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ABSTRACT 

A method is proposed for the analysis of measurements of 

the six components of a random electromagnetic wave fields. This 

field, observed at a fixed point in a magnetoplasma, is assumed to 

be a Gaussian stationary and ergodic wide-band process. It is 

described statistically by the distribution of wave energy density 

with respect to the variables frequency and wave-normal direction. 

A parametric model of the wave distribution function is assumed. 

Using the principle of maximum likelihood, a method is developed 

for estimating the unknown parameters from data consisting of conti- 

nuous measurements of the six field components over a finite time 

interval. The accuracy of the estimated parameters is evaluated. 

Finally, methods are proposed for testing the validity of the model, 

and for comparing the relative merits of différent possible models 

when more than one exist. 
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1 - INTRODUCTION 

The présent paper deals with the problem of how to estimate 

the wave distribution function for a random electromagnetic wave field 

in a magnetoplasma, from measurements of the six components of the field 

at a fixed point. It is the second in a séries of detailed papers on this 

and related topics. 

In two short review papers that preceded this séries (STOREY, 

1971 ; STOREY � LEFEUVRE, 1974), we pointed out that a linear random 

field in a homogeneous magnetoplasma could be considered as the sum of fields 

due to a continuum of elementary plane waves, of différent frequencies, 

propagated in différent directions, without any mutual phase cohérence. 

Such a field can only be described statistically. We chose to characterize 

it by a function that spécifies the distribution of wave energy density 

with respect to frequency and the wave-normal direction ; this we named the 

wave distribution function (WDF). The second of the two papers referenced 

above forms an introduction to the présent séries. 

In the first paper of this séries (STOREY � LEFEUVRE, 1976), 

hereinafter referred to as paper I, we considered what we called the 

direct problem. Knowing the distribution function for the waves together 

with the values of the characteristic parameters of the plasma we sought 

to détermine the statistical properties of the six field components. Thèse 

properties are described by the 36 auto-covariance and cross-covariance 

functions of the six components, or by their auto-spectra and cross-spectra. 

We argued that it is préférable to work with the 36 spectra, which we 

arranged for convenience in a 6 x 6 spectral matrix S. Then we showed that 

the éléments of this matrix are related to the WDF by the following équation : 

Ail équations numbers in the présent paper bear the prefix "2". 

Référence is made aiso to équations in paper I, which hâve numbers with 

the prefix "1". 
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Hère w is the wave angular frequency, while the subscripts i and j 

refer to the six field components. S..(oj) is either the mean auto-power 

spectrum of a single field component (if i = j), or the mean cross-power 

spectrum of two components (if i � j). The coefficients a.. (u),0,((�) are 

related to the corresponding spectra for an elementary plane wave in 

the magneto-ionic mode m (ordinary or extraordinary), propagated in the 

direction specified, in spherical polar coordinates, by the polar angle 9 

and the azimuthal angle � ; ; if the characteristics of the ambient plasma 

are known, then thèse coefficients can be calculated from the magneto-ionic 

theory. F 
m (u),0,�j)) 

is the distribution function for the waves in mode m. 

See paper I for fuller définitions of ail those quantities. The équation 

(2.1), which enables the spectral matrix to be predicted when the distri- 

bution function is given (for instance, by the theory of the origin of 

the random wave field), represents the solution to the direct problem. 

Hère we are concerned with the corresponding inverse problem : 

namely, given data from which we can estimate the 36 éléments of the 

spectral matrix, to what extent can the WDF be determined and how should 

this be done ? (Note that, for reasons given in paper I, only 33 of thèse 

éléments are mutually independent). 

At the start of the présent work, it appeared that the 

solution to this problem would split into two consécutive parts : 

firstly, use of the 6-component field data to estimate the éléments 

of the spectral matrix ; secondly, use of the matrix éléments to estimate 

the distribution function (STOREY � LEFEUVRE, 1974). Now this is in 

fact true, but it does not represent the best way in which to dérive 

the solution theoretically. The first part would be easy ; however, 

since the field data are stochastic, and exist only over a finite 

interval of time, the estimâtes of the 36 matrix éléments are ine- 

vitably subject to statistical error. To develop the second part of 

the solution, it would be necessary to known the joint probability 

distribution of the 36 errors, which would be tiresome to dérive and 

to manipulate. For this reason, it is préférable to by-pass the spec- 

tral matrix initially, and to treat the problem as one of estimating 

the WDF directly from the 6-component field data. 
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In general, an inverse problem such as this is not easy to 

solve. However, this particular problem is simplified if we recognize 

that the data concerning waves of différent frequencies may be sepa- 

rated readily by spectral analysis. Then the problem is reduced to 

that of determining how the distribution varies as a function of direc- 

tion at a fixed frequency, wo say. 

Unfortunately even this simpler problem is still "improperly 

posed", in the sensé that there are infinitely many wave distribution 

functions that correspond to a given set of expérimental data. However, 

we shall assume in this paper that prior information is available about 

the form of the distribution function. More exactly, our assumption is 

that one or more theoretical models exist, each of which describes a 

possible distribution function completely when values are assigned to 

its characteristic parameters. Then the problem becomes clear-cut : 

if there is only one such model, it is that of estimating the parameters 

of this model, while if there are several models, we hâve the additional 

problem of choosing the best one. In either case, we must bear in mind 

that the true distribution function may not be describable by any of 

the models assumed. 

We shall start with the case where there is only one model. 

Our treatment of it is illustrated by the flow chart of Fig. 1, in 

which the rectangles represent items of information and the arrows 

the opérations that are performed on them. At the input we hâve three 

sets of information : firstly, measurements of the properties of the 

plasma at the point of observation ; secondly, certain prior informa- 

tion that enables us to construct a parametric model of the WDF ; 

thirdly, the set of field data. Then, using our knowledge of the plasma 

properties, we perform certain mathematical opérations on the data 

in order to estimate the characteristic parameters of the model. Having 

done so, it is important to test the validity of the results. If they 

are unacceptable, then a new model must be devised ; this step is 

beyond the scope of the présent paper. But if they are acceptable, 

then the procédure ends with this particular WDF as output. 
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In the case where there are several possible models, 

the procédure is only slightly more complex : first, the best set 

of parameters must be estimated for each model separately ; then 

the relative merits of the différent models must be assessed ; 

finally the best set of results (model + parameter values) must 

be treated for validity. Fig. 2 illustrâtes the case with two 

models ; the extension to a larger number is obvious. 

Problems that involve both parameter estimation and 

hypothesis testing (otherwise known as "state estimation") belong 

to the general field of identification theory (EYKHOFF, 1974). 

Even nowadays, the statistical foundations of this theory are the 

subject of controversy, between advocates of the concept of inverse 

probability based on Bayes" Theorem, and those of the concept of 

likelihood due to Fisher. Our treatment is based entirely on the 

likelihood concept, and uses the terminology of EDWARDS (1972). 

This approach to the study of random wave fields has been 

taken previously in oceanography (for instance, by OLBERS et al., 

1976), but not, so far as we known in plasma physics. 

The general plan of this paper follows the data flow 

as sketched in Figs. 1 and 2. The section 2 describes the input 

information, comprising the plasma properties, the parametric 

model or models, and the V.L.F. field data. Section 3 describes 

how the field data are prepared, by successive filtering, démodulation, 

sampling, and analogue-to-digital conversion, for their subséquent 

treatment in a digital computer. Section 4, which is the heart of 

the paper, deals with the opérations that must be performed on the 

input information in order to obtain the best estimâtes of the 

parameters of a given model : after a brief discussion of the relative 

merits of various estimation procédures (or "estimators"), leading 

to the choice of the method of maximum likelihood, an account in 

given of how the likelihood function is calculated and maximized. 

Section 5 describes how the merits of the différent models are compared, 

and the best of them tested for validity, again on the basis of maximum 

likelihood ; also expressions are derived for the accuracy of the 

parameter estimâtes. Finally, in section 6, we summarize our results, 

discuss their limitations, and make suggestions for further study. 
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2 - INPUT INFORMATION 

2.1. PLASMA PROPERTIES 

We assume that, at the point of observation, measurements 

are made of such properties of the ambient magnetoplasma as suffice 

to characterize it in cold-plasma theory. The list of the relevant 

properties dépends on the frequency range of the wave fields that 

are being studied. At frequencies large compared to the lower hybrid 

frequency, where the ions do not influence the waves significantly, 

it suffices to measure the magnetic field vector and the électron 

density. At lower frequencies the ionic composition must be measured 

also, unless it happens to be known beforehand, for instance from 

previous measurements that hâve shown it to be constant, in time 

and in space, throughout some large région containing the point of 

observation. 

For the purposes of the subséquent analysis, knowledge of 

thèse properties is not absolutely indispensable. It would be possible 

to treat some or ail of them as additional unknown parameters of the 

model for the WDF, and thus to détermine them from the analysis 

itself. Such procédures would be the analogues, for random wave fields, 

of the various well-known methods for determining local plasma pro- 

perties from observations of cohérent wave fields, natural or arti- 

ficial (STOREY, 1959 ; AUBRY, 1968 ; SCARF et al., 1969). However, 

a general rule in problems of statistical parameter estimation is 

that the fewer the unknown parameters, the more accurately can they 

be estimated, so it is better if the plasma properties are measured 

independently ; hère we shall assume that this has been done, and 

that the errors of thèse measurements are negligible. 

Knowing the plasma properties, the weighting functions 

a.. (co,6,�j)) in the set of équations (2.1) can be calculated from 

the formulate given in appendix B of paper I. Then the only unknown 

parameters in this équation are those of the model for the distri- 

bution function F (u),6,(b). 
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The properties of the plasma also constrain the choice 

of this model. They détermine whether, at a given frequency w, both 

magneto-ionic modes can be propagated, or only one of them, or 

neither. For a propagated mode, they détermine whether propagation 

occurs over the full range of wave-normal 0 � 0 � tt, or only over 

part of this range. 

This constraint is best understood by referring to the 

classical CMA diagram (STIX, 1962 ; ALLIS, BUCHSBAUM � BERS, 1963) 

which is drawn in Fig. 3 for the case where the plasma contains 

only one type of positive ion. For instance, under the conditions 

corresponding to région 8 of this diagram, only the ordinary mode 

is propagated. Moreover, there is a range of 0, centred on tt/2, 

within which neither mode can be propagated : waves in the ordina- 

ry mode are propagated only when their normal directions lie inside 

a certain cône with its axis along the magnetic field. This is the 

so-called "Whistler mode", in which much magnetospheric radio noise 

is generated. 

Summarizing, for values of the variables to and 0 such that, 

for the known plasma properties, one or other mode is not propaga- 

ted, the corresponding part of the WDF is necessarily zéro. However, 

this is the only constraint that the plasma properties impose : at 

values of w and 6 for which the mode m is propagated, the plasma 

properties place no restrictions - and yield no information - on the 

form of F (co,0,(f)) . 

2.2. PARAMETRIC MODEL 

In addition to the constraint imposed by the plasma pro- 

perties, prior information for modelling the WDF is generally provided 

by some theory of the génération and propagation of the random waves. 

The theory need not necessarily be detailed : a few very 

simple and general ideas about the origin of the waves may suffice 

for constructing a phenomenological model, in which the distribution 

is usually a simple function of a few parameters. For instance, one 

may know that the source of the waves is so remote that it subtends 
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only a small solid angle at the point of observation, in which 

case the observed waves are likely to form a fairly narrow beam. 

Accordingly onemight be inclined to model their angular distri- 

bution with a 2-dimensional Gaussian function, the characteristic 

parameters being its peak value, the direction of the peak as 

specified by the corresponding angles 0 and �, and also one or 

two width parameters depending on whether one assumes the cross- 

section of the beam to be circular or elliptical ; in the latter 

case, a further angle may be required to specify the orientation of 

the major axis. Generally thèse parameters are not known before the 

field measurements are made : even if the position of the source is 

known, the direction of the beam may not be, because the waves may 

hâve been refracted on their way to the point of observation ; again 

because of refraction and also of scattering, the beam width may 

be uncertain even if the size of the source is known. Thus, at any 

given frequency, between 4 and 6 parameters hâve to be determined 

from the field measurements in order to specify the model comple- 

tely. A phenomenological model such as this might be appropriate for 

the field of Alfvén waves in the solar wind. 

On the other hand, if a detailed theory exists concerning 

both the place and mode of origin of the waves, then this prior 

information can be used to construct a physical model, in which the 

distribution is liable to be a relatively complicated function of a 

somewhat larger number of parameters. One set of parameters might 

relate to the instability that produces the waves ; for instance, 

it might characterize the particle distribution function for an 

unstable population of energetic électrons. Another set might cha- 

racterize the spatial distribution of cold plasma, which governs 

the propagation of the waves. Some of thèse various parameters may 

be known from direct measurements, but most of them are likely to 

be unknown and hence must be determined from the field data. Physi- 

cal models of this type could perhaps be devised for magnetospheric 

phenomena such as plasmaspheric E.L.F. hiss or hight-latitude V.L.F. 

hiss. 

Whatever thetype of model, the number of adjustable para- 

meters cannot be allowed to exceed the number of independent éléments 



- 8 - 

of the spectral matrix. For reasons explained in paper I, this 

number is 33 (assuming that the field measurements include ail 

6 components), rather than the 36 that one might expect. The 

number of parameters is likely to be much less in any reasonable 

theory. 

2.3. FIELD DATA 

The same assumptions about the field data will be made 

hère as in paper I. They may be summarized as follows : the data 

are signais obtained by continuous measurement of the electric 

and magnetic components of the random wave field ; the measurements 

are undistorted, and free from noise of technological origin ; 

the coordinate axes Oxyz, along which the components are measured, 

are right-handed rectangular with Oz parallel to the steady magnetic 

field ; the point of observation is fixed with respect to the plasma 

so the wave frequencies are not Doppler-Shifted ; each signal is a 

stationary and ergodic Gaussian random process of zéro mean value ; 

the statistics of the set of observed signais is described fully 

by the spectral matrix$, which is related by (2.1) to the wave 

distribution function F (w,0,�J)) . This data set is assumed to be 

complète : that is, it comprises ail three components of the wave 

electric field vector E and ail three components of the wave magnetic 

field vector H. In practice, one or more of thèse six components may 

be missing. However, only a trivial extension of the theory is needed 

to treat such incomplète data sets. 

For the purposes of the présent theoretical analysis, 

thèse data are regarded as the six components of a generalized 

electric field vector^, defined by (1.2) as follows : 

where Zo is the wave impédance of free space. The éléments S ij (w) 

of the spectral matrix are the mean auto-power spectra (i = j) and 

cross-power spectra (i � j) of thèse six components. 
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For the same purposes, we suppose thèse idéal statis- 

tically-stationary data to be given us over a time interval of 

duration T, starting at the instant t = 0. But in practice T 

cannot often be identified with the total duration of the data, 

since expérimental data are seldom statistically stationary over 

long periods. To reconcile theory and practice, T should be iden- 

tified rather with the length of time during which the data statis- 

tics can effectively be regarded as stationary. It is determined 

by testing the data for stationarity. In general it varies with time, 

and momentarily may even become so short as to make parts of the 

data useless ; thèse parts must be eliminated. The remaining data 

are divided into sections of length T ; and then each section is 

analysed separately by the methods described below. 

In describing thèse statistical methods, we are naturally 

led to distinguish between ensemble averages, which are used to 

define the data statistics, and time averages over the interval 

0 4 t 4 T, which are used to estimate them. We dénote ensemble 

averages by triangular brackets enclosing the expressions concerned, 

and time averages by horizontal bars placed over thèse expressions. 

The ensemble average (or "true", or "expected") statistics will be 

represented by symbols with no spécial features, while the corres- 

ponding estimâtes based on time averages will be represented by the 

same symbols with caret superscripts. Thus if, for some random 

function x(t) satisfying our assumptions, we were led to define the 

mean power w as the ensemble average �x2�, our estimate of this 

quantity would be the time average w = x 2 T-1 
T 

x2 dt. 



3 - DATA REDUCTION 

3.1. FOREWORD 

As a first step towards the analysis properly so 

called, which is described in sections 4 and 5, it is convenient 

to replace each of the six continuous signais in the data set by 

an équivalent séquence of numbers, this for two reasons, the first 

theoretical and the second practical. Firstly, considérations of 

statistical probability are more easily applied to discrète séquences 

than to continuous functions. Secondly, the analysis is too compli- 

cated to be performed by means other than a digital computer, which 

can accept data only in discrète numerical form. 

The initial réduction of the data from continuous to 

discrète form involves three opérations : (1) filtering ; (2) démo- 

dulation ; (3) sampling. Thèse are described below, as if they were 

to be done in the given order. Also, for purposes of illustration, 

various analogue means for performing them are described briefly. 

However, neither this order nor thèse means are unchangeable. For 

instance, one could very well begin by sampling the data and con- 

verting them to numbers, then perform the remaining two opérations 

in the computer. 

Strictly speaking, thèse opérations are preliminary pro- 

cessing rather than data réduction, since they are réversible and 

thus involve no réduction in the information content of the data. 

However, it will appear in section 4 that the first step in the 

subséquent analysis is to use thèse data to estimate the éléments 

of the spectral matrix, by time-averaging the instantaneous auto- 

powers and cross-powers of the filtered signais. Thèse opérations 

destroy redundant information, so they are true data réduction. 

Hère we suppose that they are done in the computer, after sampling 

and numerization. However, they could also be done by analogue 

means, either with or without prior démodulation, and since thèse 

means hâve some practical importance, they will be described in 

outline. 



3.2. FILTERING 

The final object of our analysis is to enable us to 

détermine the value of the distribution function 
F m (u),0,4�) for 

either of the two wave modes and for any set of values (cL)0,60,�t'0) 

of the wave variables. This - if it could be done - would involve 

identifying the contributions to the signal power spectra from 

waves in a given mode and with w in the range u)0 - Aa)/2 , with 

8 in the range 00 ± A0/2 , and with � in the range �j)0 ± A(j)/2 , 

the frequency bandwidth Au) and the angular widths A�{� being suf- 

ficiently small that F can be considered as constant and equal 

to its value at (u)0 ,0o ,�f�o) throughout the corresponding ranges. 

Of course this object is not fully attainable, for reasons already 

explained in section 1. But it is partly attainable, inasmuch as 

in one variable - the frequency - the resolution is limited only 

by the length of time T over which the data can be considered as 

statistically stationary : the contributions that the waves in the 

frequency range co0 ± �w/2 make to the data signais can be isolated 

by frequency analysis (i.e. by passing thèse signais through narrow- 

band filters), and the bandwidth Au) can be made as small as one wishes, 

subject to the restriction TAu) » 1. Accordingly this is the first 

step in the data réduction ; of course, if the data were acquired 

in space with narrow-band receivers, this step would be superfluous. 

We shall suppose that ail six data signais are passed 

through identical, idéal, narrow-band filters. Thèse hâve rectan- 

gular pass-bands of width Au) centred on the frequency wo, within 

which they neither attenuate the signais nor shift them in phase. 

Thus, at positive frequencies, the transfer function Y(w) of the 

filters is assumed to be unity for wo - Aw/2 � w � a)0 + Aco/2 , and 

zéro elsewhere. We assume Aw « w, Their noise bandwidth, as 

defined by (1.4), is Au). The symbol g.(t) 
will denote the narrow- 

band signal obtained by passing the wide-band signal Ëi (t) through 

such a narrow-band filter. 

Now let us consider how the statistics of the filtered 

signais are related to those of the original data signais. On the 

new assumption that F 
(u),0,�}�) 

is uniform over the frequency range 
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accepted by the filter, for both wave modes and for ail values of 

0 and (j), it follows that S ij (w) also is uniform over this range, 

so - at positive frequencies - the cross-spectrum of the pair of 

filtered signais g.(t) and g.(t) is equal to S..(t0o) for 

w. - Aco/2 � w � 0Jo + �w/2, and to zéro elsewhere. The corresponding 

cross-covariance function, which is defined as the ensemble average 

� g.(t) g.(t-T) � and which we shall call r . � CO , is the inverse 

Fourier transform of this spectrum, namely 

where the symbols R and I dénote the real and imaginary parts. 

The sine function is 

Evidently the cross-covariance function of the two signais g.(t) and g.(t) is 

determined completely by its values at two points, such as T = 0 

and T = 10 or T = -10, where Wolo = R/2, since 

In (2.6), we hâve ignored the variation of the sine function over 

the quarter-period at the frequency Wo. Similarly the auto-covariance 

function of any one signal g.(t) is determined completely by its 

value for T = 0. 



The results (2.4)-(2.6) concerning the statistic of the 

narrow-band real signais g.(t) can be expressed more elegantly 

in terms of the corresponding complex analytic signais y.(t) . If 

C.. =� y.(t) y.(t)� is the complex cross-covariance function of 

y.(t) and y.(t) , then the following results hold : 

At zéro time-shift, 

Evidently ail the information in the spectral matrix at the frequency 

U)0 is contained in the matrix C whose éléments C.. are the covariances 

at zéro time-shift. C is known as the covariance matrix of the narrow 

band signais. The expression (2.9) is a spécial case of the more 

general results (1.5). 

The facts set out above form the bases of a standard 

analogue method for estimating the complex covariances C..(0), and 

hence the spectral matrix éléments 
(S ij (w.), 

from data of finite 

duration (MEANS, 1972 ; HARKER � ILIC, 1974). It involves taking 

time averages over the interval T. The fractional error of the 
-1 /2 

resulting estimâtes is of the order of (T Au)) , so the condition 

for them to be reliable is TAu) » 1. This method is illustrated in 

fig. 4 ; following the convention announced in § 2.3, we dénote 

such estimâtes by the use of caret superscripts. 
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3.3. DEMODULATION 

It is well known that, for narrow-band signais, the 

analytic signal y(t) that corresponds to a real signal g(t) of 

mean frequency Wo , can be regarded as a complex exponential of 

constant frequency co0 , modulated by a complex envelope, z(t) 

say (HELLSTROM, 1968). We shall write the latter in terms of its 

real and imaginary parts as 

Thus 

A minus sign has been included in (2.10) - though this is not 

customary - so as to avoid one Ln (2.12) and in various later 

équations. Given the instant corresponding to the origin of 

time, the two signais x.(t) and y. (t) contain ail the information 

conveyed by g.(t). Like the latter, they are Gaussian random 

variables with zéro mean value, but they are easier to deal with 

because they vary relatively slowly : their mean frequency is 

only Aco/4. Hence the second step in the data réduction consists 

of extracting thèse two components of the complex envelope, i.e. 

of "demodulating" each of the six narrow-band signais g.(t). 

Fig. 5 illustrâtes a well-known analogue method of démo- 

dulation. First the narrow-band data signal is multiplied by the 

sinusoidal signais cos wot and sin Wot. Next, the product signais 

enter idéal low-pass filters which eut their spectra off at some 

frequency between Aw/2 and w. - Ato/2, typically around (1)0/2, 

without affecting their components at lower frequencies. Finally, 

the outputs from thèse two filters are 
� xi(t) and y y^ (t) which - apart 
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from the numerical factor - are the required demodulated signais. 

Instead of fixing the data bandwidth Au by means of the 

band-pass filters, as described in § 3.2, it is possible to do so 

with the low-pass filters, as shown in fig. 6. The wide-band data 

signais F\ (t) are multiplied directly by the auxiliary signais 

cos (jj0t and sin wot, then the products are smoothed by low-pass 

filters with cut-off frequency Au/2 ; we suppose that thèse filters 

hâve idéal rectangular low-pass characteristics. The procédure as 

shown requires the multipliers to be perfect, for otherwise compo- 

nents of the data signais around zéro frequency or around the har- 

monies of wo may break through into the output. To avoid this risk, 

it is usual to pass each data signal, before démodulation, through 

a relatively wide band-pass filter, covering typically the band 

0.5ùJo - 1.5co0 The opérations are best performed in this order 

when 6w« wo, as we hâve assumed, since a low-pass filter cutting 

off at Aw/2 is easier to construct than a band-pass filter of 

bandwidth Au at the frequency Wo. 

In the présent instance, where the six pairs of low- 

frequency signais x.(t) and y.(t) are to be used only for calcu- 

lating their auto-covariances and cross-covariances, the phases 

of the auxiliary signais cos (wot) and sin (wot) need not be known 

so long as they are the same in ail six channels. Likewise, it does 

not matter if the various band-pass and low-pass filters introduce 

phase-shifts, provided that thèse also are the same in ail channels. 

Having discussed alternative methods of démodulation, 

let us now examine the statistics of the demodulated signais, be- 

ginning with the auto-power spectra and auto-covariances. Again, 

we quote the spectra only at positive frequencies ; since the de- 

modulated signal are purely real, the negative-frequency parts of 

their spectra are the complex conjugates of the positive-frequency 

parts. 

The auto-spectra of x.(t) and of y.(t) are identical. 

They are rectangular, extending from w = 0 to oo = Au/2 with the 

constant value 2 S..(a)o), and vanishing at ail higher frequencies. 
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An inverse Fourier transform gives the corresponding covariance 

funetions, which are of the form 

Their common value at zéro time-shift is 

which is, of course, the mean power of each of thèse two signais. 

The cross-spectrum of x.(t) with y.(t) is zéro at ail 

frequencies, so their mean cross-power is zéro also : 

Thèse statements are true in the présent context, but they would 

not be so in general, if the band-pass filters in the arrangement 

of fig. 5 were allowed to hâve an arbitrary response. They are 

true only if the function | Y (to) is symmetric about u0, which is 

the case for the idéal filters that we hâve assumed. In the arran- 

gement of fig. 6, the required symmetry is achieved automatically, 

whatever the response of the low-pass filters may be. This is ano- 

ther advantage of the latter arrangement. 

Finally, we need the cross-spectrum of the signal x.(t) 

or y.(t), with the signal x.(t) or y.(t). The cross-spectrum of 

the pair x.(t) and x.(t), whieh is equal to that of the pair y. (t) 

and y.(t)jis again rectangular, extending from zéro frequency to 

Au/2, with the constant value 2 R [s..(a)o)]. The total mean cross- 

powers are 
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The cross-spectrum of the pair x.(t) and y.(t), which is equal 

to minus the cross-spectrum of y.(t) and x.(t), is of similar 

form, with the value 2 I rs..(u)0)], and the cross-powers are 

and we also hâve 

Note that a.. = a.., but that/?.. = - B... The various expressions 

quoted above for the auto-powers and cross-powers, in terms of 

the spectral matrix éléments, are summarized in table 1. 

They can be summarized more elegantly, in terms of the 

complex covariances of the complex envelopes, simply by writing 

This équation follows from the previous ones because 
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Thèse results form the bases for another analogue 

method for estimating the covariances ; it is illustrated in 

fig. 7A for the auto-covariances, and in fig. 7B for the cross- 

covariances. Note that each covariance can be estimated in two 

ways, that both ways are implemented, and that the two results 

are combined ; the cross-products of the low-frequency signais 

are added or subtracted as appropriate, i.e. as on the right- 

hand side of eq. (2.19). The reason for doing this is that their 

errors are uncorrelated, so adding them reduces the mean fractional 

error by a factor of 21'2. Then, apart from the fact that the out- 

puts are larger by a factor of 2, this method is équivalent in ail 

respects to that of fig. 4. 

We now introduce a new symbol to represent the set of 

12 filtered and demodulated signais. We write 

where the subcript i runs from 1 to 12. In ascending order, the 

12 quantities v. are xj, YI, X2, y 2 X6, Y6. The signais 

x.(t) and y.(t) are now regarded as components of a 12 dimensional 

data vector v(t). This move is analogous to the introduction, in 

paper I, of the 6-dimensional generalized electric field vector £ 

(see also équation 2.2) ; as before, it is made solely to simplify 

the algebra, and has no physical significance. 

Moreover, we introduce a 12 x 12 data matrix V(t), the 

éléments of which are products of the components of the data vector, 

and we define a matrix A such that 
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These covariances specify the statistical properties of the v.(t). 

Their values are given in table 2, using the symbols defined by 

équations (2.16) and (2.17) and listed in table 1. There are 144 

of them, but only 33 are mutually independent. 

As an alternative to the purely real 12-component data 

vector V(t), we could use the 6-component complex data vector z(t), 

the components of which are the complex envelopes of the six narrow- 

band signais. Equally, we can define a complex data matrix Z(t), 

such that 

The statistics of thèse quantities are specified by the complex 

covariance matrix C, in accordance with (2.18). 

In later sections, for clarity, we prefer to introduce 

new concepts in terms of the real data vector v(t) and matrix 

V(t) ; also we use the data in thèse forms in the numerical ana- 

lysis. But, for conciseness, we shall often rewrite the analytic 

results in terms of the complex data vector z(t) and matrix Z(t). 

3.4. SAMPLING 

The final step in the data réduction is to sample the 12 

low-frequency signais v.(t). Since each of them is limited to the 

band Iwl � Aw/2, it can be replaced, without loss of information, 

by a séquence of samples taken from it regular intervais, provided 

that the sampling frequency f = w 
/2tt 

is greater or equal to the 

Shannon frequency Au/2ïï. The sampling process consists of repla- 

cing the continuous signal v.(t) by the infinité séquence of dis- 

crète samples v.(t ), where 
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and n takes ail real integer values. The signal v.(t) can be re- 

constructed from the séquence v.(t ) by means of the interpolation 

formula 

which demonstrates their équivalence. 

The statements above apply to signais that are not 

limited in time, but those that we encounter in practice are of 

finite duration. We shall suppose that the interval over which 

the signais are observed is of duration T = 2N/f , and extends 

from the origin of time 
t 

= 0 to the instant 
t�� 

= T. Inclu- 

ding those from 
t 

and 
t2N' altogether 2N + 1 samples of each 

signal are taken during this interval. For such signais, we shall 

use the interpolation formula 

which is only approximate, as can be seen by comparing it with 

(2.24). The approximation is worst at the beginning and end of 

the séquence, and best in the middle. On the average, the errors 

are negligible so long as N » 1. Correspondingly, we shall use 

the following approximation for the time average auto-powers and 

cross-powers of the signais observed during the interval T : 

The statistics of the samples are related in simple and 

évident ways to those of their parent signais : in particular, their 

ensemble average auto-powers and cross-powers are the qantities 

A.. defined by (2.21) and listed in table 2. Moreover, the covariance 



- 22 - 

of pairs of samples of the same signal, separated by an interval 

An in their ordinal number n, is given by (2.13) with T = An/f ; 

the cross-covariances of samples of two différent signais vary 

with T in the same way. 

From thèse last results, it is easy to see that if the 

sample frequency f 
is equal to the Shannon frequency, then the 

set of values of the 12 signais v.(t) at any one sample time t 

is completely indépendant of the corresponding set at any other 

sample time t , where m � n. This state of affairs will simplify 

the theoretical analysis in section 4, so henceforth we shall 

assume that the signais v.(t) hâve been sampled at the Shannon 

frequency. 

In practice, when the samples are taken, they are imme- 

diately converted into numbers so that they can be handled by a 

digital computer. 
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4 - PARAMETER ESTIMATION 

4.1. CHOICE OF AN ESTIMATOR 

Given a parametric model of the System under study, 

the problem of estimating its parameters is usually dealt with 

in two steps : firstly, we define what is sometimes called an 

"objective function" (BARD, 1974), that measures the extent to 

which the data agrée (or disagree) with the prédictions of the 

model ; secondly, we seek the values of the parameters that join- 

tly maximize (or minimize) the objective function. This procédure 

constitutes the "estimator". Of course, the need remains to assess 

the validity of the model, both in the absolute sensé and in com- 

parison with any rival models, and also to détermine the accuracy 

of the estimâtes of its parameters. The présent sub-section is 

concerned only with the first step in the estimation procédure, 

namely the définition of an objective function. 

The choice of the objective function dépends on our prior 

knowledge about the statistical properties of the data. If we hâve 

no information at ail on this subject, then our choice is arbitrary. 

For simplicity, it is usual to take the sum of the squares of the 

residuals, i.e. of the différences between the true values of the 

data and those predicted by the model. The minimization of this 

quantity constitutes the "least-squares estimator". On the other 

hand, if the probability density function of the data is known, 

then we prefer the likelihood function, which is proportional to 

the probability of obtaining the data when the parameters hâve a 

given set of values. This quantity has to be maximized, so we speak 

of the "maximum-likelihood estimator". Finally, if a prior probabi- 

lity can be assigned to any given set of parameter values, then we 

take as objective function the corresponding posterior probability, 

which - according to Bayes' theorem - is proportional to the pro- 

duct of the prior probability and of the likekihood function. The 

maximization of the posterior probability constitutes the "Bayes 

estimator". 
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The assumptions made in § 2.3 about the statistics of 

the field data place the présent problem in the second category 

above, so we adopt the likelihood as our objective function. In 

§ 4.2 below, we quote the general définition of this function, 

and dérive the expression for it in our particular case. Then, 

in § 4.3, we explain the numerical method which we use to maxi- 

mize it, and so to obtain the most likely set of parameter values 

for the given model. This will conclude section 4, but not the 

discussion of the likelihood function which has further uses : it 

also enables us to compare the relative merits of rival models, 

to test the validity of the best model, and to assess the accuracy 

of the parameter estimâtes. Thèse topics will be discussed in 

section 5. 

4.2. LIKELIHOOD AND SUPPORT FUNCTIONS 

The concept of likelihood is related to that of probability 

(for a discrète variable), this being understood in the usual sensé 

of the relative frequency of occurrence in a statistical ensemble. 

In the context of the analysis of stochastic expérimental data 

(which momentarily we suppose to be discrète variables, though this 

is not so in the présent case), the ensemble consists of ail the 

possible sets of data that the experiment might hâve generated in 

the circunstances. The actual set of expérimental data is a parti- 

cular - but, we hope, représentative - member of this ensemble. So 

as to be able to analyze the data, we assume that the circumstances 

of the experiment can be described by some physical model involving 

a finite number of paramaters. Thèse, if the model is correct, 

suffice to specify the data statistics, i.e. the properties of the 

ensemble. The aim of the analysis is to estimate the set of para- 

meters from the set of expérimental data. Let H be the hypothesis 

that the parameters take a given set of values, and call the data 

set D. Let P(D/H) be the probability of obtaining the data D, 

granted the hypothesis H ; this probability is given by our statis- 

tical model. Then the likelihood L(H/D) of the hypothesis H, in the 

light of the data D and assuming this spécifie model, is defined 

as being proportional to P(D/H), the constant of proportionality 



- 25 -- 

being arbitrary (EDWARDS, 1972). 

When dealing - as we are hère - with continuous rather 

than with discrète data, the concept of probability has to be 

replaced by that of probability density, and likelihood by the 

likelihood function. We write P(D/H) dD for the probability that 

the values of the data lie in the interval from D to D + dD, 

granted the hypothesis H ; the symbol P(D/H) now stands for the 

probability density. Then the likelihood function is defined as 

being proportional to P(D/H), with the constant of proportionality 

arbitrary. 

We shall take this arbitrary constant as unity, in which 

case any expressions that we may dérive for P(D/H) and for L(H/D) 

will be identical. The différence is that P(D/H) is a function of 

D, whereas L(H/D) is a function of H : when manipulating the pro- 

bability density P(D/H) we consider the hypothesis H to be fixed 

and D to vary, while with the likelihood function L(H/D) the data 

are fixed and H is the variable. 

But L(H/D), like P(D/H), still refers to an interval dD 

of the data set. This feature - among others - distinguishes the 

likelihood function from the posterior probability density, used 

in Bayesian estimation, which refers to an interval of the set of 

parameters of the model. 

To apply thèse considérations to the problem in hand, 

we suppose that we hâve a parametric model F 
m �) describing 

how the wave distribution function at the frequency u0 dépends on 

the angle variables 0 and �, and that this model is characterized 

by a number p of parameters i(ii,ijj2, ty which we dénote collec- 

tively by the symbol � : we group ail the parameters together in 

this p-component parameter vector y. Let H be the hypothesis that 

thèse parameters take the values �1,�2......� . This hypothesis H 

is to be assessed in the light of the data at our disposai, namely 

the 2N + 1 values of the 12-component data vector v(t 
). 
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First let us consider the probability density of indi- 

vidual values of this vector, i.e. the joint probability density 

of the 12 quantities v.(t ) at a fixed t . It will be convenient 

to write the expression for this density in the customary matrix 

notation, which we now recapitulate. Bold-face capital letters 

dénote square matrices ; thus we use the symbol A for the matrix 

whose éléments are the covariances A., defined by (2.21). We use 

bold-face small letters to dénote column vectors : thus V will 
n 

be the column vector whose éléments are the quantities v.(t ). 

Now, according to our assumptions, each of thèse quantities is a 

random variable with a probability density obeying a normal (Gaussian) 

law. Hence the joint probability density of the 12 quantities v.(t ) 

is a 12-variate normal distribution. In matrix notation, it is 

where | A| is the déterminant of the matrix A, and A is the inverse 

of this matrix. v is a row vector, the transpose of the column 
n 

vector y (KENDALL and STUART, 1969a). 

The dérivation of équation (2.27) assumes that | A| does 

not vanish. Actually this déterminant would vanish in either of 

the following circunstances : firstly, if any linear relationships 

existed between the components v.(t ) of the data vector (in other 

words, if any items of the data were redundant) ; secondly, if any 

component was zéro. It should be understood that for 1 AI to vanish, 

thèse conditions would hâve to apply necessarily, for physical 

reasons, at ail times, to ail possible data sets : the fact that 

they might occur fortuitously in a particular data set, besides 

being very unlikely, has nothing to do with the question. 

If | A| vanished for either of thèse reasons, then one or 

more components of the data vector would hâve to be eliminated, 

so as to obtain a linearly-independent set of non-zero data. The 

data vector v and the matrix A would then be of lower order than 

before, so the theory would hâve to be modified accordingly, but 

this is easy. The déterminant lAI, of lower order, would be finite. 
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Moreover, 1 AI is always positive. Provided that its 

déterminant is finite, any covariance matrix is positive definite 

(WILKS, 1962). This general resuit follows from the inequalities 

A2.. � A.. A.. that hold between the covariances. For any positive 
ij 11 JJ 

definite matrix, the déterminant is positive. 

After this discussion of the determinant 1 AI, and now 

making the additional assumptions that the 12 components of the 

data vector are linearly independent and non-zero, we résume the 

dérivation of the likelihood function. 

The formula (2.27) for the probability density may be 

expressed in various other ways. For instance, the exponent may 

be written out in terms of the components of the data vector, 

using the fact that 

where cof (A..) is the cofactor of A.. in the déterminant IAI. 

Alternatively, the exponent can be expressed in terms of the data 

matrix V(t ) defined in § 3.3. If we modify the notation slightly 

by setting V = V(t ), we hâve 

where the symbol tr dénotes the trace of the bracketed matrix 

product. Yet again, we can use the complex data vector and matrix. 

We let an be the column-vector représentation of the vector 19(tn) 

previously defined, set Z n Z(t n ), and exploit the following 

results which are proved in the appendix A : 
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C is the complex covariance matrix. Then the formula for the 

probability density becomes 

Now let us dérive the probability density of the 

complète data set D, comprising the 2N + 1 values of the data 

vector 
v(t ), hère 

called v n 
As we saw in § 3.4, the values of 

this vector at différent times t are wholly independent of one 

another, so the joint probability density of the complète set is 

simply the product of the individual probabilities : 

Proceeding as above, the sum in the exponent can be written out as 

follows : 

On the right-hand side of this équation, the sum in the square 

brackets can be rewritten as 

where the second factor on the right-hand side is the average of the 

product concerned over the time interval T. This time average cons- 

titutes an estimate of the covariance A.. defined by (2.21) ; in fact, 
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to the accuracy of the approximation (2.26), it is the maximum- 

likelihood estimate of A.., though we small not digress to prove 

this point. Recognizing it, and following the convention adopted 

at the end of § 2.3, we define 

and we introduce the symbol A for the 12 x 12 matrix of thèse 

quantities. (Warning. The caret superscript often symbolizes the 

adjoint of a matrix : this is not our usage). With the définition 

(2.26), the sum in the exponent on the right-hand side of (2.33) 

becomes 

Hence our resuit for the probability density of the complète data 

set is 

As before, it is instructive to rewrite this resuit in terms of 

the complex data vector and matrix. It then becomes 

where C is our estimate of the covariance matrix. The éléments of 

C are defined as follows : 
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By analogy with (2.9), we define our estimate S of the spectral 

matrix S by setting 

Again, this is in fact the maximum-likelihood estimate. In thèse 

terms, our expression for the probability density takes the final 

form 

In this expression, S is fixed while S contains the variables deri- 

ved from the 12 x (2N + 1) items of information v.(t ) that com- 

prise the data D. 

The results (2.39) - (2.42) are the formai évidence for 

various facts that hâve been announced previously without proof. 

Firstly, (2.42) shows that the data enter into the expression for 

P(D/H) in reduced form, as the estimate S of the spectral matrix 

S. This confirms the statement, made in § 3.1, that the first step 

in the analysis of the 6-component random field data is one of 

data réduction, in which they are used to estimate the éléments of 

the spectral matrix. Accordingly, from hère on we shall refer to 

the 36 éléments S.. of the matrix S as the reduced data. 
ij 

Secondly, the équations (2.39) and (2.40), together with 

(2.19), show that the process of data réduction involves combining 

the time-averaged products of the sampled low-frequency signais in 

pairs, in the ways suggested by (2.16a) and (2.17a) and illustrated 

in fig. 7. 

Having derived the expression for the probability density 

in terms of the reduced data, the likelihood function follows imme- 

diately. As already explained, our expression for L(H/D) is identical 
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with (2.42), but now S is fixed while S is variable, being a 

function of the p parameters �k 
that characterize the model. The 

most likely set of values of thèse parameters is that which ma- 

ximizes L. 

Rather than maximize the likelihood function as such, 

it is more convenient to maximize the natural logarithm of L, 

which EDWARDS (1972) calls the support function. Apart from an 

additive term independent of �, which we ignore, the support func- 

tion is 

where S = S (�). This resuit will also be written as 

M(�) expresses the dependence of the support function on the model. 

4.3 DERIVATION OF THE ESTIMATES 

The most likely values of the parameters of a given 

model 
F (^0,Q,fy; i�) are those that jointly maximize the support 

function. In discussing the process of maximization, it is instruc- 

tive to begin with a restricted class of model - that of the linear 

models - and, within this class, to deal firstly with the spécial 

case of a 33-parameter model, i.e. one in which the number p of 

free parameters is equal to the number of independent éléments of 

the spectral matrix. In so doing, we should emphasize that the 

models of which the identification forms the subject of the présent 

paper, and which are supposed to hâve some physical basis, are most 

unlikely to be of the simple linear type : the linear models are 

of some use in solving the inverse problem, which will be the 

subject of the next paper in this séries. In the présent paper, 

nevertheless, the study of this simple class is helpful because it 

clarifies a number of general points. 
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A linear model is one of the form 

in whieh the wave distribution function 
F m (iLi) 

is the sum of p 

linearly independent known functions 
F , weighted by the para- 

meters �k ; 
these weights are the same for the two magneto-ionic 

modes, denoted by the subcript m. For the random wave field des- 

cribed by this distribution function, the spectral matrix is of 

the form 

where 
S, 

is the spectral matrix corresponding to 
F , ; 

its éléments 

are obtained by inserting Fmk 
into équation (2.1). Since the func- 

tions 
F , 

are linearly independent, so are the matrices 
S, . 

We first 

consider a linear model with p = 33. 

The peculiarity of this model is that it can yield a 

spectral matrix S in exact agreement with the reduced data S. The 

matrix équation 

represents 33 independent linear équations involving 33 unknowns, 

so it has a unique solution which can be found by matrix inversion 

in the usual way. The corresponding value of the support function 

is 
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This result follows because S is a 6 x 6 matrix, so t 
(S JS ) 

= 6. 

We now justify our choice of the symbol 1 by proving 

that this value of the support function is the maximum value, 

i.e. that 

for ail �, or in other words that 

Now, for any non-singular square matricesa and 8 of equal rank, 

we known that 
t 

(A8) = 
t (BA), and that lA-II 

= 
1A1-1. Hence the 

inequality (2.43) is équivalent to 

Moreover, let 
À 

be the k'th eigenvalue of the matrix S S 1 (y) . 

From certain well-known results that relate the trace and the déter- 

minant of any square matrix to its eigenvalues, we hâve that 

so (2.51) can be rewritten as 
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Now, as shown in the appendix (relations (2.83) to (2.86)) 

the eigenvalue of the product of two hermitian positive definite 

matrices is real and positive and the following inequality must 

hold : 

This implies that (2.54) is always satisfied, which in turn 

proves (2.49). Hence, for the 33-parameter linear model, the 

value of � that yields S(�) = S is also the maximum-likelihood 

estimate of �, as one might expect. 

But the inequality (2.49) has more far-reaching consé- 

quences, because the proof that we hâve just given in no way 

involves the nature of the model. Therefore the value 1 
max , which 

the support function attains when the theoretical spectral matrix 

is in exact agreement with the reduced expérimental data, is a 

maximum maximorum or absolute maximum value, indépendant of the 

model. If, with a given model, we find a solution for � that yields 

such agreement, then we say that this solution is an optimum, in 

the sensé that there cannot be any other solution with a greater 

likelihood. 

Unfortunately this in itself does not guarantee that an 

optimum solution exists, nor, if one exists, that it is unique. 

A trivial example of a model that leads to ambiguous 

optimum solutions is the linear model with p � 33. Hère, since the 

number of unknowns exceeds the number of reduced data, there is no 

unique optimum solution. The matrix équation (2.47) yields p-33 

relations between 
the \\) defining a continuous range of parameter 

sets that are ail optimum in our sensé of the word. Obviously such 

models are of no use whatsoever. 
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An example of a model for which no optimum solution 

exists in general is the linear model with p � 33. In this case 

the matrix équation (2.47) generally has no solution, so we must 

seek the set of parameter values (�, say) that maximizes the support 

function l(�), while recognizing that l(�) will generally be less 

than the value 
1 

given by (2.48). Hère the linearity of the model 

does not help : the problem is essentially the same as it would be 

in the case where the model is non-linear, to which we shall corne 

shortly. 

But, before doing so, let us just summarize the facts that 

considération of the linear models has helped to clarify : they are 

that when seeking a set of parameters that maximizes the support 

function, we need first to know whether any such set exists, and 

if so, whether it is optimum and whether it is unique. Thèse are 

general points, applying to models of ail types. 

Accordingly we now turn to the general case, including the 

more realistic non-linear models. Formally, the most likely set of 

values of the parameters is a solution of the simultaneous équations. 

Explicitly, the équations to be solved are 

with the subscript k running from 1 to p. The right solution is 

the one corresponding to the highest maximum of l(�). 

This set of p équations is non-linear, even when the model 

is linear, for although, in such a case, the matrix S(�) is a linear 

function of the 
parameter i(j 

this is not true of its déterminant 
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nor of its inverse. 

In view of their non-linearity, of their complexity due 

to the size of the matrix S, and of their number (when p is large), 

we like to avoid having to solve thèse équations. Instead, we search 

for the maxima of l(�) directly, using the itérative method of 

POWELL (1964). This involves calculating l(�) for sucessive values 

of �, which are chosen in such a way that 1 usually increases from 

one value to the next. Provided that l(�) is a well-behaved function, 

this itération converges to one of its maxima. 

When a maximum is found, we hâve still to make sure that 

it is unique, or if not, that it is the highest maximum. Hère again, 

the only way to proceed is to search numerically for others. We 

restart the itération at diverse values of �; ail distant from the 

one that we hâve already found, in order to see whether it can con- 

verge to other maxima ; clearly this procédure is not infallible. If 

no further maxima are found, then we take our estimate of � from the 

one that we hâve already. 

If, on the other hand, there are several maxima, our con- 

duct dépends on the heights of the secondary ones compared with that 

of the highest. If none are of comparable height, then we pick the 

highest. But if one or more are equal to the highest, then we reco- 

gnize that several solutions are equally likely and that, in the 

absence of further information, we hâve no reason to prefer one 

to another. Finally, if there are one or more of only slightly lesser 

likelihood, then again we must retain them ail in addition to the 

highest, while bearing in mind their relative likelihoods. 

The bases for such judgements are explained more fully in 

the next section, which is concerned with how we assess the results 

of the analysis described above. The topics discussed include the 

relative merits of several différent models, the degree of validity 

of the best model, and the accucary of the estimâtes of its parameters. 
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5 - ASSESSMENT OF THE RESULTS 

5.1. COMPARISON OF SEVERAL MODELS 

In the previous section, we assumed that our model of 

the wave distribution function was given, and we saw how to dérive 

the most likely estimâtes of its parameters. Now let us assume 

instead that several alternative models can be envisaged for the 

WDF, and that we hâve no prior grounds for ranking them in any 

order of préférence. Our problem is to assess the relative merits 

of the rival models, and eventually to sélect one as the best and 

reject the others. To solve this problem, we appeal once more to 

the likelihood concept. But note that whereas, in a parameter esti- 

mation problem, the hypothesis to be tested relates to sets of values 

of the parameters of a given model, which usually are continuous 

variables, in a model sélection problem the hypothesis concerns the 

models themselves, which are discrète entities ; in other words, 

the latter is a problem of state estimation rather than of parameter 

estimation (EYKHOFF, 1974). 

For the purpose of comparison of several models, we suppose 

that the parameter estimation process described in section 3 has 

already been performed for each of them, using the same data D in 

every case, so that for each we know the most likely set (or sets) 

of values of its parameters, together with the associated value of 

the likelihood function or of the support function. Let us label 

the rival models 1, 2, 3......etc., and let the associated likelihoods 

be Li ,L2 ,L3 ...etc. and the supports li,l2,l3 etc. Then the 

basis for assessing the relative merits of the différent models is 

simply the ratios of their likelihoods, or - what is équivalent - 

the différences of their supports (EDWARDS, 1972). 

How should thèse likelihood ratios be interpreted ? To sim- 

plify the question, let us suppose that there are only two models, 

and that Li � L2. Then, by the définition of the likelihood function 

quoted in § 4.2, the ratio Ll/L2 is the relative frequency with which 
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the two models would give rise to data in the interval from D to 

D + dD, if the experiment from which the actual data D originally 

came were to be repeated very many times in the same circunstances, 

i.e. with the same true WDF, whatever this may be. The fact that it 

would reproduce the data D this much more frequently is the reason 

for preferring the model 1. 

As the ratio Li/L2 increases from unity, we are first incli- 

ned to say that models 1 and 2 are about equally likely, then that 

there is either a weak or a strong presumption in favour of model 1, 

and finally that model 2 must be rejected entirely. Of course, any 

such catégorie interprétation of the values of a continuous variable 

is quite arbitrary, but nevertheless it has a certain practical conve- 

nience. In particular, the décision to eliminate unlikely models saves 

time, though occasionally it may be mistaken. The présent authors define 

thèse catégories by analogy with the usual practice of statisticians 

with regard to a random variable (x, say) that has a probability density 

given by the normal (Gaussian) law 

Where 
x 

is the mean value and a the standard déviation. They usually 

consider that a déviation of x from 
x 

in the range from o to 0 is 

insignificant, that one in the range from o to 2o is weakly significant, 

that one between 2o and 30 is strongly significant, and finally that 

beyond 3a the probability of a déviation occurring by chance is negligible. 

The values of the exponent in (2.58) corresponding to the limits of thèse 

ranges are 0, 1/2, 4/2, and 9/2 respectively. We define our catégories 

by dividing the différence of support 
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into the same ranges, as shown in table 3 ; the ranges of the like- 

lihood ratio Ll/L2 are then the same as those of the probability 

density ratio 
p(x )/p(x) 

in the case of the Gaussian random variable. 

(Incidentally, we employ similar criteria to distinguish 

between différent maxima in the likelihood function for any single 

model. It will be recalled that this question arose at the end 

of § 4.3). 

The steps described above correspond to the block labelled 

"Model Sélection" in fig. 2, which illustrâtes the case where two 

models contend ; the extension to a greater number is obvious. Of 

course, thèse steps are unnecessary if there is only one model 

(fig. 1). In any case, the next step is to check the validity of the 

model selected. 

5.2. VALIDITY OF THE BEST MODEL 

Having thus picked the best model among those at our 

disposai, we must examine whether it is valid or not. A model is 

held to be valid if, firstly, it is physically realistic, and 

secondly, if it fits the data reasonably well. 

We assume that the first point has been taken care of in 

the construction of the model, so that, for instance, the WDF is 

nowhere négative. 

To examine the second point, we follow the same reasoning 

as in the previous sub-section. We compare the value l(�) of the 

maximum of the support function for the best model to the optimum 

value 
1 

, as given by (2.41), which corresponds to perfect agree- 

ment between the model and the reduced data. 

We interpret the différence 1 - 
l(�) in accordance with 

max 
table 3. If it exceeds our limit of 9/2, then this "best" model 

must be rejected, and no further progress can be made in the data 

analysis by model identification until some even better model has 

been found (see figs. 1 and 2). 
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(Incidentally, when analyzing data with a single model 

by the method described in section 4, we employ similar criteria 

to décide whether or not we hâve succeded in finding the highest 

maximum of the support function. If the apparent maximum value of 

this function turns out to be much less than 1 , vet there is no 

other reason for discrediting the model, then before rejecting it 

we first search carefully for another and higher maximum). 

In practice, the sélection of the best model and the test 

of its validity are made simultaneously, since both thèse steps 

involve a simple inspection of the support functions that issue 

from the parameter estimation. 

5.3. ACCUCARY OF THE ESTIMATES 

If the best model turns out to be valid, then there remains 

just one more step in the analysis, namely the assessment of the 

accuracy of the estimâtes of its parameters. The accucary of the pa- 

rameter vector � détermines in turn the accuracy with which the wave 

distribution function 
F (oj0,6,(J) ; �) is known at any point (0o,(|�o). 

First, the question of what is meant by the "accuracy" of 

� has to be clarified. This "accuracy" is not to be confused with 

that of the estimation process by means of which � is computed 

from the data. On our hypothèses, given the theoretical model on 

the one hand and the expérimental data on the other, the likelihood 

and support functions are perfectly defined. The only errors that 

can arise in locating their common highest maximum are numerical, 

so with proper case they can be made as small as we wish. (For the 

purpose of discussion, we discount momentarily the possibility of 

a gross error due to a secondary maximum of the support function). 

In reality, the accuracy of which we are speaking is that of � as 

an estimate of the true value of the parameter vector. The possibility 

of � being inaccurate in this sensé is witnessed by the fact that 

neighbouring values of � may be only slightly less likely. Evidently 

the assessment of the accuracy of � involves somehow specifying the 

size and shape of the région of parameter space within which l(�) 
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is comparable with l(�). 

In the most general case, where the support function is 

of intricate shape, the only sufficient statement of the situation 

would be a table or graph of this function throughout the région 

where its value does not fall short of the highest maximum by 

more than some limit, such as 9/2 (see § 5.1). This is particularly 

true if the support function exhibits non-negligible secondary maxima. 

Moreover, we must bear in mind that the model itself may be in error ; 

if l(�) for one or more rival models lies within the stated range 

below l(�) for the best model, then the parts of their support 

functions that lie in this range should be presented also. But clearly 

thèse are counsels of perfection, since it is impracticable to 

tabulate or graph the support function if the number of parameters is 

more than about 3, as it generally is. 

Fortunately, a more concise assessment of the accuracy of 

the estimâtes is possible in the fréquent situation where the support 

function has only one significant maximum (EDWARDS, 1972). To make 

the method clear, let us begin with the simple case illustrated in 

fig. 8, where the model involves just one parameter �. We wish to 

specify the accuracy of our estimate � of this parameter, corres- 

ponding to the maximum of the support function l(�). Clearly, if 

the peak around � is well-defined, it will suffice for this purpose 

to specify the interval hip between the two points, one on either 

side of the maximum, where the values of the support function are 

less than the maximum value by some agreed amount m, for instance 

1/2 (fig. 8A). 

An analytic approximation for this quantity can be obtained 

by fitting a parabola to the curve of the support function in the 

neighbourhood of its maximum (fig. 8B). That is, we approximate the 

peak of the support function by the quadratic. 
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The width parameter w is determined by requiring that this appro- 

ximate function hâve the same radius of curvature as the true 

support function at the maximum. Hence 

In other words, the approximation (2.60) is just the power-series 

expansion of l(�) around the point �, limited to its first two 

terms. (Note that the représentation of the support function by 

a parabola is équivalent to representating the likelihood function 

by a Gaussian curve, and that w is the standard déviation of this 

Gaussian). If the width AiJj of the peak of the support function is 

measured between points m units below the maximum, then it is appro- 

ximately 

This is a reasonable approximation provided that the peak is not 

too asymmetrical ; in the latter case, a good tactic is to improve 

the symmetry by a suitable non-Linear transformation of the variable 

� (EDWARDS, 1972). 

It is interesting to know how the accuracy dépends on 

the bandwidth of the original data, and on the length of time during 

which they were recorded. Thèse quantifies enter the expression 

(2.43) for the support function via the factor 2N + 1, which is the 

number of discrète samples that are taken of each of the low-frequency 

signais. From § 3.4, we hâve 

where Af is the frequency bandwidth corresponding to the pulsatance 

bandwidth Ato. Combining this resuit with (2.44) and (2.62), we find 
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The second derivative of M has no systematic dependence on T or 

Af, so the error in the détermination of � is inversely proportio- 

nal to the square root of the product (Time x Bandwidth). 

(Similary,in the tests discussed in § 5.1 and § 5.2 above, 

the détails of the model affect only the function M(�). The diffé- 

rence of support corresponding to a given différence of M increases 

in direct proportion to the product T Af). 

This method for assessing the accuracy of the estimâtes 

can be extended to the case where the model has any number p of 

parameters. As before, we approximate the peak of the support func- 

tion by a power-series expansion, limited to the terms of first and 

second order. This quadratic form may be expressed conveniently in 

matrix notation : 

The vectors ty and. are those previously called � and �, and B is 

the matrix of the second derivative of 
1(t) 

with respect to the 

parameters, taken at the maximum ; i.e. its éléments are 

To dérive the accuracy of the estimâtes, we proceed by 

analogy with the 1-parameter case, and consider the size and shape 

of the boundary in t space on which 
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whereo. = �fM^. The bounding surface defined by this équation is 

a p-dimensional ellipsoid. Our discussion of it will treat the 

general case where the number p of parameters is arbitrary, but 

will be illustrated by référence to the case with only two para- 

meters, �l and �2, in which the boundary is an ellipse and can be 

graphed. 

The interprétation of the bounding surface in terms of 

accuracy of the estimâtes is relatively simple if the matrix B is 

diagonal, i.e. if the mixed second derivatives of 1 (those with 

i � j) ail vanish. In this case, the principal axes of the ellipsoid 

are parallel to those of the parameters �.. Knowing this, the shape 

of the ellipsoid is specified completely by the lengths of its axes, 

and thèse are directly interprétable as accuracies of the corres- 

ponding parameters, exactly as in the 1-dimensional case. For each 

parameter, the accuracy is 

For the 2-dimensional case, this situation is illustrated in fig. 9A. 

If the matrix B is not diagonal, the principal axes of 

the ellipsoid are not parallel to the axes of the parameters. A 

2-dimensional situation of this type is illustrated in part B of 

fig. 9. For each parameter, the range of variation corresponding to 

the projection of the ellipse onto the appropriate axis has been 

taken to be the same as in part A. But it is obvious that the simple 

statement of thèse ranges is not an adéquate description of the 

accuracies of the estimâtes of the parameters, as it was in the 

previous case. When one inquires within what ranges their true 

values may possibly lie, around their most likely values, the para- 

meters must not be considered separately but jointly. To describe 

their range of joint variation fully, ail the éléments of B must 

be specified. 
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Of course, it would be possible to make the matrix B 

diagonal by a suitable change of variables. With the présent 

variables, the axes of the p-dimensional ellipsoid defined by 

Eq. (2.67) are parallel to the eigenvectors of B. The new varia- 

bles would be chosen so that thèse axes became parallel to the 

coordinate axes in parameter space. Then the ranges of variation 

of thèse new parameters could each be specified by a single 

number, as in Eq. (2.68). The disadvantage of this procédure is 

that the new parameters usually hâve no physical significance. 
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6 - CONCLUSION 

Subject to the hypothèses made in sections 1 and 2, a 

method has been developed in this paper for analyzing measurements 

of the 6 components of a random electromagnetic wave field in a 

magnetoplasma, given one or several parametric models of the wave 

distribution function. 

This method enables us, on the basis of a finite set of 

data, to test the validity of the models (and hence the validity 

of the théories that were invoked to construct them), both relative 

to one another and relative to the eventual unknown true model. 

Thus it indicates which models and théories can be considered as 

being acceptable, and which must be rejected. 

Obviously it may happen that the state of the theory does 

not allow us to propose any acceptable model, in which case we would 

be led to consider general models that assume no prior knowledge of the 

form of the WDF. Alternatively, we may wish to free ourselves of ail 

preconceptions, and to seek some description of the entire range of 

acceptable models. Thèse are différent forms of the general inverse 

problem, which will be treated in the next paper of this séries. 

Meanwhile, however, we should make it clear that such general 

models cannot replace models of the type considered in the présent paper, 

based on phenomenological or on physical knowledge, this for the following 

reasons : 

- known constraints such as the positivity of the WDF appear 

naturally in the models considered hère, whereas they hâve to be imposed 

artificially on the general models ; 

- 
parameters with physical significance are less liable to 

be poorly determined by the data than are arbitrarily-chosen parameters ; 
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- models with only a few parameters can be identified 

more precisely than the general models, which involve many para- 

meters ; 

- at some stage in the reasoning, physical considérations 

must be introduced, in any case, to pick a représentative model 

from the infinité set of possible ones. 

In fact, thèse two appraches to the problem of the analysis of 

multi-component field data are complementary rather than compétitive. 

The présent approach, through model identification, needs 

to be developed further. Firstly, the theory should be extended to 

include the case where the data are degraded by additive noise. 

Secondly, it is necessary to relax the assumption, made in § 3.2, 

that the narrow-band filters through which the data are passed hâve 

idéal rectangular pass-bands. Finally, our method needs to be adapted 

to the study of random electromagnetic wave fields in situations 

where some of the assumptions made in this paper (and in paper I) 

are not applicable. For instance, for studying hydromagnetic (Alfven) 

waves in the solar wind, account should be taken of the Doppler 

effect due to the motion of the point of observation relative to the 

solar-wind plasma, and use should be made of measurements of the 

3 components of the plasma velocity vector as well as of the 6 elec- 

tromagnetic field components. For thèse last purposes, the theory 

presented in paper I also needs further development. 
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TABLE 1 

Mean power Symbol Expression 

� x.2 i 
(t) � a.. n 6w 

S.. ( 
TT 11 

� y-2 1 (t) � et.. 6w S.. (W.) 

T^LV-'J 

y tt eL 

� x (t) Yi 
(t) � 3.. 0 

� 
"i 1 (t) y. 

(t) � 
6ii 

im[Si.�M��] 

Auto-powers and cross-powers of the filtered and demodulated 

signais, expressed in terms of the spectral matrix éléments. 
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TABLE 2 

Values of the ensemble mean signal powers � v.(t) v. (t) � 
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TABLE 3 

Il - 12 Il/12 Interprétation 

0-0.5 1 - 1.7 Both models equally likely 

0.5 - 2.0 1.7 - 7.4 Model 1 slightly préférable 

2.0 - 4.5 7.4 - 90 Model 1 highly préférable 

� 4.5 � 90 Model 2 rejected 

Authors interprétation of support différences on likelihood ratios. 
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ILLUSTRATIONS 

1 - Data flow chart for the case with only one model. 

2 - Data flow chart for the case with two models. 

3 - CMA diagram for a plasma with only one type of positive ion. 

II 
and IL are the angular plasma frequency for électron and ion, 

fi 
and fi. are the angular gyrofrequency for électron and ion. 

4 - Analogue method for estimating the éléments of the covariance 

matrix from the narrow-band filtered signais, without démodulation. 

5 - Analogue method for demodulating the narrow-band filtered signais. 

6 - Analogue method for demodulating wide-band signais, and subsequently 

narrowing their bandwidth. 

7 - Analogue method for estimating the éléments of the covariance matrix 

from the narrow-band filtered signais, after démodulation : (A) auto- 

covariances ; (B) cross-covariances. 

8 - Illustrating how the accuracy of the parameter estimate is assessed, 

in the case of a model with only one parameter : (A) définition of 

the width of the peak of the support function ; (B) parabola fitted 

to peak, yielding and analytic approximation for the width. 

9 - Cross-section of the peak of the support functions, in the case of 

a model with two parameters : (A) when the matrix B is diagonal ; 

(B) in general. 



- 57 - 

APPENDIX A : MATRIX ANALYSIS 

Let V be the 12 x 12 data matrix defined in section 3 and 
n 

Z n 
its associated 6x6 complex matrix. The matrix 

V n 
can be written 

as shown in table 2 : 

Also the matrix Z can be written as follows : 
n 

with 

For the sake of simplicity, the subscript n has been omitted in the matrix 

éléments. 

In the same way the 12 x 12 covariance matrixA, also defined 

in section 3, can be written 
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and its associated 6x6 complex matrix C is 

with 

We want to show that 

and 

Let us start with the relation (2.74). We need first of ail 

to demonstrate that any eigenvalue of C is proport ional to a double 

eigenvalue of A. 
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Now, if À is an eigenvalue of C, we hâve 

with U the complex vector whose compontents U. are 

In the same way, if À is a double eigenvalue of , we hâve 

Two eigenvectors Wi, W2, linearly indépendants of one another, correspond 

to the same eigenvalue À. Many choices of eigenvectors are possible. 

Intuitively we see that, to compare (2.75) and (2.76), we can take 

as eigenvectors 

For simplicity, let us adopt the block matrices notation. The relation 

(2.76) can be rewritten 
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with the following définitions : 

Let us develop the relation (2.75) : 

In the same way, we develop the relation (2.77) ; 
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so 

We dérive the following four équations : 

Remembering that 
a, . 

= 
ajk 

and 
bkj 

= 
bjk9 

we see that, apart from 

a multiplicative factor of 2, the relations (2. 81. a) and (2.81 . d) are 

équivalent to the relation(2.78.b). It follows that, if 2\ is an eigenvalue 

of C, then À is a double eigenvalue ofA. 

Now, by définition, 
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and 

Therefore, 

This is the resuit required. 

To demonstrate the relation (2.73), let us show that any 

eigenvalue of the matrix (C-1 Z ) is a double eigenvalue of the matrix 

(V"1 v N). 
Let us start by calculating the eigenvalue of (C-1 

Z ). 
If U 

is an eigenvector with components U. = 61 + i y., we hâve 

Since C and 
Z 

are Hermitian, positive definite and invertible, it 

follows that 

Now 

and, if we go one step further, 
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-Ht T ���Thus 
it appears that (U ) C U is purely real. If we do the same for 

-*�* T _ -+ 
(U ) Z 

U, 
we find the following real value for À ; 

Now let us try to find an analop.ous relation for the eigenvalue 

of A 
V . Assuming that the eigenvalue of A-1 V 

are 
double ones and 

using the block matrix notation again, we hâve 

with 
AR, Cf and W defined 

as above and with 

Because the matrices A D and (Vn)B 
are invertible, we can writte : 
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or, 

-�T �-� T -+ 
if m.. and n.. are the éléments of the matrices W A 

B W 
and 

WB 
(V 

)_ 
W. 

Now, by doing some more algebra we obtain 

mi 2 = m2 = n12 = n21 = 0 

It follows immediatly that the double eigenvalues of A-1 V 

are equal to the eigenvalue of C-1 
Z given by (2.86). 

The trace of a matrix being equal to the sum of the eigenvalues, 

we hâve 

which is the resuit (2.73) that we set out to prove. 
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