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ABSTRACT

A rapid method is used to find the least-damped root of the
dispersion equation for electrostatic waves in a Maxwellian magnetoplasma,
including the effects of field-aligned drift ; the low temperature and
low-drift-speed approximations are avoided. Calculations are made of
the potential created by an alternating point charge at a frequency
less than both the plasma and the electron cyclotron frequencies, neglec—
ting collisions, forced ion motion, and the contributions of higher-order
roots. A comparison of the numerical results with the approximate expres-
sions previously published shows that the latter are inadequate for dia-
gnostic purposes, i.e. for deducing electron density, temperature, and

drift velocity from measurements of the potential.
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I. INTRODUCTION

Yy

Recent experiments in the laboratory'™ and in space’~’ have

confirmed the existence of the so-called cone or oblique resonances

of a magnetoplasma in certain frequency bands. If the forced motion

of the positive ions is neglected, there are only two such bands :

the upper band extends from the upper hybrid frequency down to either

the plasma frequency or the electron cyclotron frequency, whichever is

the higher ; the lower band extends from the lower of these two frequencies
downwards. The present paper is concerned exclusively with the resonance

in this lower band, hereinafter referred to as the lower oblique resonance.

In a stationary magnetoplasma, the scalar potential set up by
a small monopole antenna has rotational symmetry around the magnetic field
line that passes through the antenna and reflexion symmetry with respect
to a plane that includes the antenna and is perpendicular to the field
lines. Thus, if this antenna is excited with a sinusoidal current of
fixed amplitude and frequency, the alternating potential received on a
second monopole, at a vector distance X from the first, depends only on
the magnitude r of this distance and on the angle B between r and the
magnetic field direction. Now, in the above frequency bands, if the angle
B is varied in the range O - II/2 while r is kept constant, the amplitude
of the received potential exhibits quasi-sinusoidal variations ; the
alternate maxima and minima correspond to an interference structure.
The highest maximum occurs at a certain angle Bo which is that of the

so-called resonance cone. The secondary maxima occur only on one side of

this cone ; they are regularly speced, and decrease steadily in amplitude

as |B - Bol increases. Because both the resonance cone angle and the spacing
of the secondary maxima depend on the electron density and temperature, it
has been suggested that these two parameters could be determined from

measurements of the angular variation of the potential.



When the plasma is drifting along the magnetic field, the
rotational symmetry of the scalar potential is unaffected but the reflexion
symmetry is destroyed : the resonance cone becomes wider upstream and
narrower downstream. This angular shift has not yet been detected experi-
mentally, however. Usually it is easier to make precise measurements of
frequency rather than of angle, so the suggestion has been made that it
would be more fruitful to look for the corresponding shift in resonance
frequency at a fixed anglea. The sign of the frequency shift depends
upon which antenna is transmitting and which is receiving : the shift
is towards lower frequencies when the receiver is upstream from the trans-—
mitter, and conversely. Measurements of this non-reciprocal effect could
be used to determine the electron drift velocity parallel to the magnetic

field and hence the field-aligned electron current.

Thermal effects on the angular variations of the potential and
of the field created by an alternating point charge in a homogeneous sta-
tionary magnetoplasma have already been investigated theoretically, assu-
ming a Maxwellian electron distribution function. Neglecting collisions
and forced ion motion, Fisher and Gould® and Singh and Gould!® derived
these variation analytically -~ and calculated their numerically - in the

. 13
11212 Chasseriaux'® and

limit of an infinite magnetic field. Later, Kueh
Burrell" extended their calculation to the case in which the magnetic

field is finite but they used the low—temperature approximation among
others, which drastically simplify the dispersion equation for electrostatic
waves : there is only one root, and its damping is neglected. In the present
paper, we report numerical calculations of the potential made neglecting
collisions and forced ion motion, using the exact dispersion equation, but

retaining only the least-damped root, which corresponds to that given

by the low-temperature approximation.

The effects of field-aligned drift on the frequency variation
of the coupling impedance between two monopoles in a cold homogeneous
magnetoplasma have been studied by Storey and Pottelette!"’!>. They
neglected collisions and forced ion motion and assumed that the electron
plasma frequency was much higher than the cyclotron frequency. Moreover,
they considered that the charge supplied to the transmitting monopole
antenna by a source of sinusoidally-varying current does not remain on

the antenna, but flows straight off it into the plasma, were it joins



in the drift motion. Thus their calculation is not equivalent to that

of the potential created by a fixed alternating point charge in the
drifting plasma, which is the subject of this paper. In making this
calculation, we have again neglected collisions and forced ion motion
but we have not made any hypotheses about the characteristic frequencies
of the plasma. Moreover, in order to derive an approximate expression
for the potential, we have followed an analytical method, used by
Kuehl!? in his investigation of thermal effects, which involves Fourier

transforms rather than the Laplace transforms used by Storey and Pottelette.

However, the calculation of the potential including both drift
and thermal effects shows that the former may be more important than the
latter in some experimental situations in the laboratory and in space!®.
Considering the joint effects of thermal motion and of field~aligned drift,
and using the low-temperature approximation, Kuehl!? has derived an appro-
ximate expression for the resonance shift in the limit where the thermal
effect is much higher than the drift effect. In this paper, we complete
this investigation by studying the opposite limit, where the drift effect
is much higher than the thermal effect. Also, we are able to make approxi-
mate numerical calculations of the resonance shift for intermediate condi-
tions, since we have included a field-aligned-drift velocity of arbitrary
magnitude in our computer programme. This enables us to draw curves of

the shift of the resonance frequency versus both electron temperature

and drift velocity, without restricting the values of these parameters.

We end this introduction with some remarks about notation
and units. Since, in all the cases considered, the potential has cylin-
drical symmetry around the magnetic field line passing through the mono-
pole, it is convenient to adopt a cylindrical coordinate system and to
specify any arbitrary vector function Q of the position vector r by its
component A// (positive or negative) parallel to the field, its perpendi-
cular component él_(positive by definition), and the azimuthal angle
associated with A|. Moreover, it happens that in no case is this angle
significant, so we shall write simply I= (f//, EL) and Q = (A/K,él).
We shall also have occasion to write é = A A,where A = |é| and A is a

unit vector. We use the rationalized MKSA system of units.
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II. GENERAL THEORY FOR A DRIFTING MAXWELLIAN MAGNETOPLASMA

An arbitrary alternating (i.e. sinusoidally-varying) source,
of angular frequency w, immersed in a plasma, excites all waves whose
wavenumber vectors & satisfy the dispersion equation D(w, %) = 0 and
sets up a distribution of scalar potential around itself resulting
from the mutual interference of all these waves. The problem of cal-
culating this potential is very difficult if the source perturbs the
plasma, so we shall assume that it does not, in which case it can be
described completely either as a spatial distribution of alternating
charge, or as a distribution of alternating current, the two being related
by the condition of charge conservation. If we adopt the convenient gauge

17 then the scalar potential is the spatial

condition proposed by Balmain
convolution of this distribution with the relevant Green's function, which
may be thought of as the potential that would be set up by an alternating
unit point charge, even though such an entity is non-physical because

18

it does not satisfy the charge conservation condition”°. Thus the problem

is essentially solved once we have calculated the Green's function, the

Fourier transform of which is (EO % . €. %)‘1, where €, is the wvacuum

A,
)
permittivity and £ is the dielectric tensor of the plasma!® ; Balmain's
. I3 . r\l L4 3 . 13 3
gauge condition is equivalent to considering that the alternating point
charge excites only electrostatic waves, for which the dispersion equation
is D k) = k . . = 0.
is D(w, m) k & & 0
Accordingly we wish to calculate the Green's function for a
collisionless magnetoplasma drifting along the magnetic field. To begin
with, we need the dispersion equation in its explicit form, which depends

on the electron distribution function f(x). The latter 1s assumed to be

a shifted Maxwellian

- -3/2 _ 2 - 2 2
£(v) M v D732 exp = [v)? + (v, =V, )] v, 2 (1)
which is normalized in such a way that ‘/f(x) d? v o= 1. The quantity
Ven is the most probable value of the thermal velocity, and is equal

to (2 b Te/me)l/z, where b is Boltzmann's constant, while m, is the mass

of an electron and Te is the electron temperature of the plasma ;



the drift velocity is V = (V//, 0). This plasma is also characterized
r\)

by three other parameters : wp = (ne ez/c0 me)1/7 is the angular plasma
frequency (e is the magnitude of the electronic charge and n, is the

electron density of the plasma), w, = e Bo/me is the angular electron

b
cyclotron frequency (BO is the induction vector of the magnetic field),

n
and r, = vth/Zl/2 w, is the electron Larmor radius (note that the Debye

L b

length is not an independent parameter : it is equal to r wp/wb). Another

L
important derived parameter is the upper hybrid resonance frequency

2

W, = (mp +w 2)/2, Throughout this paper, we shall normalize all fre-

T b
quencies with respect to the cyclotron frequency (thus Qp = wp/wb, QT = wT/wb

Q = w/wb and all distances and wavenumber vectors eilither with

L
IV, with respect to the characteristic length { = V///wb (thus p = E/ﬁ and
v

respect to the Larmor radius (thus R = r/r. and K=k . r.) or, in section
NN NN L

5 =k - 2). With these convenBions, the dispersion equation takes the

form'®
.
sy = . = 2 2 -2 v ? 2 N -
D(Q,k) = §.§.5 51_+K// +9p exp ( gl_)//“1n(gl)[1+aon(un)| 0 2)
n=-—oc

in which In is the modified Bessel function of order n and
- 3 1/2 - 2N _
F(an) i sgn(K//) I exp( o ) 2 erfc(an) (3)

where sgn is the signum function, equal to + | or — 1 according to the

sign of its argument, and erfc is the complex error, the argument of which is

a = (@+n-K, z/rL)/zl/2 K, (4)

It is well known that this dispersion equation has an infinite number

of roots K for a given direction of the unit vector K.



At any point in the plasma, the scalar potential is made up
of contributions from a double infinity of electrostatic waves (double
because all possible ﬁ - directions are involved). The least-damped-root
approximation consists of taking account only of the single infinity
of electrostatic waves with the smallest damping for a given K - direction.
On this basis, the scalar potential - normalized with respect to its
vacuum value - created at any point % by an alternating point charge,

located at the origin % = 0, is as given by Kuehl!!

+00

(1)
H (K R )
. R . (o} L1 J-.
YELR) =15 [ exp (iK,, R, )) ey, K, KD dK, (5)

-0

where Hél) is the first Hankel function of zero order and

t - 7~ 2
D' (%, K//, K_Ll) = | 3D(Q, K//, 1<_L),o(1<_]_)|K -k (6)
1 1

In Eq. (5) and (6), %Ll is the least-damped complex root of the dispersion
equation (2), i.e. the one with the smallest imaginary component. Because

K// is purely real, Fo(an) reduces to the plasma dispersion function

Z(En) of Fried and Conte?°, with &n = sgn(K//) o s which simplifies the
dispersion equation (2). Also, because this equation involves no powers

of Kl_other than the second, all its roots appear in pairs symmetric about

the origin in the complex %L_plane. Thus, in order to calculate the potential,
we must first be able to find this particular root K),, for given Qp and §2,

as a function of the variable of integration K//.
Before considering how the root K|, can be found in general, we

note that analytic expression for it exist in the special case of a cold

magnetoplasma. In a stationary cold magnetoplasma, Eq. (2) takes the form

o 2 2 2 2 02y 2/62] =
D@, K) = KP4k, P e [KL/(] Q2) K///Q] 0 (7)

For given Qp, 2, and K//, the two possible values for Kj, are



%Ll = + cotg BC . K// (8)
where

B, = tg {[QZ(QTZ - on)/[a - QZ)(QP2 - /e (9)

(4

is the value of Bo in the cold-plasma limit. By introducing collisions
which we subsequently neglect'®, we find that the sign of K|, must be
negative when K// > 0 and positive when K// < 0. With this idealized model,
the potential becomes infinite on the resonance cone defined by BC when

the frequency is fixed, or at the resonance frequency QC such that
Q' -a’ e’ sz sin? B =0 (10)

when the angle B is fixed. In a cold magnetoplasma with field-aligned

drift, the dispersion equation remains simple and still has only one pair

of roots which can be found analytically. This case is treated in section IV.
These results for a cold magnetoplasma from the background to the rest of
this paper, in which we show how they are modified by thermal and field-

aligned-drift effects.

In a warm magnetoplasma, the dispersion equation (2) can only
be solved numerically?!. We do so by an iterative method, identifying
the least—damped root by continuity with the results for a cold magneto-
plasma. Obviously Eq. (2) tends to the cold-magnetoplasma dispersion equa-
tion when Te vanishes, but it also does so for any Te when the 5 vector
becomes very small (i.e. K << 1). In this limit, the least—damped root
of Eq. (2) with a positive imaginary part (which has a negative real
part) tends to the purely real negative root of the cold-magnetoplasma
dispersion equation. Conversely, if we take this analytic approximation
as the initial value, our iterative solution of Eq. (2) always converges

to the required root when IK//| << 1. Therefore we perform the numerical



.-1]_

integration of Eq. (5) for the potential in such a way that the successive
values of K, (K//) are called for in order of increasing IK//[ starting
from zero. For the first finite value of K//, the root K|, is found as just
described. All subsequent values are found by the same iterative method,
but with the initial value obtained by extropolation from the previous
values using a polynomial??. Thus we follow the path of K in the complex
half-plane Im Kl_> 0 as IK//I increases, even when the latter is no longer
small. This procedure is used in sections III and V , our iterative method
for finding the complex root of Eq. (2) is an adaptation of the so-called

"down-hill" method?3.

Whatever the state of the plasma, the integrand in Eq. (5)
for the potential is an oscillating function of K//. We evaluate this

integral numerically, using Filon's method?".
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IIT. THERMAL EFFECTS IN A STATIONARY MAXWELLTIAN MAGNETOPLASMA

Because recent work, both theoretical and experimental,
has been concerned mainly with determining the resonance-cone angle
and the interference-structure spacing, we limit our study to the
potential distribution created by a point charge alternating at a
fixed frequency. Since V// = 0,it follows that D(f, E) is an even
function of K//, so %LI(K//) = KLI(-K//) and D' (Q, K//, %l) = D'(Q, —K//, %L?.

Hence the expression for the potential can be written as

o

B, (R, RD
iR ‘/ cos(K// R//)
o DT @, K//’ %L)

wm,;y dK// ()

so Y(Q, R//, %L? = P(Q, —R//, 31). In view of this symmetry, we need to
study the variations of %LI(K//) only in the range K// > 0 and those of
Y8, 5) only in the range R// >0, i.e. 0 < B < 1I/2. In this section,

we describe the results of numerical calculations of ELI(K//) and P(Q, E)

in the particular case where Qp = 5.

Our results are presented in order to assess the errors committed
by using the formulas given by Kuehl!? to determine the electron density
and temperature of a stationary plasma. These formulas are derived by ne-
glecting the imaginary part of Kj,» and by taking its real part as equal
to the sum of the cold-plasma value |Eq. (8)] and a correction term pro-
portional to K;/ . Then the integral of Eq. (I1) is calculated analytically
with the aid of various other approximations. Hereinafter, this set of

approximations will be referred to as the low—temperature analytic (L.T.A.)

approximation ; it yields very simple expressions for the angles 80, B> 82..

of the successive maxima of the potential distribution.

THE LEAST~DAMPED ROOT OF THE DISPERSION EQUATION

In Fig. 1 curves are plotted of the real and imaginary parts
of Kj,» as functions of K//, for Qp = 5 and for various values of Q.
For each of these values, three curves are plotted : the cold-plasma
approximation given by Eq. (9), the L.T.A. approximation, and the exact

curve derived numerically.
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The L.T.A. approximation involves assuming

3
K, (K//)‘Q - cotg Bc K// - a K// (12)

where o 1s the correction coefficient that takes account of the thermal

effects?’
1/2
0 1 - Q2 Q2(204-0%+1/3) Qb
P 1 - cotngC + cotg“BC (13)
Q3 (QTZ-QZ)(QPZ-QZ) (1 - 0%)° (1-0%) (4-02)

It is important to note that o vanishes for a particular value Qa of Q
which depends only on Qp ; for Qp = 5, we have Qa AN 0,692, When < Qa
(e.g. @ =0.1 and 2 = 0.5), the coefficient o is positive and the L.T.A.
curves lie below the cold-plasma straight line, which is inclined at the
angle BC to the negative Re %Ll - axis. When Q = Qa’ the coefficient o
vanishes and there is no interference structure : the L.T.A. approximation
fails to predict any thermal effects. When @ > Qa (e.g. 2 = 0.9), o is
negative and the L.T.A. curve lies above the cold-plasma curve. Thus the
nature of the L.T.A. approximation depends on whether the normalized fre-
quency is greater or less than Qa ; the physical significance of this

value has not yet been identified.

The results of our numerical calculations are plotted as curves
of Re Kll and of Im KLI versus K//, for positive real values of this
variable. Thus they refer to inhomogeneous waves with Im K// = 0, rather

than to the homogeneous waves (i.e. waves in which the vectors Re (K) and

n
Im (K) are parallel to one another) that have been studied by some previous
Iy
authors?®., Our results are similar to the L.T.A. approximation for fast

electrostatic waves (K N 0) in a range of K// which depends on Q. When

, 1s well approximated by Eq. (12), while the

curve of Im %Ll is very close to the K// - axis up to a certain value of

a
Q< Qa’ the curve of Re K

K// which increases with increasing frequency. Above this value, the
curves derived from Eq. (12) do not bend in the right direction. When
Q= Qa, the exact curve of Re K), lies below the cold-plasma straight

line over a large range of K//. When Q is greater than Qa’ the curve for
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Re %Ll from Eq. (12) bends in one direction only, whereas the e%act
curve is more complex and lies above the cold-plasma line for small
K// and below it for large K// ;- thus the discrepancies between these
two curves are now very significant. Moreover, the value of K// above
which Im %Lx can no longer be ignored now decreases with increasing
frequency. In short, the L.T.A. approximation does not give a good
account of the behaviour of the least—-damped waves when the frequency
is near the gyrofrequency ; however, precise information about its
range of validity can be obtained only by numerical calculation of

the potential.

THE POTENTIAL CREATED BY AN ALTERNATING POINT CHARGE

The preceding three sets of curves for the least-damped root
of the dispersion relation lead to very different potential distributions

near the lower oblique resonance.

Let us recall that, in the cold-plasma approximation, the

potential is!®

-1/2 -1/2

-1/2
-1
V@B = |1+ Q20 - 0% -1+ Q207 (cosB) |tg’8 - tg’B (14)

It is infinite on the resonance cone, which has a semi-apical angle BC, and

it decreases smoothly with increasing |B - BC| on both sides of this cone.

In contrast, the L.T.A. approximation for the potential is

1/2
tan
BC

—iy2/3 1 Rl/3 , )
v@,R) = —=2 F(zy) (15)
~o3@Em/? sin?/?8 1+§zp2/(1-92) |a| /6 .
where F(zT) is a function defined and graphed in Ref. 10 ; its argument,

which is purely real, is

zgp = [R2/2/(Jal'/3 sint/% 8 )| 8 - B (16)
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The predictions of the L.T.A. approximation differ from those
of the cold-plasma approximation in three main respects. Firstly, the
potential remains finite on the resonance cone. Secondly, this maximum

of potential occurs at a slightly different angle
B, v B, = 1.8 sgn (8, - 2 |a|!/? sin*/3 p_r72/3 (17)

The amount of the change in the angle B at resonance depends both on the
frequency and on the electron temperature(it is proportional to Te1/3), but
its sign depends on the frequency alone : the L.T.A. resonance cone lies
inside the cold-plasma resonance cone if § < Qu’ and outside it if @ > Qa.
Thirdly, there appears a quasi-periodic interference structure, in which
the minima are zeros and the maxima decrease in amplitude with increasing
angular distance from the resonance cone. The angular positions of these

secondary maxima are approximately

2/3 1
Bn nv B, = 3 |(n+t0.25)1 sgn (Qa-Q)

ol 77 sint/3 B, R—2/3 (18)

where n = 1, 2, 3,... Again, their angular spacing depends on { and is
proportional to Tel/a. The entire structure occurs inside the L.T.A.
resonance cone when § < Qa and outside it when Q > Qa' In the rest of

this section we shall compare these predictions of the L.T.A. approximation
with the results of our more precise numerical calculations, in order to
establish whether or not the L.T.A. formulas are adequate for diagnostic

purposes.

When the electron temperature is such that R >> 1, the L.T.A.
approximation leads to a potential distribution in reasonably good agreement
with the more precise calculations so long as the excitation frequency is
not too close to the electron gyrofrequency, or more exactly, so long as
Q<< Qa' This fact is illustrated in Fig. 2, where the variations of ||
given by our computer programme (solid curve) and by Eq. (15) (dashed curve)

are plotted for the case where Qp =5, R =100 and & = 0.5. It appears
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that the damping of the maxima at Bo and B1 is underestimated by the
L.T.A. approximation ; moreover, the prediction that the minima should
be true zeros is not confirmed by the numerical calculations. We have
verified in numerous instances that these slight discrepancies presist
for other values of Qp, of R and of  ; probably they are due to the
fact that the damping of the electrostatic waves is neglected in the

L.T.A. approximation.

Let us now consider how the potential distribution in the
plasma changes as the normalized excitation frequency ) varies from O
to 1. In Fig. 3, we have plotted the angles Bo, 81 and 82 of the successive
maxima of the potential distribution as given by our programme (solid
curves) and by Eq. (17) and (18) (dashed curves) for the case where R = 100.

The true resonance cone (i.e. the maximum at B;) always lies inside that

given by the cold-plasma approximation, contrary to the result given by
the approximate L.T.A. formula of Eq. (17). As regards the secondary
maxima at B, and B,» the corresponding formula of Eq. (18) again disagrees
with our more precise calculation which show that this interference struc-

ture always lies inside the resonance cone. Moreover, as the frequency

approaches the gyrofrequency, the amplitude of each of these secondary
maxima diminishes progressively, in comparison with that of the main
maximum on the resonance cone : the higher the order of the secondary
maximum, the more rapid is the decrease. In the particular case of Fig. 3,
no secondary maxima are discernible when ) is greater than about 0.8.

Thus exact numerical calculations of the potential show that the validity
of the L.T.A. approximation depends not only on the temperature but also

on the frequency.

When the excitation frequency is fixed in relation to the gyro-
frequency, the potential distribution due to a point charge is strongly
affected by variations of the electron density or temperature of the
plasma. For brevity, we now limit our study to the influence of the tem-
perature, and to the particular case where £ = 0.5 and Qp = 5. Fig. 4
shows how the angles Bo’ Bl and Bzvary when the Larmor radius is increased
from 0.001 r (R = 1 000) to O.1 r (R = 10) ; the results of the numerical
integration for the potential have been plotted as the solid curves, while

Eq. (17) and (18) yield the dashed curves. These two sets of curves agree
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qualitatively. However, Eq. (17) yields too small a value for B ,
while Eq. (18) gives too large a value for B especially when kois
small. These two errors add constructively i; the calculation of the
interference-structure spacing 80 - Bl, so when measurements of this
spacing are interpreted using the L.T.A. approximation, the estimated

temperature is too high.

Now if the electron temperature is to be determined accurately,
the potential measurements must be made at a distance from the source
at which the interference spacing is very sensitive to variations of this
temperature. For instance, if Qp =5 and @ = 0.5 (Fig. 4) this condition
is fulfilled if R v 100, in which case Bo - 81 varies rapidly as a func-
tion of R ; a measured interference spacing of 20° would then be inter-
preted as corresponding to R = 60 on the basis of our numerical results,
but as R = 48 by the L.T.A. method based on Eq. (17) and (18). The latter
yields a temperature which is about 56 7 higher than the true value. This
result is typical, and we conclude that the L.T.A. formulas are inadequate

for determining electron temperatures?®.

Under most experimental conditions, the electron density is not
known in advance, but it can be deduced, together with the temperature,
from joint measurements of the interference spacing and of the resonance
cone angle. We find that the errors in density introduced by using Eq. (17)
and (18) are greatest for values of Qp near 1, where the potential dis-
tribution is strongly affected by density variations. For instance, some

28 yield

potential measurements in the auroral ionosphere by Gonfalone
Te = 655° K and n, = 7.8 x 10" cm™3 (Qp = 1.82) when interpreted by

means of the formulas of Eq. (17) and (18), but Te = 569° K and

n, = 13.1 x 10* cm™? (Qp = 2,36) when our computer programme is used,

To facilitate extensive interpretation of the angular variations of

the potential we have drawn up a set of charts on which lines corresponding
to constant values of the angles Bo, 81’ 82, ... are plotted in the

(Te, ne) plane’ ; pairs of values of electron temperature and density,

. together with error bars, can be read off easily from these charts.
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IV. DRIFT EFFECTS IN A COLD MAGNETOPLASMA

In a moving magnetoplasma, the dispersion equation for electros-
tatic waves is modified by the Doppler effect, so the interference struc-
ture in the potential distribution due to an alternating point charge
is sensitive to the motion. To study this effect near the lower oblique
resonance, we assume that the plasma is drifting in the direction of the
applied static magnetic field (V// > 0) and we neglect the dissipative
processes, namely thermal motion and collisions. The dispersion equation
of the electrostatic waves is then derived from that for a stationary
magnetoplasma, as given by Eq. (7), by replacing w by w - k// V// (i.e.

Q2 by Q - K//). Thus

K? K, 2
= 2 2 2 4 _
D(R,K) = K] + K0+ 0y I EO TR =N (18)
1/ i
and the expression for the potential becomes
+o00
0 I—(Q-K//)z - .
w(Q,E) = 1 ; ‘/ Ho (QLSLI) exp (1p//K//) dK// (19)

. Q%= (@, ) °
where ELI is the root of Eq. (18) with a positive imaginary part (the
choice of root when both are purely real is explained below). In this
section, we first discuss how levaries when K//, the real variable of
integration, varies from -« to +® ; then we present both exact numerical

and approximate analytic calculations of the potential given by Eq. (19).

THE ROOT OF THE DISPERSION EQUATION

From Eq. (18), the roots of the dispersion equation29 D(R, k) =0
~

are given by

. 2 2
@, "5 |

—_ 2.0 2 _ 2
2 k//) QT (€Y] K//)

-1 ' (20)



which shows that they vanish for Ky = OorQ*1or = Qp and go to

* o for Kp/ = R or Q £ Q.. These eight particular values - marked

by dots on the vertical ins in Fig. 5.a - delimit nine branches of
the curve ELI (K//), on each of which 5L1 has two possible values, of
opposite sign, which are either purely imaginary (when Ele is negative)
or purely real (when lez is positive). In the first case, we take only the
root with a positive imaginary part ; there are four such branches (the
dotted lines in Fig. 5.a.), on all of which the waves are strongly damped
and make no appreciable contribution to the potential. In the second case,
the sign of ELI is chosen by introducing an infinitesimal amount of colli-
sions, and we find that it is positive when Q < K/ <+ 1or
Q~QT < K// < Q—Qp, but negative when Q+Qp < 7. < Q+QT or -1 < K/ <0
or 0 < K// < 0 (the solid lines in Fig. 5.a.). To these five branches
correspond five sets of undamped waves, all of which have to be considered
in a quantitative analysis. However, the numerical calculation of the po-
tential in the next subsection will show that the drift effect can be ana-
lyzed qualitatively by considering only the two branches that start at the
origin Kk = 0.
N

These two, which are shown in greater detail in Fig. 5.b. (solid
lines), are deformed versions of the two sole branches that exist when
the plasma is stationary (broken lines). They are tangent to the latter
at the origin, so they may be expected to make the principal contribution
to the potential at and near the lower oblique resonance. Because the
curves le(K//) for a drifting plasma lie below the corresponding straight
line for a stationary plasma, it follows that the resonance cone becomes
narrower downstream and wider upstream when the plasma drifts. (For the
relationship between the dispersion curves and the resonance-cone angle,
see Ref. 26). An approximate expression for the parts of these curves
nearest to the origin may be obtained by expanding the right-hand side

of Eq. (20) as a power series, and taking just the first two terms?? :

9, & 7 cote B eyl -y eyl | 1)

where
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Yy = QPZ QZ (] - QZ)—I/Z (QTZ - QZ)~3/2 (QPZ - QZ)—I/Z (QTZ - 292) (22)

The corresponding curve is plotted as a dashed line in Fig. 5.b. for the
case where 2 = 5 and = 0.5. There are discrepancies from the exact
curve when ]K//I is so large that the second-order term in Eq. (21) is
no longer small compared with the first-order term. Roughly speaking,

the approximation is reasonable when
<<
N cotg B./Y (23)

(y = 4.55 in the case of Fig. 5.b. so this inequality is ’K//I << 0.37).
Subject to this condition, Eq. (21) should be useful as the basis for
an approximate analytic study of how the frequency variation of the
potential at a fixed point is modified when the plasma drifts. But
before doing this, we present the results from a precise numerical

study of the same question, in the course of which we confirm that the
main resonance and other regular features of the frequency variation are
indeed attributable to the two branches of the dispersion curve le(K//)

that start at the origin.

NUMERICAL CALCULATION OF THE POTENTIAL

Since it has been suggested that the field-aligned drift velo-
city could be deduced from the shift in frequency that occurs when the
emitting and receiving electrodes are interchanged, we consider mainly
the frequency variation of the potential at two fixed points, at equal
distances from the source but in opposite directions. The calculation
involves integrating an oscillating function, which we do numerically
by Filon's method?". The results are plotted as the thin curves of Fig. 6.a.
and 6.b. for the case where Qp = 5 and p = 160. The curve y_ in Fig. 6,a.
shows the potential calculated for 8 = 150° while the curve w+ in Fig.6.b.
is for B = 30° ; the subscript is the sign of the component of drift
velocity along the line from the source (transmitter) to the point of
observation (receiver), so in the first case the receiver is upstream
from the transmitter, and in the second it is downstream. When the plasma

is stationary, the curve is the same in both directions and the resonance
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frequency is Qc = 0.493. When the plasma is in motion and the receiver
is upstream, the resonance frequency Q_o is shifted towards the lower
frequencies (Qc - Q_o " 0.11), and a regular interference structure
appears at frequencies below the main resonance frequency ; here we
call the successive secondary resonance frequencies Q_l, Q‘z’ etc...
When the receiver is downstream from the transmitter, these results
are inverted : the resonance frequency Q+0 is greater than Qc

(Q+0

one peak, appears above §) at a frequency called 2, . Moreover, there
*o +

are irregular oscillations in the low-frequency range of the curve of

- QC " 0.13) and an interference structure, in this case with only

w+. These results are similar to those of Storey and Pottelette but our
use of the Fourier transform rather than the Laplace transform enables
us to identify the branches of the dispersion curve that are responsible
for the irregular oscillations of the potential downstream from the

transmitter3?.

The contribution made by each of the nine branches of the
dispersion curve to the potential can be analyzed quantitatively by
restricting of Eq. (19) to the corresponding range of the variable K
To begin with, we consider the contributions from the two branches that
start at the origin K/ = 0, so we perform a partial integration from
-1 to O for Y_ and from O to Q for y,. The thick curve in Fig. 6.a.
shows the result of such an incomplete calculation of the potential y_
upstream from the transmitter, obtained by considering only the contri-
bution from the branch Q-1 < .y < 0. Comparison with the exact curve
of lw_| shows that the frequencies Q_o, Q_l, Q_z of the successive maxima
are only slightly modified in spite of the discrepancies in their magni-
tudes. Similarly, the result of the partial integration from O to Q for
the potential w+ downstream from the transmitter is sketched as the thick
line in Fig. 6.b. Here again, the characteristic frequencies of the main
resonance and of the regular interference structure are practically unaf-
fected. Moreover the irregular oscillations are suppressed, so we conclude
that they are due to undamped electrostatic waves with wave vector components
Ky outside the range from O to 2, interfering with the waves for which the
K// lie in this range. These results are consistent with the notion that
the waves with relatively large « only contribute to the potential downstream
from the transmitter, because their group velocity vectors V_ are such that

g

Vg . V>0, Thus, in order to study the shift in resonance frequency and the
", n

interference-structure spacing, it is sufficient to confine our attention

to the branches Q-1 < 7 < 0 and 0 < K/ < @ for Y.
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ANALYTIC APPPOXIMATION FOR THE POTENTIAL

In the light of the preceding subsection, we limit the
integration for the potential to a single branch of the curve EL (K//),
1
but some further approximations must be made before we can perform this

integration analytically :

(1). The first approximation is to use the Eq. (21) for ELI.

Assuming that
o >> 0 %0 7 (-0 7@ -0 T 20 )T 2 (@29, ) (24)

>> . he .

we have |QL ELII 1 at both limits of the range of K/ where the
approximation (21) is valid ; these limits are defined by the inequality
(23). By using the saddle—point method together with the asymptotic expan-
sion of the Hankel function, we find that the corresponding frequency

range of validity for Eq. (21) is
- -0 2
|2 - e | <20, (0 -a2 (25)

(i1) . The second approximation is to extend the outer limit
of integration for the potential from -1 to -« for y_, and from & to
+ o for w+. This is correct if the range of Ky where the Eq. (21) is valid
is entirely included in the interval between N~1 and {2, which implies that

the frequency is such that

(1 - Q)@ 2 -05@.2 - 0% 1 -
- 12 - T < min (1,
Qp Q% - 20%) Q

) (26)
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On this condition, we may neglect 7. in the non-oscillatory term in

the integrand of Eq. (19) ; the latter may then be rewritten

(o]
o 1-0?

4 (1) - -
) 02 f % [pJ_( °°t38c|'<//|*Y|"//IK//)I‘*"P“Q//K//”K// 27
T

o}

v, (2,0 Vi
- n

Using a method due to Kuehl!?, we evaluate this integral by splitting

it into two parts, as follows :

_: P 1-02
wt(Q’Q) i ) Erz:g;— <I1 + Ii> (28)
T

where

‘ 1) I e
oy [ O eyccotsr [k I#vlk, Ik, ) ", Peotel x|
(29)
x exp|ip|(-cotgB |k, |-Y|k, |k exp(ip, ik, ,) dk
1 ct®™// /1117011 vy //
I 1/2 i [ | A -1/
I+ = (ET eLcothc) /’ exp i(p//—eLFothC)K//— ieLyK//z K// 172 dK// (30)
1
o . J
° T T
- (= 1/2/ ; : 2| \-1/2
I_ (Zi QLFOthc) . exp-j(p//+qlfothc)K//+1Qly K/ —( h//) dK// (31)

(iii) The third approximation is to neglect the contribution

of Il. This final approximation is valid if
2_¢ 2 2_0 2y=lc1_q 2y1/2
p > Q-0 )(Qp 0.9 d Q.9 (32)

From here on, we shall refer to these three assumptions collectively as

the low-drift analytic (L.D.A.) approximation.
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In this approximation, the potential created by an alternating

point charge is

. P 1-Q2 2 i t/2 / .[ 2]] -1/2
v, (Q,0) i = exp{ti|(p, ,%p cotgB Kk, ,—p| V¥ K, "M %ac
T c o
(33)
The new integral on the right hand side depends only on the
parameter Ly = QII/ZY'l/Z(p//iQLFothC) and can be rewritten
. - 1 . -
] exp’11[(p//ieLFothc)K//-QlyK//Z]}K// l/sz// = ; (ip V) l/“d)i(gi) (34)

o

where ¢+(c+) is an integral which may be evaluated by using a new variable
of integration t = iQLYK//Z and by changing the upper limit of integration

from io to 403!

[+
= .1/2 1/2_ -3/n
¢,(z,) [ exp (i°7°C ¢t t) t dt (35)
o)
By developing the exponential as a power series and using the integral

definition of the gamma function (I')3®?, one obtains the following series

expansion :

[o 0]

. n 1 n
®+(§+) = ¥ exp(inll/4) FG; +-Z)C+ /n!

(36)

n=o
The asymptotic forms of Eq. (35) may be derived by the method of steepest
descents ; they are

o, (c) & 2i3/“(n/z;+*)1/2 l-i/Z_exp(iQ+2/4)] if ¢, >> 0 (37.a.)

0,(c,) 2=/ (-1/g )/ if ¢, << 0 (37.b.)
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The procedure for evaluating ®_(Z_) is similar, except that ¢, is replaced
by £_ and i is replaced by - i ; thus &_(Z_) is the complex conjugate
of ®+(C_). The modulus of ¢+(C+) is graphed versus C+ in Fig. 7. By inser-

ting this function into Eq. (33), we obtain
¥, (,p) % - (8llcotgB )7/ 207>/ "y e (z,) (38)

This is the L.D.A. approximation for the potential.

Let us now use this result to derive approximate formulas
for the resonance-frequency shift and the interference —-structure spacing.
At a fixed angle B, with the frequency varying, it is more convenient to

use the expression

Ci n ipl/zﬂc—l/2Qp—3/2(QT2_QC2)1/2(QT2_ZQC2)1/2(1_QC2)—1/u(Qp2_ch)3/u(Q_QC)

(39)

which applies when Q x QC. Since this approximation is linear, the shift
of the resonance frequency, for a given drift velocity has the same magni-
“tude (but opposite sign) downstream and upstream from the transmitter. The

function |¢+(§+)| is maximum for g, = 2.199, so the differential shift (i.e.

the difference between the downstream and upstream resonance frequencies,
which is what one would measure experimentally) is

_ . -1/26 1/2 3/2 2_n 2y-1/2 2_ 2y=1/2,1_ 2y1/u 2_ 2y=3/u
a_ v 4398070/ %0 1% 2@ -0 ) @229, (1-e %/ @72

+o

(40)

In the limiting case where the plasma density is infinite (Qp + ®), we have

QO Qp and Qc % sin B ; hence Eq. (40) becomes

T ~v N

1/2
AR 4.398p'1/zsin1/28 cos'/?g N 1.755<HV//sin28/rwb) (41)
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A similar result has been derived previously by Pottelette®®, and we
have expressed ours in the same form ; however, he gives the numerical
factor before the bracket as 2. An analytic formula also can be derived
for the first frequency interference spacing when the angle Is fixed,
using the fact that the first secondary maximum of |®+(C+)|occurs for

£, = 5.4 ; in the limiting case where Qp + o, we find
1/2
R, -0, x0__ -9 y1.27 (W, sin28/ru, ) (42)

In the analogous formula derived by Pottelette®®, the numerical factor
is 1.0. Similar approximations can be derived readily for the resonance

angle shift and interference-structure spacing at fixed frequency.

To summarize, our analysis based on the L.D.A. approximation leads
to results of the same functional form as those previously published, but
of slightly different magnitude. In particular, we confirm that the shift
in the resonance and the interference spacing due to the drift along the
magnetic field are proportional, in a cold magnetopiasma, to the square
root of the drift velocity. It is important to reconcile :his result

112

with the linear proportionality discovered by Kueh in the case of warm

drifting magnetoplasma.
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V. COMBINED EFFECTS OF THERMAL AND DRIFT MOTIONS

In this section, we consider how the potential distribution
created in a warm magnetoplasma is modified by the joint action of the
thermal and drift motions, which have been treated separately in the
two preceding sections. Downstream from the transmitter, the effects
of both these motions are to close up the resonance cone and to create
a regular interference structure within it. Upstream from the transmitter,
the thermal motion has the same effect, but the drift motion opens up the
resonance cone and gives rise to a regular interference structure outside
it. In studying the resultant potential distribution, both analytically
and numerically, we again neglect ions and collisions and adopt the least-
damped-root approximation. Analytically, Kuehl!? has already derived some
approximate formulas on the further asumption that r| << a? rL“/Y3 23
we find that his method of calculation is also applicable to the case
where r]>> a? rL"/Y3 23. Numerically, of course, it is possible to
calculate the potential distribution for arbitrary values of the thermal
and drift velocities®". In this section, we first analyze the behaviour
of the least-damped root of the dispersion equation for electrostatic
waves in a drifting Maxwellian magnetoplasma, then we complete the analytic
calculations of Kuehl for the case where r| >> a? rL"/Y3 2%, and finally

we present the results of some numerical calculations of the potential.

THE LEAST-DAMPED ROOT OF THE DISPERSION EQUATION

In Fig. 8, the exact values of Re %Ll (thick solid line) and of
Im %Ll (thick dashed line) are plotted as functions of K//, for Qp = 5.,
2= 0.5 and SL/rL = 0.25. The corresponding purely real values of %Ll for
a stationary cold plasma are also graphed, as the thin broken line, while
the thin solid line represents a purely real approximation to %Ll’ inclu-
ding thermal and drift effects, which we shall use in our analytic calcu-

lation of the potential.

This approximation for %Ll is obtained by expanding the complete
dispersion equation - Eq. (2) - as a power series in terms of the variables
K, and K//. Near the origin 5 nv 0, it is sufficient to retain only the three

1

leading termes, so
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_ o, 2 _ :
K, ) & = core B IR, | =y 2 1K) 1K, = o K K, (43)

where o and y are defined by Eq. (13) and (22) respectively. In this
approximation, the thermal and drift effects are not coupled, inasmuch

as the expression for %L1 is the sum of the thermal correction term

from Eq. (12) - illustrated in Fig. 1 - and the drift correction term
from Eq. (21) - illustrated in Fig. 5.b. - added to the expression

of Eq. (8) for the case of a cold stationary plasma. For positive

values of K//, the curve representing this approximation to the least-
damped root always lies below the cold-plasma straight line (as in Fig. 8)
if a >0, i.e. if Q < Qa' When Qa < 2 <1, this curve lies below the straight
line if K// < YrL/ql and abowe it if K// > YrL/aZ. for ne:zative

values of K//, the situation is as follows : when < Qa’ the approximate
curve leaves the origin below the cold-plasma straight line, then

crosses this line at the point where K// = - YrL/al and thereafter lies
above it ; when Qa < Q <1, the curve always lies below the line. Thus

the behaviour of the least—-damped root, as given by this low temperature

and drift (L.T.D.) approximation, depends not only on the relative values

of the thermal and drift velocities but also on the frequency.

The exact values of %Ll’ calculated by using the iterative

complex-root-finding method described at the end of section II, are

similar to the preceding approximate values only for fast electrostatic

waves with 5 A 0. For large values of |K//|, the discrepancies that have

been described separately in sections III and IV now occur jointly. Depending
on the frequency 2 and on the sign of K//, the disagreements due to the
thermal and drift effects either add to or substract from one another,

and so reduce or enlarge the range of K//, around the origin, within

which Eq. (43) is valid. The imaginary part of %Ll can be ignored inside

35, but not outside it. Just as for the L.T.A. and L.D.A.

this range
approximations developed previously, no general expression can be given

to specify the range of validity of the L.T.D. approximation.

In the particular case illustrated by Fig. 8, it appears that
Eq. (43) is a good approximation when |K//| ; 0.1. The range of validity
is somewhat larger for negative values of K// than for positive values.
Hence an approximate analytic calculation of the potential, based on

Eq. (43), should give better results upstream than downstream.
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Because our iterative method for finding complex roots starts
from the origin K = 0, we must assume that the electrostatic waves what
were responsible for the irregular oscillations of the potential in the
case of a cold drifting magnetoplasma are damped by thermal processes.
In other words, the imaginary part of %Ll is assumed to be much greater
than its real part along the corresponding branches of the dispersion
curve. These branches occur outside the range (0-1) < K// < @, which
contains the least-damped ones (Fig. 5.a.). The definitions adopted
in section II for the normalized wavenumbers involve K// = (rL/Q) K//,
so these branches occur for negative K// < (Q-1) rL/Q and for positive
K// > Q rL/R. Since the limits of these ranges depend both on the nor-
malized frequency § and on the ratio rL/Q, the same must be true of the
range of validity of the above assumtion. Again, it seems impossible to

give a general expression to specify this range.

ANALYTIC CALCULATION OF THE POTENTIAL

The angular shift of the resonance cone due to field-aligned
drift in a Maxwellian magnetoplasma has been calculated analytically
by Kuehl. He did this by expressing the potential created by an alter-

nating point charge as a power series in the variable €, = Jj/3|a|‘2/3YZ/rL,

and by assuming only the first-order terms, on the assumption that e, << i,

i.e. that r| << a? rL"/Y3 2®. Then he calculated approximately the new

value of the variable zp for which the magnitude of the potential is ma-

ximum, namely z,, = 1.800 + 0.906 €, 3 remember, from its definition by

T

Eq. (16), that z_ is proportional to the angular drift of the resonance

T
at fixed frequency.

In the case where the angle is kept fixed and we sweep the
frequecy, it is more convenient to use the following expression for zp

near the resonance frequency :

zp % R?/% || /%cos B sin™}/? g 0 7t (1-2 )79 (44)
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2

shift is proportional to Q,/rL
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Hence, the resonance frequency in a stationary Maxwellian plasma is

R, % 9, + 1.8 sgn(a) R2/% [a|'/® cos™!B sin'/?g @ (1 - 0_?) (45)

Like the angular shift at fixed frequency, the resonance frequency shift

Q - Qc is proportional to r 2/3, and so to Tel/a.

0 L

In the presence of field—aligned drift, there is an additional
shift which changes its sign when the emitting and receiving electrodes
are interchanged. As in section IV, the resonance frequency will be
called Q+0 when the receiver is upstream, and Q_O when it is downstream
from the transmitter. The average of these two frequencies is still Q .

]
Experimentally, one measures their difference

- _ , -1/3, -1/3 0 2 )
AQ = Q+° Q_o v 1.812 |al RITHPQ_(1-0_ *)teB v&/rp (46)

where o and y are calculated at the frequency Q = QC. This differential
2/3. 1/3

. 2/3 1/3
, and so to the ratio V///vth (ELPb)

By following Kuehl's method, it is easy to calculate the same
parameters  and A in the other limit where r|>> a? rL"/Y3 23. Downstream
0
from the transmitter, the use of Eq. (43) for « =K #%/r, leads to a
1 1 L

new integral for the potential :

) 1/2 > r 2
1-Q 2 i / .[ 2 L 3 -1/2
expii|(p, ~p, cotgB K, ,—p, YK, ,“=p— - K } K dx
QTz_Qz HeLgoth 1/7P1 [ R VR 2 // // //
(47)
By series expanding the exponential containing the thermal correction
term - iaprL2 K//a/lz,this expression can be rewritten as
n .3
en d°% (T))
_ -1/2 =3/u_~1/4 T +° 7+
¥, (,0) v - (BllcotgB ) 7o) “TTY z o (48)

n=o n! dc+



where ®+(C+) is the function defined in section IV and €p = Ql}/zy"a/zarLz/gz.
Assuming Ep << 1., i.e. Fl.>> aer“/Y3Z3, we may retain only the first

two terms of the series. From numerical calculations of ¢, and of its
derivatives, together with a series expansion about the value c, = 2.199

for which |®+| is maximum, we find that the maximum magnitude of the
potential occurs when g, = 2.199 + 0.128 € The analytic calculation

of the potential y_ upstream from the transmitter is similar ; its magni-
tude is maximum for Z_ = 2.199 - 0.128 €p. In each of these two formulas,
the constant term, which has been derived already in section IV, represents
the main effect of the drift motion : the second term represents the smaller
additional effect of the thermal motion. Together, these formulas show that
the differential shift in resonance frequency due to the drift motion,

AR = Q+0 - Q_o, is not affected by thermal motion while the average reso-
nance frequency (Q+0 + Q_o)/Z which we shall now call Qa, is

_ 2 -1 -1 2,2
Qa N Qc + 0.128 Qc (1 Qc ) b, Y ar /% (49)

L

Thus the average resonance frequency is shifted proportionally to the ratio
rLZ/R - and so to Te - due to the thermal motion ; while the differential
shift in resonance frequency due to the drift is proportional to V//l/z,

like in the cold-plasma case.

Before confronting these approximate results with the numerical
results from our computer programme, we should point out some peculiarities
of this analytic approach devised by Kuehl. His first step is to approximate
the least—-damped root of the dispersion equation. The errors that this
involves have been discussed in the preceding subsection. The second step
is to introduce a reference function by taking into account only one
major effect, either that of the thermal motion or that of the drift
motion. In so doing, the asymptotic expansion of the Hankel function is
used in such a way that, when one calculates the potential, one cannot
recover the case of the cold stationary magnetoplasma : note
that when R + « (corresponding to T » 0) in Eq. (15), or when p » «

(corresponding to V// + 0) in Eq. (38), senseless results are obtained.
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Moreover, the argument of this reference function is approximated near
the resonance angle or frequency, and more errors are introduced thereby.
The third step consists of expressing the potential as a power series

in a parameter that takes account of the minor effect. The two infinite
series obtained by starting from the one or the other reference function
are strictly equivalent and include a coupling between the thermal and
drift effects. Then, in a final set of approximations, the treatment

of this coupling is simplified by truncating the series which amounts

to ignoring the influence of the minor on the major effect, but not the
converse. The errors committed at these successive steps of the analytic
calculations can either reinforce or cancel one another, so it would be
difficult to obtain any simple and global criterion of validity of all
the approximations by comparison between the final approximate results and

the exact numerical results.

NUMERICAL CALCULATION OF THE POTENTIAL

It is easy to modify our computer programme for calculating
the potential created by an alternating point charge in a Maxwellian
magnetoplasma, so as to introduce a field-aligned drift. In Eq. (4)

for o s the term involving the ratio £/r, is now non-zero, and the

L
numerical integration of Eq. (5) must now be performed from — © to + ®
since K K K - K . Limiting ourselves to the case where onl
1L K, ) ’ L % & ‘ N Y
the excitation frequency is varied, we shall present one example of a
numerical calculation of the potential with Q varying from O to 1.,
before focussing our attention on the resonance-frequency shift due to

the plasma drift.

Fig. 9 shows the numerically-calculated frequency variations
of the magnitude and phase of the potential at each of two fixed points,
at equal distances from the source but in opposite directions. The parameter
values are as given in the figure caption. At frequencies greater than the
resonance frequency, all the curves shows an interference structure which
is a thermal effect. In the amplitude curves, this structure is not suffi-
ciently pronounced to produce actual maxima and minima, but such extrema
appear distincly in the phase curves. The relative smoothness of the curves
for Y_ leads us to think that the interference structure due to the drift

is damped by the thermal motion. The remaining - and most important -
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effect of the drift is to shift the resonance frequency : in Fig. 9,

the differential shift AQ is 0.522 while the approximate formulas

(40) and (46) give 0.1185 and 0.0303 respectively. Since r]=12m

and aer“/Y323 = 1.17 m, we are roughly in the intermediate range

where neither of the approximate formulas is valid. Thus we have here

a case where the exact differential shift due to the drift lies between
the asymptotic values given by the two analytic calculations, though this

is no true in every case.

In fact, the drift effect is systematically underestimated by
using the L.T.D. approximation for the least-damped root of the dispersion
equation, but this basic inadequacy is subsequently attenuated by the
further approximations made in the analytic calculation of the resonance
frequency shift. In Fig. 10, the variations of the differential frequency
shift A are graphed versus £ in the case where Qp = 5., r=.8mand
B = 30° or 150°, for R = 30, 50 and 100, and also for R = ® which is the
cold-plasma case., The solid curves show the variations calculated numeri-
cally with our complete computer programme, in which the least-damped root
ELI of Eq. (2) is determined by the iterative complex-root-finding method ;
the dashed curves are the approximations, obtained from Eq. (46) when R
is finite and from Eq. (40) when R is infinite. In this example, Eq. (46)
gives a differential frequency shift AQ less than the exact value when R
is large and greater than the exact value when R is small. We note that
this result is consistent with the L.T.D. approximation which is valid
when the distance is both large enough to justify the use of the
low-temperature approximation and small enough to satisfy the condition
r) << aer“/Y3l3. On the other hand, the exact values of Al vary more
or less linearly with %, even for large values of R ; this result disagrees
with the prediction of Eq. (40), which is plotted as the dashed curve
labelled R = «, according to which AQ should be proportional to 21/2,
Generally speaking, Eq. (40) seems to be more of theoretical than of
practical interest since the conditions for it to be applicable do not
occur in the experimental situations that we envisage. In this example,
where B = 30° (or 150°), Kuehl's formula for AQ would be useful for
data analysis, but we use of the numerical values for A} would improve

the accuracy.
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This rough agreement between the approximate and the cexact
values of Al for B = 30° may be better or worse at other values of this
angle. Fig. 11 shows the differential shift A} calculated for “p = 5.,

R = 100 and l/rL = 0.1 (r = 0.8 m) when R varies from 0° to 90°. The
accompanying variation of the resonance frequency is given by the curve
of B in Fig. 3. The approximate values from Eq. (46) are graphed as the
dashgd curve and the exact values as the solid curve ; the composite
curve shows the values of A} derived from Eq. (40). Because of the

factor |a['1/3 in Eq. (46), Kuehl's approximation for A becomes infinite
at the angle Ba = 44,57° where o = O ; this is the resonance angle for
the frequency Qa (see Section IIXI). This infinity does not appear in the
numerical calculation : the exact curve has a smooth maximum for a value
of B somewhat less than Ba' Obviously, in any attempt to detect the drift
effect experimentally, one would choose to work in a range of f around
this maximum. It is noteworthy that, in this range, neither of the analytic
approximations for the differential frequency shift A is usable. We con-
clude that Kuehl's formula is inadequate for interpreting measurements

of the lower oblique resonance frequency to obtain the field-aligned

drift velocity.
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VI. SUMMARY AND CONCLUSIONS

In this paper, the effect of field-aligned drift on the lower
oblique resonance in a Maxwellian magnetoplasma has been investigated,
both analytically and numerically, by taking account only of the least-
damped root of the dispersion equation and neglecting collisions and

ion motion.

Our analytic results complement those that have been published
in the recent years,; particularly by Kuehl. They are valid only when the
characteristic length % = V///wb is much smaller than the distance to the
point of observation and when the drift velocity is much smaller than a
critical value which depends on the plasma parameters and on the parameters
of the measuring instrument. It is found that the shift in the resonance
and the interference-structure spacing due to the drift are proportional
to the square root of the drift velocity. This is contradictory with the
linear proportionality discovered by Kuehl when the drift velocity is
much greater than this critical value but it seems not possible to relate

these two results analytically.

On the contrary, our numerical results are available whatever

the values of thermal and drift velocities may be :

i) for a warm stationary plasma, the characteristic
parameters of the potential distribution (i.e. positions and magnitudes
of the succesive maximas and minimas) obtained from our computer programme

are sometimes in contradiction with those deduced by Kuehl and other authors.

ii) in a cold drifting plasma, our numerical results for
the potential are similar to those of Storey and Pottelette, although in
our case the plasma is of finite density and the source is motionless.
By using the Fourier transform to calculate the potential numerically,
we are able to identify the branches of the dispersion curve that are

responsible for the irregular osciilations.
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iii) in a warm drifting magnetoplasma, we must assume
that these irregular oscillations are damped by thermal processes but
it is thought that this assumption is not very restrictive. From the
comparison between the analytical and numerical values of the differential
shift due to the drift, we have shown that our computer programme improves

the accuracy of the results significantly in physically realistic situations.

For diagnostic purposes, our computer programme should be useful
for interpreting measurements of the potential created by an alternating
point charge near the lower oblique resonance. Experimentally, the elec-
trodes of the probe must be arranged so as to give the highest possible
sensitivity, i.e. the largest variations of the characteristic parameters
of the potential distribution (resonance angle or frequency and interference
structure spacing) for given variations of the plasma parameters (electron
density, temperature and drift velocity). With these conditions, the

approximate formulas previously published are insufficiently accurate.

i) for electron density and temperature measurements, the
distance between the two electrodes must be small enough to yield large
interference structure and a large resonance. Because their accuracy |
decreases with decreasing distance, Kuehl's appropriate formulas become

less and less useful as the experimental conditions improve.

ii) for field-aligned drift velocity measurements, the
probe is most sensitive when the‘angle between the magnetic-field
direction and the line joining the two electrodes is around 45°, in the
typical conditions considered. Unfortunately, the differential resonance-
frequency shift is predicted badly by the analytic formula in the vicinity
of this angle, at which indeed the prediction diverges. Again, we conclude
that our re-evaluation of the drift effect is indeed necessary when the

experimental device is optimized for plasma diagnostics.

This work is a contribution to the study of the lower oblique
resonance, a subject that has developed greatly in recent years. It
completes the previously published results by suppressing some restrictive
conditions on the plasma parameters ; however, it is itself limited and

it can be followed up in many directions.
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First, our computer programme is thought to be well suited
for studying some secondary effects of physical interest in the context

of the least-damped root approximation.

i) the effects of collisions have been experimentally
analyzed by Singh and Gould®®. A rough numerical experiment can be made
easily by replacing, in the subroutine for solving the dispersion
equation, the frequency w by the term w — iV where v is a small relaxation

collision frequency.

ii) the effects of ions have been studied analytically
by Kuehl13®7 and Burrell®®, Their results can be usefully completed by a
numerical calculation which requires a new subroutine for the dispersion

equation.

iii) the effect of a sheath around the transmitting antenna
in a drifting magnetoplasma can be analyzed roughly by following a sugges-—
tion of Storey’®. In a idealized model, charge supplied to the transmitting
monopole antenna by a sinusoidally-varying input current accumulates on
the antenna if the sheath is capacitive but flows straight off it into
the plasma, where it joins the drift motion, if the sheath is resistive.
Thus the present calculations would concern a capacitive sheath, whereas
it is necessary to multiply the kernel of the integral in Eq. (5) by
(- K// R,/QrL)‘1 to take into account the motion of the point charge in

the case where the sheath is resistive.

Secondly, the electromagnetic effects also.can be studied in the
context of the least-damped root approximation. Lewis and Keller"® have
derived the dispersion equation for electromagnetic waves in a Maxwellian
magnetoplasma ; this equation is available in the form of a computer

21 ' By considering only the least-damped root

subroutine thanks to Muldrew
of his equation, it seems possible to numerically calculate the electric
field radiated by a small dipole antenna. Theoretically, such a calculation
would extend the pioneer calculation of Fisher and Gould® to the case were
the magnetic field is finite, without having to make the quasi-static

1!2, Experimentally, the numerical knowledge

approximation used by Kueh
of the coupling between two dipole antennas would permit us to study the
relative ments of different layouts of these antennas, in order to

improve the sensitivity of the probe for plasma diagnostics.
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Thirdly, new numerical calculations would be made to complete
our theoretical knowledge of the lower oblique resonance. A first step
would consist of taking account of all the roots of the dispersion equa-
tion for the electrostatic waves. To do this, it scems necessary to
calculate the kernel of the integral in Eq. (5) numerically by integration
along the positive part of the real K - axis rather than to use the
residue theorem, as we have here when taking account only of the
least—-damped root. Such a numerical calculation along the real axis
(or along a deformed path with no roots of the dispersion equation between
it and the real axis) would be extended, in a second step, to the case
where the magnetoplasma is non-Maxwellian. This research would be very
useful because, when the drift velocity increases, the electron velocities

probably have a non-Maxwellian distribution, especially in space plasmas.
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FIGURES CAPTIONS

Typical behaviour of the least-—damped root §L1 of the
dispersion equation, as a function of real K// for

various fixed values of {, with Qp = 5 :yamm—— cxact

values of he %Ll ; approximate values derived

from Eq. (12) ; — - . cold plasma

approximation ; wee=sswess exact values of Im %Ll'

Normalized magnitude of the potential of an alternating
point change, for Qp =5, = 0.5 and R = 100. The solid
curve was obtained by numerical calculation and the

dashed curve from Eq. (15).

The angles:%n.(n =0, 1, 2) of the successive maxima in
the potential as functions of @, for Qp =5 and R = 100

IR cxact values ; esEswessss=se approximate values :

from Eq. (11) and (12) ; - . cold~plasma

approximation.

The angles marked in Fig. 2, plotted as function of R,
for Q = 0.5.

Numerically—-calculated value of the chosen root ﬁlﬂ of
the dispersion equation as a function of real K// for
2 = 0.5 and Qp = 5 : e v3]lues of Re (K 1) 5

4

ienennnvensnsens values of Im (K_Ll) 5 L

stationary plasma case (where x is purely real).

11
The region of Fig. 5.a. around the origin is shown here
on a larger scale. ’El}is purely real and the dashed

line shows the approximation of Eq. (21).



Figure 6.a.

Figure 6.b.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.
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Normalized magnitude of the potential created upstream
from an alternating point charge for Qp =5, p = 160
and 3 = 30° ; eessssse cxact result.

————— 1 esult obtained by partial integration of

Eq. (19) from {~1 to Q.

Normalized magnitude of the potential created downstream
from an alternating point charge for Qp =5,p = 160
and 3 = 150° ; ——e———— cxact result.

— reslut obtained by partial integration of

Eq. (19) from Q-1 to Q.

The curve of |¢+(C+)| versus [ , as computed from the
series expansion of Eq. (36) when lg+| < 4, and from

the asymptotic forms of Egq. (36.a) and (36.b) when
le, | > 4.

The least—damped root K1 of the dispersion equation in
a drifting Maxwellian magnetosplasma, as a function of

real K//, for Qp =5,,  =.5 and SL/rL = .25 ! eseee—

exact values of Re ELI ; approximate values

derived from Eq. (43) ; . - stationary
cold magnetoplasma approXimation ; ==esesssewssss exact values

of Im %Ll‘

Variations of the magnitudes and of the phases of the

normalized potentials Z, and y_ for Qp =5, r=2.4m,

3 =30° and 150°, R = 90 and L/r; = .225 (V;/= 0.159 Ver) -

Curves of the differential frequency drift AQ duc to the
plasma drift, versus & for = 30°, r = 0.8 m and

R = 30,50 and 100 : weeses—— complete numerical
calculation ;essesessssassmsss ;ge of Eq. (40) for R = «

and (46) for R = 30, 50 and 100.

Curves of A versus3 for Qp = 5,8 = 30°, r= .8 m, R = 100

and Q/rL = .1 : comesesesssms complete numerical calculation ;

NSO SEENSERARESGEST : use Of Eq' (46) ; [} -»
use of Eq. (40).
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