 96 J=4.NP? 
HO 96 1=3. 

96 00( I , J) = ( AHS( (UR( I. J)/UT( f..J») )*VO/RD 
w" I TE ( 6 . 2 1 5 ) 

1 PFAO( 5.505IRE 
WFITF(6.505)RE 

00 5 t=3.K 
On J=4.NP2 
IF(0( l , J)-l .0 )5fc.5U.59 

58 rO( I . J)=PF»A3S(UR( I . J) )/RO 
GO Tn 5 

59 CO( I . J)=RF*ABS(UT( t ,J) �/TD 
5 CONTINUE 

1TFR=0 
3 FPS=0.0 . 

ITFP=ITER+l 
Dn 4 1=3.K 
on 4 J=:!.N 
HnLOT=NI{ I , J) 
V=RD**2. 
U = T r) 2 

NKI.hPl ) )=Nl(f.NP2) 
NI ( I ,KP3 )=NI ( I ,NP4 ) 
NI (KP3,2)=Nl (KP3.4 ) 
NKKP3, 1)=NI(KP3.5 ) 
NI(I(P3.NP3)=NT(KP!.NP4J 
NI { KP3.NP1 ) =NI ( KP2.NP2) 
NI (KPI.I 1 �=NI (KP1 ,5) 
NI (KP1.?)=NI(KP1 .4) 
NI (KP1 ,NP3)=NI (KP1 ,NP4) 
NI(KP1.NP1)=N1(KP1 , NP?) 
NI (KP1 . J)=l.-( 1 .-NI (K .J).( (R(K )/R(KPt ) ) )*EXP( -RE* ( R (KP II- 

NI (KP3, J) = l .-( 1 ,-MIKPl , J) )*( (R(KP1 �/R(KP3) ) ) *EXP( -RE*( R( KP 3)- 
l"(KPl ))*( 1.-T2(J) )/2. ) 
Ul { I.J) = (AES( (UT( I,J)+0. 00001 )/{UR( I . J) +0 .0000 l ) ) )*RD/TO 
D0(I )=( ».*( V + Ut �/(U*V*R( I ) ) 
IF (UR(I.J)-O,O)7C.70,71 

70 IF(UT( I , J)-0.0)72,84.74 
72 IF(01 ( I .J)-l .0)76,77,77 
76 NI(I.J)=((l.-O(I.J))*(NI(H-l,J)*((3.*0(I.J)-l.)*Q(I.J)+2.) 

9 +1',1 J ( 1 + 1 . J+ 2) *0 ( 1 . J 1* ( 0 ( 1. J 1-1 . ) -N 1 ( 1 + 1 . J-l ) * (0 ( l, J ) * *2. ) ) / 2. 

1*( C«( I . J )/(CO( I . J) "OQ IIDKINIIIH , J)*(2.+�D)+Nl( I-l.J )*(2.-RD) ) 
?*U+(NI( I .J+l )*(2.+TO*(T2(J)/Ti( j) ) )*NI( I . J- 1 ) » ( 2 .- TD* ( T 2 ( J ) /T 1 ( J ) ) 

4(NI( 1+1 , J)-NI( 1-1 JI) * 1 ,/(DO( I )+CO( I.J) ) ) 
GO TO qO 

77 NI ( I. J) = ( ( 1 .-�tlil I ,J) )*(NI( I . J+l )*( (3.*00( I. J)-l .)*00( I . J ) + 2 . 
9+NI( I+2.J*l)»(OQ(I.J)-l.)»QO(I.J)-NI(l-l,J+l)*(00(I.J)**2.))/2. 

l*(CO( I. J �/(CO( I. J)+Dù( ( 1 ) 1 ) + ( ( NI ( 1 + l , J)»(2.+*fD)+NI ( I-l.J )»( 2.-RO) ) 
2»U+(NI(T.J+l)*(?. + Tr�»(T2(J)/Tl(J)))+NI(l,J-l ) * ( 2 .-TD* ( T2 ( J )/Tl( J) ) 

4(NI( 1+1 ,J)-NI( 1-1 ,J) * 1 ./(DO( I )+CO( I.J) 1 ) ) 
r,o TO 00 

?«U (NI ( I ,J+ 1 )*(2. )+NI ( I , J-l )*(2. 

4(NI(1+l.J)-NI(I-l.J))*(l./(Dâ(I )+CO( I.J) )) 
GO TO 90 

74 IF(01 ( I,J)-1 .000. 01 .f»l 

�l + rl( 1 + 1 . J-2 )*0( I . J) *(0( I . J)-l . )-Nl ( 1 + 1 . J + l )*(0( I. J )**2. ) )/2. 

l*�(ro( I . J)/(C-n( I, J) +DO( I ) )) + ( (NI ( 1 + 1,J)*(2.+�U)) + NI (I-l.J)*(2.-RO)) 
?*U + (NI ( I . J+l ) 1'"( ?.+Tn«(T?(J )/TK J) ) )+NI ( I , J-l )«(2.-TD»(T2( J)/T1 ( J) ) 
«2) )*V) *(ni)( 1 ) / (C )( 1 .J ) + 00( ! ) ) *(4.*(U + V) ) ) )+(F/((R( ( 1 **3. ) * 2. *RO ) J ) 
4(NI( 1 + 1 . J)-NI( 1-1 ,J) )*( 1 ./(LM)( I )+C1( I, J) ) ) 
ce to 90 

91 NI ( I . J)=( ( 1 .-'JO( I .J) )*(NI( I , J-l �*( ( 3.*OQ( I . J�-1 . )*00( I . J�+2.) �un 1 �?. J-l )»(�)U( I . J 1-1. ��MJO( I . J)-NI ( ( 1-1 J-l 1* (fhH I . J)**2. ) )/2. 
M + NH I +1 . J-l )«Ort( 1 JIM 4. �(»()( 1 .J)*(-5. + 3.*00( I. J ) ) )/2. 

?*U*(NI ( I .J+l )*(2.+TO*(T2( J)/T1 ( J) ) )+NK I .J-l )*(2.-TO»( T2( J)/T1( J) ) 
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GO TO 00 
71 rr(UT(,.J)-0.(,)71.1'\5.7C¡ 
73 le (01 ( I.JI-1 .0)7-1.79,79 
78 B "J 1 ( T ...J l " ( ( 1 . - 0 I . J) )MN! ( 1-1 . J)*( ( 3.*0( I . J )-l . �*0( I . J) + 2. 

2«U+(NI(I.J+1�*(?.+TC'*(T2(J�/T1{J)))+NI(1.J-1)*(2.-TD*(T2(J)/T1(J)) 

GO TO 90 

q + III 1 1-2. J+l )» (O0( I . J)-l . �»00{ I . J)-NI ( I + l . J + 1 ) * ( 00 ( I . Jl«2. ) )/2. 

I*( CO( I . J)/(Cv)( 1 . J )+O0( I)))+((NI(I+1,J )*{2.+Rt)+NI ( I-l.J )*( 2.-RD) 
2*U + (NI( I . J+l ) «(2. + Ti-)»(T2(J)/T1( J) )�+Nl(I,J-l)»(2.-TL�*(T2(J)/TMJ)) 
3)�*V)*(DQ(l)/(�CO(I.J) + no (!))*(/». *{U + V))))+(F/((R(I )**3 . ) *2.*RD ) )* 
GP TP 90 

B5 NI( I. J)=NI( I-I ,J) 
I*(CO( I. J)/(CQ( I , J)+DQ( I )))+(( NI ( I+l. J)*( 2.+RD)+NI ( I - 1 , J ) * ( 2 .-RO ) ) 

4(N'I( I+l . J)-NI ( I -1 .J) )*( l./(DO( I )+CO( I.J)) ) 
�o Tn oo 

75 'f(0U1.JI-1.0)82.d:;1,B3 

?*U + (NI ( I . J+ l)«(2. + TD*{T2(J)/TI( J) ) l+NK I ,J-1 ) * ( 2 . -TO* ( T 2( J ) /T 1 ( J ) ) 
3�)*V)*(r�Q(I�/((C�l(I.J� + D0�l�)*(4.*(U + V�))� + (F-/((R(I)**3.� *2.*RD) )* 

no TO 90 
83 NI (I. J)=(( 1 ,-OU( 1 j) )*(NI( I, J-l )*( (3.*00( 1 J)-l . )*00( I . J ) +2 . ) ' 

o+NI( 1-2. J-l �*(OQ( I ,J)-1 . )*00( I , J)-Nl ( T+1 ,J-1 )*(00( l . J)**2. ) )/2. 
fi + NI( I -1 . J-1 )*CJO( I , J)*(4.+00( !.J)*(-5. + 3.*CiO(I.J)))/2.) 
IMfOI I . J)/(CO( 1. )+UO( I))) + ((NI(l + l.J J*(2.+KD)+NI( l-l , J )*( 2.-RD) ) 
?*U+(NI(I,J+l)«(2.+TO*(T2{J)/Tl(J)))+NI(I,J-l�*(2.-TD«(T2(J)/Tl(J�) 
3 ) )*V) *(DO( I )/( (CQ( I .J )+DO( I))*(4.*(U + V))))+(F/((R(I)**3. )*2.*P0) )* 
4{NI( I+l . J)-NI ( 1-1 ,J) )*( I ,/(DQ( I ) +CQ( I.J) ) ) 

90 CnNTINUE 
4 PP�5 = FPS+APIS(NI ( I , J)-HOLDT) 

IF(EPS.LE.f:PSMAX ) GO TO 6 
IF( ITCR-ITMAX)3.3.d 

6 WRITF (6.201 ) ITER 
on 7 1=3. 

7 WRITE(6,501 )(NI ( I .J) . J=3.N ) 
WRITE (7, 503) ( (NI ( I ,J) ,I=3.KP4) , J=3.N) 
GO TO 91 

A WRITI;CIi.203) 
01") O 1=I.KP:;I 

9 WPITE ( 6.301 ) (NI ( I ,J) ,J=1 ,NP3) 
91 I"tRIT'ÕC(,.210) 

CUPR=NT 

LOCAL CURRFNT 

on 51 J=3.N 
51 PJ(J�=(3?.»NI(3.J)-12.*NI(4,J�+NI�6»J| )/(12.*RD) 

»P ITT (6. 206) 
WRITE(6.501 )(PJ( J).J=3.N) 

TOTAL CURRENT 

PI 1=0.0 
00 50 J = 4.NP2.? 

5C PI 1=PI 1 + TDMPJ( J-l )+4.*PJ( J)+OJ( J + l ) )/3. 
WPITF(6.502)PI1 
NPP=(N-3.)/2. 
PI2=0. 
DP 4#1 I=2.NP8,2 

48 è3 /3. 
«»PITri6,S02 1PI? 
wr:::ITr((..21)7) 
PIC=(16.*PI1 -PI2 )/l5. 
WRITf (6.50C IPlC.i'll ,PI2 
PO 5? J=3.N 
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52 PJJ( J)=PJ( J)*T1 (J) 
wRITr (6.21 1 ) 
WRITF (6,501 )(PJJ( J).J=3.N) 
P13=C.C 
00 47 J=4.NP2.2 

47 PI 3=PI3+TO»(PJJ( J-l )+4.*PJJ( J )+PJJ( J+l ) )/3. 
WCITF(6,502)PI3 
PI4=0.0 
00 4f. J=2.NPH,2 

46 PI4=f�T4+TO»2.*(PJJ(2*J-l ) + 4.*PJJ(2*J+l ) +PJ J( 2* J + 3 ) ) /3 . 
wPITt (6.502 )P 14 
wRfTF(6.212) 
PICC=( 16.*P13-PI4)/1S. 
*CITE(6,500 IPICC.PI 3.PI4 
GO TO 1 

2C1 FOPMAT(45HOCONVERGENCE CONDITION HAS RFEN REACHER AFTER , I 3. 1 OHl TER 
1 AT IONS) 

203 FORMAT! 15HONO CONVERGENCE) 
204 FnPf"AT(9HU0ISTENCt ) 
2(6 6 FVPelA T (SHOFLUX) 
207 PURMAT( 14HPPR0FJE CURRFNT) 
2 CA FOR^AT(4HO UT) 
209 FC'CMAT (4H0 UR) 
210 «=PRMAT(4H0 NI) 
211 FORMAT ( 1 4HPLnC AL NUSSFLT) 
212 FCRMAT( 14MPT0TAL NUSSELT) 
215 FPRMAT(4H0 RE) 
503 FPRMAT( 7E1 1 .0) 
3CO FOPMATI7EI1 .4) 
5CO FPRMAT(F1C.6.F10.6.F10.6) 
301 FOP"AT( I2F10.5/12F10.5/9F10.5/) 
501 FOKMAT( 1 1F.12.5) 

* 

5C2 FllfvMAT(FlO.e) 
50 4 FORMAT ( 12E1 1*5) 
505 FDMATCFI0.3) 

STOP 
END 

SENTRY 
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fJCtt 
WATF IV 

R42C 

f THEORY OF ELECTROST AT I PROBES IN A FLOWING CONTINUUM PLASMA 

SUR-SONIC. INCOMPRESSIBLE FLOW 

POTENTIAL PKOFIIE =LAPLACF POTENTIAL 
NEUTRAL FLOw PROFILE=NUMERICAL SOLUTION OF NAV I ER-STOKES EQUATION 

CYLINDRICAL PROBF. 
CYLINDCR IN CROSS-FLOW 

NI=ION DENSITY .UT.URsFLOW FI tLO . S=STREAM FUNCTI ON. R=R ADI OUS , 
PJ=LCCAL CURRENT. PI=TCT AL CURFFNT ,F=SUPF ACE POTFNTIAL. 

RF=DIFFUSION REYNOLDS NUMBEC/2.. I TEP= I TERAT I VF. T I ME . EPS = RES IOUAL 

PFAL NI .UT.UR.S.R.TD.PIl ,RO.Pr2.Q .CO.OQ.PJ .01.00.PJJ.T,TT 
DI MF NSI ON NI (65.65) ,UT( 65.65) ,UR(ô5.65� ,S( 65.65 ) .R (651.0(65.65) 

I.CO(65.6S),nO(651.PJ(651 .00 ( 65 .65 ) . 0 1 ( 65 ,65) . P JJ ( 65 ) .T(65) 
:?TT(b5) 
N = 63 
T0=3. 141 615/60. 
RO=3. 141 615/60. 
ITMAX=2000 
RF=25C0 
CO=4.116 
EPSMAX=1 .0E-3 
NPl=N+l 
NP5=N/2.-l. 
NP6=N/2. + l . 
NP4=N-2 
NP2=N-1 
NP3=N+2 

FLOW PROFILE 

RFALH 1 .300) ((S( I. J) . I=3.NP2) . J = 4,NP2) 
00 53 J=I.NP3 
T( J)=SIN(( J-3. )*TD) 
TT( J)=CCS( ( J-3. )*TD) 
S(?.J)=0. 
SC N. J ) = ( EXP(RO*NP�t ) î *T( J)-C( 1 .-(J-3. )*TD/3.141615)/2. 

S(NP1 . J) = (tXP(RD*f-P2) l*T(J)-CO» ( 1 .-( J-3. )*TD/3.1 41615 )/2. 
53 S(1.J)=0.0 

DU 54 !=2,NP3 

S( 1 ,2)=-S( 194 
�4 M 1,1 )=-S( 1,5) 

WC'TI""(J.205) 
on 10 I=1.NP3 

1C M (t)=EXP(FD*( I-?.)) 
*KITF(3.204) 

OO 21 I=3,N 
no 21 J=3.N 
UT(I,J)=-(R.*(S(I+I.J)-S(I-1.J))-(S(I+2.J)-S(I-2.J)) �/(RO*R( 11*121 

21 Uiv( l, J)=(M.*(S( I .J+l )-S( I.J-1 ) )-(S( I .J+2)-S( I .J-2)) )/(TO«R( I)*12.) 
WPITF(3.208) 
*RITF( 3,209) 

ION PENSITY PROFILE 

enuNOAWY CCNOITIONS 

on 2 J=1.NP3 
NI ( 1 . J)=0.C 
NI(2.J)=C.O 
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On 1-3. 
2 NI ( I.J) =0.5 

2ND. l!KDt» UP-WlND DlFFtRFNCE METHOO 
UP-ot-40 DIFFERENCE FACTOR 

DO 97 J=4.NP2 
00 n7 1=3.N 

9 O( I , J)= (AJS( (UT( I, J )/UR( I . J) ) � ) *RD/TD 
00 Yt, J=4.NP2 
00 96 1=3.N 

96 aa( l. J) = (AbS( (UP( 1, J)/UT( 1 J ) ) ) ) «TD/RD 

on 5 I=3,K 
n'i 5 J=4."IP? 
IF(0( l,J)-l. 058,50,59 

58 COI I . J)=RE*AiJS(UR( I ,J) )/RD 
Gn Tn 5 

59 CO( I . J �=RE*AJS(UT( I ,J) )/TD 
5 CONTINUF 

QFZAnt 1 ,502)F 
WPITF(3,215) 
nu I TE ( 3,504 )RE 
*R!TE(3,220) 
WRITE (3. 502) à 
ITFR=0 

3 FPS=0.0 
IT«=.P = ITEP+I 
on 4 1=3.N 
on 4 J=3.N 
HOLUT=M( I.J) 
v=pn**2. 
U=T0**2. 

NI ( 1.2)=Nl( 1.4) 
NI (I. MPI )=NI(1.NP2) 
NKI.NP? )=NI(I,NP4) 
N I ( NP 3 . ? ) =N l ( NP3 . 4 ) 
Nt(NP3, 1)=NI(NP3,5 ) 
N l ( NP ? , NP 3 ) =N l ( NP.2 , NP4 ) 
NI (NPJ.NP1 )=NI (NP3.NP2) 
N! ( MM ,NP3) =NI ( NP1 ,NP4) 
NI (Nf'I ,2)=NI ( NP1 ,4) 
NI (MPI . 1 )=M( NP1 ,5) 
N I ( NP 1 , NP I ) =N I ( NP 1 . NP2 ) 
t'il J) = l .-( 1 ,-f- I (N , J) )*(SOPT(R(N l/MNPl ) ) � *F XP ( -RE* ( R ( NP 1 )- 

NI (NP3, J) = l .-( 1 .-M (NP1 . J) )*( S0F�T(B(NP1 )/R(NP3) ) ) *EXP( -RE* ( R ( NP3�- 

ûl ( t . J)=(4fcS( (UT( I .Jl+O. 00001 )/(U,:(I.J)+O.OOOOI» )*RD/TD 
DOC! )=(2.*( V+U) )/(U*V*R( I ) ) 
1 (Ui( I ,J )-0.C)7f ,71 ,7 

70 !F(UT( I.JI-!).C)72.b4.74 
7? H('Jlrt.J)-1."I)76.77.77 
76 NI(I.J)=((1.-QC I.J))«(NI(I+l.J)*((3.*Q(I,J)-l.)*0(I.J)+2.) 

1*(C.0( I . J)/CCOC I . J)+00( M I ) + ( (NI ( T+l . J)+Nl( 1-1 ,J) )*U + (NI( I .J+l�* 

60 TO oc 
77 7 NI ( ! . J)=(( 1 .-OQ( I.J))*(NI(I.J+l)*((3.*Oa(I.J)-l. �*00( I . J )+2. ) 

��� + NI(I+2.J+l)*(00(I,J)-l.)*nO(I.J)-NI(I-,,J+l)*(QG(I,J)**2.))/2. 
U+NI( I + 1 , J+ 1 ) -00 ( I . J )*(4.+0Q( I . J)*(-5.+ + 3. -00 I, J ) ) )/2, 

?J+1»*M!( I .J-l ) )*V)*(00(I �/(( (C0( I . J) )+DQ( I ) )*2.*(U+V) ) ) 

GO TO 90 
64 NI ( I.J) -.NI ( I + l . J) 

1*(C0(I,J)/(C0(I iJ)+0(!( I) ))+((NI(I+l.J)+NICI-l.J) )*U+CNI ( I . 
2J+1 )+NI ( I . J-l � )^V)«(l�0( I )/( ( (C0( 1 .J) ) + DO( I ) )*2.*(U + V) ) ) 

GO TO 90 
74 IF COI ( 1 . J )-l .0)80.81 .81 

l*CCO(l.J)/(CiHI.J�+00{I)�)+((NI(lH,J)+N 1(1-1. J))*U*(Nl(I.J+l�* 
2NIC I. J-l ) �*V�*Cmi( I )/((CQ� I .J)+HO( l ) )*2.*(U+V) ) ) 
3+((NI(!+l,J)-N 1(1-1, J) )*F/R0)*C1 ./( (C0( I .J)+no( I ) )*2.*R( I ) ) ) 
GO TO 90 
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9 + NI ( I +2, J-l l'IOOl I , J�-1 . )*GO( I . J)-Nl ( 1-1 , J-l )*(ÛUl I . J)*«2. ) /2. 
^�NI(l»l.J-l)*Ol)(l.J)*(4. + 00(!.j)*(-5.+j.*aO(!.J)))/2.) 
1 »( ( co 1 J)/( CO( I , J)+DQ( 1 ))+((NI(I+l,J)+N 1(1-1, J) )*U+(NI( I , 
2J+11+M Kl. J-l ) )*V)*(DO (!)/((( CO (I.J) ) + 0 0 l ) ) *2 . * (U+ V ) ) ) 
3 + (NI ( t + 1 . Jl-NK 1-t J) �*F/PD)*( 1 ./( (CO( I.J )+00( I ) )*2.*R( I ) ) ) 
nn Tn 90 

71 IF(UT( t.J)-O.0)73.8S.75 
73 IFCul ( I , J)-l .0)7-»,79.79 
7ti 

?,.;f 1 (1. J-l ) )*V) *(P0( ! )/ ( (CO( I.J) + 0O( I ) )*2.*(U+V) ) ) 
3+((Nl(I+l,J)-NI(l-l.J�) *F/ PD ) * ( 1 . / ( ( CQ ( I.J) +DQ ( I ) ) *2 . *P ( I ) ) ) 
GO m or 

S + NK I-l.J+1 1 I.J)*(4.+00( 1 .J)*(-5.+3.*0 3( I.J) ))/2.) 
1 *� COC I , J �/(C'H I . J )+f�0( l ) ) )�( ( NI ( 1+ 1 .Jl+Nl ( 1-1 , J) )*U+(NI ( I , 

3+({NI(I+l,J)-N 1(1-1. J) )*F/R0)*(1 ./( (CQ( I. J)+D0( l ) ) *2 *R ( I ) ) ) 
GO Tn 00 

85 NI ( I . J) =NI (I-l.J) 
!=.�( CO( I . J)/(CO( 1 1. J)+OQ( 1) )) + ((NI(I + l,J)+N 1(1-1, J) )*U+(NIC I , 
2 J+l )+M ( l .J-l ) ) *V)* (00 (!)/((( C0( I . J) )+D0( I ) ) *2 . *( U + V ) ) ) 
3+((N!(I+l.J)-Nt(I-l,J� )*F/KD)*( 1 ./( (CQ( I. J )+DQ( 1 ) ) *2 . *R ( I I ) 
Gn TO 90 

75 IF(0l(I.J)-1.0)82*83.83 
e2 NI (T.J)=(( l.-0( I.J) )*(Nl(I-l.J)*((l.*0( l.J)-l.)*0(I.J)+2.) 

i ( CO i , J)/c coc 1 1 i ))) + (( N! ( i + l ,j ) +ni { :-i ,j) )*u + (nk i, j + l ) 

3+( (Ni ( I+l , J)-Nl( t-1 J) )*F/KD)*( 1 ./( (Cû( I ,J )+D0( I ) )*2.*R( I ) ) ) 
GO TO 90 

9'3 NI ( ! . J� = ( ( 1 .-0M I ,J� )*(Nl ( l , J-l 1* C3.*OQ( l.J)-l.)*0(i(l.J)+2.) 
a+NK 1-2, J-l )*(�J0( l . J)-l . )*00( I . J)-NI ( 1 + I , jrl )* (U0( 1 , J)**2. ) )/2. 

1 *( COC I . Jl/CCOl I � J1+1ÏOC I ) ) ) 1 + (NI ( l + l , J 1 + N 1 t-1, J ) )*U+(NI (I . 

(l'il ( 1 l . J )-NI( 1-1 .J) ) *H/R0�*( 1 ./( (C0( 1 J ) +DQ t )*2.*R( I ) ) ) 
90 CCfTtNUF 
4 FPf-fcTS+ABS(Nl ( I ,J)-HPLOT) 

lF(FI�S.Lr.ffPSV|AX )G0 TO 6 
IF( ITf-t;-!TyAX)3.3.a 

� l'ii-' I TF C 3.201 ) I TER 
0(1 7 1=3,N 

7 xPITiM 3.50 1 )( NI ( 1 ,J) , J = 3.N ) 
GO TO 91 

8 «PITEC 3,20?) 
00 I=1.NP3 

9 wf ITF ( 3,301 )(Nl( 1 ,J) ,J=l ,NP3) 
91 ",t=ITf"(3.ztC) 

C URGENT 

LPC*L CURRSNT 

on 51 J=3.N 
51 l'J( J) = ( 32.* NI (3, J )-12.*NI (4, J)+NI(6. J) )/M 2.*R0) 

»PITP( 3 20h) 
Wt-lT-_ (3. 501 )(PJ( J) ,J = 3.N) 

TOTAL CUPRENT 

PIIMO.0 
OP 50 J=4,NP2,2 

50 Pt 1=PI 1 + T.O* C'5J( J-l ) +4.*PJ( J)+PJC J + l ) )/3. 
*C ITF C 3.502)PI 
NPP=C N-7. 1/2. 
PI2=0. 
PI' 4 8 I=2.NP:3.2 . 

48 P! ? = =»I2+ Tn*2.*(PJ (2*1-1 )+4.*PJ(2*I+l )+PJ(2*I+3) ) /3. 
WPITC( J.SOZ)PI2 
*PITf (3.207) 

WP|T«=(3,5!J0)PIC.P!I.PI2 
GP TP 1 

ÎC 1 FCH"�«AT(45MUCONVFRGnNCC CONOITION HAS BFE.N RLACHED AFTF.R . I 3 . 1 OHI TER 
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1 AT IONS) 
2C3 FORMAT! 1 5HnNn CONVERGENCE!) 
204 mKMAT(oHOOl 5TENCD 
205 FORMAT ( 16H0STEARM FUNCTION) 
206 FOPMAT (5HOFLUX ) 
207 FflPMATI I 4HPPROOE CURRENT) 
208 FORMAT(4Hll UT) 
209 FJUMAT�4HO UP) 
210 FOPMATMHO NI) 
220 FOFMAT(4H!l EF) 
300 0 C0RMATC6E13.6) 
500 FORMAT (F 10.O.F10.6.F10.6) 
30 1 Ff'h'MATI 12F 10. 5/1 .?f 10. 0/1 2F 10. 3/ 12F 10. 5/ 12F 10. 5/5F1 0.5/) 
501 =OPMAT( 1 1EI 2.5/1 IH 2.5/1 1E1 2.3/1 IF. 12.5/1 1 H 2 .5/6E 1 2 . 5/ ) 
50 FOhMAT(Fta.61 
215 FOKMAT(4HO PC) 
504 F(JPMAT(H0.3) 

STOP 
END 

SENTRY 
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TABLE I Choie»» of 118,�1. and r. for variou. Reynolds 

TABLE II Cylindrical Probe : Computed values of probe current per 

unit length for values of Reynolds number from 0.1 to 100. 

In «orne entries, values of exponentt are omitted.and are 

loplied by exponent values in precedlng rovi. 



2 



s 



4. 

TABLE III Spherical Probt : Coaputad valu»» of probe currant for 

values of K»jmold» nusbar from 5 to 60. In »ob» antrla* 

,,,alll8. of exposant* are 08S.tte4,aDd ara lapllad by 

(axponant valuaa tn praceding rotra. 
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FICOU 1.3 àpprtmimmf root* et probe condition* for varleus eonttmraa 

flovini platau. la .n of tboue applleatloas, typleal Mjmoldt 

mmbmn rang* froa 10" to 10 
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LriCUU 3.2 gtroMllnca for atoaoy flmpast « dreulor crllador. Voluoa of th. dlaMraalooloaa atroao. fuactloo,t' are kw for ooch etremlim. Valu*, of T for eha cloood seramlime. 
l . Stortlnc fro» cb. corner, of Ch. wok..(a)R««S;(b)a»»7;�c)fto» 
. 41 * -0.0328 
: -O.023;(g)»»-I00:t.� 0. l,-0.OSt-0.05, -0.033. ( froa Demie 

and Cfcoaf 1970 

riCOH 3.3 1er_a... for :(«)«p.lt(o)«o-10,�e)».o-20.M�t.o-*0(p»eloood 
�troaadlaoa, atortUt froa taa cootro.oro*� 0.0003 mdl#- 

-0.00011.( froa DaonU and Ualkor Wl.Ooomia nd auooao 1*73 ) 
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PICOTE 4.3 Interpolation procédure for hlgher order upwind différence 

aethods. 

FIGURE 4.4 Contour aap of relative error G between analytlc 
solutions and numarleal higher order upwind 
différence solutions, (a) cylinder (b) sphère. 
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FIGURE 4.4b Contour aap cf relative errer C between analytlc solutions and 
nuaterlcal higher order upwind différence solutions. 



n 

FIGURE 4.7 Bleck du¡r.. of aathtaatlcal atthodt. 
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TICURS 5.1 Charge dantlty coatour mps for eyllnoar in erett-ttef 

(a) Coa»arl«ien for flou wlthout «rite ( K«-0.*ï 
and flou «ith 

�Mk« ( Ke-20 ) et apac« potantlal, Scc.102. 
* OIbar. va defla* altO.9999 n»»l » 1.0. 

riCURE 5.1b Coaparl.lon of charged particle Schmidt 
mafrer affecta on 

chars* denalty at »«-40,apae« potantlal. 
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FIG'/KE 5.1c Contrition of surface potentiel eitects on charge densiry for flov 
with 

wake.Re.40.Scc.¡' 

FIC!"F 5.1d Compariaon of surface potential effects 
on charge densitv for 

flov without vak«'I''.e»0.4, -4cc-10 2. 



Il¡. 

FK.t'HE 5.2 General appearance of net charge densltv ( n - n contour 
map. (a) statlonarv case (bï flov wlthout wake* ( (d flov vith 
wake (sphère Re-It 20, cvllnder ïîe* 7). 

FIGURE 5. Angle dependence of local current to cvllnder 110 cross- 

flow for va r loua surface potentiels. tfe deflne the rear 

stagnation point as 6-0 . (a� Re«0.1,Sc «10 (M Re-0.1. 

Se -10* Cc\ Re«l,Sc «103 (dï Re-I0.Scc-10 (e1» *e-lO,Sc 

-102 (n Re-40, Se -10 (gN Re-ID0.SCC-0.1 (M Re-ÎOO,Sc 

-10 . Kffects of wake are observed in Fig. 5. 3(dWh* at 

the rear stagnation région. 
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FICVRE 5.3b Angle dependence of local 
current for various surface 

potentiels. Reo.:L,scc-10 4. 

nolUE 5.3c Anale dependence of locjl 
current for various surface 

potentiels. Re-1. Scc»10 . 
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FIGURE 5.3d Angle dependence of local current for various surface 

potentiels. Re-10,Sc.-I0. 

riC"RE 5.3e Angle dependence of local current for 
various surface 

potentiels. Re-10, Sc.-IO 2. 
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FIGURE 5.3f Ancle dependence of local current for various surface 

potentiels. Re-40, Scc-10. 

FIGl'RE 5.3g Anale dependence of local current for various surface 

potentiels. Re-100, scc.O.l . 
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FIG'-RE 5.3h Angle dependence of local current for various surface 

potentiels. Re-100, Sc.-IO . 

FIGM 5.4 Angle dependence of local current to cvllnder in eroas- 

flov for various Reynolds numbers. (a) Scc-l,%/�ln 
A .0 

(b) 
scc-l,«^*ln 

A -4 (c) 
Scc-l,*�p*ln 

»-!W) Scc-102 

,IDAlin A -0 (e) Sc -102,t�/tln A -4 (fi 
Sc c -10 't p /« In 

A --2. 
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FI^'/RE 5.4b Angle dependence of local current for various Revnolds 

numb.rs.Scc.l. 
6 /( In A -4 . 

FICWE 5.4c Angle dependence of local current for various «evnolds 

nurabcTS. 
rc c -1 . e p /4 

In A » -2 . 



ZO 

FIGURE 5.4d Angle dependence of local current for various Revnolds 

numbers. 
SCc-l02, 4�/t - 0 - 

FIGURE 5.4e Angle dependence of local eurrent for various Revnolds 

numbers. SCc-102. gt/f 
In A - 4 . 
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FIGURE 5.4f Angle dependence of local current for various Reynolds 

nunbers. Se -102, + p /9 In h -2 . 

t 

qu 
F1C0U 5.5 Angle dependence of local current to cyllnder in cross- 

flov for various charged particle SchsUdt nuabera.(a)lte- 

0.4. 
+ p /4 

lnA-0 (b)lt.»0.4, + p /9 In A-4 (c^Re-0.4, p tg 

In A� (d)Re-20, /41n A-0 
(elRe-20, */«lnA-2 

(f)Re- 

20. 
ifl. 

A.-4 
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FIGURE 5.5b Angle dependence of local current for various charged 

partlcle Schmidt numbers. Re-0.4, tpp/l 
In A 4 . 

FIGURE 5.5c Angle dependence of local current 
for various charged 

partlcle Schmldt numbers. Re-0.4, �/� 
ln A -.4 . 
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FIGURE 5.5d Angle dependence of local current for various charged 
particle Schmldt numbers. 

Re-20, 6/t 
In A - 0 

FIGURE 5.5e Angle dépendance of local current for various charged 

partlcle Schmldt numbers. 
Il..20..p/t 

In Il 2 . 
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FIGURE 5.5f Angle dep.nd.nee of local current 
for variou. charged 

partiel. Schaldt numbers. Re-20, + p /4 
In A �-* 

FIGURE 5.6 Nottdlaenslonal probe current t -1/1 es * functlon of 

charged partlcle Scheddt nuaber for various surface 

potentiels fer cvllnder 110 croaa-flow wlth Re-40. 



25" 

FICURE 5.7 Nondtaen.ion.1 probe current as e functlon of Revnold, 
number for variou. surface JtOtent1.ah for cylinder In 
cross-flou vith Se - 10J 



u 



'11 



M 
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FICURE 5.13 Roodlmenslonal probe current as a fonction of Reynolds 

IlUllbar for varions charged partlcle Schmldt numbers for 

cyllnder In cross-flou et apace potentiel. 

FICURE 5.14 Nondlmenslonal probe current as a funetlon of charged 

partlcle Schmldt number for various Reynolds numbers 

for cyllnder in eross-flov et apace potentiel. 



31 

FIGURE 5.15 Application of preaent theory to mgneto-plaem (Sec. 5.4 1. 

FIGURE 6.1 Charge denalty contour aap for «phare in flow for 

varloua charged partie le Sehmidt numbera at Ite-5 (flow 

wlthout vake). *where we define nbO.9999 aa 1.0 . 



FIGURE 6.2 Charte dansle? contour ««p for «phare 
In flow for 

varloi» ehargad parttela Sehaddt nunfear» 
at ae-40 ( 

flow wlth «akc ). 
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"COlI 6.5 Angle dépendance et local eurrant ta aphere for varioue 

surface potentiels (al Re-20,Scc-l (b) *e-eO,gce�l . 
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rieDU 6.Sb Angle dependenee a* lacal current for varlone aurface 

potentiel», 10-60, Scc-1 . 

"OIJU 6.6e Angle dependenee et local carrent te ephere fer verloue 

Reynolds nuabtrt . Sce-102 (e) # 14-0 (b) A -2 (c) 

M� * . 
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FIGURE 6.6b Angle dependenee of local current for ver loue Reynolds 

nunbers. Se e -102, + P /i-2 . 

�a» 
FIGURE 6.6c Angle dependenee of local current for varleus Reynolds 

nunbers et 
Sec-102, 

14--4. 
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eharged partlcle Schaidt nunbers 
at ae-40 (si a^aj-O 

(M 

+ 1 M-2 
(c) 

* p 14--2 . 

FIGURE 6.7b Angle dependenee of local current for varlous eharged 

partlcle Schsddt nunbers at Re-40, 
4»/6-2 
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FIGURE 6.7c Angle dep.»d«n« of locel current for verjous ehergad 

partlcle Scheddt nuobers et Re-40, t 
"--2 . 

FIGURE 6.8 Mondlnenslonal probe current 09 a function of chsrged 

pertlcle Schmldt nunber for varlous surfece potentiels 

for .phere, Re.S . 
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FIGURE 6.9 Mondlaenslonel probe current es a functlon of Reynolds 

nunber fer ftTioua surface potentiels for sphère et 

Sec-102. 
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FICTTRE 6.12 Nondlnens tonal current aa a functloti of diffusion 

Rcynolda nuabar fer varioua surface potentiels et Ré- 

O.S . 
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FIGURE 6.13 Nondinensional probe current at a function of Reynolds 

nuaber for various eharged particle Schmidt nunbers 

for aphere in flow at space potentiel. 

FIGURE 6.14 Nondiaenslunal probe current as a functlon of eharged 

particle Schaidt number for varlous Reynolds nunbers 

for sphère in flow at space potential. 
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FIGURE 7.3 rneasi Istuii of total current of présent vork «lth other 

théories end experlaents at space potentiel .R^Aj-O, 

cyllnder in croee-f lev.Tbeories:(l)_ - présent vork for Sec"l 
end 103 3 (2)44+ Dennls et eUMeglfor Sce»0.73 

end 103 

(3)6 Frtedlender(l»571for Scc-l. Eaperln»mts:�s*oooDobry and 

Plan � KM) fer SCc.1200 (b)eee Colline end Wllllane (1939% 
fer 

Se -0.73 (c)-- experlnentel corrélation» of Jenecn and _81...(1"". 

FIGURE 7.4 Coaperleon of local current of présent 
nork vith theory 

of Demie et el (1973) fer spbere et space potentiel «J^-O 

and 
R /Ag-0. 

(a) Re-20 (b� Re-0.5 (c) Re-0. 
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FIGURE 7.5 Coasierlson of total current of preeent nork vltb other 

théorie! end «xp.rlo.nl: fur a epkere et epeca potentiel witb 

R /X-0. 
Tbeory:(l)� preeent eork et S*e-1 (2) 

J.i8aor(1968.1'6') et See-0.7 (3)+ 
+ Banni» et el(l»73)et Scc-0.73 

W ç^alc end tves.nt.ev (ie*9)et Scc-1 (5)eee Tu». 

(1956).. Ste-0.7J (6) VUllase(19J4�at Scc-0.73. 

Reparlant: (a) oo Yu««(19t0) et Scc_o.73. 

FIGURE 7.6 Cenperleen of front stsgnetlen current denstty Jfa 
et présent 

vork eltfc other théories for e ephere et epece potentiel vith 

1 12L.0. (1)- présent oork for Sc^-1 end 10 2 (2) Eckert 

and Drake (19721 fer Sct-1 
end 102 �3\_-- Kodere( 

1975) for Se .1 and 102 (*��_.� Gupi lo end Ryeseatsev (1969) for 

Se -1 sud 10 (5)+ + Dannls et el (1973) et Scc-0.73 . 




