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RESUME 

Le filtre à réponse impulsionnelle finie (RIF) joue un rôle des plus 

importants dans le traitement numérique du signal et représente souvent la 

principale charge de calcul dans une application soit en logiciel soit en matériel. 

Cette thèse est divisé en deux parties. La première partie de la thèse traite le 

problème de la réduction de la complexité arithmétique du filtre RIF. Nous 

fournissons un ensemble d'algorithmes permettant de 'casser' le filtre habituel 

en plusieurs sous-filtres échantillonnés, de telle manière que le nombre 

d'opérations à effectuer se trouve réduit. La deuxième partie étudie non 

seulement l'implantation de ces sous-filtres mais plus généralement 

l'architecture des filtres RIF en vue de leur intégration VLSI. 

Nous présentons une approche unifiée pour tous les algorithmes rapides 

de filtrage RIF. Le théorème du reste chinois (TRC) constitue la base de 

l'approche. Tout d'abord nous formulons le filtrage RIF comme un produit 

polynomial. Ensuite l'application du TRC se fait en trois étapes: 1) interpolation; 

2) filtrage; 3) reconstruction. L'approche se termine par le recouvrement. Sous 

une présentation pseudocyclique, il est facile de démontrer quelques propriétés 

utiles des algorithmes. Les algorithmes classiques sont examinés dans ce cadre. 

Mais l'unification de ces algorithmes n'est pas notre seul objectif. Nous 

présentons aussi des nouvelles possibilités apportées par cette approche, qui 

permet d'établir en particulier tous les algorithmes intermédiaires entre 

traitements temporels et fréquentiels. Nous traitons les algorithmes de petite 

longueur en détail. Ces algorithmes permettent de réduire la complexité 

arithmétique en gardant comme brique de base des filtres RIF d'ordre plus petit. 

Ils sont donc ouverts à diverses implantations. 

Nous étudions ensuite l'aspect arithmétique du multiplieur-accumulateur 

d'une part, et de nouvelles architectures d'autre part. Une conception compacte et 

régulière de l'arbre de Wallace est proposée pour surmonter les difficultés qui 

empêchaient l'application de cette structure par ailleurs très efficace au niveau du 

temps de calcul. Nous présentons quelques nouveaux accumulateurs rapides. 

L'architecture du filtre RIF par l'arithmétique distribuée est analysée en détail. 

Nous présentons de nouvelles structures ayant les caractéristiques suivantes: sans 

ROM; avec l'additionneur carry-save comme brique de base; avec accumulation 

rapide. En particulier, un nouveau codage est proposé pour profiter de la symétrie 
des coefficients afin de réduire la quantité de matériel et d'accélérer le calcul. 



SUMMARY 

The finite impulse response (FIR) filter plays one of the most important 

rôles in digital signal processing. It often represents the major computational 

load in a System either in software or in hardware. 

The dissertation is divided in two parts. The first part deals with the 

problem of reducing the arithmetic complexity in FIR filtering. We présent a 

class of algorithms allowing to "eut" a usual filter into several subfilters in 

such a way that the number of opérations is reduced. The second part studies 

not only the implementation of thèse subfilters but more generally the 

architecture of FIR filters for Very Large Scale Intégration (VLSI). 

We présent a unified approach to ail the fast FIR filtering algorithms. 

The Chinese Remainder Theorem (CRT) constitutes the basis of the approach. 

First of ail, we formulate the FIR filtering équation as a polynomial product. 

Then the application of CRT is made in three steps: 1) interpolation; 2) fitering; 

3) reconstruction. The approach finishes by overlapping. Under a pseudocyclic 

présentation, some interesting properties of algorithms are demonstrated. The 

classical FIR filtering algorithms are examined in the context of this 

approach. But the unification of ail the FIR filtering algorithms is not our only 

objective. We présent also several new possibilities promised by the approach, 

which in particular allows to establish ail the intermediate algorithms between 

processings in time and in frequency domain. We explain the short-length FIR 

filtering algorithms in détail. Thèse algorithms allow to reduce the arithmetic 

complexity while maintaining moderate-length FIR filters as building blocks. 

Hence they are open to various implementations. 

Our study is then concerned with the arithmetic aspect in one hand and 

new architectures in the other hand for VLSI implementation of FIR filters. 

Some improved structures are presented for Wallace-tree and fast 

accumulators. The distributed arithmeic implementation of FIR filters is also 

analyzed in more détail. We propose new structures having the following 

characteristics: without ROM; with carry-save adder as building block; with 

fast accumulators. In particular a new encoding technique is suggested for 

implementing symmetric FIR filters. 



(Les pages 1 à 132 correspondent à une rédaction détaillée en anglais 

des résultats obtenus. Les pages 133 à 165 en donnent une version 

concise en français.) 
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Chapter 1 

Introduction 

The finite impulse response (FIR) filter plays one of the most important 

rôles in modem digital signal processing. It exhibits some nice properties: 

Dallowing linear phase implementation so that there is no phase distortion 

after filtering; 

2) stability; 

3) arbitrary approximation to any frequency response; 

4) good quantization performance. 

Thèse properties make the FIR filter widely used in a large number of 

applications, for example, the télécommunications. However the main 

disadvantage of the FIR filter is the requirement of a great number of 

arithmetic opérations in both software and hardware implementations. 

The first part of this thesis is concemed with the problem of reducing 

the arithmetic complexity of FIR filters. The main issue is to construct and 

implement fast algorithms. 

Since digital signal shows better performance than analog signal in 

diverse aspects such as précision, sensitivity to environment, conservability, 

etc., many traditional analog devices are being replaced by digital ones. 

However digital devices run in general more slowly than their analog 

counterparts. As real time signal processing requires higher and higher 

speed, another question arises: how to design a high speed FIR filter? A study 

on this problem constitutes the second part of the thesis. 

1.1 FIR filtering algorithms 

In the mid-60 the rediscovery of fast Fourier transform (FFT) algorithm 

by Cooley and Tukey [Coo65] has changed the world of digital signal 

processing. It is soon realized that FIR filters can be computed efficiently 

through FFT [Sto66]. Stockham's algorithm seems to be the earliest fast FIR 

filtering algorithm. This algorithm still enjoys a great popularity, if not the 

greatest. Agarwal and Burrus [Aga74] proposed some fast aperiodic 
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convolution algorithms for FIR filtering. Their algorithms are characterized 

by direct yet fast computation instead of transformation. Winograd [Win80] 

also presented an original class of FIR filtering algorithms without 

transformation. At the same time he gave the lower bound of the arithmetic 

complexity of computing an FIR filter. 

The main feature in thèse algorithms is to compute N consécutive 

outputs together so that redundancy between N computations can be removed. 

It is tacitly assumed that N is not smaller than the filter's length. Thèse 

algorithms were derived and tended to be optimized under such an 

assumption that a multiplication costs much more time than an addition. 

The progress in semiconductor and computer technologies has altered 

the criteria for a fast algorithm. Multiplication time is no longer dominant in 

modem computers. For example in the widely used TMS320 Digital Signal 

Processor séries, a multiplication plus an accumulation requires the same 

time as an addition alone does. However the classical FIR filtering algorihtms 

are not suitable for implementation on thèse processors, because of their 

complex structure. The need for algorithms not only computationally efficient 

but also structurally implementable émerges. 

This is our motivation to présent a new class of FIR filtering algorithms 

[Mou87]. Thèse algorithms are also proposed independently by other authors 

for implementation using filter banks [Vet88] or in VLSI [Kwa87]. They 

présent a number of good properties such as arithmetic opération réduction 

and regular structure, particularly suitable for real time signal processing. 

Ail thèse algorithms appear quite différent from each other. 

Nevertheless they inherently belong to the same class of algorithms. In 

Chapter 2, we présent a unified approach to the fast FIR filtering algorithms. 

The Chinese Remainder Theorem (CRT), which is well known for deriving 

fast polynomial product algorithms, constitutes the basis for that approach. 

First of ail, we show that the FIR filtering can be formulated as an 

polynomial product. Then the application of the CRT takes place in three steps: 

1) interpolation; 2) filtering (multiplication in wide sensé); 3) reconstruction. 

Finally overlapping is performed to get the filter's output. Overlap in FIR 

filtering algorithms differs them from other convolution algorithms. By taking 

into account the overlap, we may further reduce the number of opérations. 

The FIR filtering algorithms thus constructed are in the form of a 
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pseudocyclic convolution: a pseudocirculant matrix [Vai88] multiplied by a 

vector. Ail the fast algorithms can be seen as a diagonalization of the 

pseudocirculant matrix. Under the pseudocyclic convolution, we can prove 

easily certain useful properties of the algorithms such as transposition and 

identical complexity in both direct and transposed form. 

In Chapter 3, the classical algorithms of Stockham, Agarwal�Burrus, 

and Winograd will be reviewed in the light of the approach. Their dérivations, 

relations to each other will be addressed, leading to a better understanding of 

the advantages as well as the limits of thèse algorithms. However the 

unification of the algorithms is not our unique objective. We will show some 

new possibilities promised by the approach, which in particular allows to 

establish ail the intermediate algorithms between processing in frequency and 

in time. Among them, three types of algorithms are of spécial interest: short- 

length FIR filtering algorithms (SLFIR), shorter-FFT based algorithms 

(SFFTA) and short length complex FIR filtering algorithms (SLCFIR). The 

first one reduces the arithmetic complexity by maintaining the multiply- 

accumulate structure, which is suitable for many implementations. SFFTA 

allows to establish a number of algorithms meeting various trade-offs between 

arithmetic complexity, structural regularity and System delay. SLCFIR 

algorithms are the complex counterpart of SLFIR, suitable for fast complex 

FIR filtering. The combination of SFFTA and SLCFIR will resuit in some 

algorithms requiring less opérations than the classical FFT-based ones, a fact 

going to the opposite of the general belief that the latter is the most efficient for 

large block processing. 

Chapter 4 deals with the short length FIR filtering algorithms (SLFIR) 

in a detailed manner, based on two articles of the author (joint with 

P.Duhamel) [Mou87,Mou89]. Thèse algorithms compute together a few 

number of filter outputs, allowing reducing the arithmetic complexity while 

maintaining smaller FIR filters as computing kemels. Hence, they are open to 

a wide range of implementations, including Digital Signal Processors (DSP's), 

VLSI, and even general purpose computers. The inhérent parallelism of the 

algorithms allows also single-instruction-multiple-data (SIMD) multi- 

processor implementation. General rules are provided for combining several 

SLFIR algorithms to construct composite length FIR filtering algorithms. 

Their arithmetic complexities are evaluated and compared to FFT based 

algorithms under various criteria. 
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1.2 FIR filter architectures 

The VLSI technology has greatly boosted the implementation of the 

digital devices. As emphasized by the title of the thesis, our device of interest is 

the FIR filter. There are various ways of implementing an FIR filter. For low 

speed applications, such as speech processing, we use mostly Digital Signal 

Processors where the principal working horse is a multiplier-accumulator. 

For high speed applications, such as télécommunications, we should fully 

integrate an FIR filter either in bit sériai or in bit parallel methodology. The 

architecture is very important to an IC implementation. It prédominâtes the 

speed and design complexity which are essential to a realizatoin. Moreover in 

the first part the new filtering algorithms require FIR filters as building 

blocks. Thus we consecrate the second part to the study of some architectures 

for an FIR filter. 

Chapter 5 is devoted to the review of arithmetic aspects of multiplier 

accumulator design and the investigation of new schemes. This study also 

serves as préparation for the subséquent chapters. We will review the 

réduction of partial products using Booth's encoding [Boo51] and the modified 

Booth's encoding [Mac61], summing of multiple operands using carry-save 

array and Wallace tree [Wal64], and fast accumulators. A compact y et regular 

Wallace tree design is proposed to overcome a belief that Wallace tree is not 

practical or not implementable [Vui81,Mon88]. Some new accumulators will 

be presented which allow faster implementation than ever known 

architectures to date. 

Chapter 6 addresses the distributed arithmetic implementation of digital 

filters. It is often characterized by a lookup table or a ROM [Cro73,Bur77]. As 

the technology evolves, the ROM becomes the bottleneck to speed and occupies 

large chip area. We will présent some new structures having following 

features: without ROM, massive use of carry-save adders and Wallace tree, 

and fast accumulation. Symmetric FIR filter is widely used for obtaining 

linear phase in signal processing. Its implementation can be further 

simplified owing to the symmetric coefficients. The architectures of symmetric 

filter is particularly studied. A new encoding is proposed to increase the speed 

both in bit sériai and in bit-parallel design. Fully parallel implementation of 

FIR filter is also addressed. The new encoding proves to be more efficient than 

the modified Booth's encoding for parallel symmetric filter implementation. 
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Chapter 7 concludes the thesis and discusses the future research 

directions. 

1.3 Terminology and remarks 

For the sake of a clear présentation, it is necessary to clarify certain 

terminologies. It is often confused between linear convolution, cyclic 

convolution, aperiodic convolution, polynomial product and FIR filtering. 

What are their relations and their différences? We begin our explanation by 

stating their differences: 

a) linear convolution, aperiodic convolution, polynomial product are the same 

opération on two finite length séquences: one of length M, the other of length 

N. Their computation are often expressed as a polynomial product of a (M-l)- 

degree polynomial and a (N-l)-degree one: 

y0+yiz+y2z2+-+yM-+N-izM"N"1 

= (h0 +htz +h2z2 +...+ hM.1zM-1)(x0 +Xlz + x 2zZ +...+xN.1zN-1) (L1) 

The resuit is a séquence of M+N-1 numbers. In the sequel, only the terms 

"aperiodic convolution"(AC in short) and "polynomial product" are employed. 

When M=N, we often call it a radix-M aperiodic convolution or polynomial 

product. 

b) cyclic convolution is an opération on two séquences of equal length M. Under 

polynomial présentation, it is well illustrated by the product of two (M-l)- 

degree polynomials modulo (zM-l): 

y0+yiz + y2z2"k"+yM-izM"1 
= (h0+h1z+h2z2+...+ hM.1zM-1)(x0+x1z+x2z2+...+xM.1zM-1) mod(zM- 1) (1.2) 

The resuit is also a séquence of M numbers. We will term it as length-M cyclic 

convolution. 

c) FIR filtering is an opération on two séquences: an infinite one and a finite 

one of length M. Using z-transform, it can be formulate as a product of two 

polynomials: one of infinité degree , the other of degree M-l. 

yo+yi2-^22"*"- 
= (h0+h1z+h2z2+...+ hM-i zm-l)(X0+ x1z + x2Z2 +......) (1.3) 
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The resuit is an infinité séquence. This opération is refered to as length-M FIR 

filtering. 

Although the three opérations are quite different from each other, they 

are closely related: 

1) an aperiodic convolution of a length-M séquence and a length-N one can be 

computed by a length-(M+N-l) cyclic convolution. 

2) a length-L FIR filtering can be computed by sectioning the infinite séquence 

into blocks of M numbers, then using an aperiodic convolution of a length-M 

séquence and a length-L one plus overlap-add. According to a), cyclic 

convolution applies too. 

3) a length-L FIR filtering can be computed by sectioning the infinite séquence 

into overlapped blocks of N numbers with K overlapping ones (K�N), then 

using length-N cyclic convolution. This method is often called overlap-save. 

In the first part, we deal with above ail the FIR filtering algorithms. The 

filter's coefficients are taken as constant or fixed. However they can be 

extended to computing adaptive transversal filters [Duh89] in a fast way; 

In the second part, our attention is mainly concentrated on the FIR filter 

architectures. However, the resuit in the Chapter 5 is applicable to a wider 

range of digital System design: multipliers, ALU of a general purpose 

processors and inner product computers, etc. The resuit in the Chapter 6 is 

also suitable for implementing inner produet computers and adaptive 

transversal filters. 
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Chapter 2 

A unifîed approach to the fast FIR filtering 
algorithms 

FIR digital filters are widely used in digital signal filtering, and belong 

to the set of the most time consuming tasks in many Systems. It is therefore of 

interest to dérive efficient algorithms for computing FIR filtering. Many 

différent approaches hâve been applied to solve this problem. Cyclic 

convolution based algorithms were first proposed [Sto66] soon after the 

rediscovery of fast Fourier transform algorithm (FFT). Aperiodic convolution 

algorithms were also applied to the FIR filtering [Aga74]. Thèse algorithms 

are very efficient in terms of arithmetic complexity, and are therefore well 

suited for implementation on general purpose computers. A direct approach 

working directly on the FIR filtering équations was also proposed by Winograd 

[Win80]. Ail thèse algorithms are featured by the fact that arithmetic efficiency 

is obtained by working on large data blocks, and involve a global exchange of 

data inside this large vector. 

The évolution of VLSI technology and the émergence of Digital Signal 
Processors hâve greatly boosted the real time signal processing. However, 

thèse kinds of implementations bring about some new constraints, and ail the 

above algorithms are not always efficiently implemented through thèse new 

technologies because of their complex structure. For example, DSP's are 

highly optimized for implementing a multiply-accumulate opération. 

Therefore, ail those "fast" algorithms were less efficient than the 

straightforward one when implemented on DSP's, except for very large filters 

or data blocks. 

To overcome thèse problems, the authors proposed recently a new class 

of algorithms [Mou87]. Similar approaches were independently proposed at 

the same time by Vetterli [Vet88] and Kwan-Tsim [Kwa87]. 

At first glance, the new algorithms are quite différent from the 

classical FIR filtering algorithms (large block convolution). Nevertheless, in 
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this paper we will show that ail the above algorithms can be derived in a 

unified way and that this new approch provides ail the intermediates between 

direct FIR computation and large block fast convolution algorithms, and 

between processing in time and in frequency, while opening some new 

possibilities. 

Our objective is to unify ail the main FIR filtering algorithms and to 

review the basic aspects of their dérivation, in order to contribute to a better 

understanding to this problem, while providing some directions of the search 

for new algorithms. 

The first step of the approach consists in a formulation of FIR filtering 

as a product of two polynomials (also used in [Mou87,Kwa87,Vet88]), which is 

then computed through the Chinese Remainder Theorem (CRT). 

Interpolâting the polynomial product in différent domains leads to différent 

classes of algorithms while interpolating in different points leads to different 

algorithms in the same class. Thirdly this formulation is shown to lead to 

overlap-add algorithms. Transposition of the algorithms can resuit in ail the 

overlap-save ones. We will show that the overlap-add and overlap-save 

techniques are essential to ail kinds of algorithms, even to the FIR transversal 

fîlter itself. Since overlap-add and overlap-save schemes are the transpose of 

each other we show that they hâve the same arithmetic complexity. 

2.1 Formulation of FIR filtering as a polynomial product 

The FIR filtering is usually expressed as a convolution of two 

séquences: a finite séquence (hi) and an infinité one {xi}. The resuit of the 

convolution is also an infinité séquence {yi}. Their relation is as follows: 

yn=I x^^i n = 0, 1, 2 ,~ 
i-0 (2.1) 

It can be also written in the z-domain as a polynomial product of H(z) and X(z): 

Y(z)=H(z)X(z) (2.2) 

H(z), X(z) and Y(z) are the z transform of {hi},{xi} and {yi} respectively. H(z) is a 

polynomial of finite degree (L-l) while the other two are of infinite degree. 

By applying polyphasé décomposition [Bel74] to each of the three terms 

in eq.(2), we get a polynomial product as follows: 
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Y0+Y1z-i+...+YN.iz'N+1 

= (H0+HlZ-i+.. ,+Hn.jZ-n+i )(Xo+XlZ-i+...+XN_lZ-N+i ) (2.3) 

where {Hi}, {Xi} and {Yi} are polynomials in z"N : 

L/N-l 

Hj (ZN) L hmN -+- j z" mN 
m = 

ee 

Xk(zN) = S XmN + k z 
mN 

jjci = 0, 1, 
m=O 0 

y i (ZN) YmN -" i i mN 
m = 0 (2.4) 

In fact, H(z"l), X(z"l) and Y(z"l) are each decimated into N interleaved 

séquences. The decimation rate N will be an important factor in our approach 

to construct fast FIR filtering algorithms. It represents the number of 

consécutive outputs to be computed together. 

2.2 Fast computation of a polynomial product 

The right side of eq.(2.3) is a product of two finite degree polynomials 

whose coefficients are themselves polynomials. The product has 2N-1 

coefficients: 

Q(z) sP^PgCz) 

= Co + Cl Z + ... + CN-1 Z (N-l) +...+ C2N-2 z�2N-2) (2.5) 

where 

Pl(z) = Ho + Hl z + ... + HN-1 zN-i 

P2(z) = Xq + Xi z + ... + XN_! zN-i (2.6) 

Direct computation of {Ci} would require N2 multiplications between 

{Hj} and {Xi}. Although such multiplications are in fact still FIR filterings, we 

take them first as usual multiplications. Nevertheless the application of the 

Chinese Remaider Theorem (CRT) is known to largely reduce the arithmetic 
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complexity. Using the CRT, Winograd has proved that (2N-1) multiplcations 

are sufficient to compute {Ci}, instead of N2. The theory of Winograd 

establishes the basis for fast algorithms. 

Since the CRT plays an important rôle in fast algorithm dérivation, let 

us first describe it. 

2.2.1 The Chinese Rematnder Theorem 

This theorem dates back to A.D.100 [Sod86]. Originally, it is a part of 

number theory. We are only interested in its extension to polynomial ring, 

since we discuss the polynomial product. 

Chinese Remainder Theorem: Given a ring of polynomials modulo P(z) and 

P(z) pi (z) i=l 
{Pi(z)} are relatively prime, i.e., p^z) has no common factors with pj(z) when i;t:j 

for ijs {1,2,...,s}. Then for any polynomial Q(z), the following équation holds: 

s 

Q(z) jT.(z)q.(z) mod P(z) 
i=l 

where 

q i(z) sQ(z) mod p i(z) 

T i(z) 1 mod p i(z) 

0 modp.(z) for * i. 

The theorem states that, given only the residues {qj(z)} of an unknown 

polynomial Q(z) in s distinct polynomial rings modulo Pj(z), we can reconstruct 

Q(z) in the polynomial ring modulo P(z) from thèse residues. Q(z) will be 

unique if P(z) has higher order. The reconstructing polynomials {Tj(z)} dépend 

only on {pj(z)} and can be obtained by solving the following équation: 

s 

T i(Z) fj(z) rip/2) 2 1 mod Pi(z) 
j = 

2J12 Interpolation 

The use of the CRT for computing a polynomial product is made mostly 



Chapter II -11- 

by choosing : 

pi(z) = z-ai; i=0,1,...,2N-2 and 
a**^ 

if j;=i (2.7) 

It is easy to evaluate: 

M-l 

P (ai) =Px(z) 
mod (z- a.) = L Hk af 

k = 

N-l 

P2(a.)sP2(z)mod (z-ai)= ZXjai 

2.2.3 Filtering 

For obtaining the final resuit Q(z), we need to know the values Q(a�) 

which is the residue Qj(z) of Q(z) modulo (z - jaj). Since Q(z) is the product of Pl 

and P2, we hâve 

qi(z)=Q(ai) = P^aj) P2(a¡); i=0,1,...,2N-2 (2.9) 

Let us recall that PiCaj) and P2(ai) are the combinations of {Hj} and {Xi} 

respectively, while the latters are functions of z-N. Hence the above équations 

are still FIR filterings but at the sampling rate N times lower than the initial 

one. 

Since the filter coefficients are constant, we can compute (Pl(ai), i = 

0,1,...,2N-2} before the filtering. This is one of the reasons that the 

computational load can be reduced, resulting in fast algorithms. This 

computation will not be taken into account in the subséquent évaluation of 

arithmetic complexity. 

2.9 4 Reconstruction by the CRT 

(Ti) are precomputed, and when Pi(z) = z - ai, it turns out that their 

expression is fairly simple: 

N+M-2 
z-a. P(z) 

j-o l J P ( a i) (z - a ) 

J*1 (2.10) 

and application of the CRT results in Q(z): 
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N+M-2 N+M-2 z-a. N+M-2 
Q(a ) 

Q(z)= iQcap n i-^r=p(z) i pVa v , i=o j=o 
1 J i=o P(ai)(z-ai) 

i. j (2.11) 

which is very similar to the interpolation formulae of Lagrange. This is why 

(ai) are often refered as interpolation points. 

23 Overlap 

By comparing the left side and the right side in eq.(2.3) or (2.5), we get: 

YN-1 = Cn-i 

Yi =Ci+Ci+Nz-N; for i = 0,1,..., N-2 (2.12) 

We can observe that eq.(2.12) represents a procédure of overlap-add. 

AU the (Ci; i = 0,1,..., 2N-2} are computed at one time and a block of N outputs 

{Yi} is obtained by adding the terms {Ci+N; i=0,l,...,N-l} overlapping from the 

previous block. Till now we hâve accomplished ail the steps for constructing 

an FIR filtering algorithm, as summarized below : 

1) decimating H(z), X(z) and Y(z) at rate N to formulate the FIR filtering as an 

polynomial product ; 

2) interpolation of Pl and P2 at 2N-1 appropriate points a^ ; 

3) filtering like a dot product : Q(aj) = P^aj) P2(ai) , i = 0, 1,..., 2N-2; 

4) reconstruction of Q(z) from its interpolated values Q(aj); 

5) overlap according to eq.(2.12). 

A general scheme is given in Fig.2.1. The above algorithm computes a block of 

N outputs. 

The overlap differs the FIR filtering from other kinds of convolutions. 

It guarantees the continuity of computation and makes the filter running, 

while the cyclic convolution or the aperiodic convolution is a "local" 

computation. 

It is well-known that a transversal FIR filter can be transposed. The 

transposed filter has the same transfer function. However the above 
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algorithms can be also transposed as will be shown in the following. This will 

lead to some connections between several types of algorithms. 

Fig.2.1 General fast FIR filtering scheme 

2.4 Pseudocyclic convolution 

We dénote in the following an algorithm computing N outputs of the 

filter and using N2 as decimating rate by FtN^Njj). Although algorithms can 

be derived for N19tN2, we will show in the Chapter 4 that they involve very 

complex structures and do not hâve any advantage over other algorithms. We 

will concentrate our investigation on the case where N =N2. 

Considering eq.(2.3) and eq.(2.12) we may write the following équation : 

The right side is the product of a pseudocirculant matrix [Vai88] and a vector, 

or pseudocyclic convolution, which is in fact an F(N,N) System. In the context 

of pseudocircularity, we will show in the following the way to transpose an 

F(N,N) System and the way to obtain transposed version. 
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2.4.1 Diagonalization of a pseudocirculant matrix 

In cyclic convolution, a fast algorithm diagonalizes a circulant matrix, 

the diagonalizing matrix is refered as rectangular transform [Aga76]. By 

analogy, a fast FIR filtering algorithm diagonalizes a pseudocirculant matrix. 

However the diagonalization hère means a generalization of its conventional 

sensé. 

For example, a 2x2 pseudocirculant matrix can be diagonalized as 

follows [Kwa87,Vet88]: 

(2.14) 

It is just the matrix représentation of the algorithm presented in [Mou87]. In 

gênerai an NxN pseudocirculant matrix can be diagonalized in to an MxM 

diagonal matrix with 122N-1. This lower bound is the natural resuit of 

Winograd's theory [Win80j. AU the 'fast' algorithms hâve M�N2. 

We may also define a rectangular transform for the pseudocyclic 

convolution. There exists the term z-N in the transform matrix which recalls 

the continuity of computing. However most of the subséquent présentations 

employ other terminologies, in order to differ the FIR filtering algorithms 

from the cyclic convolution. 

Vaidyanathan [Vai88] proposed a diagonalization of pseudocirculant by 

similarity transform, but this does not lead to fast algorithms, because the 

éléments in the diagonal matrix are complex polynomials rather than simple 

numbers. 

2.4.2 Transposition of an F(N,N) algorithm 

Let us consider an F(N,N) algonthm as an (N-input, N-output) System 

shown in Fig.2.2(a). Its transmission matrix is pseudocirculant: 
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I-10 Hl ... HN-1 

�hn-i Ho 

P(z)= 
' ' 

.. H, 

z Hi - 0 - Z HN-i 0 

The transposed System (shown in Fig.2.2(b)) will hâve PKz), which is 

the transpose of P(z), as its transmission matrix according to Tellegen's 

Theorem for digital networks [Cro83]. 

Fig.2.2 (a) initial System; (b) transposed System. 

Unlike (1-input, 1-output) Systems, an (N-input, N-output) system's 

transpose will not perform the same fonction as the initial one unless P(z) is 

symmetric, i.e., P(z)= pt(z). Owing to P's Toeplitz structure, we can manage to 

get the transposed System performing the same function as the initial one. 

The transposed System is as follows: 

YN-2 Hi Ho .. 
xt N-2 

. Z tiffml 
Y' o 

HN-1 H: Hq 
X' 0 

(2.16) 
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If we permute the input éléments {X'j} and the output éléments 7i) in such a 

way that their order is reversed, we will get the transposed System to perform 

the appropriate function: 

0 
1-10 Hl". HN-l x, 

Y\ z-NHN-i Ho .. 
xt 

.... Hl ; 

LY'nJ 
[z-NHl z-nHN-ihJLX'n-i.J (2.17) 

The above démonstration is general, so that ail (N-input,N-output) 

Systems whose transmission matrix is Toeplitz can be transposed to perform 

the same function as the initial System after permuting the inputs and outputs 

in a reversed order. Thus, it can be applied to ail kinds of convolution Systems. 

Winograd has already proposed to transpose circular convolution algorithms 

in the same manner [Win80]. We summarize this principle as the following 

theorem. 

Theorem: Having Toeplitz transmission matrix is sufficient for an (N-input,N- 

output) System to be transposed and to perform the same function after 

permuting the inputs and outputs in a reversed order. 

Hence, we can transpose an F(N,N) algorithm in a rather easy way. In 

fact, a fast F(N,N) algorithm diagonalizes a pseudocirculant matrix: 

P(z) = AfjxM Hmxm BmxN (2.18) 

where HMxM is a diagonal matrix. Then the transposition of P(z) is 

Pt(z) = BtHAt (2.19) 

Permuting the inputs and outputs in a reversed order is équivalent to 

multiply J= antidiag(l,l,...,l). Then the following équation holds: 

P(z) = (JBt)H(AtJ) (2.20) 

Therefore, we get the transposed version of (2.18). The new pair of 

diagonalizing matrix is (JBfc) and (AM). 
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Let us consider as an example an F(2,2) algorithm, as given in (2.14). It 

is expressed in matrix form as: 

JoJlz'2hi hojLxo. 

L i o 2] 
01 

l 
0K 

therefore 

A 

L 1 0 0 1 z - -2 1] 
B- 1 1 

Following (2.20), we obtain the transposed version of (2.21): 

1 
1 

0 1 

v 
x 

2.4.3 Identical arithmetic complexity in direct and transposed forms 

It is clear, following the above explanations, that the multiplicative 

complexity is not changed by transposition. Let us consider the additive 

complexity in an (N-input,N-output) System. 

A digital network is composed of only branches and nodes. There are two 

kinds of nodes: a (M,l) summing node that adds M inputs into 1 output, and a 

(1,M) branching node that branches 1 input into M outputs. A (M,l) summing 

node can be split into M-l (2,1) summing nodes. A (1,M) branching node can be 

also split into M-l (1,2) branching nodes. Then it is easy to transform the 

network to an équivalent one having only (2,1) summing nodes and (1,2) 

branching nodes. After transposition, the summing nodes become branching 

nodes and vice versa. 
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The number of additions in the initial network is equal to that of (2,1) 

summing nodes, denoted by Ns. The number of additions in the transposed 

network is equal to that of (2,1) brancbing nodes in the initial network, denoted 

by Nb. The additive complexity in initial and transposed algorithms is 

identical if and only if Ns=Nb, and we show in the following that this property 

holds for (N-input, N-output) Systems. 

Proof: For an (N-input,N-output) network, if we connect the N inputs to the N 

outputs graphically, we get a closed network where every branch coming out 

from a node should enter into another node. Then the number of outputs of ail 

nodes is equal to that of inputs of ail nodes. A (2,1) summing node has two 

inputs and one output while a (1,2) branching node has one input and two 

outputs. We get: 

Nb+2Ns=2Nb+Ns 

Ns=Nb 

end of proof. 

2.5 Remarks 

A general approach to dérive fast FIR filtering algorithms has been 

described. Some parameters such as decimating rate N and interpolation 

points are not defined. We will show in the next chapter how the choice of 

thèse parameters affects the resulting algorithm. In fact ail the classical 

algorithms choose N tacitly greater than the filter's length. However it is also 

feasible using smaller N to dérive algorithms of interest. 

The pseudocyclic convolution is a good représentation of the FIR 

filtering process. Several properties, such as transposability of an F(N,N) 

algorithm, equality of arithmetic complexity in direct and transposed form, 

hâve been proved under the représentation. 
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Chapter 3 

Review on the FIR filtering algorithms and new 

possibilities 

In this chapter we will show that the classical algorithms are shown to 

be spécial cases of the approach presented in the previous chapter. Thèse 

algorithms include three typical ones: FFT-based algorithms proposed by 

Stockham [Sto66]; Algorithms using aperiodic convolutions proposed by 

Agarwal and Burrus [Aga74]; Winograd algorithms [Win80]. 

Some new possibilties are also investigated. First the recently proposed 

algorithms [Mou87,Kwa87,Vet88], termed short length FIR filtering 

algorithms (SLFIR), are briefly described. A comprehensive study on this 

class of algorithms is in the next chapter. Secondly we présent shorter FFT- 

based algorithms while in the frequency domain either real or complex FIR 

filterings are performed. This class of algorithms represents ail the 

intermediate ones between processing in time and in frequency. Short length 

complex FIR filtering algorithms(SLCFIR) will also be derived using the 

approach. 

It is a general belief that when the filter's length L is large, classical 

FFT-based scheme will outperform ail the other algorithms. However the 

combination of short length real and complex FIR filtering algorithms and the 

shorter FFT-based schemes results in an algorithm requiring even less 

arithmetic opérations than the classical ones as far as L^4. 

3.1 Review on the classical algorithms 

The "fast" (in the sensé of reducing arithmetic complexity) 

computation of FIR filtering through FFT and its inverse was soon recognized 
to be speed-efficient on general-purpose computers [Sto66] after the rediscovery 
ofFFT. High speed convolvers based on FFT's were also built in hardware. 
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Nevertheless, the FFT-based FIR filtering implies to work on large 

overlapping signal block, thus resulting in heavy hardware requirement. 

Furthermore, since most Digital Signal Processor (DSP's) are optimized for a 

multiply-accumulate structure, transform-based FIR filtering is of no 

practical interest on DSP's. 

There were the motivations for the proposai of a new class of 

algorithms [Mou87], reducing the arithmetic complexity but retaining the 

multiply-accumulate structure. 

However the above two classes of algorithms hâve quite différent 

présentations. Nevertheless, we will show in the following that they are just 

spécial cases of the general scheme in Fig.2.1. 

3.1.1 FFT-based algorithms 

Let us choose N � L, then 

Hi (z-N ) = hi 0 £ i sIrI 

=0 LSisN-l (3.1) 

Replacing {Hi} in eq.(2.6) by the the above terms, we get: 

Px(z) = ho + hxz + h2Z2 + ... +hL.1zL-1 (3.2) 

P2(z) remains unchanged as in (2.6). Since the polynomial Pi is now of degree 

L-l and the minimum number of necessary interpolation points is N+L-1 

instead of 2N-1. If we choose K(�N+L-1) points on the unit circle {exp(-27ti/K); i 

= 0,1,..., K-1) as interpolation points, then 

k = 

* = (3.3) 

{P:(ai); i = 0,1,...,K-1} is the length-K DFT of {hi ; i = 0,1,...,L-1} so that FFT's 

applies for the computation of the interpolation values. Likewise, (P2(ai); i = 
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0,1,...,K-1} is the length-K DFT of (Xi; i = 0,1 N-l}. After the pointwise 

multiplications Pl(ai)P2(ai) = Q(ai), we can show: 

N+L-2 N+L-2 .. 

i-o j=o (3.4) 

The coefficients of Q(z) is exactly the inverse DFT of (Q(ai)}: 

N+L-2 

j N Y, Q(ai)WU 
J w i-o (3.5) 

The overlap-add technique is then applied to get the correct filter outputs. 

Fig.3.1 depicts the gênerai scheme for ail the FFT-based algorithms. {P1(ai)} 

can be precomputed. Its computation will not be counted in the subséquent 

évaluation of arithmetic complexity. 

Fig.3.1 FFT-based overlap-add FIR filtering scheme 

Due to the complex interpolation points ail the computations hâve to be 

performed in the complex domain. When the data is real, we can apply the 

real-valued FFT algorithms to remove the redundancy that appears in the 

computation [Duh87,Sor87]. 
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Let us take a simple example of computing a length- 2m filter, usually 

we choose N=L=2m so that a length-2L DFT's and its inverse can be used to 

compute the N outputs together. Then K should be 2L(=2m+1) instead of 2L-1, 

since a length-2L DFT's is much more easier to implement than a length-(2L- 

1) one. Suppose we use the split-radix FFT and eliminate unnecessary 

additions on input and on output. The resulting arithmetic complexity is: 

ILIa) length-2m real filter (per 2m outputs): 

Mr =2m (2m-l)+3 

Ar =2m(6m-2)+3 

the arithmetic complexity per output is: 

mr = 2m-l+3»2-m 

ar =6m-2+3«2-m 

mr + ar = 8m-3+6»2-m 

A 3-real-multipHcation-and-3-real-addition [Nus82] algorithm is used for the 

complex number multiplication for the above évaluation of arithmetic 

complexity. 

There is a slight difference in arithmetic complexity between the above 

scheme and a length-2m+l cyclic convolution: 

Mr = Mcc(2m+i ) 

Ar = AcC(2m+1 ) - 2m - 2 

The difference is due to the fact that the input block of length 2m is padded with 

2m zeroes. 

3.1.2 Algorithms using aperiodic convolutions 

Agarwal and Burrus [Aga74] presented a class of algorithms using 

small radix aperiodic convolution (AC) algorithms to compute recursively a 

long polynomial product and then overlapping. 
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A radix-2 fast aperiodic convolution algorithm can be derived by the 

CRT using {0,1,00} as interpolation points: 

(x 0 + XjZXhg-h hjz) 

= xoho + [(x0 + xl)(ho + hl) - xoho - xlh 1]z + xlh iz (3.6) 

Only 3 multiplications are required instead of 4. 

We will show how to use the above algorithm to dérive FIR filtering 

algorithms. 

Let the decimating rate N=L (the length of the filter, assumed even). 

The filtering équation becomes: 

Y 0 + Ylz+...+ YL.1zL-^ 

= 
(ho + hlZ+...+ hL-lzL-1)(X 0 +Xlz +...+XL-lzL-1) (3.7) 

A reorganization of the above équation leads to: 

(Y0 + Y1Z+...+ Yl/2_1Z^-1)+zL/2(Yl/2+.�.+ Yl_iZL/2-1) 

ho 
+ 

h1z+...+ h L/2-1 ZL/2-1)+ ZL/2(h L/2 +... + hL-1 ZL/2-I)i x 

xo +X 1z +...+ X L/2-1 ZL/2-1) + Z L/2 (X L/2 +... + XL-1 ZL/2-1)i (3.8) 

or 

EO + Elz1^^ (GO+Glz^ ) (FO+Flz^ ) 

with 

EO = Y0+YlZ+...+ Y 
L/2-lzL/2-1 El = Y 

L/2 
+ y 

L/2+1 z 
+...+ 

Y L/2-lzL/2-l 

G0= ho + hiz hL/2_1zL/2~1 Gl = hL/2 + h L/2+ lz + hLl2_lzL'2'1 

FO = Xo + x 1z X L/2-1 ZL/2-1 FI =XL/2 
+ 
x L/2+1 z +...+ XL/2_1z^2-i 

Such formulation allows us to apply the radix-2 AC algorithm, resulting in: 

EO + Elzu2 

= GOFO+ [(GO+ Gl) (FO+F1) - GOFO- G1F1] zu2 + GlFlzL (3.9) 

By overlapping, we get: 
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EO = GOFO+ GlFlzL 

El= (GO+ Gl) (F0+F1) - GOFO- G1F1 (3.10) 

About 25% réduction can be achieved in the number of arithmetic opérations. 

This gain is obtained by removing the redundancy existing between computing 

two groups of outputS:{YO,Yl,...,YU2-Û and (YU2, .... YL-11. 

Since GOFO, (G0+G1XF0+F1), G1F1 are themselves aperiodic 

convolutions, we can once more apply the radix-2 AC algorithm to them before 

overlapping. This is équivalent to a recursive interpolation using the same 

interpolating points. Further gain in arithmetic complexity can be obatined by 

removing the redundancy in computing four groups of outputs: {YO,Yl,...,YU4- 

i}, {Yl/4,...,Yl/2-i}, {Yl/2,,...,Y3L/4-i} and {Y3L/4,...,YL-i}. Evidently this 

procédure can be recursively applied, resulting in further réduction in 

arithmetic complexity. Agarwal and Burrus presented this technique using 

multidimensional formulation [Aga74]. 

For L=2m , a thorough recursion using the radix-2 algorithm results in 

an fast algorithm requiring 3m multiplicatons, instead of 4m by direct 

computation. The additive complexity is evaluated in [Nus82]. Otherwise (L-l) 

additions are necessary for overlapping to establish an FIR filtering 

algorithm. The arithmetic complexity of the filtering algorithms thus 

constructed is given in Table.3.1. 

Table.3.1 Arithmetic complexity of Agarwal�Burrus filtering algorithms (per 

N outputs). 

N MA 

2 3 4 

4 9 22 

8 27 88 

16 81 310 

64 729 3262 

128 2187 10168 

256 6561 31271 
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The above formulation of a long aperiodic convolution as a radix-2 one 

is rather decimation-in-frequency, by analogy of the terms for defining FFT's. 

It is also feasible to dérive a decimation-in-time algorithm by the following 

formulation: 

(Y0 + y 2Z2 +... + YL/2_1zL-2) 
+ Z (y 1+' + YL_1zL-2) 

= 
[( ho + h2z2 +...+ hL/2_lZL"2)+ 

z (h1 +...+ hL_lZL"2)] x 

[(X0 + X 2Z2 +...+ X L/2-1 ZL-2)+ Z(X 1 +...+ XL_1zL-2)] 

(3.11) 

The radix-2 AC algorithm is then applicable to the above équation. Further 

recursion results in an algorithm with the same arithmetic complexity as 

before. A general scheme is given in Fig.3.2 for small-radix aperiodic 

convolution based FIR filtering algorithms. 

Fig.3.2 Fast FIR filtering scheme by Agarwal�Burrus technique 

This kind of algorithms is often préférable for computing small or 

médium size FIR filters as well as for full précision implementation[Aga74]. 

3.1.3 Winograd algorithms 

Winograd's theory [Win80] on the arithmetic complexity of computation 

is a milestone for fast FIR filtering algorithms as well as for FFT and 

polynomial product algorithms. He proposed an original class of FIR filtering 
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algorithms and provided the lower bound on the number of multiplications for 

computing an FIR filter. 

It is intended by Winograd to compute the FIR filtering under the 

présentation below: 

"v� fx .... x 1 Xn hL-1 

Yn-1 x n-L T x n-L i + x n - h L-2 

It is tacitly assumed to compute L outputs together, given L the filter's length. 

First of ail, a small radix aperiodic convolution algorithm, for example 

the one in eq.(3.6), is transposed to compute the following opération in a fast 

way [Win80]: 

[Yn f"Xn-l Xn - "Pxl rXn-i(hi+ho)-(Xn-l-Xn)ho 

.ya-J LXn-2 Xn-llhoJ LXn-l(hl+ho)+(Xn-2-Xn-l)hJ (3.13) 

This is an algorithm computing 2 outputs of a length-2 FIR filter with only 3 

multiplications. Eq.(3.12) can be formulated in block form: 

"El"! 

[TO 

FlTGl" lEo = lF2 Fa GO (3.14) 

with 

Yn Y n - L L-l L/2-1 

Yn-1 yn-L/2-l L-2 hL/2-2 

El= ' E0= Gl= G0= 

.yn-L/2 + J Lyn-L+1 LhL/2J ho 
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Xn-L+1* ' ,Xn-L/ 2-1 Xn-L/ 

Xn-L xn - L + 1 xn-L 12-1 

F0= 

. n-3L/2+2 n-L n-L+1 . 

n-L/2 n-L/2+1 ' n - 

Fl 

_n-L+2 n-L/2 n-L/2 + 1- 

n-3L/2+l n-L-1 n-L 

n-3L/2 n-3L/2+l ' n-L-1 

F2 

X 
XX 

Then (3.13) applies to the above computation for réduction of arithmetic 

complexity: 

�Eli fFO (Gl + GO ) - 

(FO - Fl ) GO" JEoJ = lFO (01 + 00) + (F2 - FO ) GlJ (3^5) 

Further itération of the algorithm in (3.13) is feasible in computing 

FO(G1+GO), (FO-Fl)GO, (F2-FO)Gl. For L=2m, a thorough itération results in 3m 

multiplications. The arithmetic complexity for certain lengths is listed in 

Table.3.2. 

Since eq.(3.13) is just the transpose of the radix-2 AC algorithm in (3.6), 

the recursive application of (3.13) is the transpose of that of (3.6). Hence we can 

conclude that Winograd algorithms are the transpose of those of Agarwal and 

Burrus. 

We hâve proved in last chapter that both the direct and transposed 

forms of an FIR filtering algorithm hâve the same complexity. But Table.3.2 
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and 3.1 show different number of additions. The reason for such différence is 

that Winograd has taken into account the redundancy due to computing two 

successive blocks of outputs while Agarwal and Burrus were not concerned 

with the overlap. 

Table.3.2 Arithmetic complexity of Winograd filtering algorithms (per N 

outputs). 

N MA 

2 3 4 

4 9 20 

8 27 76 

16 81 260 

64 729 2660 

128 2187 8236 

256 6561 25220 

For example in case L=4, we hâve 

xn - 3 x n - x n - 2 xn n 

FO - Fl = 

xn - -x n-2 
x 
n - 3 xn- l- 

xn - 5 x n- x n - 4 xn- ] 

F2 - FO = 

_Xn-6~Xn-4 Xn-5~Xn-3j (3.16) 

Between (FO-F1) and (F2-FO), there is a common addition (xn-4 - xn-2) so that one 

addition can be saved. Realizing that (xn-6 - Xn-4) is already computed for last 4 

outputs, we can save one more addition. Hence in case L=4 Winograd 

algorithm requires 2 less additions than Agarwal�Burrus algorithm does as 

shown in Table.3.1 and 3.2. We may also remove the 2 extra additions in the 

latter algorithm but it is less systematic than in the Winograd algorithm. 

3.2 Short length FIR fîltering algorithms 

Let N = 2. If we choose {0,1, «�} as interpolation points, then 
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PjCao) = H0(Z2) P2(a0) = XqCz*) 

P^ax) = Ho(z2)+ Hi(z2 ) P2(al) = Xo(z2)+ X^) 

P1(a2) = H1(z2) P2(a2) = X1(z2) (3.17) 

Application of the procédure stated in the last chapter leads to the following 

algorithm: 

Y0(z2) = PjCao) P2(ao) + z-2 P^) P2(a2) 

Yi(z2) = Pa(ai) P2(ai) - P1(a0)P2(a0) - P1(a2)P2(a2) (3.18) 

Différent authors hâve presented this resuit in their own way 

[Kwa87,Mou87,Vet88]. Of course further décompositions are still feasible, 

together with higher radix or mixed radix décomposition. 

There are four simplest interpolation points in real number domain 

{0,1,-1,°°}. The other variants can be obtained by using interpolation point sets 

like {0,-l,«�}, {0,1,-1} or {l,-l,oo}. Although interpolation points other than {0,1,- 

1,~} can be used, they will lead to much more complicated algorithms and 

become out of practical interest. A study of real FIR filtering algorithms with 

small N can be found in the next chapter. 

3.3 Shorter FFT-based algorithms 

We présent two new schemes in this section as results of the approach: 

one is based on shorter FFT's (length ofFFT � length of the filter), the other is 

fast short length complex FIR filtering algorithms. We will show also that 

combining the two schemes may resuit in less arithmetic opérations than 

conventional ones as mentioned in the last section. 

We hâve shown that when N is large, the terms {Pi(ai) P2(ai); ai = exp(- 

27ti/K)} are the products of two complex numbers. Now if we choose a relatively 
small N (�L), the Hi(zN) are no longer constants but higher degree polynomials 

and the terms Pl(ai)P2(ai) become length-L/N either complex or real FIR 

filtering. The general framework of algorithm will be a length-(2N-l) DFT's 

plus 2N-1 complex FIR filters and then a length-(2N-l) inverse DFT's. Overlap- 

add is performed at the last step. Nevertheless a length-2N FFT transformer is 

simpler and thus is prefered [Kwa87,Mou88]. An alternate scheme is the 
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transposed version, i.e., the overlap-save scheme as depicted in Fig.3.3. When 

the data are real, further improvement can be brought about by applying the 

fast cyclic convolution algorithm for real data [Duh87,Sor87] to the 

computation of the polynomial product. 

Fig.3.3 Shorter FFT-based FIR filtering scheme 

In Fig.3.3, the FFT and FFT -1 are used to perform the polynomial 

product, the remaining task is to compute the complex filters between FFT and 

FFT -1. 

Let us restudy the case of computing a filter of length- 2m for the sake of 

comparison. Now we choose N=U2=2m-1. Then according to eq.(2.4) we hâve 

Hi = hi+hi+I/2z-L/2; i=0,l,...,L/2-l (3.19) 

Using {a, = W i = exp(-21tiJ2N) = exp(-27ri/L); i=O,1,...L-1} as interpolation points, 

we obtain a scheme based on length-L FFT and its inverse, instead of length-2L 

one. we dérive explicitely the length-2 complex FIR filters in the frequency 

domain: 
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1 L/2-1 

P1(w1) = f 2 HiwlJ 
j-0 

L/2-1 .. L/2-1 

= (r 1 h.Wy) + (f X hj + L/2wlJ)z~L/2 
i = 0, l..,L-l 

(3.20) 

The scaling coefficient 1/L is due to the inverse FFT in the scheme. By 

incorporating 1/L into the complex FIR filters, L multiplications are avoided 

and thé scaling is naturally performed. Since N=L/2, 2�-1 outputs are 

computed. The resulting arithmetic complexity is: 

IIIb) length-2m real filter (per 2m~l outputs): 

Mr = 2m m+2 

Aj. = 2^-1 (6m - 5)+1 

the arithmetic complexity per output is: 

�= 2m+2*2-m+1 

a,. =6m-5+2°2-m+1 

m, +�? = 8m - 5 + 8° 2-m 

Taking into account the symmetry of the Fourier transform of real signal, we 

hâve used in the frequency domain only two length-2 real FIR filters and N/2-1 

(= 2m'x -1) length-2 complex FIR filters. The fast computation of complex FIR 

filtering is similar to the fast complex number multiplication algorithm with 3 

real multiplications and 3 real additions. This can be shown as follows. 

Complex FIR filtering is described as: 

Yr(z)+jYi(z) =[Hr(z)+jHi(z)][Xr(z)+jXi(z)] (3.21) 

By applying the fast complex number multiplication algorithm, we obtain the 

following complex FIR filtering algorithm: 

Yr(z) = Hr(z) [ Xr(z)+Xi(z)] - [ Hr(z)+Hi(z)] Xi(z) 

Yi(z) = Hr(z) [ Xr(z)+Xi(z)] - [ Hr(z)-Hi(z)] Xr(z) (3.22) 
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Fig.3.4 depicts the fast complex FIR filtering scheme. Note that (Xr+Xi) needs 

only one addition per output, since ail the terms computed for the previous 

outputs can be stored and used for the présent output. For a length-L complex 

FIR filter only 3L real multiplications and 3L real aditions are required per 

complex output datum. Then (6 mults, 6 adds) are used to compute each of the 

length-2 complex FIR filters. 

Fig.3.4 Complex FIR filtering using three real FIR filters 

Comparing a) with b), we find that the new scheme requires more 

multiplications and less additions. Furthermore the sum of computational 

opérations per output is reduced. In certain computers, a multiplication and 

an addition require almost the same computing time. The new scheme may be 

very compétitive with the conventional one. It is also compétitive in other 

computers since the différence of arithmetic complexity between the two 

schemes is very small. An important différence is that the conventional 

scheme needs length-2L DFT's while the new scheme uses only length-L 

DFT's. In general, smaller length DFT's can be more efficiently implemented. 

This is another advantage of the new scheme. Since the block length is 

proportional to the delay in processing, the System delay is also halved, a fact 

of interest for real time processing. 

We can also choose N=L/4 and {ai}={exp(-4ra/L); i=0,l,..., L/2-1}. This 

results in a scheme with length-L/2 DFT's and length-4 FIR filters in the 

frequency domain. The arithmetic complexity is as follows: 

IIIc) length-2m real filter (per 2m-2 outputs): 

Mr = 2m-2 (2m+4) 

Ar = 2m-2 (6m - 5) 
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the arithmetic complexity per output is: 

mr = 2m+4 

a,. = 6m - 5 

mr + slj. = 8m - 1 

This scheme results in a slight increase in the arithmetic complexity. But 

such increase may be traded off by the réduction of the length of DFT's and of 

System delay. 

3.4 Short length complex FIR filtering algorithms 

Fast short length complex FIR filters find their applications both in the 

above schemes and in arbitrary length complex FIR filtering in the same 

manner as in real FIR filtering. This is our motivation to study thèse 

algorithms. 

Eq.(3.18) is also applicable to complex filters. There are six simplest 

interpolation points in complex number domain {O,l,-lj,-j,co}. Then we can 

construct 20 variants from thèse points for complex filtering. Further 

development of thèse variants is similar to (3.18) and will not be given hère. We 

point out only that the F(2,2) algorithms with {0,1,°°}, {0,-1,°°}, {0,-j,°°} and 

{0j,°°} as interpolation points require the least arithmetic complexity, i.e., 3 

complex multiplications (cmults) and 4 complex additions (cadds) or (9 mults, 

17 adds) in terms of real opérations. 

An optimal F(3,3) algorithm requires 5 interpolation points. Since there 

are six simplest interpolation points, we may choose 5 points out of them to 

construct an optimal algorithm. In [Bla84], we can find a radix-3 complex 

polynomial product algorithm. It uses as interpolation points, 

leading to a (5 cmults, 15 cadds) algorithm. After overlap, it becomes an F(3,3) 

algorithm with (5 cmults, 17 cadds) or (15 mults, 51 adds). 

However by using {0,1 j,-j,°°} as interpolation points, we can obtain a 

better algorithm with less additions: 

(al) complex F(3,3) algorithm with (5 cmults, 15 cadds) or (15 mults, 45 adds) 
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aO=xO bO=hO 

al=x2 bl=h2 

a2=x0+xl+x2 b2=h0+hl+h2 

a3=(x0-x2)+jxl b3=h0-h2+jhl 

a4=(x0-x2)-jxl b4=h0-h2-jhl 

mi=ai*bi ; i=0,1,2,3,4 

uO=mO+ml 

ul=m3+m4 

u2=m3-m4 

u3=-u0+m2 

y0=m0+(u3+ul) z-3 

yl=u3-ju2+mlz-3 

y2=u0+ju2-ul 

For an optimal F(N,N) algorithm, we need (2N-1) interpolation points. As 

N�4 more than seven interpolation points are required. The six previous points 

are no longer sufficient. Which points should be chosen next ? It seems {ai}={±l±j} 

are good candidates, since aî2 = ±2j and ai4=-4. Only a few more additions are 

required with the increase of the exponent. 

An F(5,5) algorithm using {O,:l:1,j:j,:tlIj} as interpolation points is given in 

the appendix. It requires (9 cmults, 77 cadds) or (27 mults, 181 adds). Although 

the F(5,5) is optimal in terms of multiplication count, it requires a great deal of 

additions. This increase in the number of additions may not jus-tify the 

minimization of the number of multiplications in certain implemen-tations 

where an addition and a multiplication require almost the same time. 

Then it is désirable to construct some suboptimal algorithms which 

require more than 2N-1 multiplications but substantially less additions. An 

suboptimal F(4,4) algorithm can be derived by twice applying the eq.(3.18), 

leading to a (9 cmults, 20 cadds) or (27 mults, 67 adds) algorithm. Another way of 

obtaining suboptimal algorithm is proposed in [Bal86]. In their method, the 

dérivation of the polynomial Q(z) at points {O,co} are used in order to use less 

interpolation points. For example, an F(4,4) algorithm can be constructed 

using the interpolation values at {O,:tl,j:j,co} and the dérivation at {0}. The last 
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value (=xOhl+xlhO) requires two multiplications instead of one multiplication 

per interpolation points. But the number of additions can be reduced. We give 

this algorithm as follows: 

(a2) complex F(4,4) algorithm with (8 cmults, 23 cadds) or (24 mults, 69 adds) 

aO=xO bO=hO 

al=xO bl=hl 

a2=xl b2=h0 

a3=x3 b3=h3 

a4=(x0+x2)+(xl+x3) b4=(h0+h2+hl+h3)/4 

a5=(x0+x2)-(xl+x3) b5=(h0+h2 -hl-h3)/4 

a6=(x0-x2)+(xl-x3) b6=(h0-h2+hl-h3)/4 

a7=(x0-x2)-(xl-x3) b7=(h0-h2-hl+h3)/4 

mi=aiebi; i=0,l,...,8 

u0=m4+m5 

ul=m4-m5 

u2=m6+m7 

u3=m6-m7 

pO=uO+u2 

pl=ul+u3 

p2=u0-u2 

p3=ul-u3 

p4=ml+m2 

yO=mO+ (pO-mO) z-4 

yl=p4+(pl-p4) z-4 

y2=(p2-m3)+m3 z-4 

y3=p3 

In eq.(3.22) a length-L complex filter is transformed into 3 length-L real 

FIR filters instead of 4 by direct computation. Although fast real short length 

FIR filtering algorithms can be applied to compute the three length-L real FIR 

filters, we will show that deriving algorithms at first in complex domain 

results in more efficient ones. 
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Let us applying eq.(3.18) to complex filters. Then a length-L complex 

FIR filter can be computed by three length-L/2 complex FIR filters. Further 

applying eq.(3.22), we replace each of the three complex filters by three real 

ones of the same length. The resulting complexity is: 

4 cadds + 3 ( 3 adds + 3 length-L/2 real filters) per two complex outputs 

= 17 adds+ 9 length-L/2 real filters per two complex outputs 

Ifwe first apply eq.(3.22) then eq.(3.18), the complexity will be: 

3x2 adds + 3(4 adds + 3 length-L/2 real filters) per two complex outputs 

= 18 adds+ 9 length-L/2 real filters per two complex outputs 

The first algorithm requires less additions. 

The above discussion is in the case N=2. For higher N it is still more 

recommanded to apply short length complex FIR filtering algorithms first and 

eq.(3.22) then, since there are more simple interpolation points in the complex 

domain than in the real one. 

We may apply the F(2,2) and F(4,4) algorithm to the scheme b) and c) of 

computing the length-2m FIR filter. The F(2,2) algorithm needs to consider two 

outputs together in the frequency domain so that 2m outputs of the filter should 

be computed together. By analogy, applying F(4,4) algorithm needs to compute 

2m outputs of the filter together. The resulting arithmetic complexities are: 

IIId) computing the length-2m real FIR filter using F(2,2) algorithm in 

frequency domain (per 2m outputs) 

Mr= 2m(2m-1.5)+5 

Ar= 2m(6m-2.5)+3 

the arithmetic complexity per output 

mr=2m-1.5+5°2-m 

ar=6m-2.5+3°2-m 

mr+ar=8m-4+8 * 2-m 
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To our surprise, this scheme results in réductions both in the number of 

multiplications and in the number of additions for m�2, compared to the 

conventional scheme a). 

Ille) computing the length-2m real FIR filter using F(4,4) algorithm in 

frequency domain (per 2m outputs) 

Mr= 2m(2m-2)+10 

Ar= 2�(6m+2.75)+l 

the arithmetic complexity per output 

mr= 2m-2+10 e2-m 

ar = 6m +2.75+ 2-m 

mr+ar=8m+0.75+ll°2-m 

Although this algorithm results in a réduction in the number of 

mltiplications, but it requires more additions and computes a block of 2m 

outputs together. Hence this scheme is less of interest than the others. It 

indicates also that the application of short length complex FIR filtering 

algorithms in such schemes should be limited. Direct computation of the 

filters in frequency domain may meet better trade-off between arithmetic 

complexity and structural regularity. 

3.5 Remarks 

In this chapter, we hâve presented différent fast FIR filtering 

algorithms, classical ones as well as new structures, in the context of the 

approach in chapter 2. Most algorithms belong to the class of overlap-add 

scheme. By transposing the overlap-add scheme, we get another class of 

algorithms called overlap-save. Winograd algorithms look much différent 

from the others, since they are a priori overlap-save algorithms. However they 

are basically the transposes of the Agarwal�Burrus algorithms. 

The approach allows us to establish ail the intermediates between 

direct FIR computation and the usual fast algorithms based on cyclic 

convolution of large blocks. Shorter FFT-based algorithms are developed. They 

represent a class of algorithms taking into account the arithmetic complexity, 
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structural regularity and System delay. Short length complex FIR filtering 

algorithms are studied. Combing the last two classes of algorithms, we hâve got 

some algorithms which hâve less arithmetic complexity than the well-known 

FFT-based ones, which are thought to be the most efficient for large block 

processing. 

The fast aperiodic and cyclic convolution algorithms play an important 

rôle in fast FIR filtering. But they are not équivalent to FIR filtering computation. 

The other aspects should be equally considered, since the choice of N in the 

formulation, the overlaping techniques hâve important influences on the 

structure of realization. 

Appendix 

Complex F(5,5) algorithm using {O,:t1:tj,:t1:tj} as interpolation points with (9 

cmults, 77 cadds) or (27 mults, 181 adds). 

cO=xO+x4 

cl=c0+x2 

c2=c0-x2 

c3=xl+x3 

c4=xl-x3 

a0=cl+c3 b0=(h0+h4+h2+hl+h3)/20 

al=c2-jc4 bl=[h0+h4-h2-j(hl-h3)]/20 

a2=cl-c3 b2=(h0+h4+h2-hl-h3)/20 

a3=c2+jc4 b3=[h0+h4-h2+j(hl-h3)]/20 

c5=x4+x4 

c6=c5+c5 

c7=x0-c6 

c8=xl+jxl 

c9=c7+c8 

cl0=c7-c8 

cll=c7-jc8 

cl2=c7+jc8 

cl3=x3+jx3 

Cl4=x2+cl3 

cl5=x2-cl3 

cl6=x2-jcl3 
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cl7=x2+jcl3 

cl8=cl4+cl4 

cl9=cl5+cl5 

c20=cl6+cl6 

c21=cl7+cl7 

a4=c9+jcl8 b4={(h0-4h4)+xl(l+j)+2j[x2+x3(l+j)]} / [40(j-D] 

a5=cl0+jcl9 b5={(h0-4h4)-xl(l+j)+2j[x2-x3(l+j)]} / [40(l-j)] 

a6=cll+jc20 b6={(h0-4h4)-jxl(l+j)+2j[x2-jx3(l+j)]} / [40j(l-j)] 

a7=cl2+jc21 b7={(h0-4h4)+jxl(l+j)+2j[x2+jx3(l+j)]} / [40j(j-D] 

a8=x4 b8=h4/5 

mi=ai bi ; i=0,l,...,8 

uO=mO+ml ul=m2+m3 

u2=m0-ml u3=m2-m3 

pO=uO+ul pl=u2+u3 

p2=uO-ul p3=u2-u3 

u4=m4-m5 u5=m6-m7 

u6=m4+m5 u7=m6+m7 

u8=u4-ju5 u9=u6-u7 

ul0=u4+ju5 ull=ju8-u8 

qO=ull+ull ql=j(u9+u9) 

q2=ul0+jul0 q3=u6+u7 

vl=m8+m8 v2=vl+vl 

v3=v2+v2 v4=v3+v3 

s0=p0-m8 sl=sO+sO 

s2=sl+sl s3=ql+ql 

s4=s3+s3 s5=q2+q2 

s6=s5+s5 s7=q3+q3 

s8=s7+s7 t0=q0-v4 

tl=s2+t0 t2=s4+ql 

t3=s6+q2 t4=s8+q3 

t5=s2-t0 t6=s4-ql 

t7=s6-q2 t8=s8-q3 

y0=tl+t6 z-5 yl=t2+t7 z-5 

y2=t3+t8 z-5 y3=t4+(v2+m8) z-5 

y4=t5 
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Chapter 4 

Short length FIR filtering algorithms 

4.1 Introduction 

As the classical algorithms are structurally too complex for 

implementation on the Digital Signal Processor, new algorithms are needed to 

take into account the structure of the processor. This motivated us to présent a 

new class of algorithms. This chapter deals with the short length FIR filtering 

algorithms (SLFIR) in a detailed manner. Thèse algorithms compute together 

a few number of filter outputs, allowing reducing the arithmetic complexity 

while maintaining smaller FIR filters as computing kernels. Hence, they are 

open to a wide range of implementations, including Digital Signal Processors 

(DSP's), VLSI, and even general purpose computers. The inhérent 

parallelism of the algorithms allows also multiprocessor implementation. 
General rules are provided for combining several SLFIR algorithms to 

construct composite length FIR filtering algorithms. Their arithmetic 

complexities are evaluated and compared to FFT-based algorithms under 

various criteria. 

This chapter is based on two articles of the author (joint with 

P.Duhamel) [Mou87,Mou89]. The first one shows a simple example, giving 

insight to the algorithm dérivation both in time domain and in z-transform 

domain. The second one présents comprehensively the short length FIR 

filtering algorithms. Diverse aspects are discussed such as the dérivation, 

higher-radix algorithms, composite length algorithms, performance 

comparison with FFT-based algorithms. Several algorithms are given. 

A fixed-point error analysis is made for the short length FIR filtering 

algorithms in the appendix. 
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Abstract. We (irai establish through a simple example a new fast FIR filtering algorithm based on a divide-and-conquer 

approach. This algorithm does not require the use of overiap techniques as is usual in the approaches based on cyclic or 

aperiodic convolutions. We outline the advantages of the proposed algorithm when implemented both in software and in 

hardware. Finally. we give a systematic way of deriving these algorithms. 

Zusammeafassuag. Anhand eines Beispiels wird zunichst einer schneller Algorithmus fur die nichtrekursive Fîlterung 

vorgestellt, der auf ciner gemeinsamen Auswertung einer zuvor aufgeteilten Berechnung beruht. Oieser Algorithmus benôtigt 
keine Signalûberiappungs-Techniken wie die Methoden. die eine zyklische oder azyklische Faltung fur die lineare Fîlterung 
ausnûtten. Anschlieflend wird au( die wesentiichen Voneile der Algorithmus' bei einer Hardware- oder Software- Realisierung 
eingegangen. Schlieoiicb wird'angegebcn, wie derartige Algorithmen systemarisch hergeleitet werden kônnea. 

Résamé. Tout d'abord, nous montrons, à l'aide d'un exemple, l'existence d'algorithmes rapides de filtrage nonrecursif basés 
sur une approche de division et évaluation. Cet algorithme ne nécessite pas l'usage de techniques de 'recouvrement', comme 
c'est le cas dans les approches à base de convolution cyclique ou apériodique. Puis, nous montrons les avantages essentiels 
de cet algorithme, selon qu'il est implanté en logiciel ou en matériel. Enfin, nous donnons une méthode permettant de dériver 

systématiquement les algorithmes de cette classe. 

Keywords. Fast algorithm, FIR filtering, arithmetic complexity. 

t. Introductioa 

Our aim, in this paper, is to provide fast algorithms for the direct computation of the output of a 

length- N digital filter: 

Y, = I «.-A, » = 0,1,2 

Most of the fast algorithms used for computing (1) are based on fast transfonns. This implies the use 
of the cyclic convolution (2) as an intermediate step, 

yq i = E « = 0,1,2 N'-l, (2) 
1-0 

where �n - i)N- = (n - i) mod N'. Hère, N' has to be chosen greater than N, and {Xj} and {A(} hâve to be 

[ extended up to N'. The {ym} are reconstructed from {y'm} (overlap-add or overlap-save technique). This 
i 

implies an overall organization of the fast algorithm which is rather intricate and expensive in terms of 

memory and communication cast, even if the number of arithmetic opérations to be perfonned per output 
has diminished [3,7]. 

0165- 1684/87/ J3.50 @ 1987, Elsevier Science Pubiishers B.V. (North-Holland) 
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Some work was aiso performed on aperiodic convolution algorithms, thus allowing the computation 

of (1) with the aperiodic convolution (3) as an intennediate step [1, 2. 8], 

�»:»* £ ' *-A. «-0,1,2,.... M-l, M»N, (3) 

but thèse algorithms still require the overlap-add or overlap-save technique to reconstruct the FIR filter 

output from the {y"�}. Unfortunately, the structure of thèse algorithms is weaker than that of cyclic- 

convolution algorithms. Therefore, they are not widely used. 

Both kinds of approaches can be named indirect ones. Furthermore, they completely lose the FIR 

filtering structure, which is very easy to implement in hardware or in software (Digital Signal Processors- 

DSPs-are generally optimized for FIR filtering structures). Nevertheless, a lot of work has been donc 

to reduce the computationai cost of thèse cyclic and aperiodic convolution algorithms [3, 7]. 

But very little work has been donc directly on the FIR filtering équation (1), thus taking into account 

the infinite length of both input and output séquences. 

Winograd [10] has donc pioneering work in FIR filtering algorithms. His research was undertaken to 

establish low-order FIR filtering algorithms, and then to extend them by tensor product. The methodology 

he proposed seems to be a little far from practical use, because low-order FIR filters are not common in 

practice, and because the way Winograd proposed to extend them using tensor products still requires 

large memory for large N. Nevertheless, most of the resuits explained in the following are based on this 

pioneering work, but extend its practical usefulness and provide systematic methods to establish the new 

algorithins. 

Hère, we propose new fast FIR filtering algorithms, which will be shown to be of interest both in 

software and in hardware implementations. In software, we build well-stnictured algorithms reducing the 

number of arithmetic opérations. In hardware, we propose FIR filter structures with higher speed and/or 

lower cost than the usual ones, with a spécial mention to distributed arithmetic implementations for which 

this approach seems to be particularly weil suited. 

Finally, as a conclusion, we outline that thèse preliminary results can be extended in many ways. 

2. A simple case 

2.1. Derivation of the algorithm 

Equation ( 1 ) can be written in scalar product fonn as 

y� = (xn X,,-I ," .x..-N+I) .' (4) 

! hN-1 

and. if two outputs Y,,-I and yH are to be computed together, we can write, in matrix fonn. 

YN \ X,,-I � x,_N*,/ 
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Let us suppose N to be even, and group the even and odd coefficients of {h" i = l, 2, ... , N - 1} as follows, 

ho 

...:c.:c "'x X.:c "'.:c A, 

h3 

hN-1 

Let us define 

A ^iXn-itX*-},... , (X.-2, X.-4. X�_v), (.T^Xn.j,... , X,,-N.:), 

Ho = (ho. h:.,... h.'V-:f, Ht = (A,, h)o,... hS-I)T. 

Equation (6) can now be rewritten as 

Thus, we make apparent the redundancy between the computation of the two outputs V,_i and Ym. 

A straightforward computation of (7) would require approximately the same computationai load as 

four filters of length IN. But the reader familiar with the fast algorithms (or the usual 3 mults-3 adds 

complex multiplication algorithm) will soon realize that it is possible to obtain y�_, and y, by the following 

formula: 

The filtering opération A( Ho + Hi) is now common between the two terms, and the overall computational 

load is now approximately that of three filters of length IN, plus the linear combination {B -A) and 

(A - C) (the combination Ho+ H, is precomputed for given coefficients): 

8 - A = (X�_2--X-^.| , XII-4 - .:c,,-h"', x. - m ~ X�_,v»|), 
(9) 

Equation (9) seems to require a lot of additions. But, if we remember that the previous set of two 

outputs {yn-i, y,,-) already required nearly the same opérations, we see that, for each output set (y". y..-I), 

only two new input additions are to be computed: (x,_2-xB_,, x,,_,-x�). The other elements of (B-A) 

and (A - C) are aiready stored in the FIR filtering processes of length 2 !N. This resuits in the diagram of 

Fig. t. 

In obtaining the above algorithm, we hâve explicitly taken advantage of computing several outputs at 

a time to improve the compromise speedl complexity of an FIR filter, while retaining most of its structure, 

which ailows to retain information from the previous computations to obtain the new outputs. 

Further décompositions are of course still feasible. 

Vol. 13. No. 4. Dccembcr 1987 
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Fi g. 1. An FIR filter with reduced arithmeti* complexity. 

2.2. Arithmetic complexity 

The number of opérations to be usually performed per output for an N-tap digital filter is 

N-ladds, N mults per output. (10) 

The proposed algorithm requires two input additions, two output additions, and three 5 N-tap digital 

filters to compute two outputs, i.e., 

2 + §(i/V-l) adds, 24N mults per output, (11) 

which means that both numbers of additions and multiplications hâve been reduced (about 25% 

improvement). 

If k successive décompositions are performed (i.e., 2* outputs are computed together), then the number 

of arithmetic opérations to be performed per output is 

4[(§)*-l] + (É)*(N/2*-l)adds, (§)*N/2* mults per output. (12)' 

2.3. Implementation 

When implemented on a DSP, this algorithm will be efficient as long as the overhead, due to the 

input/output additions (4[(§)*-lJ in équation (12)) and the storage time will be shorter than the 

improvement in the number of multiply-accumulates. This means that, for large N, the first decomposition 

will certainly be of interest, while the efficiency of the following ones remains to be checked. 

It is also seen that the gênerai scheme of Fi g. 1 is weil suited for muitiprocessor implementation: 

compared to [6], implementation of the above algorithm would hâve saved a lot of hardware. 

It can easily be seen from Fig. 1 that the sampling rate of the inputs of the three jN-tap filters is divided 

by two compared to the initial one: we use three low-speed jjV-tap filters to build an N-tap filter with 

, higher sampling rate. 

! This can be usefui in any hardware implementation: if we hâve at our disposai a kind of filter of length 

N with maximal processing speed fm, three such filters allow to construct a filter of length 2N and 

maximal processing speed 2fm, at the cost of four input/output additions. 

There is a case where this approach is specially well adapted: the implementation of digital filters by 

distributed arithmetic [4, 9]. In fact, it is already usuai to break the initial filter into subfilters, connected 

Signai Pracessinc 
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by additions, to reduce the size of the ROMs involved. The proposed algorithm can hence be used to 

increase the throughput of the distributed arithmetic filter, while reducing the number of ROMs involved. 

AU thèse implementations are under considération. Results will be reported on in a subséquent paper. 

3. Systematic dérivation of fast FIR filtering algorithms 

The matrix formulation (5) - (8) used to dérive the simple example of Section 2 may be direct and easy 

to understand, but the following formulation in the --domain allows us to obtain strong support from a 

wealthy bank of algorithms: aperiodic convoiution algorithms or polynomial product algorithms [1, 2, 3. 

7. 8, 10]. It will provide a systematic way of deriving thèse fast FIR filtering algorithms. 

Let us decimate the output, input, and filter coefficients of (1) by 2. (We shall thus dérive one step of 

a 'radix-2' decimation.in-time algorithm.) In tenns of r-transform, we hâve 

i-0 i-0 

Xo(z) = r x,^-', *,�*)- 1 XZ/+IZ-i. (13) 
i-0 i-0 

Ho(z)" I hZiz-i. H, (z) - I h%i+IZ-i. 
i-0 i-0 

and the z-transform of (1), given in équation (14), can be rewritten as given in (15) or (16); 

V(r)»X(z)-//(r), (14) 

y0(22) + z-,yl(z:) = [X0(r2) + z-' X,(zz)][Ho(zz) + z-'//,(2-)], (15) 

Y,(z2) - Xo(z2)H0(z-) + z-:!A-1(z2)//1(z2), 

y1(r2)-X,(z')//0(*2) + A'0(r,)«1(z2). 
(16) 

Equations (15) and (16) can be understood in différent ways: équation (15) is in the form of a polynomial 

product (or equivalently of an aperiodic convolution), the coefficients of which are filters. A direct 

implementation is given in Fig. 2. 

Fig. 2. Direct implementation of the decimated filtering équation. 

Vol. 13. No. 4. Dfcnnbn l««î 
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But. if we define 

a0 = X0(z:), a, = X,(:;), (17) 

Ao=H0(r), h^Htiz3), 

then we can apply the usual aperiodic convolution algorithm, as given in [7]: 

mi = aoho. m; = (a0+ai)(Ao + '»i), "�j = �ii*i.. (18a,b,c) 

to obtain 

Y,, + :~iy\ 
= 

(ml +z~:m,) + z~l("i;-'n,-m,). (19) 

Ail the 'multiplications' m, involved in (19.) now represent filtering équations. Coming back to the initial 

notation, one gets 

......., ., ., ........., 
(20) 

resulting in the diagram of Fig. 3. 

Fig. 3. The implementation obtained by directly appiying a length-2 aperiodic convolution algorithm. 

Another possibility is to take équation (16) as a starting point and, after defining 

a0 = 2-2X,(r:), at = X0(z2), flj-X.d2), (21) 

one can easily realise that équation (16) is in the form of an FIR filter of length 2, two outputs of which 

are computed: 

y0 = aih0+ach}, y, = a;/i0+a,/i,. (22) 

But, it was shown by Winograd [10] that FIR filtering aigorithms could be obtained by the so-cailed 

'transposition' of polynomial products. By transposing (19), we get the following algorithm to compute (22): 

y0 = a,(/io + /»i) + (a0-a,)/ii, y, = a,(/i0 + /i,)-(a, -a2)ho, (23) 

' which, back to the initial terminology, turns out to be 

: 
y0(z2) = X0(z:)[H0(z:) + H, (z2) ] + [r-:Xl(2:)-X0(z:)]H1(.-:), 

YAz2) = X0(z2)[H0(z2) + Hl(zz)]-[X0(z2)-Xx{z2)]H0(z2), 

leading to the diagram of Fig. 4. 

Signai Proccssinf 
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Fig. 4. The imptementation obtained by applying a 2-iap filtering algorithm. 

From the point of view of a network, the scheme of Fig. 4 is exactly the transposition of the one of 

Fig. 3 (see [5] for details on network transposition). Therefore, we can get new fittering schemes by either 

algorithm transposition or network transposition. 

Both (20) and (24) are equally efficient in terms of arithmetic opération count, but their implementation 

is différent. 

But, what is the relationship with the algorithm explained in Section 2? 

Careful examination of équations (8) and (24) shows that (24) is the z-domain représentation of (8), 

and that the scheme of Fig. 4 can be modified into the form of Fig. 1 if we change the order of switching 

and adding: they are exactly équivalent. However, we hâve not exhausted ail the possible ways to implement 

radix-2 algorithms: a systematic research gives sixteen différent ones. 

This approach can of course be generalized to higher decimation ratios. It is aiso possible to use different 

decimation ratios on output than on input, at the cost of a slightly more involved algorithm. 

We hâve thus demonstrated that most of the work donc on the aperiodic convolution algorithms directly 

applies to fast FIR filtering without the need of overlap-add or overlap-save techniques, thus saving 

memory in the implementation, and keeping the algorithm's simplicity. 

Furthermore, since, with the proposed approach, most of the multiply-accumulate structure of the FIR 

filter is retained, it allows to choose the best tradeoff between structurai and arithmetic complexity, for a 

given type of implementation. 

4. Conclusion 

We hâve presented FIR filtering algorithms for software and hardware implementations. Thèse algorithms 

are shown to hâve a regular structure, retaining the multiply-accumulate structure of the FIR filter. This 

is why we believe it possible to improve the compromise speedl complexity in any case of implementation: 

FIR filtering on DSPs, on gênerai purpose computers, distributed arithmetic, and so on. Further work 

will be reported on in future. 

The theory explained in Section 3 aiso allows to dérive higher radix algorithms and mixed radix 

algorithms, and can easily be generalized to multi-dimensional FIR filtering. 
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4.3 Article 2 

Short length FIR filters and their use in fast non recursive filtering 

(Submitted to IEEE Transactions on ASSP, Mai 1989) 

Abstract -This paper provides the basic tools required for an efficient use of the 

recently proposed fast FIR algorithms. Thèse algorithms allow not only to reduce the 

arithmetic complexity but also maintain partially the multiply-accumulate structure, 

thus resulting in efficient implementations. 

A set of basic algorithms is derived, together with some rules for combining 

them. Their efficiency is compared with that of classical schemes in the case of three 

différent criteria, corresponding to various types of implementation. It is shown that 

this class of algorithms (which includes classical ones as spécial cases) allows to find 

the best tradeoff corresponding to any criterion. 

1. Introduction 

2. General description of the algorithm 

3. Short-length FIR filtering algorithms 

4. Composite length algorithms 

5. Conclusion 
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1. Introduction 

A lot of algorithms are known to reduce the arithmetic complexity of FIR filtering. 

The widely used ones are indirect algorithms, based either on the cyclic convolution or on 

the aperiodic convolution using fast transforms as an intennediate step. Direct methods 

without transforms were also proposed by Winograd [1]. 

Both direct and indirect methods require large block processing: they make use of 

the redundancy between at least L successive output computations (L is the length of the 

filter) to reduce the number of operations to be performed per output point. 

Furthermore, the structure of the resulting algorithm has completely changed : the 

initial computation is mainly based on a multiply-accumulate (MAC) structure, while the 

fast algorithms always involve global exchange of data inside a large vector of size at least 

2L. 

Thèse are the main reasons why the above fast algorithms are not of wide interest 

for real-time filtering : Hardware implementations require pipelining the whole System 

with many intermediate memories, which results in a large amount of hardware. On 

another side, software implementations on Digital Signal Processors (DSP's) are not very 

efficient, except for very large L, since those fast algorithms hâve lost the 

multiply-accumulate structure for which ail DSP's are optimized. 

In other words, the usefulness of such algorithms was diminished because the 

reduction in arithmetic requirements per output point was obtained at the expense of a loss 

of structural regularity. 

But structural regularity is difficult to quandfy : Hardware implementations do not 

require the same kind of regularity as VLSI implementations do and "structural regularity" 

is still another matter when thinking of DSP implementations. 

Anyway, one fact remains: MAC structure is very efficient on any type of 

implementation, including those on general purpose computer. 

Recently, a new class of fast FIR filtering algorithms taking thèse considerations 

into account was proposed [2,3,4]: Thèse algorithms retain partially the FIR filter 

structure, while reducing the arithmetic complexity. They allow various tradeoffs between 

structural regularity and arithmetic efficiency, including ail classical schemes as spécial 
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cases [10]. This flexibility in the dérivation of the algorithms allows to fmd the best 

possible solution in any type of implementation. 

The purpose of this paper is to provide the basic tools required for the derivation of 

algorithms meeting various tradeoffs in différent implementations. 

A brief description of thèse new algorithms is provided in Section 2. This 

description allows to understand the structure of the new algorithms: Short-length FIR 

filters with reduced arithmetic complexity where ail multiplications are replaced by 

decimated subfilters. Since the process can be reiterated on the subfilters, the short-length 

filters are recognized to be the basic building tools of thèse fast algorithms. 

Hence, Section 3 is concemed with the derivation of a set of algorithms. This 

section is mostly based on Winograd's work. We bring some improvements in the 

number of additions by recognizing that the FIR filtering, seen as a running process, 

involves a pseudocirculant matrix [5] instead of a gênerai Toeplitz one. Another advantage 

of this presentation is the easy understanding of the transposition principle in the context 

of multi-input multi-output Systems, overlapping between blocks being naturally taken 

into account. Using this pseudocirculant presentation, we can dérive the transposed 

version of ail fast FIR filtering algorithms in a very easy manner. 

Section 4 addresses the case of multifactor algorithms. Iterating the basic process 

raises the question of the best ordering of the short modules and of the length where the 

decomposition has to be stopped. We provide the rules for obtaining the ordering of 

factors which results in the lowest arithmetic complexity. A comparison with classical 

algorithms (FFT-based ones) is also provided in the case of real valued signais. 

Section 5 concludes and explains some open problems. 

2. General description of the algorithm 

Let us consider the filtering of a séquence {xj} by a length-L FIR filter with fixed 

coefficients ihil 

(1) 
L-l 

Yn= L xn-i h n = 0,1, 2,....,co 
i = 
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In z-domain formulation, this convolution becomes a polynomial product : 

(2) 

Y(z)=H(z)X(z) 

Where X and Y are of infinité degree while H(z) has degree L-l: In z domain, the filtering 

équation, seen as a running process, is described by the product of an infinité degree 

polynomial and a Suite degree one. 

Let us now decimate each of the three terms in eq.(2) into N interleaved séquences: 

(3) 
UN-l 

Hj(z)= I h^^z"" ;j = 0,l,...,N-l 

Xk(z)= S x^^z"" ;k = 0,l N-l 
m=O 0 

Yi (z) IymN + iz"m i 0, N-1 
m 0 

Eq.(2) then becomes : 

(4) 
N-l N-l N-l 

L Yi (zN) z[ 1 Hj (zN) 
z"j 1 Xk (zN) z"k 

i=0 j=0 k=0 

Eq.(4) is in the form of a polynomial product or an aperiodic convolution. The two 

polynomials to be multiplied hâve fmite degree N-l, and their coefficients are themselves 

polynomials, either of finite degree, such as {Hi}, or of infinité degree, such as {Xj} or 

(Yi). 

Let us now forget for a while that the coefficients of the (N-l)tn degree 

polynomials are also polynomials, and apply a fast polynomial product algorithm to 

compute the polynomial product in eq.(4). It is well known, since the work of Winograd 

[1] that the product of two polynomials with N coefficients can be obtained with a 

minimum of 2N-1 general multiplications. This minimum can be reached for small N, 

while for larger N the optimal algorithm involves too many additions to be of practical 

interest. In that case, suboptimal ones are often prefered. Hence, application of thèse 

polynomial product algorithms to eq.(4) will resuit in a scheme requiring 2N-1 

"products", each one being in fact the product of a finite degree polynomial by an infinité 

degree séquence, that is an FIR filtering of length-L/N. 
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Compared to the initial situation, the arithmetic complexity is now as follows : 

Eq.(4) requires N2 filterings of length L/N, which is about L multiply-accumulates 

(Macs) per output (it is only a rearrangement of the initial équation), while the fast 

polynomial product based scheme requires (2N-1) filterings oflength L/N, which is about 

L(2N-1)/N2 Macs per output. Thus the improvement in arithmetic complexity is 

proportional to the length of the filter, and this is obtained at a fixed cost, depending on N. 

This means that, for large L, this approach will always be of interest. Précise comparisons 

are provided in Section 3 for each algorithm. 

Slight additional improvements can be obtained by further considering eq.(4): In 

fact, eq.(4) contains not only the polynomial product, which allows the arithmetic 

complexity to be reduced, but also the so-called "overlap" in classical FFT-based 

schemes. By equating both sides of eq. (4), we hâve : 

(5) 
N-1 

YN-1 = 1: XN - l - i Hi 
i=O 

N-l k 

Yk =z'N S XN+k.iHi+ S Xk.iHi 0 S k S N- 2 
i=k+l i=0 

or in matrix form: 

(6) 

YN-2 Z HN-1 Bq � � XN.2 

LY° 
U'% ... z-NHN-iHoJLx° 

J 

The right side of eq.(6) is the product of a pseudocirculant matrix [5] and a vector. Note 

that {X{} and f Hi) play a symmetric rôle, hence can be exchanged in eq.(6). The equation 

is clearly in the form of a length-N FIR filter whose coefficients are (Hi), of which N 

outputs {Yj} are computed. Following the notations ofWinograd [1], we shall dénote in 

the following an algorithm computing M outputs of a length-N FIR filter by an F(M, N) 

algorithm. Considering the FIR filter as a whole, and the fast FIR algorithm as the 
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"diagonalization" of the pseudocirculant matrix of eq.(6) results in some circumstances in 

a réduction of the number of additions involved, compared with the usual approach which 

séparâtes the polynomial product and the overlap. This will be seen in Section 3. 

With the explanation above, the proposed algorithms can be understood as a 

multidimensional formulation of the FIR filtering, where computations along one 

dimension are performed through an efficient F(N,N) algorithm, resulting in a reduced 

arithmetic complexity, while the other dimension uses a direct computation, thus allowing 

the process to be a running one. 

Let us also point out that, if the FIR filter of eq.(5) or eq.(6) is computed through 

an FFT-based scheme, and with the appropriate choice of N versus L, the usual 

FFT-based implementation of FIR filters can be seen to be a member of that class of 

algorithms. This is explained in [10], where it is shown that ail fast FIR schemes 

including FFT-based ones can be expressed as : 

- decimation of the involved séquences (N on input and output, M on the filter) 
- évaluation of the obtained polynomials at N+M-1 "interpolation points" {cq}; 
- "dot product" (or filtering); 
- reconstruction of the resulting polynomials and overlap. 

Ail the algorithms differ only by the choice of N, M, and {a.¡}. 

Section 3 provides various short-length FIR filtering algorithms in the case of real 

valued séquences. 

3. Short-length FIR filtering algorithms 

Let us first explain in some détail the simplest case : an F(2,2) algorithm, as given 

in [2,3,4]: considering N = 2, {cq} = {0,1,°°}, we obtain : 

(al) ao = Xi) bo = ho 

ax = xo + Xi bx = ho + hi 

a2 = x, b2 = hl 

mi = aj bi; i = 0,1,2 

yo = mo + z-2 m2 
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Yi = Mi - Mo - M2 

When used in eq.(5) above, this algorithm results in the filtering scheme of Fig.l where 

the problem of computing 2 outputs of a length N filter is turned into that of computing 

one output of three length-N/2 filters, at the cost of 4 adds per block of 2 outputs. 

Comparison of arithmetic complexities are now as follows : the initial scheme has a 

cost of L mults and (L-l) adds per output point, to be compared with 

3/4 L mults per output 

2 + 3/2 (L/2 - 1 ) = 3/4 L + 1/2 adds per output. 

It is seen that, excepted for very small L, both numbers of multiplications and - 

additions hâve been reduced. 

Successive décompositions are feasible, up to the point where the desired tradeoff 

has been obtained. Of course, this tradeoff dépends on the implementation. On general 

purpose computers where a multiplication and an addition require about the same amount 

of time, the tradeoff allowing the fastest implementation will certainly correspond to a 

decomposition near the one minimizing the total number of arithmetic opérations. On 

Digital Signal Processors, a multiply-accumulate operation will in general cost one clock 

cycle, and an appropriate criterion is certainly to count a Mac as a single operation. A third 

criterion of interest is the minimum number of multiplications. In the following, tables 

giving the minimum numbers for thèse three criteria will be provided. 

Nevertheless, in nearly ail type of implementations, the situation is much alike: the 

decomposition provided in Fig.l reduces the arithmetic load in a manner proportional to 

L, the length of the filter, at a fixed cost (initialization of one Mac loop, or one Mac loop 

plus two adds). Hence the balance between the performances of algorithms dépends on 

the timing spent in the initializations. The précise N by which the splitting becomes of 

interest therefore dépends on the spécifie machine or circuit. Anyway, this type of splitting 

will always be of interest for large length filters, or even medium-size ones. 

The remaining part of this section provides the simplest F(M,N) algorithms that 

can be used to reduce the arithmetic complexity of a length-L filtering. Différent versions 

are provided, resulting in various operation counts, and various sensitivities to roundoff 

noise, a point which will not be dealt with in this paper. 
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The following algorithm is an F(2,2) algorithm with interpolation points {cq} = 

{0, -1,°°}. It has exactly the same complexity as the previous one : 

(a2) ao = Xo bo = ho 

ax = Xq - xx bx = hQ - hx 

a2 = xl b2 = hl 

mj = aj h�i ; i = 0,1,2 

yo = mo + z-2 m2 

yl = mo + m2 - ml 

For the sake of completeness, two algorithms computing F(2,2) with {cq} = {0,1, 

-1 and {cq} = 1, -1, - are provided in Appendix B. They may be of interest as long 

as roundoff noise is concerned, but they require 3 multiplications and 6 additions, that is 

one more addition per output. Note that on some implementations (and essentially on 

DSP's), this is not a real drawback, since thèse additions are now of the type a±b, which 

can be efficiently implemented in many cases. 

It is well known in the case of the usual implementation of a digital filter that the 

transposition of a graph provides a digital filter with the same transfer function. Winograd 

has proposed an approach allowing to obtain short-length FIR filtering algorithms by 

transposing polynomial product algorithms. We hâve shown that simple overlapping of 

polynomial products in eq.(5) is sufficient to construct FIR filtering algorithms. The 

transposition of polynomial products is not necessary. It only provides alternative 

versions of the algorithms. In the context of pseudocirculant matrix, we can transpose the 

algorithms in a much easier way, and we can prove that the total arithmetic complexity of 

ail thèse algorithms is not changed by the transposition operation (both number of 

multiplications and additions). More détails are given in Appendix A. 

The following algorithms are the transposed versions of algorithms (al) and (a2). 

(a3) ao = xo - x, bo = ho 

ai = xq bx = h0 + hx 

a2 = Z-2 X, - Xo b2 = hj 

mi = aibi; i = 0,1,2 
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Yo = mi + m2 

yl = m1 - mo 

(a4) ao = Xq + xx bo = ho 

ai = Xq bx = h0 - hx 

�Z-2 xx +Xo b2 = hl 

mi = aibi; i = 0,1,2 

y0 = mx + m2 

YI = IDo - ml 

The use of (a3) in a large FIR filter is provided in Fig.2. 

Iterating the above algorithms results in radix-2 FIR algorithms, with a tree-like 

structure, as proposed in [4]. 

Higher radix algorithms can also be derived, and should be more efficient, as seen 

at the end of Section 2, since the ratio (2N-1VN2 decreases. However, an optimal F(3,3) 

algorithm would require 5 différent interpolation points, that is one more than the simplest 

ones: {cq} = {0,1,-1, ?,oo}, and the next simplest choices of the last interpolation point 

{±24:1/2} resuit in an increased number of additions, and an increased sensitivity to 

roundoff noise. This is the reason why it is advisable to use a suboptimal F(3,3) algorithm 

which provides a better tradeoff between the number of multiplications and the number of 

additions. 

Such an algorithm can be obtained by applying twice the algorithm (al) as follows. 

Let us remark that (al) is based on the following équation : 

(8) 

(xo + xi z-1) (ho + hl z-1) 
= x0 ho + xi hl z-2 + [(xo + xx) (ho + hl) - xo ho - x: hj z-1 

Inspired by eq.(8) we rewrite the radix-3 aperiodic convolution equation as follows : 

(9) 

[xo + (xx + x2 z-1) z"1 [ho + (hl + h2 z-1) z-1] 
= (xo + Fz- 1) (ho + Gz-l) 

= xo ho + [(xo + F) (ho + G) - xo ho - FG]z-l + FGz-2 

Then, the algorithm in eq.(8) is once more applied to the computation of 
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(xo+F)(ho+G) and FG which are still radix-2 aperiodic convolutions. This results in an 

aperiodic convolution algorithm requiring 6 mults and 9 adds (an optimal one would 

require 5 mults and 20 adds [11, pp. 86]). Overlap has then to be performed by merging 

the terms zO and z-3, and the term z-1 and z-4, with the appropriate delay. Hence, the 

F(3,3) algorithm seems to require 2 more adds than the corresponding radix-3 aperiodic 

convolution algorithm. Nevertheless, considering the redundancy during the overlap in 

F(3,3) algorithm allows a further réduction of the number of additions to 10 adds, the 

lowest number of opérations to our knowledge. 

(a5) ao = xo bo = ho 

ai = xi bi = hl 

a2 = X2 b2 = h2 

a3 = xo + xi b3 = ho + hl 

a4 = xx + x2 b4 = hj + h2 

a5 xo + a4 b5 = ho + hj + h2 

mi = ajbi; i =0,1,2,3,4,5 

1:0 = mo - m2 z-3 

ti = m3 - ml 

t2 = m4 - m1 

yo to + tz z-3 

Yi = h to 

Y2 M5 - tl - t2 

The use of this F(3,3) algorithm to reduce the arithmetic complexity of a larger FIR 

filter is provided in Fig.3, showing that the overall structure is that of a multirate filter 

bank, where JH, + H2, Hi, Hq + Hb H2, Ho, Ho + Hl + H2 } are decimated FIR filters. 

Transposition of algorithm (a5) results in the following one, which is depicted in 

Fig.4. 

(a6) ao = x.2 - xi bo = ho 

ax = (xo -x2 r3) - (xx - Xo) bx = hl 

a^ = - ao z-3 b2 = h2 

a3 = (xl - x0 ) b3 = ho + hl 

a4 = (Xo -x2 z-3) b4 = ht + h2 
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a5 = xo b5 = ho + hl + h2 

mi = aibi ; i =0,1,2,3,4,5 

y0 = m2 + (m4 + m5) 

yx - mj + m3 + (m4 +m5) 

y2 a mo + m3 + m5 

When used in a length-L FIR filter, both schemes (a5) and (a6) require 2L/3 

multiplications and (2L+4)/3 additions per output point, to be compared with L and L-l 

opérations respectively in the direct computation. This means that the computational load 

has been reduced by nearly 1/3. 

Careful examination of Fig.l - 2 and 3-4 shows that the distribution of the 

additions between the input samples and the subfilters' outputs is not the same in the initial 

algorithms and their transposed versions: In ail cases, transposed algorithms hâve more 

input additions and less output additions. This fact should give them more robustness 

towards quantization noise. 

Another case, which looks interesting at first glance is as follows: why not 

decimating the filter by a factor of 2, and X and Y by a factor of 3? This would be solved 

by an F(3,2) algorithm, which requires 3 + 2 - 1 = 4 interpolating points, that is the very 

number of the simplest interpolating points {0,1,-1,oo}. This means that F(3,2) or F(2,3) 

are the largest filtering modules that can be computed effîciently with an optimum number 

of multiplications : 

(a7) ao = x3 - xi bo = ho 

a! = Xi + x2 bx = (ho + hi )/2 

a2 = xi - x2 b2 = (ho - hl )/2 

a3 = x2 - xo b3 = hl 

mj = aibi ; i= 0,1,2,3 

y0 = (mx + m2 ) - m3 

yi = mi M2 

y2 = mo + (mi + m2 ) 

This algorithm looks promising, since the same performance as an F(3,3) 
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algorithm is obtained with a simpler one: F(3,2) requires 4 multiplications and 8 additions, 

which means-that it reduces of the number of Macs by 1/3, at the cost of 8 additions. 

Nevertheless, problems arise when using this algorithm for speeding up the computation 

of a large length-L filter. The overall structure is depicted in Fig.5, where the main 

computing modules are a kind of 1/3 FIR decimators. Obtaining 3 successive outputs of 

the filter requires the computation of 4 length-L/2 inner products plus 13 adds, to be 

compared with algorithm (a5) which requires 6 length-L/3 inner products, plus 10 adds. 

Therefore, (a7) and (a5) hâve nearly the same arithmetic complexity. But (a7) requires 3L 

memory registers, instead of 2L registers in (a5), and a more complex control System, 

since the inner products are not true FIR filters any more. 

AU aperiodic convolution algorithms can be tumed into FIR filtering algorithms by 

appropriate overlap. Suboptimal higher-radix(�5) aperiodic convolution algorithms can be 

derived using the approach in [12]. An F(5,5) algorithm based on this approach is given 

in Appendix B. This algorithm, requiring 12 mults and 40 adds is not optimum as far as 

the number of multiplications is concemed, but reaches the best tradeoff we could obtain. 

Ail thèse F(N,N) algorithms are clearly similar to the ones proposed by Winograd 

[1]. They differ essentially on several points : 

First, the recognition that, by using decimated séquences, the arithmetic 

complexity of an FIR filter can be reduced as soon as two ouputs of the filter are 

computed regardless of the filter's length. Winograd's algorithms always require the 

computation of at least as many outputs as the filter's order. 

Second, a straightforward derivation through eq.(4) of the F(N,N) algorithms by 

polynomial product algorithms which were extensively studied in the littérature. 

Third, a reduction in the number of additions, which is made feasible by naturally 

taking into account the "overlap" between two consecutive blocks of outputs (Hence the 

use of the pseudocirculant matrix). 

Fourth, a new interpretation, in the context of pseudocirculant matrix, of algorithm 

transposition and a systematic method of obtaining transposed versions. (See appendix A) 

4. Composite length algorithms 

We hâve explained in Section 2 that the application of an F(N,N) algorithm could 
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break the computation of a length-L FIR filter into that of several length-L/N filters, in 

such a manner that the arithmetic complexity is decreased. Nevertheless, the same process 

can iteratively be applied to the subfilters of length L/N as well, leading to composite 

length algorithms. 

This section is concerned with the problem of finding the best way of combining 

the small-length filters, depending on various criteria. 

We first evaluate the arithmetic complexity of a length L = N^^ filter, when 

using two successive décompositions by FCN^^ ) first , and then by F(N2,N2 ). Let us 

assume that, with the notations of Section 3, the length-Ni filter requires Mi 

multiplications and Ai additions. 

The first décomposition by F(N1,N1) turns the initial problem into that of 

computing Ml filters of length N2 L2 at the cost of Ax additions. Further decompositions 

of the length-N2 L2 subfilters using F(N2,N2 ) require the consideration of a block of N2 

outputs of thèse subfilters (hence a block of NI N2 outputs of the whole filter). Each of 

thèse subfilters is then transformed into M2 filters of length L2 at the cost of A2 additions. 

The global decomposition thus has the following arithmetic complexity: 

N2 Ax additions + Ml [ M2 length-1,2 subfilters + A2 additions]. 

That is : 

(10) M = Ml M2 L2 

(11) A N2 A, + Ml A2 + Ml M2 (L2 - 1) 

Let IDï = Mj/Ni and ai = A/Ni where i=1,2. mi and % are the numbers of 

operations (mults and adds respectively) per output required by F(Ni,Ni). Since eq.(10) 

and (11) are the arithmetic load for computing (NI N2) outputs, the numbers of operations 

per output for the whole algorithm are : 

(12) m = ml m2 L2 

(13) a = a: + ml a2 + ml m2 (L2 - 1) 

An application of F(N2,N2) first, followed by F(N1,N1) would resuit in the same 

number of multiplications , and a number of additions which will be higher than eq.(13) 
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as long as : 

(14) a, + ml 02 � a,2 + m.2 a, or (n^-iyai � (m2 -l)/a2 

or, equivalently: 

(15) (M1-N1)/A1�(M2-N2)/A2 

Let us define 

(16) Q[F(Ni,Ni )] = K - D/aj = (N4. -Ni )/Ai 

Q is a parameter spécifie of an algorithm. Its use has already been proposed in [8] for the 

cyclic convolution. Eq.(15) means that the lowest number of additions is obtained by first 

applying the short length FIR filter with the smallest Q, and then the one with the second 

smallest Q and so on. Table. 1 provides Q[F(N,N)] for the most useful short-length filters. 

Two useful properties of Q[F(N,N)] are as follows : 

- A straightforward FIR filtering "algorithm" has Q[F(1,N)] =1, whatever N is. 

This means that, in order to minimize the number of additions, they must be located at the 

"center" of the overall algorithm, as was implicitely assumed up to that point. 

- Iteratively applying an algorithm F(p,p) to obtain F(pk,pk) results in an algorithm 

with the same coefficient Q: 

(17) Q[F(pk,pk)] = Q[F(p, p)] 

The démonstration is easily obtained by simply recognizing that applying first 

F(pk,pk) and second F(p,p) or applying them in the reverse order results in the same 

F(pk+l,pk+l) . 

Hence, as an example, an optimal ordering for L = 120 Li =23x3x5 Lj would be : 

F (5,5), F (2,2), F (2,2), F (2,2), F (3,3), F (IJL4) 

Of course, when it is desired to implement a length-L filter, it is very unlikely that 

F(L,L) is the most suitable algorithm for a spécifie type of implementation, even in the 

case where L is composite. The best thing to do, is to search for the tradeoff minimizing 
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some criteria depending on the implementation. 

It is not our propose hère to perform such an optimization in a spécial case, but we 

shall try to show, in the following, that improvements are feasible whatever the criterion 

is. 

Assuming that L =N1...Ni...NrLr, and that a fast algorithm F(NitNj ) is used for 

ail Nj, a straightforward one being used for Ly., the general formulae for evaluating the 

arithmetic complexity per output of a length-L filter are as follows : 

(18) 
r 

m=L, nmi 
i=l 

(19) 
r i-l r 

i=l j=l i=l 

A first criterion of interest would be the minimization of the number of 

multiplications. Examination of eq.(18) shows that such a minimization is performed by 

fully decomposing L into N1...Ni...NrLT, and this results in the number of opérations 

given in Table.2. 

Ail the operation counts are provided assuming that the signal and the filter are 

real-valued, and the comparison is made with the real-valued FFT-based schemes [6,9] of 

twice the filter's length. Table.2 shows that the proposed approach is more efficient than 

FFT-based schemes up to L = 36, and very competitive up to L = 64 which covers most 

useful lengths. 

However, with today's technology, multiplication timings are not the dominant 

part of the computations any more when a parallel multiplier is built in the computer, and a 

very useful criterion is the sum of the number of additions and multiplications, i.e., M+A. 

Table 3 provides a description of the algorithms requiring the minimum value for 

such a criterion. It is seen that, although the basic F(N,N) algorithms de not improve the 

criterion, ail the composite ones can be improved, and are even more efficient than 

FFT-based schemes up to N = 64. Consider N = 16, for example: FFT-based schemes 

hardly improve the direct computation £ 29.5 opérations per point versus 31), while 

F(2,2)-based algorithm requires only 19.6 operations per point. 
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The previous criterion is well suited for general purpose computer implementation, 

where ail opérations are performed sequentially, but Digital Signal Processors still state 

another problem. In fact, DSP's perform generally a whole multiply-accumulate(Mac) 

opération in a single clock cycle, so that a Mac should be considered as a single opération, 

which is not more costly than an addition alone. 

Table.4 provides a description of the algorithm minimizing the corresponding 

criterion: the sum of the number of Macs and I/O additions. Of course, this criterion is a 

rough measure of efficiency, since initialization time of Mac loops is not taken into 

account. Nevertheless, what Table.4 shows in that even this kind of criterion, taking 

partially into account the structure of DSP's, can be improved using our approach : a 

length - 64 filter can be implemented using this type of algorithms with nearly half the total 

number of operations (Macs+ I/O adds) per output point, compared to the trivial 

algorithm. And this is obtained with a block size of only 8 points. This shows that 

moderate up to large length filters can be efficiently implemented on DSP's using thèse 

techniques. 

Two points should be emphasized hère : 

A lot of Systems requiring digital filtering hâve constraints on the input/output 

delay, which prevents the use of FFT-based implementation of digital filter. Our approach 

allows to obtain a reduction of the arithmetic complexity whatever the block size is. This 

means that our approach allows to reduce the arithmetic complexity by taking into account 

such requirements as a constraint on the I/O delay. 

Another remark, which is not apparent in the tables, is that for a given filter length 

L, there are often several algorithms providing comparable performance, for a given 

criterion. It allows us to choose among them the one which is the most suited for the 

spécifie implementation. 

5. Conclusion 

We hâve presented a new class of algorithms for FIR filtering, showing that the 

basic building tools are short-length FIR modules in which the "multiplications" are 

replaced by decimated subfilters. 

We hâve provided also the basic tools required for implementing thèse algorithms: 
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First, we propose short-length FIR filter modules of the Winograd-type with a 

small number of multiplications and the smallest number of additions. Their transposed 

versions are also provided. 

Second, we give some rules concerning the best way of cascading thèse 

short-length FIR modules to obtain composite-length algorithms. 

Finally, we show that, for three différent criteria, this class of algorithms allows to 

obtain better tradeoffs than the previously known algorithms, which should make them 

useful in any kind of implementation. 

It is concluded that the presented algorithms allow not only to compute from 

moderate to long length FIR filtering on DSP's in a more efficient manner, but also to 

compute short-length (�64) FIR filtering more efficiently than FFT-based algorithms 

when considering the total number of opérations. 

Thèse algorithms also suggest efficient multiprocessor implementations due to their 

inhérent parallelism, and efficient realization in VLSI, since their implementations require 

only local communication, instead of a global exchange of data, as is the case for 

FFT-based algorithms. 

Appendix Several short length FIR algorithms. 

F(2,2) algorithm with (3 multiplications, 6 additions), {oq} = 0, 1, - -1}. 

(a8) ao = Xq bo = ho 

ai " xo +xi t»! = (ho +hl )/2 

a2 Xo - Xi b2 = (h0-h1)/2 

mi = aibi; i = 0,1,2 

y0 = mo +z-2(m1 +m2 -mo ) 

Yi - mx -m2 

F(2,2) algorithm with (3 multiplications, 6 additions), {cq} il, - 1, 1. 

(a9) a0 = x0+x1 bo = (ho +hl )/2 
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ai = x0 - xx bx = (h0 - hx )/2 

az = xl b2 = hj 

mi = aibi; i = 0,1,2 

Yo = mg + ml -m2 +z~^m2 

yx = mo -ml 

F(5,5) algorithm with (12 multiplications, 40 additions). This algorithm is based on the 

approach in [12]. 

(alO) c0 = Xo + x3 go = (ho + h3 )/2 

ci = xi + x4 gi = (hi + h4 )/2 

C2 = x2 g2 = h2 /2 

c3 = Xq - x3 g3 = (h3 - ho )/2 

c4 = Xi - x4 g4 = (h4 - hx )/2 

c5 = x2 g5 = - h2 a 

ao = co + cj + c2 bo = (go + gi + g2 )/3 

al = Co - Cz bl = 90 - 92 

az = CI - Cz bz = gl - gz 

a3 = ax + fy fy = (bx + b2 ) /3 

a4 
= 

C3 - c4 + C5 b4 
= 

(g3 - g4 + g5 )/3 

a5 = c3 - C5 b5 =(-2g3 - g4 + g5 )/3 

a,6 = C3 + C4 b6 = (g3 + 2g4 + g5 )/3 

a7 
= 

C4 + C5 b7 
= 

(g3 - g4 - 2g5 )/3 

a8 = x0 b8 = h0 

ag = xo bç = hj 

a10 = x, b10 = ho 

an = X4 t»n=h4 

mi = aibi; i = 0,1 11 

Uq = ml - m3 

Uj = m2 - m3 

do = mo + u0 

dl ino - uo - ul 
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d2 = mo + ux 

d3 = m4 - m5 + xxxj 

d4 = -m4 + mg + m-j 

ds = m4 + m5 + m6 

ci�; * mç + m10 

f0 = d2 - d5 

f x = dx - d4 

f2 = do - d3 

f3 d2 + d5 

f4 = dj + d4 

f 5 = do + d3 

yo = mg + z-s f5 

yl = dg + z-1 (fo - m8 ) 

Y2 f2 - Mll + z-5(f1-d6) 

y3 = f3 + z-5 mn 

y a = U 
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Table. 1 Quality factors for several short-length algorithms. 

Algorithms Q 

F(1,N) 1 

F(2,2) 0.25 

F(3,3) 0.3 

F(5,5) 0.175 
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Table.2 Arithmetic complexity of an F(N,N) algorithm by short-length FIR and by FFT-based 

cyclic convolution. 

Short-length FIR FFT-based FIR Direct FIR 

N M m A a Mppj m AFFT a ma 

2 3 1.5 4 2 2 1 

3 6 2 10 3.3 3 2 

4 9 2.25 20 5 15 3.75 43 10.75 4 3 

5 12 2.4 40 8 5 4 

6 18 3 42 7 33 5.5 83 13.83 6 5 

8 27 3.38 76 9.5 43 5.38 131 16.38 8 7 

9 36 4 90 10 9 8 

10 36 3.6 128 12.8 10 9 

12 54 4.5 150 12.5 12 11 

15 72 4.8 240 16 112 7.47 353 23.53 15 14 

16 81 5.06 260 16.25 115 7.19 355 22.19 16 15 

18 108 6 306 17 18 17 

20 108 5.4 400 20 20 19 

24 162 6.75 498 20.75 24 23 

25 144 5.76 680 27.2 25 24 

27 216 8 630 23.33 27 26 

30 216 7.2 744 24.8 225 7.50 829 27.63 30 29 

32 243 7.59 844 26.38 291 9.09 899 28.09 32 31 

36 324 9 990 27.5 271 7.53 1084 30.11 36 35 

60 648 10.8 2280 38 455 7.58 1955 32.58 60 59 

64 729 11.39 2660 41.56 701 10.95 2179 34.05 64 63 

128 2187 17.09 8236 64.34 1667 13.02 5123 40.02 128 127 

256 6561 25.63 25220 98.52 3483 13.61 11779 46.01 256 255 

512 19683 38.44 76684 149.77 8707 17.01 26627 52.01 512 511 

1024 59049 57.67 232100 226.66 19459 19.00 59395 58.00 1024 1023 
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Table.3 Minimum sum of opérations (Mults + Adds). (mxn) means the décomposition by a fast 

F(m,m) algorithm using optimal ordering followed by direct length-n FIR filters. (FFT) means 

using FFT-based schemes. 

N Décomposition M+A /N Block size 

2 direct 6 3 1 

3 direct 15 5 1 

4 (2x2) 26 6.5 2 

5 direct 45 9 1 

6 (3x2) 56 9.33 3 

. 8 (2x2x2) 94 11.75 4 

9 (3x3) 120 13.33 3 

10 (5x2) 152 15.2 5 

12 (2x3x2) 192 16 6 

15 (5x3) 300 20 5 

16 (2x2x2x2) 314 19.63 8 

18 (2x3x3) 396 22 6 

20 (5x2x2) 472 23.6 10 

24 (2x2x3x2) 624 26 12 

25 (5x5) 740 29.6 5 

27 (3x3x3) 810 30 9 

30 (5x3x2) 912 30.4 10 

32 (2x2x2x2x2) 1006 31.44 16 

36 (2x2x3x3) 1260 35 12 

60 (5x2x3x2) 2784 46.4 30 

64 (FFT) 2880 45.00 64 

128 (FFT) 6790 53.05 128 

256 (FFT) 15262 59.62 256 

512 (FFT) 35334 69.01 512 

1024 (FFT) 78854 77.01 1024 
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Table.4 Minimum number of Macs (Length of scalar products + I/O adds). (mxn) means 

the decomposition by a fast F(m,m) algorithm using optimal ordering followed by direct 

length-n FIR filters. (FFT) means using FFT-based schemes. 

N Décomposition MAC /N Block size 

2 direct 4 2 1 

3 direct 9 3 1 

4 direct 16 4 1 

5 direct 25 5 1 

6 direct 36 6 1 

8 direct 64 8 1 

9 direct 81 9 1 

10 (2x5) 95 9.5 2 

12 (2x6) 132 11 2 

15 (3x5) 200 13.33 3 

16 (2x8) 224 14 2 

18 (2x9) 279 15.5 2 

20 (2x2x5) 325 16.25 4 

24 (2x2x6) 444 18.5 4 

25 (5x5) 500 20 5 

27 (3x9) 576 21.33 3 

32 (2x2x8) 736 23 4 

36 (2x2x9) 909 25.25 4 

60 (5x2x6) 2064 34.4 10 

64 (2x2x2x8) 2336 36.5 8 

128 (24x8) 7264 56.75 16 

256 (25x8) 22304 87.13 32 

512 (26x8) 67936 132.69 64 

1024 (27x8) 205856 201.03 128 
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Chapter 5 

Fast multiplier-accumulator 

5.1 Multiplier-accumulator 

Multiplier-accumulator is instrumental to modem digital signal 

processing. It constitutes the heart of the widely used Digital Signal 

Processors (DSP's) as well as the general purpose computer.[And57] 

The DSP's are often optimized for computing an FIR filter which is in 

form of an inner product and calculated by successive multiply-accumulates. 

The time required by a multiply-accumulate serves as a major benchmark for 

various DSP's [Lee88]. 

This chapter will deal with the arithmetic aspects of multiplier- 

accumulator as well as its VLSI layout design. The contents of this chapter 

provides also the basis for the subséquent chapters where we study the 

achitectures of the FIR filter which can be taken as a generalized multiplier- 

accumulator. 

We will also propose some new schemes for designing fast multiplier- 

accumulators. 

5.2 Réduction of the number of partial products 

In general a BxN (B�N) multiplier is équivalent to the surnming of B 

operands which are called partial products, with appropriate shift: (Assume 

the numbers are in 2's complément.) 

B-l 

XH=(-x0+Xxi2~1)H 
i=l 
B-l 

= -x0H+X(XiH)2_i 
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{xjH; i=0,1,...,B-1} are the partial products. 

If the number of partial products can be reduced, in conséquent, the 

speed of the summing can be increased. 

Booth's encoding [Boo51] allows to reduce more than half the number of 

partial products. However Booth's encoding is difficult to implement because 

of the variable number and variable position of the partial products, except for 

one of the two multiplicative factors is constant. The most widely used 

technique is the modified Booth's encoding [Mac61] which constantly halves 

the number of partial products. 

5.2.1 Booth's encoding 

This technique is based on the following relation of a binary number 

(not in 2's complément): 

1111...l=2n+2n-l+2n-2+...+2+1=2^+1-1 (5.2a) 

or in 2's complément: 

1111...l=-2n+2n-l+2n-2+...+2+l=-l (5.2b) 

This means that a string of l's can be transformed into two or one effective 

bits. It is particularly of interest in designing multiplier which uses actually 

binary arithmetic. By the principle of (5.2), n effective partial products are 

reduced to only two or one products. Two kinds of partial products are possible: 

{-H,H). It is originally proposed by Booth [Boo51]. Since the Booth's encoding 

uses négative bits, it is also known as canonical signed bit (CSB) 

représentation. 

For example a 10-bit number in 2's complément after encoding 

becomes: 

1110011011=00(-1)0100(-1)0(-1) (5.3) 

In practical design, only four partial products need to be taken into account 

instead of 10. In general,more than 50% of partial products can be reduced. 
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However the big problem for implementation is that we can not 

systematically détermine how many and which partial products should be 

taken into account. 

This diffculty limits heavily the application of Booth's encoding to 

multiplier design, except the case either X or H is constant. In that case, 

Booth's encoding applies because we can prédétermine the number and the 

position of effective partial products. Hence it is particularly of interest for full 

custom design. 

5 JL2 The modified Booth's encoding (MBE) 

By considering three bits in X, with one bit commonly shared by the 

neighboring groups of three bits, we obtain: 

B-l 

X = -x0+Xxi2_1 
i=l 

B-l 

1=0 i even 

where xB = 0(B even ) and xfi 
= 
xfi+1 

= 0 (B odd ). (5.4) 

This formulation provides the basis for the modified Booth's encoding [Mac61, 

Rub75]. The binary number is transformed into a base-4 number. Its digits 

Table. 5.1. Truth table of control signal génération for the modified Booth's 

encoding. 

Xi xi+i Xi+2 S(i) N(i) C(i) 

Shift Null Complément 

0 0 0 0 0 0 

0 0 1 0 1 0 

010 0 1 0 

0 11 1 1 0 

100111 

1 0 1 0 1 1 

110 0 1 1 

111 0 0 1 
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{-2xi+xj+i+xi+2) take one of the five values: {-2,-1,0,1,2}. When X multiplies H, 

five partial products are possible: {-2H, -H, 0, H, 2H}. In total the number of 

partial products is reduced to B/2 for B even or to (B+D/2 for B odd. 

The génération of an effective partial product P(i)=(-2xi+xj+i+xj+2)H 

dépends on the value of (-2xj+xi+i+xj+2). So, we can encode the five values of 

(-2xj+xj+i+xi+2) into three control signais: Shift S(i), Null N(i) and 

Complément C(i). The truth table is given in Table.5.1. 

From the Table.5.1, we get the following logic relations: 

S= 
xi+1©xi+2 

N 
XiXi+lXi+2+XiXi+lXi+2 

C= Xi (5.5) 

Thèse control signais will détermine how to sélect or generate one of the five 

partial products. The effective partial products P(i) is generated according to 

the équation below: 

p}hj'hj+l) 
= 
[(Shj 

+ 
shjtl)N]ec (5.6) 

and 

b-1 -(b-1) 
j=0 J 

pj is the jth bit ofP(i) and hj is the jth bit ofH. pj is the function of {hj, hj+i}. 

In Fig.5.1 we depict the scheme for partial product génération. It is not 

the only way for the génération. Many alternatives are discussed in [Mon88, 

Mou89]. 

Fig.5.1 Partial product génération using encoding 
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Since the MBE results in a constant réduction of the number of partial 

products to one half, and the partial products are easy to generate, it is 

prefered in general multiplier design. 

5.3 Multioperand summation 

Having reduced and generated the partial products, we should sum 

them up. This section deals with the fast multioperand summation. 

Conventional BxN multiplier requires (B+N)tfa as multiplication time, tfa 

denoting the time required by a full adder. The pipeline is often difficult in 

such multiplier since the carries and sums hâve différent directions of 

propagation. We will show in the following that the multiplication time can be 

reduced. 

5.3.1 Using carry-save adder (CSA) 

CSA leads to important improvement in computing speed, compared to 

carry-propagation adder (CPA). A CSA adds 3 numbers into 2 numbers while 

a CPA adds 2 numbers into 1 number. Fig.5.2 shows the 2 adders. 

In a computation we are often interested only in the final resuit. Hence 

during the computation, we may use différent représentation of the 

intermediate information as long as the computation can be performed much 

rapidly. The carry-save adder supports such a représentation that ail the 

intermediate results are two numbers: C and S, which are independent of one 

another. The final resuit is the sum of the two numbers. In fact, it is not 

necessary to specify them as carry and sum. 

A multiplication can be seen as the summation of a number of 

operands or partial products. In Fig.5.3, we depict a scheme of summing up N 

numbers using a direct CSA array. We need N-2 CSAs to sum up the N 

numbers into 2 numbers. Then the computing time is (N-2) tfa, given tfa the 

time required by a full adder. 

In designing a multiplier, we should add the final C and S to get the 

product. However since our objective is to design multiplier-accumulator, we 

will leave the two numbers as the input to the subséquent computations. 
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Fig.5.2 Carry-save adder(CSA) and carry-propagation 
adder(CPA). FA = Full Adder. 

Fig.5.3 Direct CSA array for summing N numbers 
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CSA array is very regular so that the design is easy. Another 

advantage is that the data flow is unidirectional, which allows to insert 

pipeline in the array much evenly while keeping a regular structure. In a 

CPA array the data flow propagates in a diagonal way. The pipeline registers 

along the diagonal can not be either evenly distributed or as regular and 

compact as the CSA array. 

Note that the summing time of N operands using direct CSA array is 

proportional to N. A technique termed Wallace-tree allows to further speed up 

the summing. 

5.3.2 Wallace-tree and its compact layout 

Wallace-tree [Wal61] exploits the concurrency in the summing of 

multiple operands. The building block is still the CSA. However the CSA's are 

organized in a tree like manner. We always center our attention on summing 

N numbers to two outputs. A N-2 W-tree will be used to do the work. A 9-2 tree 

is shown in Fig.5.4 to give an idea. The computing time is only 4 tfa, instead of 

7 tfa using direct CSA array. In general, an N-2 W-tree requires a delay of 

O(logN) full adders. The précise minimum number of layers can be 

determined by the following formula [Was82]: 

k= E [ log3/2 N/2 1+1 ; for N�3. (5.7) 

where E [Q] means the integer part of a real Q. The Table 5.2 gives a number of 

N's and their corresponding k's. 

Although the Wallace-tree looks very attractive, it is rarely 

implemented because its structure leads to difficult routing and exagerated 

area requirement. Thus a general belief is that the W-tree is unimplementable 

and out of practical use [Vui83, Mon88]. 

In the following we propose a compact yet regular design which may 

cover the most useful N. Let us consider the 9-2 tree design. We take at first the 

bits of the same weight 2-k of ail the 9 operands into account and sum them up. 

Further more, we should not forget the carry from the lower weight bit while 

summing. Then a bit-slice W-tree can be established as shown in Fig.5.5. The 

wordlevel tree is the regular assemblage of the bit-slice tree. 
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Table.5.2 Number oflevels for an N-2 Wallace-tree 

N k 

3 1 

4 2 

5�N�6 3 

7�N�9 4 

10�N�13 5 

14�N�19 6 

20�N�28 7 

29�N�42 8 

43�N�63 9 

Fig.5.4 The 9-2 Wallace-tree 
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Fig.5.5 Compact and regular Wallace-tree design. 
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Fig.5.6 A bit-slice 18-2 W-tree using bit-slice 9-2 W-tree 

For large N, the routing may become complex. We propose a solution 

suitable for this case. Instead of one column, we use two columns. For 

example, a bit-slice 18-2 tree is constructed as shown in Fig.5.6. 

5.4 Fast accumulator 

Usually an accumulator accumulâtes a séries of numbers one after 

another. It is symbolized in Fig.5.7. The time required by an accumulation, 

denoted by tac is équivalent to that by an addition, i.e., proportional to the 

number of bits of operands. An accumulation is often considered as an 

addition. 
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Fig.5.7 Conventional accumulator 

However, some techniques allow to reduce tac considerably, as 

presented in the following. 

5.4.1 Carry-save (uni-operand) accumulator 

As mentioned before, a carry-save adder adds 3 numbers to 2 numbers 

in tfa time. If we route the 2 outputs, after latch, to the input of the CSA, a 

carry-save accumulator is formed as shown in Fig.5.8. A séries of numbers 

are accumulated one by one as usual. We define it thus as a uni-operand 

accumulator. Note that tac (=tfa) is independent of the wordlength of operands. 

Fig.5.8 Uni-operand accumulator using CSA. 

Two numbers represent the intermediate results of the accumulation. 

For obtaining the final resuit, we should sum up the two numbers. This can 

be easily and economically done in most cases. For example, when L numbers 
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are to be accumulated, Ltfa is required. We hâve then Ltfa time for the final 

addition, which may be realized using bit-serial adder. 

5.4J2 Bi-operand and multi-operand accumulator 

The carry-save accumulator accumulâtes the numbers one by one. If 

we accumulate more than one operand in a single computing cycle, the total 

number of computing cycle can be reduced. In the case of a parallel 

multiplier-accumulator, the output of CSA array or Wallace-tree is two 

numbers. It is obligatory to accumulate 2 numbers each cycle. 

Fig.5.9 Bi-operand accumulator. 

Anderson et al. [And67] proposed a scheme allowing to accumulate 

multiple operands per cycle. A scheme of interest is that of bi-operand 

accumulator (see Fig.5.9). This accumulator accomplishes one accumulation 

in 2 tfa time. Since the output of ail opérations using carry-save arithmetic is 

two numbers, the bi-operand accumulator is mostly used [Li87,San88]. 
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Fig.5.10 Quadri-operand accumulator. 

By the same token, we can design a quadri-operand accumulator as 

shown in Fig.5.10. This accumulator accumulâtes 4 numbers in only 3tfa, 

using a 6-2 Wallace-tree. This scheme can be generalized to an N-operand 

accumulator by using an (N+2)-2 W-tree and routing the 2 outputs to the top of 

the tree [Was82]. When N is large, the routing may become difficult and 

impractical. A good tradeoff is to use an N-2 Wallace-tree plus a bi-operand 

accumulator which avoids the long routing [Was82]. Another variant of 

interest is based on two N/2-2 W-trees plus a quadri-operand accumulator. 

This scheme allows double column design as in Fig.5.6. Ail the three alternate 

N-operand accumulator designs are shown in Fig.5.11. The first one is 

optimal in terms of delay but may be difficult to design. The other 2 schemes 

are suboptimal but very easy to design. Since the minimum number of CSA 

delays is not very sensitive to N (see Table.5.1), the third alternative may 

become optimal for certain values of N. For example when N=12, both the first 

and the third schemes hâve 7 CSA delays. 
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Fig.5.11 Three alternatives of N-operand accumulator. 

Some other schemes can be developed in the same manner: using m 

N/m-2 W-trees plus a 2m-operand accumulator. We may choose appropriate m 

to meet the best trade-off betwen the accumulation time and the complexity of 

design. 

In fact, ail multiplier-accumulators belong to the class of multi- 

operand accumulator. A multiplier alone can be also implemented using 

small multioperand accumulator recursion. For example when designing a 

64x64 parallel multiplier, the modified Booth's encoding results in 32 partial 

products. Using an eight-operand accumulator, the product can be computed 

in 4 cycles. 

5.5 Pipelined multiplier-accumulator and new schemes 

Pipeline is a popular technique to increase considerably the processing 

speed. The state-of-the-art IC technology allows larger and larger scale 

intégration. The current criterion for optimal IC design is whether the circuit 

minimizes the value of AT2. A is the chip area while T is the clock cycle 

period.. This criterion largely favors reducing T or increasing the functional 

frequency at cost of increasing the chip area. For example a réduction in T by 2 

times may justify the increase in A by 4 times. 
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Hence when latency is not critical, such a criterion is always 

encouraging to insert pipeline registers in order to maximize the processing 

speed. 

When pipehning the schemes presented before, the minimum T we 

can reach is 2tfa, using the bi-operand accumulator. Previous works 

[And67,Li87,San88], as shown in Fig.5.12, did not exceed this limit. The lower 

bound of T is limited by the number of CSAs in the accumulation loop. 

Fig.5.12 Pipelined 8-operand accumulator. 

Further improvement of the lower bound of T dépends on reducing the 

number of CSAs in the accumulation loop. We propose some new scehmes 

having only one CSA in the loop. 
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Fig.5.13 Pipelined bi-operand accumulator with 4 outputs. 

A rather direct approach makes use of two uni-operand accumulators 

as shown in Fig.5.13. This bi-operand accumulator accumulâtes a séries of 

numbers into 4 numbers. The minimum cycle time is reduced to tfa. 

Theoretically, an N-operand accumulator can be constructed using N uni- 

operand accumulators so that the minimum accumulation cycle time is 

lowered to tfa. But it results in more complex final adder design. Then it is 

often of interest to use a CSA array or W-tree to sum up N operands to 2 

numbers followed by a bi-operand accumulator. 

An alternative to that in Fig.5.13 is shown in Fig.5.14. It can 

accumulate as fast as that in Fig.5.13 while the resuit is represented by only 

three numbers. The final adder can be thus simplified. 

Fig.5.14 Pipelined bi-operand accumulator with 3 outputs. 
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5.6 Remarks 

This chapter has been concerned with the arithmetic aspects in 

designing fast multiplier-accumulators, including: réduction of the number of 

partial products by the modified Booth's encoding; carry-save adder array and 

Wallace-tree; fast accumulators. We hâve proposed a compact yet regular 

design to implement Wallace-tree, overcoming the general belief that the W- 

tree is not practical [Vui83,Mon88]. New accumulators are presented which 

allow to realize the fastest accumulation, while bit-level pipeline is introduced 

[Hat88]. 

Wallace-tree and CSA array represent the two ends of the spectrum of 

N-operand summing operators: one requires the least delay with the most 

irregularity for design while the other does the contrary. There are many 

other types of summing tree meeting différent delay/regularity tradeoffs, for 

example the 4-2 tree [Li88,San88] and the balanced delay tree [Zur86,Mon88]. 

The competitivity of thèse trees benefits largely from their regular design. 

Since our technique allows to improve the design of Wallace-tree, we believe 

that the Wallce-tree is always a good candidate for summing operator design. 
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Chapter 6 

New results on the distributed arithmetic 

implementation of FIR fîlters 

The distributed arithmetic is an efficient bit-serial technique to 

implement FIR filters [Cro73,Pel74,Bur77] or scalar products. Its principle is 

to precompute the 2L possible sums of coefficients of a filter and to store them 

in a 2L-word ROM, given L the number of filter coefficents. At the output of 

ROM, a shift-accumulator adds B times partial sums to compute an output of 

the filter where B is the number of bits of each input. 

This chapter describes several new structures which improve 

significantly the computing speed and hardware requirement when 

implementing an FIR filter by distributed arithmetic. Thèse structures are 

characterized by the following aspects: 

-fast accumulation; 

-without ROM; 

-massive use of carry-save adders and Wallace-tree; 

-regular architecture allowing easy pipeline until bit-level; 

-reduced number of computing cycles per output. 

Usually, one accumulation is équivalent to one addition. By applying 

fast accumulation technique presented in the Chapter 5, we can largely reduce 

the time of one accumulation and to perform one addition per output instead of 

B additions. 

The ROM occupies very large chip area and is often the bottleneck of 

computing speed. By decomposing the ROM into smaller ones, we reduce the 

hardware requirement and increase the speed. Ail the outputs of the small 

ROMs need to be summed. In the extrême case of ROM décomposition, only 

the coefficients are stored. The computing part is totally composed of parallel 

adders. The adder-based architectures are parti cularly investigated in this 

chapter. Ail the adders are the carry-save ones, instead of the carry- 
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propagation adders. Wallace-tree, an efficient technique usually used in 

designing hardware multiplier, is applied in thèse architectures. 

We will show also how to pipeline, as well as to exploit concurrency in 

thèse architectures. The pipeline may be massively and easily used in the 

presented architectures until bit-level. The resulting architectures keep a 

great regularity which facilitâtes implementations. 

The conventional scheme computes one output per B cycles. Then we 

propose to apply the modified Booth's encoding (MBE) to reduce the number of 

computing cycles per output to B/2 (B even) or (B+D/2 (B odd) while requiring 

only a few additional hardware. The filtering speed can be thus doubled. When 

the coefficients are fixed for a dedicated application, further simplification can 

be achieved in a systematic manner. 

Linear phase FIR filters hâve symmetric coefficients. Such symmetry 

can resuit in important réduction of hardware requirement. But 

straightforward implementation needs one more computing cycle, i.e., (B+l) 

cycles per output. A new encoding technique is introduced to eliminate the 

extra cycle, requiring B cycles per output as usual. We will also apply the 

pipeline to the design of symmetric FIR filters. 

Although the distributed arithmetic is originally a bit-serial technique, 

it allows bit-parallel implementation as well [Li88]. The parallel 

implementation will be dealt with. The new encoding technique is very 

attractive for parallel design of linear phase FIR filters and shows better 

performance than other alternatives. 

6.1 The principle of distributed arithmetic 

In this section, we give a brief review of the principle of distributed 

arithmetic implementation of FIR filters. 

The FIR filtering is to compute the following opération : 

L-l 

Yn= Shixn-i n = 0, 
i=0 (6.1) 
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where {hj} are filter's coefficients and lxi) the inputs. Suppose input signal 

samples are coded in 2's complément of B bits: 

B-i 
_k 

i0 k = 1 ik *k (6.2) 

this gives 

L-i B-i 

1=0 k=l 

L- B-l L-i 

=- 
yh.x . 

+ y ( yh.x .j2~ 
i = k=i i = (6.3) 

Since (x^, k} are binary numbers, a partial sum Pk of weight 2-k 

L-1 

k 0 1 L- l 
1=0 î n-ik (6.4) 

Fig.6.1 FIR filter structure by distributed arithmetic 
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is a function of L binary variables lxn.j ^ i = 0,1,....L - 1}. If the 2L possibles 

values of the function are stored appropriately in a lookup table or in a ROM, 

by addressing the ROM with the L binary variables, we get the correspondant 

partial sum. A FIR filter can be thus implemented as shown in Fig.6.1. The 

addressing of the ROM is performed from the least significant bit (LSB) to the 

most significant bit (MSB) of each input sample (we can do it also from MSBs 

to LSBs). The partial sums of different weights are shifted and accumulated 

following eq.(6.3). One filter output is thus produced every B cycles. While the 

MSBs are addressing the ROM at the Bth cycle, the output of ROM should be 

complemented by 2 before accumulation according to the first term in eq.(6.3). 

If L is large, the 2L-word ROM would not only cost too much hardware 

but also limit the computing speed. An interesting way is to divide it into two 

2L/2- word ROMs and to accumulate the outputs of two ROMs to form a partial 

sum [Bur77]. By analogy, each 2L/2-word ROM can be further divided into 

smaller 2L/4-word ROMs. After each dividing one more adder is needed to 

combine the outputs of two smaller ROMs. 

6.2 New structures of gênerai FIR filters 

This section présents some new general FIR structures while linear 

phase FIR filter structures will be found in section 6.3. 

6.2.1 Fast accumulation 

The results in the last chapter apply directly to increasing the 

computing speed. 

Using the uni-operand accumulator, we can improve at once the 

scheme in Fig.6.1. While the ROM is divided into two smaller ROMs, we 

should accumulate the partial sums two by two. Then a fast bi-operand 

accumulator can be applied to this case, as depicted in Fig.6.2. 

The further décomposition of ROM is still feasible in order to decrease 

the chip area and to increase the speed. Suppose the ROM is decomposed into 

N smaller 2L/N-word ROMs. Then N partial sums should be accumulated 

together. N-operand accumulator, as presented in the last chapter, can be 

used. 
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Fig.6.2 ROM dividing and fast accumulation 

Ail thèse fast accumulators resuit in two numbers after B 

accumulations. Hence only one additon is needed to sum up the two numbers 

every B cycles. The final adder can be simplified using bit-serial approach. 

6.2.2 Adder-based structures 

In the extrême case of ROM dividing, only the coefficients are stored. 

Ail the computing part is composed of adders. A rather simple and regular 

structure (Fig.6.3a) using carry-propagation adder (CPA) is proposed in 

[Duh88]. By using carry-save adder (CSA), a more efficient structure can be 

obtained, as shown in Fig.6.3b. In this configuration one accumulation takes 

time of Ltfa (L is the filter's order) which is proportional to L. 
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Fig.6.3 Adder-based FIR filter structures 

We can regard the problem as an L-operand accumulation. Then we 

can use a fast L-operand accumulator as the computing part. Wallace-tree is 

applicable to the problem, especially in case L is not too large. When L is very 

large, the design of W-tree becomes defficult. 

In order to increase the speed, we should exploit the concurrency. 

Pipelining can be easily introduced to the structure in Fig.6.3b. Each pipeline 

in a carry-save array needs two latchs of word-length to store two outputs 

while only one bit register is needed to insert one stage of pipeline in the data 

array. 
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An extra advantage of pipeline is that a long filter is eut into several 

shorter sections. Then we can use smaller W-trees which is easier to design. 

An example using 14-to-2 Wallace-tree is given for a 48-tap filter structure in 

Fig.6.4. The time required by one accumulation is 6 tfa. 

Fig.6.4 Pipeplined structure with Wallace-trees. (filter length=48) 

An alternative to the scheme in Fig.6.4 is to insert pipeline every 6 taps 

while using direct carry-save array. Although the same speed can be reached, 

it requires more hardware and results in more latency. 
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While the latency is not critic, we can use the fully pipelined CSA 

array. A fully pipelined structure is given in Fig.6.5. The resulting maximum 

throughput of the filter will be fmax=l/(Btfa), given B the number of bits of an 

input. 

Fig.6.5 Fully pipelined structure 

A simple rearrangement may resuit in twice the speed in case without 

pipeline or halve the latency in case with pipeline (Fig.6.6). We can still 

increase the speed or reduce the latency by further dividing the CSA array. 

Then more efforts should be devoted to the design. 
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Fig.6.6 Concurrent filter structure. 

6.2.3 Using the modified Booth's encoding 

The modified Booth's encoding £ MBE) is a widely-used technique in 

designing fast multiplier. It allows to halve the number of partial products 

and the number of computing cycles per output, thus 2 times faster than 

conventional configuration. Détails can be found in the previous chapter. Hère 

we are interested in applying it to filter design. 

Then eq.(6.3) can be rewritten as follows under the MBE: 

Yn = Y, hi 2-1 1 (-2xn_ik + xn_.k+1 + xn_.k + 2)4-k 
i = 0 k = 0, k even 

= 2-1 Y 4 
Y (-2x ..+X � UJ.,+X � tJ.-)h. 

k = (Xkeven 1=0 (6.5) 

Then, the number of accumulations is halved and the speed can be 

increased 2 times. For a B-bit number, we obtain B/2 partial sums for B even or 

(B+D/2 for B odd. The structure based on the MBE is drawn in Fig.6.7. 
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Fig.6.7 Filter structure using 
the modified Booth's encoding (MBE). 

For a dedicated design, the filter's coefficients are constant. The 

scheme can be much simplified using the technique presented in [Mou89b]. By 

considering four possible combinations of two consécutive bits, we can write 

eq.(5.6) under four forms: 

P/0,0)=C 

p.(0, 1) = (SN) ED C 

PjaO)=(SN)0C 

P/ll)=NeC (6.6) 

Since S, N and C are the functions of three consécutive bits of X, the following 

équation may simplify the logic design: 

P/0, 0)=x. 

Pj(0, l)=x.(xi+1+xi + 2)+ Xi+ lXi+2 

Pjao) = x.exi+1©xi+2 
Pjai)=x.(xi+1+xi+2) (6.7) 
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The resulting configuration is without partial product sélection as shown in 

Fig.6.8. It can be a good candidate for both mask-programmable design and 

silicon compilation of custom VLSI FIR filters. 

Fig.6.8 Partial product génération when H is constant, (e.g. H=1.01001) 

6.3 Symmetric FIR filters 

Linear phase or symmetric filters are the most important ones of FIR 

filter family. This section centers on their structures. 

It is well known that linear phase FIR filters hâve symmetric 

coefficients. That means (suppose L even): 

hj^L-i-i; i = 0,l,...JV2-l (6.8) 

Then eq.(6.1) becomes a length-L/2 inner product, instead of a length-L 

one, plus L/2 additions. 

L/2-1 

1=0 (6.9) 

6.3.1 Direct implementation 

Since our approach is bit-serial, the L/2 additions can be performed by 

L/2 sériai adders respectively. The inner product is still computed as in 

general case using ROM [Pel76] as well as the techniques shown before: carry- 

save adders, W-tree and fast accumulation. 
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A sériai adder is nothing but a full adder plus a carry register. While 

the additions are computed bit-serially, one more bit register should be added 

to each input data register as the most significant one. It is initialised by sign 

extension. Then we need one more computing cycle , i.e., (B+l) cycles to 

compute one output. Fig.6.9 depicts a scheme for such implementation. 

Fig.6.9 Direct implementation of symmetric filter. 
The computing part is omitted.(fa=full adder) 

6.3.2 Using a new encoding 

In bit level, (X1+X2)H is written as follows: 

(XX+X2)H 
B-l 

(x 1,0 + x2,0 i=l U 2�1 
(6.10) 

(XI1+X24) take one of the three values: {0,1,2}. When X multiplies H, three 

partial products are possible: {0, H, 2H). 
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The génération of an effective partial product P(i)=(x]_�i+x2,i)H dépends 

on the value of (xi i+x2fi). So, we can encode the three values of (xi?i+x2,i) into 

two control signais: Shift S(i), and Null N(i). The truth table is given in 

Table.6.1. 

Table.6.1. Truth table of control signal génération for the new encoding. 

xy X24 S(i) N(i) 

Shift Null 

0 0 0 0 

0-1 0 1 

10 0 1 

1111 

From Table.6.1, we hâve the following relations: 

S = xi4X2,i 

N= xi,i+x2)i (6.11) 

For each bit of the effective partial product, it is determined as below: 

p. J (h., J h. J+1 )= (8h. J + Sh. ) J+ 1 N (6.12) 

This encoding results in B partial products as usual. Hence it requires B 

cycles to compute one output, one cycle less than former schemes at the cost of 

slightly more complex circuitry. The new encoding scheme is depicted in 

Fig.6.10. 
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Fig.6.10 Symmetric filter using the new encoding (NE). 
The computing part is omitted. 

When the filter's coefficients are constant in a dedicated design, 

further simplification can be reached in a systematic manner as that for the 

modified Booth's encoding as shown in Fig.6.8. We give below the 

corresponding relations: 

Pi (0, 0) 
= 0 

p J .(1, 0 ) = X 1,1 .©X . 2,1 = (X 1,1 . + X 2,1 .) X 1, 1 .X 2, 

p. J (1,1 (x i, + X 2-1 
.) 

(6.13) 

One control signal can be saved since it is équivalent to zéro (the ground). 

The same technique can be also extended to design antisymmetric 

filters with hi= - hL-i-i. In such case, the three possible partial products are 

{-H,0,H} and two control signais should be Complément and Null. 
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6^3 Pipelining 

It is of interest to pipeline the symmetric FIR filter structure. It is 

trivial to pipeline the adder array. As far as pipelining the input data is 

concerned, a small surprise is that no additional memory is needed. We can 

do that by simple shift. An example is shown to pipeline a 12-tap symmetric 

filter (Fig.6.11). Suppose each sample is coded in 8 bits. 

Fig.6.11 Pipelining the shift registers in symmetric filter. Fully 
pipelined computing part in (b) is omitted. 

While without pipeline, we should encode the bit pairs (11,0), 

(10,1)...(6,5). The positions of bits are indicated in Fig.6.11a. 

Since the partial products generated by bit pairs (11,0), (10,1) and (9,2) 

will be inputs of the carry save adder at the top row, the positions of thèse bit 

pairs remain unchanged. The pipeline is only applied to the partial products 

generated by bit pairs (8,3), (7,4) and (6,5) respectively. It is done by simple 

shifting bits 8 and 3 by one register along the data flow direction, bits 7 and 4 by 

two registers and bits 6 and 5 by three registers. After thèse shifts the wiring 
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becomes difficult. A regular arrangement is presented in Fig.6.11b to 

overcome this difficulty, resulting in easy wiring. 

6.4 Bi t-parallel implementation 

The modem IC technology allows to integrate more and more 

transistors. Then bit-parallel implementation of FIR filters becomes feasible. 

The distributed arithmetic technique can be easily adapted to such 

implementation. One example can be found in [Li88]. 

6.4.1 Bit-slice approach 

The distributed arithmetic technique is originally a bit-serial approach. 

If we suppose the input is coded in 1 bit, the filter structure can be simplified 

by using L registers of one bit, without touching the computing part. 

The eq.(6.3) can be written as 

B-i 
_k 

y =-y + y y 2 

with 
L-1 

y a k Y, h x k 
i = o (6.14) 

By taking Yn,k as the output of a 1-bit filter, we reconstruct the output of the 

initial filter through adding the outputs of the B 1-bit filters with appropriate 

shift (see Fig.6.12). Since ail the 1-bit filters are identical, we can repeat the 

same design. 

Using the modified Booth's encoding, the subfilters are no longer 1-bit 

filters but a little more complex. However, we need only B/2 or (B+D/2 

subfilters. About 50% of hardware (chip area, transistors, etc) can be saved. 

6.4.2 Symmetric FIR filters 

It is impossible to apply the bit-slice approach to the scheme using a 

sériai adder, because we can not split the initial filter into subfilters. In 

contrast, the scheme using the new encoding allows perfectly the spliting into 
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1-bit filters, so that we can take advantage of the symmetry in coefficients for 

bit parallel implementation. Hence it leads also to a saving of 50% of 

hardware. 

Fig.6.12 Bit-parallel filter structure by distributed 
arithmetic 

There are two ways of achieving 50% of saving above. Firstly, the MBE 

applies to ail kinds of filters with or without linear phase. Its application will 

prevent from taking advantage of the symmetry. Secondly, the new encoding is 

very suitable for benefiting from the symmetry. Which is better for a bit 

parallel symmetric filter design? Our conclusion is that the second is simpler 

since it enjoys an easier encoding than the MBE. 

6.5 Remarks 

We hâve presented several new FIR filter structures by the distributed 

arithmetic principle, both for bit-serial and bit-parallel implementation. 
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The time required by an accumulation is drastically reduced due to the 

fast accumulation. The distributed arithmetic structure is often characterized 

by using ROM. But the ROM occupies a large area if realized in VLSI and 

represents a bottleneck to speed. By extremely dividing the ROM we obtain an 

adder-based structure. This structure is mainly investigated. Carry-save, 

Wallace-tree and the modified Booth's encoding are shown to increase the 

speed and to reduce the number at computing cycles. We hâve shown also how 

to exploit the concurrency and to pipeline the structure. 

Symmetric FIR filter structures are also studied. A new encoding is 

proposed to take advantage of the symmetry, which allows efficient bit-serial 

implementation as well as bit-parallel one. 

A systematic simplification is proposed for custom VLSI design. The 

resulting configuration is very suitable for mask programmation and silicon 

compilation. 

Although the study is in the context of FIR filters, many presented 

techniques are applicable to the design of inner product computer and adaptive 

filters. 
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Chapter 7 

Conclusion and perspectives 

7.1 Conclusion 

This thesis has been concerned with the algorithmic and architectural 

aspects of implementing the finite impulse response (FIR) filter either in 

software or in VLSI. 

In the study of fast filtering algorithms, we hâve dealt with the réduction 

of arithmetic complexity or the number of arithmetic opérations while takmg 

into account the interaction between computer architectures and algorithms. 

A unified approach to dérive ail the FIR filtering algorithm has been 

proposed in chapter 2. It consists of formulation as polynomial products; 

interpolation; filtering; reconstruction by the chinese remainder theorem; 

overlap. By choosing carefully the decimating rate in the first step 

(formulation as polynomial products) and the interpolation points in the 

second step, we can dérive ail the variants of FIR filtering algorithms 

including the conventional ones. In the context of pseudocircularity, we hâve 

presented the FIR filtering algorithms as the diagonaliszation of a 

pseudocirculant matrix by rectangular matrices and proved the 

transposability and the equality of arithmetic complexity in both direct and 

transposed forms. Three most représentatives of conventional algorithms 

(Stockham, Agarwal-Burrus, Winograd) hâve been reviewed in the light of the 

approach, and some new possibilities hâve been presented in chapter 3. Next a 

class of algorithms of interest is studied in détail in chapter 4. Thèse 

algorithms not only reduce the number of arithmetic opérations but also 

maintain the multiply-accumulate structure which can be easily implemented 

in many ways. 

The second part is dedicated to the architecture of VLSI implementation 

of FIR filters. Our attention has been centered on the computer arithmetic, 

design regularity and high speed implementation. 



Chapter VII -116- 

Firstly, we hâve reviewed the fast arithmetic and concurrent structure 

in designing multiplier-accumulators in chapter 5. A number of innovations 

has been made on the modified Booth's encoding with a constant multiplicand, 

compact Wallace-tree layout and bit-level pipelined structure. New structures 

for implementing FIR filter in VLSI by distrbuted arithmetic are proposed in 

chapter 6. Our strength has been on the ROMless, carry-save adder based 

structure. The modified Booth's encoding are applied for reducing the number 

of computing cycles per output. Concurrency is largely explored using 

Wallace-tree and pipeline until bit level. Symmetric FIR filter structures are 

particularly studied, resulting in important savings in hardware 

requirement. A spécial encoding technique is suggested for computing 

opérations like (X±Y)H which are essential for symmetric filters. This 

encoding is not only suitable for efficient bit-serial implementations but shows 

high potential for bit-parallel ones. 

7.2 Perspectives 

Some directions for future research which seem important to us are 

proposed below. 

7.2.1 Multiprocessor implementation of FIR filters 

Recently multiprocessor implementations of FIR filters were studied 

[Mar86,Hay86]. It is shown that a length-L FIR filter can be implemented 

using NxN processors in a SIMD (single-instruction-multiple-data) manner. 

Each processor computes a length-L/N filter while N outputs of the filter are 

computed together. It is not surprising that the maximal throughput can be 

increased by a factor of NxN, since one output is computed in a time 

proportional to L/(NxN). 

However, the number of processors can be reduced using the algorithms 

in chapter 4. For example, an implementation in [Hay86] is composed of 4 

processors while each of them computes a length-L/2 filter. One processor can 

be saved using the radix-2 algorithm. Only 3 processors are needed while the 

throughput is always increased by a factor of 4. Higher radix algorithm may 

resuit in more savings. 

7.2.2 Application of fast FER filtering algorithms to LMS adaptive filters 
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The least-mean-square (LMS) adaptive filter [Wid60] plays an important 

rôle in many applictions. Block LMS algorithms hâve been proposed by Clark, 

Mitra and Parker [Cla81] to accelerate the computation while modifying the 

original functions. It adapts the filter coefficients every N steps instead of one 

adaptation per input while N is often greater than the filter's order. Then the 

product of a Toeplitz matrix and a vector can be computed by fast Fourier 

transform. It is claimed by the authors that similar performance is observed to 

that of the LMS adaptive filter. 

We can easily extend our FIR filtering algorithms to compute the BLMS 

for N^2 without transform, which is suitable for implementation on DSP's. 

However the comparison in [Cla81] was conducted using uncorrelated 

input noise. It is not sure if the daim is valid under other conditions. 

Neverthless no évidence is reported on the superiority of BLMS on the LMS. 

Récent study [Ben89] shows that the LMS filter outperforms largely the BLMS 

under some particular noise of interest. 

Then the application of BLMS seems limited if the same performance as 

the LMS algorithm is required. 

However, the LMS adaptive filter can be computed in a both fast and 

exact manner [Duh89], yet by block processing. In fact the BLMS is an 

approximation to the LMS while ignoring the high order (�2) autocorrélations 

of input signal. Such an approximation can be generalized to ignore higher 

order (�n) autocorrélations, resulting in an arithmetic complexity/efficiency 

trade-off. 

The complex LMS filter [Wid75] is required in the processing of high- 

frequency narrow-band signais. The complex FIR filtering algorithms in 

chapter 3 are evidently applicable to the computation of the complex LMS filter 

using the technique in [Duh89]. In case the block length equals 2, 56% of 

réduction in arithmetic complexity can be expected. 

7.2.3 Silicon compiler for FIR filter implementation 

Because the FIR filter is widely used in digital signal processing, it is 

désirable to generate an FIR filter for a given specification using high level 

language without redesigning ail the basic cells. It is very important since the 

prevailing custom designs are often required for high performance circuits. 
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We présent some considérations for a compiler using the architectures 

in chapter 6 as a model. We center our attention on the compilation of 

symmetric FIR filters. The following parameters should be taken into account: 

-input wordlength b: It 
( détermines 

the length of shift registers; 

-coefficient wordlength n: It détermines the width of carry-save adders 

while some guard bits should be anticipated in function of the absolute sum of 

ail the positive coefficients or of ail the négative ones. 

-degree of pipeline: It dépends on the required throughput. Using bit- 

level pipeline, the maximal throughput is 1/Obxtfa). tfa is the time required by a 

full adder. For b=8 and tfa=2ns (using 1 micron CMOS), fmax = 62.5 MHz with 

System clock frequency = 500 MHz. 

-latency: When the latency is critical, some techniques can be used to 

reduce the delay of System while maintaining high speed: such as combining 

the small Wallace-tree and pipeline (see Fig.6.4) or dividing the CSA array (see 

Fig.6.6). 

-programmability: For constant coefficients further réduction in 

material is achieved by using the équation (6.13) and the technique in Fig.6.8. 

-bit-serial or bit-parallel or in-between: The compiler should be able to 

increase the throughput of the filter by treating more than one bit per clock 

period. The task can be relieved by using the bit-slice design (see Fig.6.12). By 

doing so, it is also possible to lower the proportion between System clock 

frequency and the input sampling rate. 
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Appendix 

Fixed-point error analysis of short-length FIR 

filtering algorithms 

Digital représentation is just an approximation of values in reality. In 

digital computers, the values are approximated by a finite number of binary 

digits. The arithmetic operators therein can manipulate only operands of finite 

number of bits. The results of more bits than the length of internai register 

should be reduced. Such réduction is in general called quantization. 

From a point of view of implementation, it is important to know the 

characteristics of the quantization errors. In general, there are three sources 

of quantization errors: A/D noise, quantization of coefficients and quantization 

in arithmetic opérations. The A/D noise dépends on only the transfer function 

of the digital filter. It is already well discussed in the literature [Chan73]. 

Hence, we will study only the effect of the other two sources of errors. 

In the following, we first présent our assumption on the computing 

environment, the properties of noises and the manner of normalization on the 

the filter's s coeffcients. 

Then examples are given to establish the error models for the analysis in 

the algorithms. Both direct and transposed forms of algorithms are studied 

and compared. Further optimization is also pointed out. 

Finally, we présent the study on the effect of coefficient quantization in 

thèse algorithms and compared it to the direct implementation. 

1. Major assumptions 

As mentioned before, the short length FIR filtering algorithms are 

suitable for many implementations. A typical application is on the widely used 

Digital Signal Processors (DSP's). Then our analysis will be based on the 

characteristics of typical DSP's with 2's complément arithmetic. Suppose the 

wordlength of internai registers is b. Consequently, both input and coefficients 
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have b bits, as well as the output. Moreover most DSP's hâve an accumulator of 

at least 2b bits. Several garde bits are often provided to prevent from overflow 

[Lee88]. So we can consider that a multiply can be done in full précision. A 

scalar product by successive multiply-accumulation is also considered as in 

full précision if only the b most important bits of the 2b bits in the accumulator 

are retained by quantization. 

There exist three kinds of quantization in those DSP's [Mey89]: 

truncation, rounding and convergent rounding, where the third one performs 

rounding to nearest even number (i.e. 2.5-�2 and 3.5-�4). The convergent 

rounding is a hardware-implemented feature of Motorola's DSP 56000 signal 

processor. 

In Table. 1, the mean value Il and the variance cy2 of the error due to 

different quantization methods are listed for: 

a) scaling with 1/2 (one bit shift to the right). 

b) wordlength réduction of 2b bits to b bits. 

Table. 1 Mean and variance of the error for different quantization methods with 

2's complément arithmetic. Q=2-(b"1). 

a) b) 

H/Q o2/Q u/Q cr2/Q 

Truncation -1/4 1/16 -1/2 1/12 

rounding 1/4 1/16 0 1/12 

convergent rounding 0 1/8 0 1/12 

Ail the following quantizations are supposed to be rounding. This will 

not lost generality for other kinds of quantization error. 

It is assumed that the quantization errors at different locations or at the 

same location but at different instants are independent of each other. Ail 

errors are uncorrelated with the signal. Then the error variance at the output 

can be calculated separately for each error sources and the results superposed. 
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We suppose that the filter transfer fonction is normalized so that 

L-l 

S|hi| = 
i=o (1) 

The dynamics of input X(z) is limited to 1, namely, 1 xi I �1. By conséquence, we 

hâve the dynamics of output I yi 1 �1. 

2. Quantization error in direct FIR filter computation 

Since DSP's provide at least a 2b-bit accumulator, it is not necessary to 

quantize every resuit of data-coefficient multiplication. Only one quantization 

is performed at the output of the filter as shown in Fig.l. The mean and 

variance of error found in Table 1. For example, if rounding is performed, we 

obtain u=0 and cr2=Cd2=Q2/12. The subscript d means direct computation. 

Fig. 1 Quantization in direct FIR filter computation 

As for coefficient quantization error, we assume the transfer function 

H(z) is replaced by H(z)+N(z). It is easy to show that the corresponding error at 

output is X(z)N(z). This term is presented for the following comparison. The 

analysis in détail on this aspect can be found in [Chan73]. 

3.11iustrative example for error analysis in short-length FIR filtering 

algoritbms 

We give as an illustrative example an error analysis on the direct and 

transposed radix-2 algorithms. The same methods can be generalized to 

analyze other algorithms. 

3.1 Analysis for direct radix-2 algorithm 

We first establish an error model, as shown in Fig.2, for the analysis. eo 

is an error due to scaling by 1/2. Since ail the successive multiply- 

accumulations are supposed to be done in full précision, the only quantizations 

occur at the outputs of the subfilters Ho(z), Hq(z)+Hi(z), Hi(z), which are the 
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responsible of errors ei, e2 and e3 respectively. Let ê3 dénotes z-2e3 , i.e., the 

error in computing two previous outputs. It is also assumed that ê3 and e3 are 

uncorrelated and independent of each other. There are not scaling after the 

output addition since the output dynamics is limited to 1. 

Fig.2 Quantization model for direct radix-2 algorithm 

It is then easy to show 

Eo=e2+ê3 

El=2eo I Ho(z2)+Hi(z2) I +2ei+e2 + es (3) 

Since I Ho(z2)+Hi(z2) 51 after normalization, then Ei^2eo +2ei+ e2 + e3. 

The mean and variance of the error are respectively: 

u=E[(E0+Ei)/2] � E[eo +ei+ e2 + 03/2 + ê3/2]=Q/4 

21 1 Il 1 112 c 
16 12 412 412 

13 1 
2 

13 2 

3.2 Analysis for transposed radix-2 algorithm 

Transposing the signal flowgraph in Fig.2 does not change the transfer 

function but the procédure of computing as well as the location of quantization 

as shown in Fig.3. 

eo and ei are roundoff errors due to the scaling by 1/2. e2, e3 and e4 are 

the roundoff errors at the outputs of the subfilters. At the output, we get: 

Eo=2(e0!Ho(z2)l+e2)+e4 

Ei=2(eilH1(z2)l+e3)+e4 
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Noting 1 H0(z2) + 1 Hl(z2) 1:91 and I H0(z2) 1 2+ I Hi(z2) 1 2�1, we obtain then the 

mean and variance of errors at the output: 

u=E[(E0+Ei)/2]=E[e0 1 H0(z2) I +ei I Hi(z2) 1 +e2+e3+e4 ] £ Q/4 

2 1 1 2 15 1 2 15 2 

Fig.3 Quantization model for transposed radix-2 algorithm 

3.3 Consideration for reduction of errors 

Both direct and transposed radix-2 algorithms produce more errors than 

conventional implementation. This is the price we should pay for reducing the 

number of opérations. Moreover the transposed algorithm générâtes slightly 

more errors than direct one does. However by carefully examining the 

procédure of computation and the amplitude of the subfilters' transfer 

function, we can further reduce the quantization error. 

Firstly, in the direct radix-2 algorithm as shown in fig.2, we can 

compute the filters HOCz2) and HlCz2) before Ho(z2)+Hi(z2). The outputs of Ho(z2) 

and HlCz2) are quantized and saved in b-bit registers while the output of 

Ho(z2)+Hi(z2) in the 2b-bit accumulator. Hence the quantization can be 

performed after the scaling by 2 and after the addition with the other two 

terms. Then Ei is modified as: 

El=2eo I Ho(z2)+Hi(z2) I +ei+ e2 + e3 

The variance is changed accordingly: 

16 12 412 412 412 

= TT2 Q = 2 ad 
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Similar considération is given to the computation of the transposed 

algorithm. We first compute the subfilter Ho(z2)+Hi(z2) and save the output in 

a b-bit register after quantization. For computing yo, we can calculate the 

output of HOCz2) and quantize it after scaling since it is located in the 2b-bit 

accumulator. By adding it with the output of Ho(z2)+Hi(z2), we get yo+Eo. We 

can compute yi in the same way. Then 

Eo= 2eo 1 Ho(z2) I +e2+e4 

El= 2ell Hl(z2) I +e3+e4 

Then the variance becomes: 

21 Il 111291292 �16 412 412 12 772 Q = 4 ad 

After optimization, we find that the transposed algorithm is slightly 

better than the direct one (9/4 compared to 5/2). Compared to the conventional 

implementation, one more bit allocation is largely sufficient for reducing the 

error to the same level. 

We note that the scaling errors due to input additions generate always 

the same mean (Q/4) and variance (Q2/16) in both direct and transposed 

algorithms. Whether this can be generalized to higher-radix algorithms 

should be further examined. 

3.4 Error analysis for quantization of coefficients 

After quantization, the transfer fonctions of subfilters are approximated 

by Ho+No, Ho+Hi+Ni, Hl+N2, as assumed in [Vet88]. Then the algorithm 

becomes 

Y0=Xo(Ho+No)+z-2Xi(Hi+N2) 

Yi=(Xo+Xi)(Ho+Hi+Ni)-Xo(Ho+No)-Xi(Hi+N2) 

The computation of Yo is équivalent to conventional implementation. But that 

of Yi is different. We can further develop the computation of Yi as: 

Yi=(Xo+Xi)(Ho+Hi)-XoHo-XiH0+Xo(Ni-No)+Xi(Ni-N2) 

while the conventional computation is équivalent to the following: 

Yi=Xo(Hi+N2)+Xi(H0+N0) 
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=XoHi+XiHo+X0N2+XiNo 

The error éléments in two différent computations are respectively: 

Xo(Ni-No)+Xi(Ni-N2) and X0N2+X1N0. Assume that No, Ni and N2 hâve the 

same variance. Then the first term has greater dynamic range than the second 

one. It means that the radix-2 algorithm is more sensitive to the coefficient 

quantization effect than the conventional computation. 

4. Conclusion 

The quantization effects are analyzed for the short length FIR filtering 

algorithms. The analysis is based on the radix-2 algorithm. But the 

methodology can be generalized to the analysis of higher-radix algorithms 

without difficulty. We found that the radix-2 algorithm needs no more than one 

more bit to reach the same error level as conventional computation. The 

transposed and direct algorithms generate nearly the same error. The 

procédure of computation has important influence on the error level. Further 

réduction of error can be performed by efficient use of the 2b-bit accumulator. 

Using double précision computation may reduce once more the errors. The 

double précision is only necessary in the output additions. Then the cost in time 

may not be important. 

An observation is that the radix-2 algorithm results in an increased 

sensibility to coefficient quantization effect than conventional computation. 
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FILTRAGE RIF RAPIDE 

ALGORITHMES ET ARCHITECTURES 

lJntroduction 

Nous commençons par rappeler différentes représentations du filtre 

numérique à Réponse Impulsionnelle Finie ou du filtre RIF. 

Une première représentation possible est celle en produit scalaire: 
L-1 

Y. = 14 «=0,1,...,00 
(1) 

ou en notation vectorielle: 

4 

� 

Ia-J (2) 
L étant l'ordre du filtre (nombre de coefficients). 

La transformée en Z de l'eq.(l) fournit une deuxième représentation : 

Y(z)=H(z)X(z) 
(3) 

ou 

= (h0 + hlz-x +h1z~2 + ... +hL_lz~L+l){xQ +x,z-1 +x2z'2+...) 

On remarque que l'équation (4) est le produit d'un polynôme de degré (L-l) et 

d'un autre d'ordre infini. 

Les graphes de fluence fournissent une troisième représentation 

graphique (voir Fig.l). 

Fig.1 Le filtre numérique à réponse impulsionnelle finie (RIF). 
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Ces trois représentations seront utilisées tour à tour dans la suite de ce 

texte. 

Le filtre RIF joue un rôle très important dans le traitement numérique 

du signal. Il possède un ensemble de propriétés intéressantes: 

1) il permet le filtrage à phase linéaire; 

2) Il est toujours stable; 

3) On peut le réaliser facilement; 

4) il permet d'approximer une réponse frequentielle quelconque. 

Mais son défaut majeur est la grande quantité de calcul qu'il représente. 

Il nécessite souvent la charge de calcul principale dans beaucoup de systèmes 

de traitement du signal. 

Depuis la redécouverte de la transformée de Fourier rapide (FFT) 

[Coo65] de nombreux algorithmes permettant de réduire la charge de calcul 

ont été mis en évidence. L'algorithme par convolution cyclique utilisant la FFT 

[Sto67] est le plus connu. Des algorithmes ne faisant pas appel à la FFT ont 

également été proposés [Aga74,Win80], leur intérêt étant de permettre un 

calcul plus efficace des filtres de longueur moyenne (�64). Tous ces 

algorithmes ont pour objectif de réduire le nombre de multiplications dont le 

temps d'exécution était beaucoup plus important que celui d'une addition dans 

les processeurs à usage général à l'époque où ils ont été proposés. 

L'évolution de la technologie semiconducteur a bouleversé le monde 

scientifique. Nous avons aujourd'hui des nouveaux moyens de calcul beaucoup 

plus puissants, plus flexibles ou bien plus spécialisés qu'il y a seulement 

quelque années. Cette évolution est en train de changer la façon dont nous 

appréhendons la complexité de calcul. Par exemple le temps d'une 

multiplication n'est plus dominant dans les calculateurs à usage général. 

D'autre part, les processeurs de traitement numérique du signal (DSP's) 

récemment apparus présentent un certain parallélisme: une multiplication 

plus une accumulation coûte seulement un temps de cycle c'est à dire le même 

prix qu'une multiplication ou une addition toute seule. La différence entre le 

critère ayant conduit à proposer les algorithmes classiques de filtrage RIF et le 

type de machines sur lequel ils sont maintenant le plus souvent implantés 

explique qu'ils ne soient véritablement efficaces ni sur ces DSP ni en circuits 

intégrés (VLSI). 
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C'est pourquoi il est nécessaire de rechercher de nouveaux algorithmes 

qui tiennent compte de l'architecture des processeurs. Nous avons aussi besoin 

de nouvelles architectures de filtre RIF qui permettent d'une part une 

implantation facile en VLSI et d'autre part un traitement rapide, les 

fréquences d'échantillonnage des signaux à filtrer ne cessant pas de croître. 

Notre objectif est donc de rechercher, d'une part, de nouveaux 

algorithmes qui non seulement réduisent la complexité de calcul mais aussi 

maitiennent la structure 'multiplication-accumulation', et d'autre part, de 

nouvelles architectures, pour l'implantation en VLSI, pouvant servir de 

support à ces algorithmes , mais permettant également l'intégration efficace 

d'un filtre quelconque. 

Dans la présentation suivante, les deux parties correspondantes 

'algorithmes' et 'architectures' sont précédées d'un exemple simple 

permettant de se rendre compte qu'un tel objectif est réaliste. 

2. Exemple 

Supposons que nous calculons 2 sorties successives d'un filtre RIF à L 

coefficients, avec L pair: 

ho 

y* Xn Xn-l Xn-2 ��� Xn-LYl Xn-L+1 "2 

.yn-l-i LXn-\ Xn-2 Xn-Î ���Xn-L+lXn-L -I 

Réarrangeons l'ordre dans lesquels les calculs sont effectués dans l'eq (5), et 

regroupons les termes pairs et impairs des coefficients : 

yn Xn-\ Xn-3 � � � Xn-L+l Xn X"-2'" X"-L+2] hL-1 

Jn-l -I LXn-2 Xn-4 � � X,,-L Xn-\ Xn-3 � ' ' Xn-L+l "0 

lA-2J (6) 
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Ce regroupement, en ce qui concerne le signal d'entrée est équivalent à un 

sous-échantillonnage à cadence 1/2, les deux signaux sous-échantillonnés 

étant traités simultanément. 

Définissons: 

A = \Xn-\ Xn-S � � � Xn-L+l ) 

ho Il¡ 

h2 � 

B = 
(xn_2 xn_A ... xn_L) Ho = . 

Hx = . 

hL-2 1A-1- 

C = (x" Xn-2 � � � Xn-L+2 ' 
(7) 

Donc, l'équation (6) devient: 

"y, 
A 

cl 
[::] 

'A(H0 + Hx)- (A -OH,' 

A(H, + H,) + (B-A)H,\ 

Et l'eq. (8) montre que deux produits scalaires de longueur L peuvent être 

calculés à l'aide de trois produits scalaires de longueur L/2. Comme les 

coefficients du filtre sont fixes et connus, nous pouvons calculer (H0+H1) avant 

le filtrage. (A-C) et (B-A) sont des additions (On considère une soustraction 

comme une addition.) entre 2 échantillons successifs. La plupart d'entre elles 

sont réutilisables pour calculer les sorties suivantes à l'exception de (xn_L+i-xn. 

L+2) et (xn-L-Xn-L+l). En d'autres termes, seules deux nouvelles additions (xn- 

Xn+l) et (xn+i-xn+2) sur les échantillons entrées sont nécessaires pour calculer 

les deux sorties suivantes (Yn+l,Yn+2). Deux additions supplémentaires, 

nécessaires pour combiner les trois produits scalaires suivant l'équation (8), 

fournissent les sorties désirées. 

La complexité initiale de calcul d'un filtre RIF de l'ordre L est: 

1 produit scalaire de longueur L par sortie 
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soit L multiplication-accumulations (MACs) par sortie. 

Par l'algorithme décrit dans l'équation (8), la complexité de calcul devient: 

3 produits scalaires de longueur L/2 + 4 additions pour 2 sorties 

soit 3L/4 MACs + 2 additions par sortie. 

Donc, cet algorithme a réduit le nombre de MACs de 25% par rapport au 

calcul direct. 

Le graphe correspondant à l'équation (8) est donné en la figure 2: Trois 

filtres de longueur L/2 à vitesse réduite d'un facteur 2 remplacent un filtre de 

longueur L. Ces trois sous-filtres attendent 2 échantillons d'entrée avant de 

calculer 2 sorties du filtre initial. Il s'agit donc un traitement par blocs de taille 

2, corne peut le montrer également l'équation (5). 

Fig.2 Un filtre RIF de longueur L par trois filtres de 

longueur L/2 

Les caractéristiques essentielles de cet exemple sont les suivantes: 

1) Un filtre quelconque peut être calculé par des filtres de longueur plus petite 

et de cadence réduite; ou bien encore, il est possible d'utiliser des filtres de 

longueur et de vitesse identiques pour construire un filtre de longueur plus 

longue et de vitesse plus grande. 

2) Une réduction de la charge de calcul a été possible sans "casser" 

complètement la structure de calcul habituelle des filtres RIF, structure qui est 

très facile à implanter. 
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Le chapitre suivant présente une approche permettant de dériver les 

algorithmes de filtrage RIF de manière systématique, et on montrera que les 

algorithmes rapides classiques peuvent s'obtenir également dans le même 

cadre. 

3. Approche unifiée pour les algorithmes de filtrage RIF rapide 

Dans cette section, on montre que les algorithmes rapides de calcul des 

filtres RIF peuvent se décomposer en trois étapes: 

1) Formulation du filtrage comme un produit polynomial; 

2) Calcul rapide de ce produit polynomial; 

3) Recouvrement. 

Nous allons présenter chacun de ces points l'un après l'autre. 

3.1 Formulation en produit polynomial 

Reprenons l'équation (4) qui est déjà un produit polynomial. Mais l'un 

des deux polynômes à multiplier est d'ordre infini, ce qui rend difficile le calcul 

rapide du produit. En sous-échantillonnant le signal d'un facteur N, et en 

décimant le fonction de transfert du même facteur, nous obtenons un produit 

polynomial de deux polynômes en z-N à coefficients eux même polynomiaux . 

Y0+Ylz-1 + ... + YN_lz-N+l 

= (H0 0 + H lZ -1 +... + #�_lZ-"+1)(X0 + X1z"1 + ... + X�_1z-"+1) (9) 

où 

Y; = Y; (Z-N) Hi^Hi(z-N) X,.=X,.(z-w) 

- 00 LIN-1 

k=O k=O k=O 

L'avantage de cette présentation est que les deux polynômes facteurs ont 

maintenant le même degré (N-l). En fait, la décimation d'un facteur N 

permettra de travailler sur un bloc de signal de taille N indépendant de lataille 

du filtre et de réduire de manière correspondante la charge de calcul. En effet, 

ayant obtenu une formulation en produit polynomial de degré fini, nous 

pouvons appliquer des algorithmes rapides pour le calculer. La dérivation de 
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ceux-ci est en général fondé sur le théorème des restes chinois (TRC) que nous 

allons maintenant présenter. 

3.2 Théorème des restes chinois 

Ce théorème se trouve dans une oeuvre chinoise de mathématiques qui 

date de l'année 100. A titre anecdotique, la figure 3 montre le théorème en 

chinois. 

Fig.3 Le théorème des restes chinois en chinois 

Une anectode liée à ce théorème raconte que le général Han Xin, l'un des 

fondateurs de la Dynastie Han (206 av. J.C.-220 ap. J.C.), comptait ses soldats 
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d'une manière particulière. Il demandait à ses soldats de se regrouper par 

paquets d'abord de 3, puis de 5, et enfin de 7. Au lieu de compter le nombre de 

paquets, il ne retenait que les restes. A partir de ceux-ci, il savait calculer le 

nombre total de soldats. Si l'anectode s'avère exacte, la date de naissance du 

TRC est plus ancienne que l'oeuvre mathématique citée ci-dessus . 

Ce théorème fait partie a priori de la théorie des nombres. Son énoncé est 

le suivant: "Etant donné les restes d'un nombre inconnu x modulo des 

nombres premiers entre eux mutuellement, nous pouvons reconstruire x 

modulo le produit des nombres premiers en cause". La figure 4 interprète le 

TRC. 

THEOREME DES RESTES CHINOIS 

Fig.4 Le théorème des restes chinois. 

Le TRC s'étend aussi à l'anneau des polynômes. Son énoncé est alors 

strictement parallèle à celui ci-dessus, mais nous donnons ici plus de détails 

car c'est cette version qui nous sera la plus utile. 

Théorème des Restes Chinois: Etant donné un anneau de polynômes modulo 

P(z) et 

P(z) = YlPi(z) 
i=l 

(10) 
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(Pi(z)} sont mutuellement premiers entre eux. Tout polynôme Q(z) est connu 

modulo P(z) en fonction de ses restes mod pi(z) par l'équation suivante : 

ÛWs^Wî^) modF(z) 

où 

�7,(z) Q(z) modpi(z) ; ce sont les 'restes'. 

T, (z) = mod p, (z) ; ce sont les polynômes de reconstruction. 

= 0 mod pj(z) for j * i. 

Remarque: si l'ordre de P(z) � celui de Q(z), le résultat de la reconstruction est 

unique et égal à P(z). 

3.3 Calculer un produit polynomial par le TRC 

A partir de l'équation (9), soit 

Q(z) = Rx(z)R2(z) 

= (H0+Hlz+... +HN_lzN-1)(X0+Xlz + ... + XN_1zN-1) 
(12) 

En général, on choisit un polynôme P(z) complètement factorisable en termes 

du premier degré: 

Pi(z) = z - ai 

Les {Pi(z), i=0,...,K} sont premiers entre eux si les constantes {ai} sont 

distinctes. Une évaluation de polynôme modulo (z - ai) est équivalent à une 

interpolation. Et donc, 

Q(z) mod (z - at) 
= Q(ai) 

= Rl (ai) Rz (a) 

Pour que Q(z) soit unique, 2N-1 points sont nécessaires. On choisit les (ai) tels 

que le calcul soit simple. Les points les plus simples sont {0,1,-1,°°}. 

Les {Ri(ai)} sont calculés avant le filtrage. Ils sont des polynômes en z-N 

de degré L/N-1. Les {R2(a¡)} sont les combinaisons des signaux sous- 

échantillonnés. Ils sont à calculer. Chaque "reste" Q(ai) est obtenu par 

multiplication de Rl(ai) et R2(ai). Tenant compte du fait que Rl(ai) et R2(ai) 
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sont eux même polynômes en z-N, cette multiplication est équivalent à un 

filtrage à cadence 1/N. 

3.4 Reconstruction 

Pour la reconstruction, calculons d'abord 

Tt= � � où P(z)=T\P(z) = V[(z-ai) 

Ensuite, appliquons le TRC: 

Q(z) = Rl(z) R2(z) 

= (H0+H1z+... +HN_lzN-1)(X0+Xlz + ... + XN_lzN-1) 

= C0 + Cyz + ... + C N-IZ N-l +... + Cw_2z2»~2 
(15) 

Nous obtenons ainsi le polynôme Q(z) qui est caractérisé par ses 2N-1 

coefficients {Ci}. Mais ceux-ci ne sont pas les sorties du filtre. Les sorties sont 

calculé à partir de {Ci} par une opération baptisée "recouvrement" (overlap en 

anglais). 

3.5 Recouvrement 

Par les équations (9) et (15), il est évident que: 

Y0+Ylz-l + ...+YN_lz-N+l 

Et les sorties (Yi) s'obtiennent facilement par identification: 

Yl =Ci+z-NCN+i i=0,l,...,N-2 
(17) 

L'équation (17) est caractéristique d'un schéma appelé habituellement en 

anglais "overlap-add" dans le cas de calculs par FFT. Nous donnons ci-dessous 

un schéma général pour les algorithmes rapides de filtrage RIF faisant 

apparaître toutes les étapes nécessaires à leur construction: 
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Fig.5 Le schéma général des algorithmes rapides RIF 

3.6 Convolution pseudocyclique 

Si l'on écrit de manière matricielle l'ensemble des relations entre entrée 

et sortie du filtre sur la longueur du bloc considéré, on obtient: 

TY 1 Ho Hi HN-llrV 
YN-2 Z HN-1 Ho .. 

XN-2 

... H, 

Qui fait intervenir une matrice dite "pseudocyclique". Une autre manière 

d'expliquer tous les algorithmes rapides connus est de dire qu'ils 

'diagonalisent' la matrice pseudocirculante, avec une éventuelle augmentation 

de la dimension de la matrice diagonale. 

A l'aide de cette formulation, on peut montrer qu'il est possible après 

permutation des entrées et sorties d'obtenir des algorithmes transposés 

réalisant une fonction de transfert identique et nécessitant la même complexité 

arithmétique. 

Les algorithmes transposés appartiennent alors à une autre classe 

connue sous le nom d' "overlap-save" dans le cadre des algorithmes 

classiques. 
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4. Les algorithmes classiques dans le cadre de l'approche 

Nous étudions, dans le cadre de l'approche proposée ci-dessus, la 

dérivation des algorithmes classiques, en montrant leurs avantages et 

inconvénients. 

4.1 Algorithmes par FFT 

On choisit: N � L 

(Tzo + V1 + h, -,z -'+')(x 0 +xi z-i '+XN-IZ 

et les points d'interpolation sur le cercle unité 

ai = exp(-;'� � ); K=N + L-l 

L'interpolation aux points ainsi choisis est alors équivalente à une DFT de 

longueur K. Souvent on choisit: K=N+L-1= 2M, parce que la 2M- DFT se 

calcule efficacement. 

Fig.6 Les algorithmes de filtrage RIF par FFT 

4.2 Algorithmes de Agarwal-Burrus 

On choisit: N�L 

Yo + Yiz+. - -+YL-i ZL-1 
= (ho + h1z+...+hL_lzL-l)(X0 + Xlz+...+XL_lzL-1) 

(20) 
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Après regroupement par blocs 

[(h0+hlz+...+hU2_l zLI2-l)+zU2(hLI2+...+hLA zLI2-')]x 

Soit 

(Go + Gi zL/2 ) (F0 + Fi ZL/2 ) 

Rappelons l'algorithme pour le produit de 2 polynômes du 1er degré dans 

Fig.7. 

(xo + xiz) (ho + hiz) 

= c 0 + C 1 z + C 2 z 2 

point s d' int erpolations: ai 
= {0, l,°o} 

CQ: xoho 

c i: (xo + xi) (ho + hi) - xoho - xihi 

C2: xlhl 

Fig.7 L'algorithme pour le produit de 2 polynômes du 1er 

degré. 

Appliquons cet algorithme comme suit: 

(Go + Gl zL/2 ) (Fo + Fi ZL/2 ) 

= GoFo + [(Go+ Gl) (Fo+Fi) - GoFo- GiFi] zL/2+ GiFiZL (22) 

Réitérons-le sur les termes suivants qui sont encore des produits de polynômes 

mais de degrés plus faibles: 

GoFo, (Go+ Gl) (Fo+Fi), GiFi 

C'est donc une interpolation récursive utilisant {0,1,°°} comme points 

d'interpolation. 
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Fig.8 Les algorithmes de Agarwal-Burrus 

4.3 Algorithmes de Winograd 

L'exemple le plus simple est le suivant où L=N=2: 

I 1 rX"-1 x" II 1=1 I 

Ly-lJ U-2 *»-lJUJ Un-l(^+^))+Un-2-^-l)^j 
(23) 

C'est le transposé de l'algorithme qui calcule le produit de deux polynômes du 

premier degré. 

Quand N � L, nous devons calculer le produit d'une matrice Toeplitz et 

d'un vecteur: 

hn 1 ["xn_L+1 � � � *�_! xn 1 r Vi 1 

hn-l 1 U-L Xn-L + l Xn-l 1 hL-2 

.^n-i+lj \_Xn-2L+2 X.-L Xn-L+\j\_'h 
(24) 

En partitionnant la matrice : 
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rell rFO FllTGll 
1 1=1 Il 1 
LEOJ LF2 FoJLgoJ 

Nous obtenons: 

\E\~\ r^0(Gl + G0)-(F0-Fl)G0l 

LEOJ [F0(Gl + G0) + (F2-F0)GlJ 
(25) 

Pour réduire davantage la complexité arithmétique, on peut appliquer la 

même procédure récursivement sur les termes suivants: 

FO(Gl+GO), (FO-Fl)GO, (F2-FO)Gl 

Les algorithmes de Winograd sont obtenus en ultilisant un algorithme 

générateur qui est le transposé de celui utilisé dans les algorithmes de 

Agarwal-Burrus. Nous avons illustré ce fait par un seul exemple,mais cette 

remarque est générale. 

4.4 Remarques 

Les algorithmes classiques présentés ci-dessus ont pour but de 

minimiser essentiellement le nombre de multiplications. Ils sont intéressants 

pour les processeurs à usage général, dans le cas de filtres très longs. Leur 

caractéristique commune est d'utiliser de grands blocs de calcul. Leur 

principal défaut réside dans le fait que leur structure est trop compliquée pour 

que leur utilisation soit véritablement efficace dans les processeurs de 

traitement du signal. Ils sont d'autre part difficilement implantables en VLSI, 

a cause précisément de l'utilisation de grands blocs de calcul. Enfin, ces 

grands blocs de calcul induisent un retard important de traitement, retard qui 

peut devenir critique pour certaines applications temps réel. 

5. Nouvelles possibilités 

L'approche unifiée nous permet non seulement d'établir un cadre 

général pour tous les algorithmes existants mais aussi de dériver des 

nouveaux algorithmes. Nous allons présenter quelques nouvelles possibilités 

dans les paragraphes suivantes. 
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5.1 Algorithmes de petite longueur 

On choisit N=2 sans tenir compte de l'ordre du filtre. Nous obtenons: 

Y0(Z2)+Yi(Z2)z = [H0(Z2)+H1(z2)z][Xo(Z2)+Xi(Z2)z] (26) 

= Ri(z)R2(Z) = Q(z) 

Et on interpole Q(z) aux points suivants: (ai) = {0,1,°°}. Donc: 

Rl(0)=H0(z2) R2(0) = Xo(z2) 

Rl(l) = HO(z2) + Hi(z2) R2(l) = Xo(z2) + Xi(Z2) 

Rl(-) = Hi(Z2) R2(-) = X1(z2) 

Calculons ensuite les "restes": 

Q(0) =Ri(0)R2(0) 

Q(l) =Ri(l)R2(l) 

Q(-) = R1(oo) R2(-) 

On obtient les sorties: 

Y0(Z2)= Q(0) + Z2Q(oo) 

Yx(Z2)= Q(l) - Q(O) - Q(oo) (27) 

Fig.9 L'algorithme de petite longueur pour N=2. 

Cet algorithme calcule 2 sorties d'un filtre de l'ordre L à la fois par trois 

filtres de l'ordre L/2. Le nombre d'opérations est le suivant: 

3L/4 multiplication-accumulations (MACs) par sortie 

25% de réduction est ainsi obtenu. Cet algorithme présente les avantages 

suivants: 

1) Réduction de la complexité; 
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2) Maintien de la structure "MAC". 

Quand N=2, seulement 3 points d'interpolation sont nécessaires pour 

dériver l'algorithme. Comme il existe 4 points d'interpolation simples (c'est à 

dire ne faisant pas intervenir de multiplications) : on a 4 variantes 

possibles pour le cas où N=2. 

Dans le cas où N=3, on aurait besoin de 5 points simples pour dériver un 

algorithme optimal. Mais les points autres que {0,1,-1,°°} , ±2 par ex. génèrent 

beaucoup d'additions et augmentent la sensibilité de l'algorithme. Pour N�2, il 

est donc préférable de chercher des solutions sous-optimales vis à vis du 

nombre de multiplications (ou de sous-filtres dans ce cas précis) , mais ne 

générant pas trop d'additions. 

Voici la dérivation d'un algorithme sous-optimal de radix-3: 

Y0(Z3)+Yi(z3)z+Y2(z3)z2 

= [H0(Z3)+Hi(z3)z+H2(z3)z2][Xo(Z3)+X1(Z3)z+X2(Z3)z2] 

= [H0+Z(Hi+H2Z)][X0+z(Xl+X2z)] 

= [H0+zF][X0+zG] 

Itérons l'algorithme de longueur 2 sur [Hq + ZF][Xo+ZG], puis sur 

[Ho+F][Xq+G] et FG. Ceci nous permet d'obtenir un algorithme de radix-3 qui 

n'a besoin que de 6 multiplications (filtrages de longueur L/3), au lieu de 9 pour 

un algorithme direct. La complexité de calcul est donc: 

2L/3 MACs par sortie 

On obtient alors une réduction de 33% par rapport aux L MACs par sortie 

initialement nécessaires. Il est également possible de dériver des algorithmes 

pour des tailles de blocs plus grandes. Dans ce cas, la réduction du nombre de 

MACs est plus importante, alors que l'interpolation et la reconstruction 

deviennent plus complexes, c'est-à-dire, il y a plus d'opérations avant et après 

les sous-filtrages. L'utilité de ces, algorithmes dépendra alors de la taille du 

filtre, puisque on obtient un gain proportionnel à la taille du filtre au prix d'un 

nombre d'opérations fixe. 

Quand N est factorisable, soit N=N]_N2, nous pouvons construire un 

algorithme de radix N à partir des algorithmes de radix Ni et N2. Par 
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exemple, quand N = 6 = 2x3, nous pouvons appliquer d'abord la décomposition 

radix-2 et ensuite radix-3 ou d'abord radix-3 et ensuite radix-2 pour obtenir un 

algorithme de radix-6. Le nombre de multiplications (filtrages) ne varie pas 

dans les algorithmes ainsi construits. 

M = M(2) M(3) = 18 

Cependant, le nombre d'additions dépend de l'ordre dans lequel l'itération 

s'effectue. Pour cet exemple, 

2x3: 42 Additions 

3x2: 44 Additions 

Et dans le cas où N admet plusieurs facteurs: 

N=NiN2N3...NK 

Nous avons défini un coefficient de qualité pour déterminer l'ordre d'itération 

qui rend le nombre d'additions minimum: 

Q = (Mi-Ni)/Ai 

où Mi le nombre de multiplications, Ni le radix et Ai le nombre d'additions. 

Voici le coefficient Q pour certains N. 

N M A Q 

1 L L-l 1 

2 3 4 0,25 

3 6 10 0,3 

4 9 20 0,25 

5 12 40 0,175 

Le 1er algorithme à appliquer est celui qui a le coefficient de qualité le plus 

faible. 

5.2 Algorithmes de petite longueur pour des données complexes 

Dans le corps de nombres complexes, les points d'interpolation les plus 

simples sont (ai) = {O,l,-lj,-j,oo}. On peut établir des algorithmes optimaux 

pour N = {2,3}. La méthodologie permettant de dériver les algorithmes est 

semblable à celle décrite pour les données réelles. 

Il faut cependant tenir compte de la particularité suivante du filtrage 

complexe: Pour tout filtrage complexe Y(z) = H(z)X(z): 
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Yr(z)+jYi(z) =[Hr(z)+jHi(z)][Xr(z)+jXi(z)] 

nous pouvons réduire la complexité de calcul par l'algorithme de 

multiplication complexe à 3 multiplications réelles : 

Yr(z) = Hr(z) [Xr(z)+Xi(z)] - [Hr(z)+Hi(z)] Xi(z) 

Yi(z) = Hr(z) [Xr(z)+Xi(z)] - [Hr(z)-Hi(z)] Xr(z) (28) 

De telle façon, un filtrage complexe est calculé par trois filtres réels (Fig.10) au 

lieu de quatre. 

Fig.10 Un filtre complexe par 3 filtres réels 

5.3 Algorithmes par FFT courte 

Dans les algorithmes classiques, la taille de bloc N est supérieure ou 

égale à l'ordre du filtre L. Mais ici nous proposons des algorithmes pour N � L. 

Les points d'interpolation sont : 

Fig.11 Le schéma des algorithmes par FFT courte 
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Dans le cas où N�L, les multiplications dans le domaine fréquentiel sont 

devenu des filtrages complexes de longueur L/N. Par exemple, pour N=L/2, 

Rl(k) sont des filtres de longueur 2. 

En variant le rapport entre N et L, nous pouvons dériver tous les 

intermédiaires entre traitements temporel et fréquentiel, qui représentent 

différent compromis entre complexité de calcul et structure régulière (la partie 

"MAC"). Notons enfin que la chargede calcul de ces algorithmes peut encore 

être réduite par l'utilisation d'algorithmes de petite longueur pour le filtrage 

RIF complexe. 

On peut montrer, et il s'agit là d'un résultat étonnant, que dans certains 

cas, e.g. N = L/2, les algorithmes par FFT courte nécessitent moins 

d'opérations que ceux par FFT "longue" qui sont utilisés habituellement. 
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Résumé de la partie "Algorithmes" 

A.Une approche unifiée =� tous les intermédiaires entre traitements temporel 

et fréquentiel. 

B.Revue des algorithmes classiques=� Leurs dérivations, leurs avantages et 

défauts. 

C.Nouvelles classes d'algorithmes permettant : 

- de maintenir l'architecture "MAC", 

- de réduire le nombre d'opérations, 

- d'éviter les grands blocs. 
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6. Architectures pour le filtre RIF 

Dans ce chapitre, nous présentons des architectures pour implanter le 

filtre RIF en circuits intégrés. Le principe de base des architectures est 

l'arithmétique distribuée. Nous apportons des contributions à cette méthode 

classique en éliminant la ROM et en proposant de nouvelles structures 

d"accumulation rapide. 

6.1 Principe de l'arithmétique distribuée 

L'arithmétique est une technique de calcul du produit scalaire de deux 

vecteurs dont l'un est constant. Le filtre RIF tombe bien dans le champ 

d'application de cette technique parce qu'il s'écrit comme suit: 

L-l 

yn=Ehxn-i n = 0, oo 
1=0 

(29) 

Supposons que y, h et x sont codés en complément en 2. Le développement de x 

au niveau du bit fait apparaitre une présentation qui est la somme de plusieurs 

termes similaires pondérés par des puissances de 2 (représentant le décalage 

dans le calcul binaire classique): 

Yn = L h( -Vu, + 

i=O 

= -ÉhXn.i,o+2-1 Xr,Xn_i,1+...+2-BH ÎhXn-i.EM 
i=O i=O i=O 

(30) 

Définissons une fonction comportant L variables binaires {ai}: 

L-l 

R^,...,aL_l) = £ hA-M 
i=O (31) 

Dans le cas où les {hi} sont constants, cette fonction peut prendre au plus 2L 

valeurs suivant les différentes combinaisons possibles des ai. Si ces 2L valeurs 

sont stockées dans une ROM à l'adresse correspondant aux combinaisons 

appropriés, nous pouvons obtenir le résultat de la fonction correspondant à une 

combinaison d'entrée tout simplement en lidsant le contenu de la ROM à cette 

adresse. 
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En utilisant cette fonction plusieurs fois, nous arrivons à calculer tous 

les termes de la somme dans l'eq.(30). Un accumulateur en sortie de la ROM 

additionne ces termes et fournit le résultat final du produit scalaire. 

Le principe est illustré en Fig.12. Les registres bit-série sont enchainés 

pour former une ligne à retard, classique dans tous les filtres RIF. 

Fig.12 L'architecture du filtre RIF par l'arithmétique 
distribuée. 

Pour une implantation en circuits intégrés, la ROM devient vite 

encombrante, même quand L est moyen, et donc coûte cher en termes de 

silicium. De plus la ROM limite la vitesse de calcul, car elle ne permet pas 

l'utilisation de techniques de pipelinage. 

Si nous calculons deux produits scalaires de longeur L/2 et les 

additionnons ensuite, on trouve ainsi une autre façon de calculer un produit 

scalaire de longeur L qui s'avère plus simple et nécessite seulement deux 

ROMs de taille 2U2. Cette solution classique (Fig.13) est nettement supérieure à 

la précédente à partir d'un certain degré du filtre. 
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Fig.13 L'architecture utilisant des ROM de taille plus petite. 

La décomposition des ROMs peut se faire récursivement jusqu'au 

moment où les mémoires ne contiennent plus qu'un seul coefficient. Nous 

obtenons ainsi une architecture par additionneurs en arbre (Fig.14) où la 

mémorisation est réduit à un minimum. Le découpage de la ROM en éléments 

plus fins permet non seulement de réduire la surface d'implantation , mais 

aussi d'insérer des registres de pipeline si nécessaire. 

Fig.14 L'architecture par additionneurs en arbre 

Une implantation directe de cette architecture n'est cependant pas si 

efficace que ce à quioi on pourrait s'attendre, à cause du mouvement des 

retenues orthogonal à celui des sommes. 
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Pour faciliter l'implantation, nous pouvons ramener les additionneurs à 

une forme linéaire qui est illustré en Fig.15. Le mouvement des retenues 

(carry) est horizontal alors que celui des sommes est vertical, conduisant à un 

mouvement du flot de données approximativement diagonal. C'est une 

architecture régulière. Un circuit a été réalisé à base de cette structure dont le 

schéma est montré en Fig.16. On peut remarquer les registres de pipelinage 

antidiagonaux. 

Fig.15 L'architecture par additionneurs en forme linéaire. 

On peut constater que la partie 'calcul' de l'architecture accumule des 

opérandes multiples à chaque temps de cycle. La vitesse de calcul dépend alors 

fortement de l'accummulation multi-opérande choisie. Pour cette raison, nous 

présentons des techniques d'accumulation rapide. 

6.2 Accumulateurs multi-opérandes rapides 

D'abord, nous rappelons le concept de l'additionneur 'carry-save' (CSA). 

Le CSA additionne trois nombres en deux alors que l'additionneur habituel 

additionne deux nombres en un seul (Fig.17). Ce dernier nécessite une 

propagation de retenue dont le temps est proportionnel à la longueur de mots, 

alors que le CSA n'a pas besoin de la propagation et son temps de calcul est 
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indépendent de la longueur de mots. Ceci est l'origine du gain en temps de 

calcul apporté par le CSA. 

Les accumulateurs rapides proposés sont tous à base de CSA. Nous 

donnons quelques exemples en Fig.18. 

Fig.17 L'additionneur habituel et l'additionneur 'carry-save' 
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Fig.18 Un jeu d'accumulateurs. 
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Dans les accumulateurs multi-opérandes, nous devons additionner 

d'abord les opérandes avant de stocker et de reboucler. L'application des 

structures arborescentes, comme l'arbre de Wallace (Fig.19), permet 

d'effectuer une partie des calculs en parallèle, et donc d'additionner très 

rapidement les opérandes. 

Fig.19 L'arbre de Wallace 9-2 (l'addition de 9 opérandes à 2 

sorties). 

Pendant longtemps, on a considéré que les structures arborescentes 

n'étaient pas implantables de manière très efficace en surface de silicium, 

malgré leur vitesse de calcul extrêmement court. Récemment, certains 

méthodes ont été présentées, permettant des conceptions régulières et 

compactes. 

5.3 Nouvelles architectures 

Les nouvelles architectures sont caractérisée par: 

-additionneur "carry-save" comme brique de base 

-sommation rapide par l'arbre de Wallace 

-possibilité de pipeliner à un niveau arbitraire 

-accumulation rapide 
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La fig.20 présente une architecture à base de CSA en forme linéaire. 

Celle-ci corrige le mouvement diagonal des données de la Fig.15 en les 

ramenant tous vers le bas où se trouve un accumulateur bi-opérande. 

Fig.20 L'architecture par additionneurs 'carry-save' en forme 

linaire 

Cette architecture est très facile à pipeliner. L'architecture de la Fig.21 

montre un exemple avec des étages de pipelinage et aussi des arbres de 

Wallace. 

Il est aussi possible de pipeliner à un niveau arbitraire, éventuellement à 

chaque étage de CSA pour atteindre une vitesse de calcul maximale. Une autre 

variante de cette architecture est obtenue en traitant deux bits à la fois et en 

appliquant le codage de Booth modifié, ce qui permet un fonctionnement 

presque deux fois plus rapide, et ce avec peu de matériel supplémentaire. 
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Certaines autres variantes ont également été présentées, dont une 

architecture spécialisée pour les filtre RIF symétriques. Dans ce cas, un 

module commun calculant (X+Y)H est nécessaire. Un codage a été proposé 

pour calculer cette opération d'une façon efficace, éliminant l'addition (X+Y). 

Ce codage semble cependant plus avantageux pour une conception en bit- 

parallèle qu'en bit-série. 

Fig.21 L'architecture pipelinée avec des arbres de Wallace. 



165 

RESUME DE LA PARTIE "ARCHITECTURE" 

A.Etude de l'arithmétique de base dans le cadre du multiplieur-accumulateur. 

B.Nouvelles architectures de filtre par arithmétique distribuée ayant les 

caractéristiques suivantes: sans ROM; additionneur 'carry-save' comme 

brique de base; accumulation rapide. 

C.Codage pour calculer (X+Y)H dans le filtre RIF symétrique. 




