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ABSTRACT 

A rapid method is used to find the least-damped root of the 

dispersion équation for electrostatic waves in a Maxwellian magnetoplasma, 

including the effects of field-aligned drift ; the low température and 

low-drift-speed approximations are avoided. Calculations are made of 

the potential created by an alternating point charge at a frequency 

less than both the plasma and the électron cyclotron frequencies, neglec- 

ting collisions, forced ion motion, and the contributions of higher-order 

roots. A comparison of the numerical results with the approximate expres- 

sions previously published shows that the latter are inadéquate for dia- 

gnostic purposes, i.e. for deducing électron density, température, and 

drift velocity from measurements of the potential. 
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I. INTRODUCTION 

Récent experiments in the laboratoryl-4 and in spaceS-7 hâve 

confirmed the existence of the so-called cône or oblique résonances 

of a magnetoplasma in certain frequency bands. If the forced motion 

of the positive ions is neglected, there are only two such bands : 

the upper band extends from the upper hybrid frequency down to either 

the plasma frequency or the électron cyclotron frequency, whichever is 

the higher ; the lower band extends from the lower of thèse two frequencies 

downwards. The présent paper is concerned exclusively with the résonance 

in this lower band, hereinafter referred to as the lower oblique résonance. 

In a stationary magnetoplasma, the scalar potential set up by 

a small monopole antenna has rotational symmetry around the magnetic field 

line that passes through the antenna and reflexion symmetry with respect 

to a plane that includes the antenna and is perpendicular to the field 

lines. Thus, if this antenna is excited with a sinusoidal current of 

fixed amplitude and frequency, the alternating potential received on a 

second monopole, at a vector distance r from the first, dépends only on 

the magnitude r of this distance and on the angle 3 between r and the 

magnetic field direction. Now, in the above frequency bands, if the angle 

3 is varied in the range 0 - IT/2 while r is kept constant, the amplitude 

of the received potential exhibits quasi-sinusoidal variations ; the 

alternate maxima and minima correspond to an interférence structure. 

The highest maximum occurs at a certain angle 3 which 
is that of the 

so-called résonance cône. The secondary maxima occur only on one side of 

this cône ; they are regularly speced, and decrease steadily Ln amplitude 

as 18 - 3 
increases. Because both the résonance cône angle and the spacing 

of the secondary maxima dépend on the électron density and température, it 

has been suggested that thèse two parameters could be determined from 

measurements of the angular variation of the potential. 
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When the plasma is drifting along the magnetic field, the 

rotational symmetry of the scalar potential is unaffected but the reflexion 

symmetry is destroyed : the résonance cône becomes wider upstream and 

narrower downstream. This angular shift has not yet been detected experi- 

mentally, however. Usually it is easier to make précise measurements of 

frequency rather than of angle, so the suggestion has been made that it 

would be more fruitful to look for the corresponding shift in résonance 

frequency at a fixed angle8. The sign of the frequency shift dépends 

upon which antenna is transmitting and which is receiving : the shift 

is towards lower frequencies when the receiver is upstream from the trans- 

mitter, and conversely. Measurements of this non-reciprocal effect could 

be used to détermine the électron drift velocity parallel to the magnetic 

field and hence the field-aligned électron current. 

Thermal effects on the angular variations of the potential and 

of the field created by an alternating point charge in a homogeneous sta- 

tionary magnetoplasma hâve already been investigated theoretically, assu- 

ming a Maxwellian électron distribution function. Neglecting collisions 

and forced ion motion, Fisher and Gould and Singh and Gould derived 

thèse variation analytically - and calculated their numerically - in the 

limit of an infinité magnetic field. Later, Kuehl11'12, Chasseriaux and 

Burrell1* extended their calculation to the case in which the magnetic 

field is finite but they used the low-temperature approximation among 

others, which drastically simplify the dispersion équation for electrostatic 

waves : there is only one root, and its damping is neglected. In the présent 

paper, we report numerical calculations of the potential made neglecting 

collisions and forced ion motion, using the exact dispersion équation, but 

retaining only the least-damped root, which corresponds to that given 

by the low-temperature approximation. 

The effects of field-aligned drift on the frequency variation 

of the coupling impédance between two monopoles in a cold homogeneous 

magnetoplasma hâve been studied by Storey and Pottelette11* ' ] 5 . They 

neglected collisions and forced ion motion and assumed that the électron 

plasma frequency was much higher than the cyclotron frequency. Moreover, 

they considered that the charge supplied to the transmitting monopole 

antenna by a source of sinusoidally-varying current does not remain on 

the antenna, but flows straight off it into the plasma, were it joins 
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in the drift motion. Thus their calculation is not équivalent to that 

of the potential created by a fixed alternating point charge in the 

drifting plasma, which is the subject of this paper. In making this 

calculation, we hâve again neglected collisions and forced ion motion 

but we hâve not made any hypothèses about the characteristic frequencies 

of the plasma. Moreover, in order to dérive an approximate expression 

for the potential, we hâve followed an analytical method, used by 

Kuehl12 in his investigation of thermal effects, which involves Fourier 

transforms rather than the Laplace transforms used by Storey and Pottelette. 

However, the calculation of the potential including both drift 

and thermal effects shows that the former may be more important than the 

latter in some expérimental situations in the laboratory and in space16. 

Considering the joint effects of thermal motion and of field-aligned drift, 

and using the low-temperature approximation, Kuehl12 has derived an appro- 

ximate expression for the résonance shift in the limit where the thermal 

effect is much higher than the drift effect. In this paper, we complète 

this investigation by studying the opposite limit, where the drift effect 

is much higher than the thermal effect. Also, we are able to make approxi- 

mate numerical calculations of the résonance shift for intermediate condi- 

tions, since we hâve included a field-aligned-drift velocity of arbitrary 

magnitude in our computer programme. This enables us to draw curves of 

the shift of the résonance frequency versus both électron température 

and drift velocity, without restricting the values of thèse parameters. 

We end this introduction with some remarks about notation 

and units. Since, in ail the cases considered, the potential has cylin- 

drical symmetry around the magnetic field line passing through the mono- 

pole, it is convenient to adopt a cylindrical coordinate system and to 

specify any arbitrary vector function A of the position vector r by its 

component 
A.. 

(positive or négative) parallel to the field, its perpendi- 

cular component Ai (positive by définition), and the azimuthal angle 

associated with 
AJL. Moreover, 

it happens that in no case is this angle 

significant, so we shall write simply r 
= (r,,, 

r. ) and A = 
(A,,,Ai). 

We shall also hâve occasion to write A = A A,where A = 
lAI and A is a 

unit vector. We use the rationalized MKSA system of units. 
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II. GENERAL THEORY FOR A DRIFTING MAXWELLIAN MAGNETOPLASMA 

An arbitrary alternating (i.e. sinusoidally-varying) source, 

of angular frequency w, immersed in a plasma, excites a]l waves whose 

wavenumber vectors k satisfy the dispersion équation D(w, k) = 0 and 

sets up a distribution of scalar potential around itself resulting 

from the mutual interférence of ail thèse waves. The problem of cal- 

culating this potential is very difficult if the source perturbs the 

plasma, so we shall assume that it does not, in which case it can be 

described completely either as a spatial distribution of alternating 

charge, or as a distribution of alternating current, the two being related 

by the condition of charge conservation. If we adopt the convenient gauge 

condition proposed by Balmain17, then the scalar potential is the spatial 

convolution of this distribution with the relevant Green's function, which 

may be thought of as the potential that would be set up by an alternating 

unit point charge, even though such an entity is non-physical because 

it does not satisfy the charge conservation conditionlB. Thus the problem 

is essentially solved once we hâve calculated the Green's function, the 

Fourier transform of which is (e k . E . k)-1, where E is the vacuum 
o o, ty V o 

permittivity and e is the dielectric tensor of the plasma19 ; Balmain's 

gauge condition is équivalent to considering that the alternating point 

charge excites only electrostatic waves, for which the dispersion équation 

is D(w, k) = k . E . k = 0. 

Accordingly we wish to calculate the Green's function for a 

collisionless magnetoplasma drifting along the magnetic field. To begin 

with, we need the dispersion équation in its explicit form, which dépends 

on the électron distribution function f(v). The latter is assumed to be 

a shifted Maxwellian 

which is normalized in such a way that J f (v) d3 v = 1. The quantity 

v , 
is the most probable value of the thermal velocity, and is equal 

to (2 b 
T e /m e )1'2, 

where b is Boltzmann's constant, while 
m e 

is the mass 

of an électron and 
T 

is the électron température of the plasma ; 
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the drift velocity is V = (V.,, 0). This plasma is also charactcrized 

by three other parameters : co 
= 

(n e 21f,0 m )1'2 
is the angular plasma 

frequency (e is the magnitude of the electronic charge and n is the 

électron density of the plasma), co, 
= e B 

/m 
is the angular électron 

cyclotron frequency (B is the induction vector of the magnetic field), 

and 
r 

= 
v , /2 ' co, 

is the électron Larmor radius (note that the Debye 

length is not an independent parameter : it is equal to 
r Lj wl/Wb). 

Another 

important derived parameter is the upper hybrid résonance frequency 

wT 
= 

(to 
+ 

co, 2)1'2. Throughout 
this paper, we shall normalize ail fre- 

quencies with respect to the cyclotron frequency (thus 
fi 

= 
co /co, , £ L = WT/Wb 

� = 
co/co, 

and ail distances and wavenumber vectors either with 

respect to the Larmor radius (thus R = r/rT and K = k . rT ) or, in section 

IV, with respect to the characteristic length £ = 
VII/wb (thus p = V./�. and 

K = k Z). With thèse conventions, the dispersion équation takes the 

f orm1 

in which I is the modified Bessel function of order n and 
n 

where sgn is the signum function, equal to + 1 or - 1 according to the 

sign of its argument, and erfc is the complex error, the argument of which is 

It is well known that this dispersion équation has an infinité number 

of roots K for a given direction of the unit vector K. 
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At any point in the plasma, the scalar potential is made up 

of contributions from a double infinity of electrostatic waves (double 

because ail possible K - directions are involved). The least-damped--root 

approximation consists of taking account only of the single infinity 

of electrostatic waves with the smallest damping for a given K - direction. 

On this basis, the scalar potential - normalized with respect to its 

vacuum value - created at any point R by an alternating point charge, 

located at the origin R = 0, is as given by Kuehl11 : 

where H(l) is the first Hankel function of zéro order and 
o 

In Eq. (5) and (6), 
Kj 

is the least-damped complex root of the dispersion 

équation (2), i.e. the one with the smallest imaginary component. Because 

K// 
is purely real, F (a ) 

reduces to the plasma dispersion function 

Z(� ) of Fried and Conte20, with � 
= sgn(K, ,) 

a , which simplifies the 

dispersion équation (2). Also, because this équation involves no powers 

of 
Ki 

other than the second, ail its roots appear in pairs symmetric about 

the origin in the complex Ki plane. Thus, in order to calculate the potentia] 

we must first be able to find this particular root Kj_t , for given fi 
and 

as a function of the variable of intégration K,,. 

Before considering how the root 
Ki 

can be found in general, we 

note that analytic expression for it exist in the spécial case of a cold 

magnetoplasma. In a stationary cold magnetoplasma, Eq. (2) takes the form 

For 
given fi , 

�, and 
K//, 

the two possible values for K). are 
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where 

is the value of 
3 

in the cold-plasma limit. By introducing collisions 

which we subsequently neglect18, we find that the sign of 
Ki must be 

négative when 
K,, 

� 0 and positive when 
K,, 

� 0. With this idealized model, 

the potential becomes infinité on the résonance cône defined by 3 when 

the frequency is fixed, or at the résonance frequency fi such that 

when the angle is fixed. In a cold magnetoplasma with field-aligned 

drift, the dispersion équation remains simple and still has only one pair 

of roots which can be found analytically. This case is treated in section IV. 

Thèse results for a cold magnetoplasma from the background to the rest of 

this paper, in which we show how they are modified by thermal and field- 

aligned-drift effects. 

In a warm magnetoplasma, the dispersion équation (2) can only 

be solved numerically21. We do so by an itérative method, identifying 

the least-damped root by continuity with the results for a cold magneto- 

plasma. Obviously Eq. (2) tends to the cold-magnetoplasma dispersion équa- 

tion when T vanishes, but it also does so for any T when the K vector 

becomes very small (i.e. K « 1). In this limit, the least-damped root 

of Eq. (2) with a positive imaginary part (which has a négative real 

part) tends to the purely real négative root of the cold-magnetoplasma 

dispersion équation. Conversely, if we take this analytic approximation 

as the initial value, our itérative solution of Eq. (2) always converges 

to the required root when 
|K,,| 

« 1. Therefore we perform the numerical 



intégration of Eq. (5) for the potential in such a way that the successive 

values of 
K i (^//) 

are called for in order of increasing 
|K,,| 

starting 

from zéro. For the first finite value of 
K//, 

the root K]_j is found as just 

described. Ail subséquent values are found by the same itérative method, 

but with the initial value obtained by extropolation from the previous 

values using a polynomial22 . Thus we follow the path of 
K 

in the complex 

half-plane Im K � 0 as 
| K , , 

increases, even when the latter is no longer 

small. This procédure is used in sections III and V , our itérative method 

for finding the complex root of Eq. (2) is an adaptation of the so-called 

"down-hill" method23. 

Whatever the state of the plasma, the integrand in Eq. (5) 

for the potential is an oscillating function of 
K, ,. 

We evaluate this 

intégral numerically, using Filon's method 24 
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III. THERMAL EFFECTS IN A STATIONARY MAXWELLIAN MAGNETOPLASMA 

Because récent work, both theoretical and expérimental, 

has been concerned mainly with determining the resonance-cone angle 

and the interférence-structure spacing, we limit our study to the 

potential distribution created by a point charge alternating at a 

fixed frequency. Since 
V. 

= 0,it follows that D(fi, K) is an even 

function of 
K,,, 

so K, 
(K,,) 

= 
KJ^C-K.,) and D'(n, K,,, Ki) = D'(n, 

-K.//, Kj) 

Hence the expression for the potential can be written as 

so *Kfi, RII' R| ) 
= *Kfi� -RII' R|)- ln view of this symmetry, we need to 

study the variations of 
K|,(K//) only in the range 

K,, 
� 0 and those of 

�(n, R) only in the range R � 0, i.e. 0 � 3 � 11/2. In this section, 

we describe the results of numerical calculations of 
K|i(K//) 

and R) 

in the particular case where Q 
p = 5. 

Our results are presented in order to assess the errors committed 

by using the formulas given by Kuehl12 to détermine the électron density 

and température of a stationary plasma. Thèse formulas are derived by ne- 

glecting the imaginary part of Kj_j , and by taking its real part as equal 

to the sum of the cold-plasma value 
1Eq. (8)1 

and a correction terni pro- 

portional to K?, . Then the intégral of Eq. (Il) is calculatcd analytically 

with the aid of various other approximations. Hereinafter, this set of 

approximations will be referred to as the low-temperature analytic (L.T.A.) 

approximation ; it yields very simple expressions for the angles 80, 81, 2 

of the successive maxima of the potential distribution. 

THE LEAST-DAMPED ROOT OF THE DISPERSION EQUATION 

In Fig. 1 curves are plotted of the real and imaginary parts 

of 
KL19 

as functions of 
K,,, 

for 
fi = 

5 and for various values of fi. 

For each of thèse values, three curves are plotted : the cold-plasma 

approximation given by Eq. (9), the L.T.A. approximation, and the exact 

curve derived numerically. 



- 13 - 

The L.T.A. approximation involves assuming 

where a is the correction coefficient that takes account of the thermal 

effects25 ': 

It is important to note that a vanishes for a particular value fi 
of fi 

which dépends only on � ; for � = 5, we have S2 oc 0,692. When fi � � 

(e.g. � = 0.1 and � = 0.5), the coefficient a is positive and the L.T.A. 

curves lie below the cold-plasma straight line, which is inclined at the 

angle 3 to the négative Re Ki - axis. When = � , the coefficient a 

vanishes and there is no interférence structure : the L.T.A. approximation 

fails to predict any thermal effects. When fi � fi 
(e.g. fi 

= 0.9), a is 

négative and the L.T.A. curve lies above the cold-plasma curve. Thus the 

nature of the L.T.A. approximation dépends on whether the normalized fre- 

quency is greater or less than � ; the physical significance of this 

value has not yet been identified. 

The results of our numerical calculations are plotted as curves 

of Re 
Ki 

and of Im K. versus K for positive real va Lues of this 

variable. Thus they refer to inhomogeneous waves with Im K,, = 0, rather 

than to the homogeneous waves (i.e. waves in which the vectors Re (K) and 

Im (K) are parallel to one another) that hâve been studied by some previous 

authors26. Our results are similar to the L.T.A. approximation for fast 

electrostatic waves (K rb 0) in a range of 
K,, 

which dépends on fi. When 

fi 
� fi 

the curve of Re K 
is well approximated by Eq. (12), while the 

curve of Im 
Ki 

is very close to the 
KII - 

axis up to a certain value of 

K, , 
which increases with increasing frequency. Above this value, the 

curves derived from Eq. (12) do not bend in the right direction. When 

� = 
fi , 

the exact curve of Re Ki lies below the cold-plasma straight 

line over a large range of 
K,,. 

When fi is greater than fi , 
the curve for 
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Re Ki from Eq. (12) bends in one direction only, whereas the exact 

curve is more complex and lies above the cold-plasma line for small 

K , , 
and below it for large 

KII ; 
thus thë discrepancies between thèse 

two curves are now very significant. Moreover, the value of 
K, , 

above 

which Im 
Ki 

can no longer be ignored now decreases with increasing 

frequency. In short, the L.T.A. approximation does not give a good 

account of the behaviour of the least-damped waves when the frequency 

is near the gyrofrequency ; however, précise information about its 

range of validity can be obtained only by numerical calculation of 

the potential. 

THE POTENTIAL CREATED BY AN ALTERNATING POINT CHARGE 

The preceding three sets of curves for the least-damped root 

of the dispersion relation lead to very différent potential distributions 

near the lower oblique résonance. 

Let us recall that, in the cold-plasma approximation, the 

potential is18 

It is infinité on the résonance cône, which has a semi-apical angle 3 and 

it decreases smoothly with increasing 18 - 3 on both sides of this cône. 

In contrast, the L.T.A. approximation for the potential is 

where 
F(zT) 

is a function defined and graphed in Réf. 10 ; its argument, 

which is purely real, is 
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The prédictions of the L.T.A. approximation differ from those 

of the cold-plasma approximation in three main respects. Firstly, the 

potential remains finite on the résonance cône. Secondly, this maximum 

of potential occurs at a slightly différent angle : 

The amount of the change in the angle at résonance dépends both on the 

frequency and on the électron temperature(it is proportional to T 
1/3), 

but 

its sign dépends on the frequency alone : the L.T.A. résonance cône lies 

inside the cold-plasma résonance cône if � � � , and outside it if � � � . 

Thirdly, there appears a quasi-periodic interférence structure, in which 

the minima are zéros and the maxima decrease in amplitude with increasing 

angular distance from the résonance cône. The angular positions of thèse 

secondary maxima are approximately 

where n = 1, 2, 3,... Again, their angular spacing dépends on fi and is 

proportional to T 
x/3. 

The entire structure occurs inside the L.T.A. 

résonance cône when fi � � and outside it when fi � � . In the rest of 
a a 

this section we shall compare thèse prédictions of the L.T.A. approximation 

with the results of our more précise numerical calculations, in order to 

establish whether or not the L.T.A. formulas are adéquate for diagnostic 

purposes. 

When the électron température is such that R » 1, the L.T.A. 

approximation leads to a potential distribution in reasonably good agreement 

with the more précise calculations so long as the excitation frequency is 

not too close to the électron gyrofrequency, or more exactly, so long as 

fi �� fi . This fact is illustrated in Fig. 2, where the variations of \ip\ 

given by our computer programme (solid curve) and by Eq. (15) (dashed curve) 

are plotted for the case 
where fi 

= 5, R = 100 and � = 0.5. It appears 
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that the damping of the maxima at 
3 

and 81 is underestimated by the 

L.T.A. approximation ; moreover, the prédiction that the minima should 

be true zéros is not confirmed by the numerical calculations. We hâve 

verified in numerous instances that thèse slight discrepancies presist 

for other values of � , of R and of � ; probably they are due to the 

fact that the damping of the electrostatic waves is neglected in the 

L.T.A. approximation. 

Let us now consider how the potential distribution in the 

plasma changes as the normalized excitation frequency � varies from 0 

to 1. In Fig. 3, we hâve plotted the angles 3 , and 3 of the successive 

maxima of the potential distribution as given by our programme (solid 

curves) and by Eq. (17) and (18) (dashed curves) for the case where R = 100. 

The true résonance cône (i.e. the maximum at 30) always lies inside that 

given by the cold-plasma approximation, contrary to the resuit given by 

the approximate L.T.A. formula of Eq. (17). As regards the secondary 

maxima at 3j and 32 
the corresponding formula of Eq. (18) again disagrees 

with our more précise calculation which show that this interférence struc- 

ture always lies inside the résonance cône. Moreover, as the frequency 

approaches the gyrofrequency, the amplitude of each of thèse secondary 

maxima diminishes progressively, in comparison with that of the main 

maximum on the résonance cône : the higher the order of the secondary 

maximum, the more rapid is the decrease. In the particular case of Fig. 3, 

no secondary maxima are discernible when fi is greater than about 0.8. 

Thus exact numerical calculations of the potential show that the validity 

of the L.T.A. approximation dépends not only on the température but also 

on the frequency. 

When the excitation frequency is fixed in relation to the gyro- 

frequency, the potential distribution due to a point charge is strongly 

affected by variations of the électron density or température of the 

plasma. For brevity, we now limit our study to the influence of the tem- 

pérature, and to the particular case where � = 0.5 and � 
=5. 

Fig. 4 

shows how the angles 6, 3 and 3 vary 
when the Larmor radius is increased 

from 0.001 r (R = 1 000) to 0.1 r (R = 10) ; the results of the numerical 

intégration for the potential hâve been plotted as the solid curves, while 

Eq. (17) and (18) yield the dashed curves. Thèse two sets of curves agrée 
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qualitatively. However, Eq. (17) yields too small a value for 3 , 
o 

while Eq. (18) gives too large a value for 3 especially when k is 

small. Thèse two errors add constructively in the calculation of the 

interférence-structure spacing 3 - so when measurements of this 
o 1 

spacing are interpreted using the L.T.A. approximation, the estimated 

température is too high. 

Now if the électron température is to be determined accurately, 

the potential measurements must be made at a distance from the source 

at which the interférence spacing is very sensitive to variations of this 

température. For instance, if Q 
P 

=5 and fi = 0.5 (Fig. 4) this condition 

is fulfilled if R � 100, in which case 3 - 3 varies rapidly as a func- 
o 1 

tion of R ; a measured interférence spacing of 20° would then be inter- 

preted as corresponding to R = 60 on the basis of our numerical results, 

but as R = 48 by the L.T.A. method based on Eq. (17) and (18). The latter 

yields a température which is about 56 % higher than the true value. This 

resuit is typical, and we conclude that the L.T.A. formulas are inadéquate 

for determining électron temperatures 26 

Under most expérimental conditions, the électron density is not 

known in advance, but it can be deduced, together with the température, 

from joint measurements of the interférence spacing and of the résonance 

cône angle. We find that the errors in density introduced by using Eq. (17) 

and (18) are greatest for values of Q 
near 

1, where the potential dis- 

tribution is strongly affected by density variations. For instance, some 

potential measurements in the auroral ionosphère by Gonfalone28 yield 

T = 655° K and n = 7.8 x 104 cm-3 (fi = 1.82) when interpreted by 

means of the formulas of Eq. (17) and (18), but T 
= 

569° K and 

n 
= 13.1 x 104 cm-3 

(fi 
= 2.36) when our computer programme is used. 

To facilitate extensive interprétation of the angular variations of 

the potential we hâve drawn up a set of charts on which lines corresponding 

to constant values of the angles 8,3,3,... are plotted in the 
0 1 2 

(T , n ) plane ; pairs of values of électron température and density, 

together with error bars, can be read off easily from thèse charts. 
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IV. DRIFT EFFECTS IN A COLD MAGNETOPLASMA 

In a moving magnetoplasma, the dispersion équation for electros- 

tatic waves is modified by the Doppler effect, so the interférence struc- 

ture in the potential distribution due to an alternating point charge 

is sensitive to the motion. To study this effect near the lower oblique 

résonance, we assume that the plasma is drifting in the direction of the 

applied static magnetic field 
(V,, 

� 0) and we neglect the dissipative 

processes, namely thermal motion and collisions. The dispersion équation 

of the electrostatic waves is then derived from that for a stationary 

magnetoplasma, as given by Eq. (7), by replacing w by co - k.. V.. (i.e. 

n by fi - K ,-) . 
Thus 

and the expression for the potential becomes 

+00 

where Ki is the root of Eq. (18) with a positive imaginary part (the 

choice of root when both are purely real is explained below). In this 

section, we first discuss how Ki varies when K the real variable of 

intégration, varies from -°° to +°° ; then we présent both exact numerical 

and approximate analytic calculations of the potential given by Eq. (19). 

THE ROOT OF THE DISPERSION EQUATION 

From Eq. (18), the roots of the dispersion equation29 D(fi, K) = 0 

are given by 
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which shows that they vanish for �, , = 0 or fi ± 1 or fi ± 
fi and 

go to 

f 00 for 
k, , = fi or fi ± fi . 

Thèse eight particular values - marked 

by dots on the vertical axis in Fig. 5. a - delimit nine branches of 

the curve Ki (K//), on each of which k, has two possible values, of 

opposite sign, which are either purely imaginary (when Ki is négative) 

or purely real (when 
Ki 

is positive). In the first case, we take only the 

root with a positive imaginary part ; there are four such branches (the 

dotted lines in Fig. 5.a.), on ail of which the waves are strongly damped 

and make no appréciable contribution to the potential. In the second case, 

the sign of Ki is chosen by introducing an infinitésimal amount of colli- 

sions, and we find that it is positive when � � 
Ki/ 

� fi + 1 or 

fi-fi 
� k, , � 

fi-fi , 
but négative when 

fi+fi 
� 

K// 
� 

fi+fi 
or fi-1 � 

k, , 
� 0 

or 0 � K,, � fi (the solid lines in Fig. 5.a.). To thèse five branches 

correspond five sets of undamped waves, ail of which hâve to be considered 

in a quantitative analysis. However, the numerical calculation of the po- 

tential in the next subsection will show that the drift effect can be ana- 

lyzed qualitatively by considering only the two branches that start at the 

origin K = 0. 

Thèse two, which are shown in greater détail in Fig. 5.b. (solid 

lines), are deformed versions of the two sole branches that exist when 

the plasma is stationary (broken lines). They are tangent to the latter 

at the origin, so they may be expected to make the principal contribution 

to the potential at and near the lower oblique résonance. Because the 

curves Ki (K//) for a drifting plasma lie below the corresponding straight 

line for a stationary plasma, it follows that the résonance cône becomes 

narrower downstream and wider upstream when the plasma drifts. (For the 

relationship between the dispersion curves and the resonance-cone angle, 

see Réf. 26). An approximate expression for the parts of thèse curves 

nearest to the origin may be obtained by expanding the right-hand side 

of Eq. (20) as a power séries, and taking just the first two terms12 : 

where 
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The corresponding curve is plotted as a dashed line in Fig. 5.b. for the 

case 
where fi 

= 5 and � = 0.5. There are discrepancies from the exact 

curve when 
IKIII 

is so large that the second-order term in Eq. (21) is 

no longer small compared with the first-order term. Roughly speaking, 

the approximation is reasonable when 

(y = 4.55 in the case of Fig. 5.b. so this inequality is 
IK,11 

« 0.37). 

Subject to this condition, Eq. (21) should be useful as the basis for 

an approximate analytic study of how the frequency variation of the 

potential at a fixed point is modified when the plasma drifts. But 

before doing this, we présent the results from a précise numerical 

study of the same question, in the course of which we confirm that the 

main résonance and other regular features of the frequency variation are 

indeed attributable to the two branches of the dispersion curve Ki (K 

that start at the origin. 

NUMERICAL CALCULATION OF THE POTENTIAL 

Since it has been suggested that the field-aligned drift velo- 

city could be deduced from the shift in frequency that occurs when the 

emitting and receiving électrodes are interchanged, we consider mainly 

the frequency variation of the potential at two fixed points, at equal 

distances from the source but in opposite directions. The calculation 

involves integrating an oscillating function, which we do numerically 

by Filon's s method ** . The results are plotted as the thin curves of Fig. 6.a. 

and 6.b. for the case 
where fi = 

5 and p = 160. The curve ip_ in Fig. 6,a. 

shows the potential calculated for 3 = 150° while the curve i|j in Fig.6.b. 

is for 8 = 30° ; the subscript is the sign of the component of drift 

velocity along the line from the source (transmitter) to the point of 

observation (receiver), so in the first case the receiver is upstream 

from the transmitter, and in the second it is downstream. When the plasma 

is stationary, the curve is the same in both directions and the résonance 
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frequency is fi 
= 0.493. When the plasma is in motion and the receiver 

is upstream, the résonance frequency fi is shifted towards the lower 
-0 

frequencies (fi - fi ^ 0.11), and a regular interférence structure 

appears at frequencies below the main résonance frequency ; hère we 

call the successive secondary résonance 
frequencies fi ~1 ' fi ~2 

etc... 

When the receiver is downstream from the transmitter, thèse results 

are inverted : the résonance 
frequency fi + 

is greater than � 
c 

(fi+ - fi ^ 0.13) and an interférence structure, in this case with only 

one peak, appears above fi^ + 
at a frequency called fi, +i Moreover, there 

are irregular oscillations in the low-frequency range of the curve of 

�+. Thèse results are similar to those of Storey and Pottelette but our 

use of the Fourier transform rather than the Laplace transform enables 

us to identify the branches of the dispersion curve that are responsible 

for the irregular oscillations of the potential downstream from the 

transmitter30. 

The contribution made by each of the nine branches of the 

dispersion curve to the potential can be analyzed quantitatively by 

restricting of Eq. (19) to the corresponding range of the variable K 

To begin with, we consider the contributions from the two branches that 

start at the origin 
k, , 

= 0, so we perform a partial intégration from 

fi-1 to 0 for �_ and from 0 to fi 
for ty 

The thick curve in Fig. 6.a. 

shows the resuit of such an incomplète calculation of the potential \p_ 

upstream from the transmitter, obtained by considering only the contri- 

bution from the branch fi-1 � 
k,, 

� 0. Comparison with the exact curve 

of \\\) shows that the 
frequencies fi o , fi ~i , fi ~2 

of the successive maxima 

are only slightly modified in spite of the discrepancies in their magni- 

tudes. Similarly, the resuit of the partial intégration from 0 to � for 

the 
potential ty+ 

downstream from the transmitter is sketched as the thick 

line in Fig. 6.b. Hère again, the characteristic frequencies of the main 

résonance and of the regular interférence structure are practically unaf- 

fected. Moreover the irregular oscillations are suppressed, so we conclude 

that they are due to undamped electrostatic waves with wave vector components 

K// 
outside the range from 0 to fi, interfering with the waves for which the 

K// 
lie in this range. Thèse results are consistent with the notion that 

the waves with relatively large K only contribute to the potential downstream 

from the transmitter, because their group velocity vectors V are such that 

V . V � 0. Thus, in order to study the shift in résonance frequency and the 
^s a, 
interférence-structure spacing, it is sufficient to confine our attention 

to the branches fi-1 � 
k,, 

� 0 and 0 � 
K// 

� � for �+. 
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ANALYTIC APPROXIMATION FOR THE POTENTIAL 

In the light of the preceding subsection, we limit the 

intégration for the potential to a single branch of the curve Ki (K/ /), 

but some further approximations must be made before we can perforai this 

intégration analytically : 

(i). The first approximation is to use the Eq. (21) for 
Ki 

. 

Assuming that 

we hâve 
| p . Ki 

1 » 1 at both limits of the range of 
K,,1 

where the 

approximation (21) is valid ; thèse limits are defined by the inequality 

(23). By using the saddle-point method together with the asymptotic expan- 

sion of the Hankel function, we find that the corresponding frequency 

range of validity for Eq. (21) is 

(ii). The second approximation is to extend the outer limit 

of intégration for the potential from fi-1 to -°° for �_, and from � to 

+ °° 
for ty 

This is correct if the range of 
«,, 

where the Eq. (21) is valid 

is entirely included in the interval between fi-1 and fi, which implies that 

the frequency is such that 
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On this condition, we may neglect 
K// 

in the non-oscillatory term in 

the integrand of Eq. (19) ; the latter may then be rewritten 

Using a method due to Kuehl12, we evaluate this intégral by splitting 

it into two parts, as follows : 

where 

(iii) The third approximation is to neglect the contribution 

of I . This final approximation is valid if 

From hère on, we shall refer to thèse three assumptions collectively as 

the low-drift analytic (L.D.A.) approximation. 
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In this approximation, the potential created by an alternating 

point charge is 

The new intégral on the right hand side dépends on]y on the 

parameter Sf = pi" ' Y- (P//±P|COtgB ) 
and can be rewritten 

where$(ç ) is an intégral which may be evaluated by using a new variable 

of intégration t = 
ipLyKil2 

and by changing the upper limit of intégration 

from ioo to +0031 : 

By developing the exponential as a power séries and using the intégral 

définition of the gamma function (r)32, one obtains the following séries 

expansion : 

The asymptotic forms of Eq. (35) may be derived by the method of steepest 

descents ; they are 
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The procédure for evaluating is similar, except that 
is replaced 

by �_ and i is replaced by - i ; thus is the complex conjugate 

of$+(Ç_). 
The modulus of �is graphed versus 

ç+ 
in Fig. 7. By inser- 

ting this function into Eq. (33), we obtain 

This is the L.D.A. approximation for the potential. 

Let us now use this resuit to dérive approximate formulas 

for the resonance-frequency shift and the interférence -structure spacing. 

At a fixed angle 3, with the frequency varying, it is more convenient to 

use the expression 

which applies when � � � . Since this approximation is linear, the shift 

of the résonance frequency, for a given drift velocity has the same magni- 

tude (but opposite sign) downstream and upstream from the transmitter. The 

function 
|*+(Ç+) 

is maximum for 
ç+ 

= 2.199, so the differential shift (i.e. 

the différence between the downstream and upstream résonance frequencies, 

which is what one would measure experimentally) is 

In the limiting case where the plasma density is infinité 
(fi �� 

°°) , we hâve 

fiT ^ fi and fi % sin 3 ; hence Eq. (40) becomes 
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A similar resuit has been derived previously by Pottelette33, and we 

hâve expressed ours in the same form ; however, he gives the numerical 

factor before the bracket as 2. An analytic formula also can be derived 

for the first frequency interférence spacing when the angle is fixed, 

using the fact that the first secondary maximum of 
|$(Ç ) |oecurs 

for 

Ç 
= 5.4 ; in the limiting case where 

fi -� 
00, we find 

In the analogous formula derived by Pottelette33, the numerical factor 

is 1.0. Similar approximations can be derived readily for the. résonance 

angle shift and interférence-structure spacing at fixed frequency. 

To summarize, our analysis based on the L.D.A..ippi-oximation leads 

to results of the same functional form as those previously published, but 

of slightly différent magnitude. In particular, we confira that the shift 

in the résonance and the interférence spacing due to the drift a long the 

magnetic field are proportional, in a cold magnetoplasma, to the square 

root of the drift velocity. It is important to reconcile :hi:: resuit 

with the linear proportionality discovered by Kuehl12 in che case of warm 

drifting magnetoplasma. 
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V. COMBINED EFFECTS OF THERMAL AND DRIFT MOTIONS 

In this section, we consider how the potential distribution 

created in a warm magnetoplasma is modified by the joint action of the 

thermal and drift motions, which hâve been treated separately in the 

two preceding sections. Downstream from the transmitter, the effects 

of both thèse motions are to close up the résonance cône and to create 

a regular interférence structure within it. Upstream from the transmitter, 

the thermal motion has the same effect, but the drift motion opens up the 

résonance cône and gives rise to a regular interférence structure outside 

it. In studying the résultant potential distribution, both analytically 

and numerically, we again neglect ions and collisions and adopt the least- 

damped-root approximation. Analytically, Kuehl12 has already derived some 

approximate formulas on the further asumption that 
ri « 

a2 
r Vy3 z3 

we find that his method of calculation is also applicable to the case 

where ri » a2 r ,Vy3 �3 Numerically, of course, it is possible to 

calculate the potential distribution for arbitrary values of the thermal 

and drift velocities . In this section, we first analyze the behaviour 

of the least-damped root of the dispersion équation for electrostatic 

waves in a drifting Maxwellian magnetoplasma, then we complète the analytic 

calculations of Kuehl for the case where 
ri 

» a2 
r Vy3 9.3, and finally 

we présent the results of some numerical calculations of the potential. 

THE LEAST-DAMPED ROOT OF THE DISPERSION EQUATION 

In Fig. 8, the exact values of Re 
K, 

(thick solid line) and of 

Im 
K. 

(thick dashed line) are plotted as functions of K//, 
for fi 

=5., 

fi = 0.5 and 
£ /r 

= 0.25. The corresponding purely real values of 
Ki 

for 

a stationary cold plasma are also graphed, as the thin broken line, while 

the thin solid line represents a purely real approximation to K( , inclu- 

ding thermal and drift effects, which we shall use in our analytic calcu- 

lation of the potential. 

This approximation for 
Ki 

is obtained by expanding the complète 

dispersion équation - Eq. (2) - as a power séries in terms of the variables 

K. and K,,. Near the origin K ^ 0, it is sufficient to retain only the three 

leading termes, so 
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where a and y are defined by Eq. (13) and (22) respectively. In this 

approximation, the thermal and drift effects are not coupled, inasmuch 

as the expression for K. is the sum of the thermal correction term 

from Eq. (12) - illustrated in Fig. 1 - and the drift correction term 

from Eq. (21) - illustrated in Fig. 5.b. - added to the expression 

of Eq. (8) for the case of a cold stationary plasma. For positive 

values of 
K,,, 

the curve representing this approximation to the least- 

damped root always lies below the cold-plasma straight line (as in Fig. 8) 

if a � 0, i.e. if � � fi . When � � � � 1, this curve lies below the straight 

line if 
K,, 

� 
yr./a 

and aboue it if 
K,, 

� yr /al. For négative 

values of 
K, ,, 

the situation is as follows : when fi 
� fi , 

the approximate 

curve leaves the origin below the cold-plasma straight line, then 

crosses this line at the point where 
K,, = - YrT /al 

and thereafter lies 

above it ; when fi 
� fi 

� 1, the curve always lies below the line. Thus 

the behaviour of the least-damped root, as given by this low température 

and drift (L.T.D.) approximation, dépends not only on the relative values 

of the thermal and drift velocities but also on the frequency. 

The exact values of Ki , calculated by using the itérative 

complex-root-finding method described at the end of section II, are 

similar to the preceding approximate values only for fast electrostatic 

waves with K � 0. For large values of |K,,|, the discrepancics that hâve 

been described separately in sections III and IV now occur jointly. Uepending 

on the frequency fi and on the sign of 
K.//» 

the disagreements due to the 

thermal and drift effects either add to or substract from one another, 

and so reduce or enlarge the range of 
K,,, 

around the origin, within 

which Eq. (43) is valid. The imaginary part of Ki can be ignored inside 

this range35, but not outside it. Just as for the L.T.A. and L.D.A. 

approximations developed previously, no general expression can be given 

to specify the range of validity of the L.T.D. approximation. 

In the particular case illustrated by Fig. 8, it appears that 

Eq. (43) is a good approximation when 
Ik.,1 � 

0.1. The range of validity 

is somewhat larger for négative values of 
K,, 

than for positive values. 

Hence an approximate analytic calculation of the potential., based on 

Eq. (43), should give better results upstream than downstream. 
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Because our itérative method for finding complex roots starts 

from the origin K = 0, we must assume that the electrostatic waves what 

were responsible for the irregular oscillations of the potential in the 

case of a cold drifting magnetoplasma are damped by thermal processes. 

In other words, the imaginary part of Ki is assumed to be much greater 

than its real part along the corresponding branches of the dispersion 

curve. Thèse branches occur outside the range (fi-1) � 
K,, 

� �, which 

contains the least-damped ones (Fig. 5.a.). The définitions adopted 

in section II for the normalized wavenumbers involve 
K,, 

= 
(rL 19,) K,/, 

so thèse branches occur for négative 
K.. 

� (fi-1) r /l 
and for positive 

K,, 
� fi 

r / £ . 
Since the limits of thèse ranges dépend both on the nor- 

malized frequency fi and on the ratio 
r / £ , 

the same must be true of the 

range of validity of the above assumtion. Again, it seenis impossible to 

give a general expression to specify this range. 

ANALYTIC CALCULATION OF THE POTENTIAL 

The angular shift of the résonance cône due to field-aligned 

drift in a Maxwellian magnetoplasma has been calculated analytically 

by Kuehl. He did this by expressing the potential created by an alter- 

nating point charge as a power séries in the variable 
e 

= 
R i * ' 3 |a| _2/3y £ /rT , 

and by assuming only the first-order terms, on the assumption that E 
v « 

i.e. that 
ri- « 

a2 
r Vy3 

l3 . Then he calculated approximately the new 

value of the variable 
z 

for which the magnitude of the potential is ma- 

ximum, namely zT 
= 1.800 + 0.906 

e ; remember, from its définition by 

Eq. (16), that 
z 

is proportional to the angular drift of the résonance 

at fixed frequency. 

In the case where the angle is kept fixed and we sweep the 

frequecy, it is more convenient to use the following expression for 
z 

near the résonance frequency : 
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Hence, the résonance frequency in a stationary Maxwellian plasma is 

Like the angular shift at fixed frequency, the résonance frequency shift 

fi o - fi c is 
proportional to 

r2'3, L 
and so to 

T e 1/3. 

In the présence of field-aligned drift, there is an additional 

shift which changes its sign when the emitting and receiving électrodes 

are interchanged. As in section IV, the résonance frequency will be 

called 
fi + when 

the receiver is upstream, 
and H "o 

when it is downstream 

from the transmitter. The average of thèse two frequencies is still fi . 
o 

Experimentally, one measures their différence 

where a and y are calculated at the frequency � = � . This differential 

shift is proportional to 
i/r. 2'3ri 1 /3 , 

and so to the ratio Vr // /v th 2/3 (rUb) 1/3 

By following Kuehl's method, it is easy to calculate the same 

parameters 
fi and 

Afi in the other limit where 
ri �� a2 r.Vy3 

^3 Downstream 

from the transmitter, the use of Eq. (43) for 
k, 

= 1 l/r, leads to a 

new intégral for the potential : 

By séries expanding the exponential containing the thermal correction 

term - 
iotpr^ K, ,3/ £ 2,this 

expression can be rewritten as 
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�is 
the function defined in section IV and 

Er 
= 

Pl 1/2 y- 3/2 (xrL/9, 2 2 

Assuming ET 
« 1., i.e. 

r. 
» 

ot 2 rL 1/yly3@ 
we may retain only the first 

two terms of the séries. From numerical calculations 
of$and 

of its 

derivatives, together with a séries expansion about the value 
Ç = 2.199 

for 
which |$| 

is maximum, we find that the maximum magnitude of the 

potential occurs when 
Ç = 

2.199 + 0.128 
e . 

The analytic calculation 

of the potential ip_ upstream from the transmitter is similar ; its magni- 

tude is maximum for ç- 
= 2.199 - 0.128 

eT. 
In each of thèse two formulas, 

the constant term, which has been derived already in section IV, represents 

the main effect of the drift motion : the second term represents the smaller 

additional effect of the thermal motion. Together, thèse formulas show that 

the differential shift in résonance frequency due to the drift motion, 

Afi = 
2+0 - 

is not affected by thermal motion while the average reso- 

nance frequency 
(fi^ + o + fi ~o 

)/2 which we shall now 
call � , a 

is 

Thus the average résonance frequency is shifted proportionally to the ratio 

rT 2 /l - 
and so to 

T - 
due to the thermal motion ; while the differential 

shift in résonance frequency due to the drift is proportional to V,, ' , 

like in the cold-plasma case. 

Before confronting thèse approximate results with the numerical 

results from our computer programme, we should point out some peculiarities 

of this analytic approach devised by Kuehl. His first step is to approximate 

the least-damped root of the dispersion équation. The errors that this 

involves hâve been discussed in the preceding subsection. The second step 

is to introduce a référence function by taking into account only one 

major effect, either that of the thermal motion or that of the drift 

motion. In so doing, the asymptotic expansion of the Hankel function is 

used in such a way that, when one calculâtes the potential, one cannot 

recover the case of the cold stationary magnetoplasma : note 

that when R - - (corresponding to T - 0) in Eq. (15), or when p -+ °° 

(corresponding to V,, 0) in Eq. (38), senseless results are obtained. 
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Moreover, the argument of this référence function is approximated near 

the résonance angle or frequency, and more errors are introduced thereby. 

The third step consists of expressing tlie potential as a power séries 

in a parameter that takes account of the minor effect. The two infinité 

séries obtained by starting from the one or the other référence function 

are strictly équivalent and include a coupling between the thermal and 

drift effects. Then, in a final set of approximations, the treatment 

of this coupling is simplified by truncating the séries which amounts 

to ignoring the influence of the minor on the major effect, but not the 

converse. The errors committed at thèse successive steps of the analytic 

calculations can either reinforce or cancel one another, so it would be 

difficult to obtain any simple and global criterion of validity of ail 

the approximations by comparison between the final approximate results and 

the exact numerical results. 

NUMERICAL CALCULATION OF THE POTENTIAL 

It is easy to modify our computer programme for calculating 

the potential created by an alternating point charge in a Maxwellian 

magnetoplasma, so as to introduce a field-aligned drift. In Eq. (4) 

for 
a , 

the term involving the ratio 
l/r 

is now non-zero, and the 

numerical intégration of Eq. (5) must now be performed from - - to + °° 

since Ki (K, ,) ^ Ki (- K,,). Limiting ourselves to the case where only 

the excitation frequency is varied, we shall présent one example of a 

numerical calculation of the potential with fi varying from 0 to I., 

before focussing our attention on the resonance-frequency shift due to 

the plasma drift. 

Fig. 9 shows the numerically-calculated frequency variations 

of the magnitude and phase of the potential at each of two fixed points, 

at equal distances from the source but in opposite directions. The parameter 

values are as given in the figure caption. At frequencies greater than the 

résonance frequency, ail the curves shows an interférence structure which 

is a thermal effect. In the amplitude curves, this structure is not suffi- 

ciently pronounced to produce actual maxima and minima, but such extrema 

appear distincly in the phase curves. The relative smoothness of the curves 

for �_ leads us to think that the interférence structure due to the drift 

is damped by the thermal motion. The remaining - and most important - 
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effect of the drift is to shift the résonance frequency : in Fig. 9, 

the differential shift Afi is 0.522 while the approximate formulas 

(40) and (46) give 0.1185 and 0.0303 respectively. Since r-L = 1.2 m 

and 
a r /y £ 

= 1.17 m, we are roughly in the intermediate range 

where neither of the approximate formulas is valid. Thus we hâve hère 

a case where the exact differential shift due to the drift lies between 

the asymptotic values given by the two analytic calculations, though this 

is no true in every case. 

In fact, the drift effect is systematically underestimated by 

using the L.T.D. approximation for the least-damped root of the dispersion 

équation, but this basic inadequacy is subsequently attenuated by the 

further approximations made in the analytic calculation of the résonance 

frequency shift. In Fig. 10, the variations of the differential frequency 

shift Afi are graphed versus in the case 
where fi P 

= 5., r = . 8 m and 

8 = 30° or 150°, for R = 30, 50 and 100, and also for R - °° which is the 

cold-plasma case. The solid curves show the variations calculated numeri- 

cally with our complète computer programme, in which the least-damped root 

Ki of Eq. (2) is determined by the itérative complex-root-finding method ; 

the dashed curves are the approximations, obtained from Eq. (46) when R 

is finite and from Eq. (40) when R is infinité. In this example, Eq. (46) 

gives a differential frequency shift Afi less than the exact value when R 

is large and greater than the exact value when R is small. We note that 

this resuit is consistent with the L.T.D. approximation which is valid 

when the distance is both large enough to justify the use of the 

low-temperature approximation and small enough to satisfy the condition 

ri « a r 1*/y3 £ 3. 
On the other hand, the exact values of Afi vary more 

or less linearly with £ , even for large values of R ; this resuit disagrees 

with the prédiction of Eq. (40), which is plotted as the dashed curve 

labelled R = °°, according to which Afi should be proportional to tl/2. 

Generally speaking, Eq. (40) seems to be more of theoretical than of 

practical interest since the conditions for it to be applicable do not 

occur in the expérimental situations that we envisage. In this example, 

where � = 30° (or 1500), Kuehl's formula for Afi would be useful for 

data analysis, but we use of the numerical values for Afi would improve 

the accuracy. 
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This rough agreement between the approximate and the exact 

values of Afi for 3 = 300 may be better or worse at other values of this 

angle. Fig. 11 shows the differential shift Afi calculated for fi 
=5., 

R = 100 and 
£ /r 

= 0.1 (r = 0.8 m) when varies from 0° to 90°. The 

accompanying variation of the résonance frequency is given by the curve 

of 8 in Fig. 3. The approximate values from Eq. (46) are graphed as the 
o 

dashed curve and the exact values as the solid curve ; the composite 

curve shows the values of Afi derived from Eq. (40). Because of the 

factor in Eq. (46), Kuehl's approximation for Afi becomes infinité 

at the angle 8 
=44.57° where a = 0 ; this is the résonance angle for 

the frequency fi (see 
Section III). This infinity does not appear in the 

numerical calculation : the exact curve has a smooth maximum for a value 

of 8 somewhat less than 8 Obviously, in any attempt to detect the drift 

effect experimentally, one would choose to work in a range of 8 around 

this maximum. It is noteworthy that, in this range, neither of the analytic 

approximations for the differential frequency shift AÇ2 is usable. We con- 

clude that Kuehl's formula is inadéquate for interpreting measurements 

of the lower oblique résonance frequency to obtain the field-aligned 

drift velocity. 
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VI. SUMMARY AND CONCLUSIONS 

In this paper, the effect of field-aligned drift on the lower 

oblique résonance in a Maxwellian magnetoplasma has been investigated, 

both analytically and numerically, by taking account only of the least- 

damped root of the dispersion équation and neglecting collisions and 

ion motion. 

Our analytic results complément those that hâve been published 

in the récent years, particularly by Kuehl. They are valid only when the 

characteristic length � = 
VII/Wb is 

much smaller than the distance to the 

point of observation and when the drift velocity is much smaller than a 

critical value which dépends on the plasma parameters and on the parameters 

of the measuring instrument. It is found that the shift in the résonance 

and the interférence-structure spacing due to the drift are proportional 

to the square root of the drift velocity. This is contradictory with the 

linear proportionality discovered by Kuehl when the drift velocity is 

much greater than this critical value but it seems not possible to relate 

thèse two results analytically. 

On the contrary, our numerical results are available whatever 

the values of thermal and drift velocities may be : 

i) for a warm stationary plasma, the characteristic 

parameters of the potential distribution (i.e. positions and magnitudes 

of the succesive maximas and minimas) obtained from our computer programme 

are sometimes in contradiction with those deduced by Kuehl and other authors. 

ii) in a cold drifting plasma, our numerical results for 

the potential are similar to those of Storey and Pottelette, although in 

our case the plasma is of finite density and the source is motionless. 

By using the Fourier transform to calculate the potential numerically, 

we are able to identify the branches of the dispersion curve that are 

responsible for the irregular oscillations. 
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iii) in a warm drifting magnetoplasma, we must assume 

that thèse irregular oscillations are damped by thermal processes but 

it is thought that this assumption is not very restrictive. From the 

comparison between the analytical and numerical values of the differential 

shift due to the drift, we hâve shown that our computer programme improves 

the accuracy of the results significantly in physically realistic situations. 

For diagnostic purposes, our computer programme should be useful 

for interpreting measurements of the potential creatcd by an alternating 

point charge near the lower oblique résonance. Experimentally, the élec- 

trodes of the probe must be arranged so as to give the highest possible 

sensitivity, i.e. the largest variations of the characteristic parameters 

of the potential distribution (résonance angle or frequency and interférence 

structure spacing) for given variations of the plasma parameters (électron 

density, température and drift velocity). With thèse conditions, the 

approximate formulas previously published are insufficiently accurate. 

i) for électron density and température measurements, the 

distance between the two électrodes must be small enough to yield large 

interférence structure and a large résonance. Because their accuracy 

decreases with decreasing distance, Kuehl's appropriate formulas become 

less and less useful as the expérimental conditions improve. 

ii) for field-aligned drift velocity measurements, the 

probe is most sensitive when the angle between the magnetic-field 

direction and the line joining the two électrodes is around 45°, in the 

typical conditions considered. Unfortunately, the differential resonance- 

frequency shift is predicted badly by the analytic formula in the vicinity 

of this angle, at which indeed the prédiction diverges. Again, we conclude 

that our re-evaluation of the drift effect is indeed necessary when the 

expérimental device is optimized for plasma diagnostics. 

This work is a contribution to the study of the lower oblique 

résonance, a subject that has developed greatly in récent years. It 

complètes the previously published results by suppressing some restrictive 

conditions on the plasma parameters ; however, it is itself limited and 

it can be followed up in many directions. 
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First, our computer programme is thought to be well suited 

for studying some secondary effects of physical interest in the context 

of the least-damped root approximation. 

i) the effects of collisions hâve been experimentally 

analyzed by Singh and Gould36. A rough numerical experiment can be made 

easily by replacing, in the subroutine for solving the dispersion 

équation, the frequency w by the term w - iv where v is a small relaxation 

collision frequency. 

ii) the effects of ions hâve been studied analytically 

by Kuehl3 and Burrell38. Their results can be usefully completed by a 

numerical calculation which requires a new subroutine for the dispersion 

équation. 

iii) the effect of a sheath around the transmitting antenna 

in a drifting magnetoplasma can be analyzed roughly by following a sugges- 

tion of Storey . In a idealized model, charge supplied to the transmitting 

monopole antenna by a sinusoidally-varying input current accumulâtes on 

the antenna if the sheath is capacitive but flows straight off it into 

the plasma, where it joins the drift motion, if the sheath is résistive. 

Thus the présent calculations would concern a capacitive sheath, whereas 

it is necessary to multiply the kernel of the intégral in Eq. (5) by 

(1 - 
K// £ /fir )-1 

to take into account the motion of the point charge in 

the case where the sheath is résistive. 

Secondly, the electromagnetic effects also can be studied in the 

context of the least-damped root approximation. Lewis and Keller 40 hâve 

derived the dispersion équation for electromagnetic waves in a Maxwellian 

magnetoplasma ; this équation is available in the form of a computer 

subroutine thanks to Muldrew21. By considering only the least-damped root 

of his équation, it seems possible to numerically calculate the electric 

field radiated by a small dipole antenna. Theoretically, such a calculation 

would extend the pioneer calculation of Fisher and Gould9 to the case were 

the magnetic field is finite, without having to make the quasi-static 

approximation used by Kuehl . Experimentally, the numerical knowledge 

of the coupling between two dipole antennas would permit us to study the 

relative ments of différent layouts of thèse antennas, in order to 

improve the sensitivity of the probe for plasma diagnostics. 
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Thirdly, new numerical calculations would be made to complète 

our theoretical knowledge of the lower oblique résonance. A first step 

would consist of taking account of ail the roots of the dispersion équa- 

tion for the electrostatic waves. To do this, it seems necessary to 

calculate the kernel of the intégral in Eq. (5) numerically by intégration 

along the positive part of the real K - axis rather than to use the 

residue theorem, as we hâve hère when taking account only oi the 

least-damped root. Such a numerical calculation along the real axis 

(or along a deformed path with no roots of the dispersion équation between 

it and the real axis) would be extended, in a second step, to the case 

where the magnetoplasma is non-Maxwellian. This research would be very 

useful because, when the drift velocity increases, the électron velocities 

probably hâve a non-Maxwellian distribution, especially in space plasmas. 
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FIGURES CAPTIONS 

Figure 1. Typical behaviour of the least-damped root 
K, 

of the 

dispersion équation, as a function of real 
K , , 

for 

various fixed values of fi, with fi =5 5 : exact 

values of he 
K. 

; approximate values derived 

from Eq. (12) ; cold plasma 

approximation ; ...... a... exact values of lm 
K.. 

Figure 2. Normalized magnitude of the potential of an alternating 

point change, for fi 
= 

5, fi = 0.5 and R = 100. The solid 

curve was obtained by numerical calculation and the 

dashed curve from Eq. (15). 

Figure 3. The angles 3 
(n = 0, ], 2) of the successive maxima in 

the potential as functions of fi, for fi 
=5 

and R = 100 

exact values ; ......... approximate values : 

from Eq. (11) and (12) ; - cold-plasma 

approximation. 

Figure 4. The angles marked in Fig. 2, plotted as Function of R, 

for fi = 0.5. 

Figure 5.a. Numerically-calculated value of the chosen root 
K 

of 

the dispersion équation as a function of real «.. for 

fi = 0.5 and fi = 5 : mmm^�mmm values of Re (k. ) ; 

stationary plasma case (where k. 
is purely real). 

Figure 5.b. The région of Fig. 5.a. around the origin is shown hère 

on a larger scale. 
Kijis 

purely real and the dashed 

line shows the approximation of Eq. (21). 
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Figure 6.a. Normalized magnitude of the potential created upstream 

from an alternating point charge for 
fi 

= 5, p 
= 160 

and = 30° ; exact resuit. 

result obtained by partial intégration of 

Eq. (19) from fi-1 to fi. 

Figure 6.b. Normalized magnitude of the potential created downstream 

from an alternating point charge 
for fi 

= 5, p = 160 

and 3 = 150° exact resuit. 

reslut obtained by partial intégration of 

Eq. (19) from fi-1 to fi. 

Figure 7. The curve of |$(Ç )| versus Ç , as computed from the 

séries expansion of Eq. (36) when 
lc,1 � 4, and from 

the asymptotic forms of Eq. (36.a) and (36.b) when 

Figure 8. The least-damped root K of the dispersion équation in 

a drifting Maxwellian magnetosplasma, as a function of 

real 
K//, 

for 
fi 

= 5., fi = .5 and A/r^ 
= .25 : 

exact values of Re 
Kj 

; approximate values 

derived from Eq. (43) ; ..----- stationary 

cold magnetoplasma approximation ; ....... w.m.m.. exact values 

of Im Ki . 

Figure 9. Variations of the magnitudes and of the phases of the 

normalized potentials ç and ty_ for fi 
= 5, r = 2.4 m, 

3 =30° and 150°, R = 90 and 
£ /rL 

= .225 
(V//= 

0.159 
v th). 

Figure 10. Curves of the differential frequency drift AÇ2 due to the 

plasma drift, versus 1 for = 30°, r = 0.8 m and 

R = 30,50 and 100 : complete numerical 

calculation ................. use of Eq. (40) for R = °° 

and (46) for R = 30, 50 and 100. 

Figure Il. Curves of Afi versus 3 
for fi 

= 5, = 30°, r= .8 m, R = 100 

and 
£ /r Lj 

= .1 : : complète numerical calculation ; 

use of Eq. (40). 



Figure 1. 



Figure 2. 



Figure 3. 



Figure 4. 



Figure 5.a. 



Figure 5.b. 



Figure 6.a. 



Figure 6.b. 



Figure 7 



Figure 8. 



Figure 9. 



Figure 10. 



Figure 11. 




