

CENTRE NATIONAL D'ETUDES

DES TELECOMMUNICATIONS

Centre Paris B

CENTRE NATIONAL DE LA

RECHERCHE SCIENTIFIQUE

Département TOAE

CENTRE DE RECHERCHES EN PHYSIQUE DE

L'ENVIRONNEMENT TERRESTRE ET PLANETAIRE

NOTE TECHNIQUE CRPE/187

FILTRAGE RIF RAPIDE : ALGORITHMES
ET ARCHITECTURES

par

Z J. MOU

RPE/ETP

38-40 rue du Général Leclerc

92131 ISSY-LES-MOULINEAUX

Le Directeur
A ~

()1,OMMERIA

Le DKrecteur Adjoint

J.J\ BERTHELIER

LISTE DE DIFFUSION SYSTEMATIQUE LISTE COMPLEMENTAIRE

CNET LAA/TSS/CMC COMBESCURE

COLONNA Adjoint Militaire LANRSM/SIM HAMIDIRIDHA

MERLIN Directeur LAB/MER/STA RENAN
des Programmes LAB/SMR/TCM JONCOUR

BLOCH DICET LABIIFEICIP TREGUIER
THUE DICET PAB/STC/PSN MATTRET

MME HENAFF DICET PAB/SHM/SMC TORTEUER
PAB/RPE/ETP BENESTY

NOBLANC PAB-BAG
ABOUDARHAM PAB-SHM
HOCOUET PAB-STC CNS - GRENOBLE
THEBAULT PAB-STS

MME PARIS PAB-RPE DIR/SVP ARNDT
MM. BAUDIN PAB-RPE AMS/CAT WrTTMANN

BERTHELIER PAB-RPE CCI/AMS BALESTRO

GENDRIN PAB-RPE CCI/AMS PRIVAT

LAVERGNAT PAB-RPE CCI/AMS ROUQUIER
ROBERT PAB-RPE
ROUX PAB-RPE
SOMMERIA PAB-RPE CCETT - RENNES
TESTUD PAB-RPE
VIDAL-MADJAR PAB-RPE STM/TRM LEMAUVffiL

SRL/MNC LESAFFRE

CNRS SRL/MTT PAUCOT
SRL/MTT LANOISELEE

MM. BERROIR TOAE DOCUMENTATION
CHARPENTIER SPI

MME SAHAL TOAE
MM. COUTURIER INSU EXTERIEUR
MME LEFEUVRE AD3
M- DUVAL AD5 ENST BARRAL

ENST GRENIER

CNES ENST MOU
ENST RENARD

MMES AMMAR ENST BIBLIOTHEQUE
DEBOUZY

MM. BAUDOIN
FELLOUS
HERNANDEZ (Toulouse)

Bibliothèques

CNET-SDI (3)
CNET-EDB
CNET-RPE (Issy) (5)
CNET-RPE (St Maur) (2)
Observatoire de Meudon
CNRS-SA
CNRS-INIST
CNRS-LPCE

RESUME

Le filtre à réponse impulsionnelle finie (RIF) joue un rôle des plus

importants dans le traitement numérique du signal et représente souvent la

principale charge de calcul dans une application soit en logiciel soit en matériel.

Cette thèse est divisé en deux parties. La première partie de la thèse traite le

problème de la réduction de la complexité arithmétique du filtre RIF. Nous

fournissons un ensemble d'algorithmes permettant de 'casser' le filtre habituel

en plusieurs sous-filtres échantillonnés, de telle manière que le nombre

d'opérations à effectuer se trouve réduit. La deuxième partie étudie non

seulement l'implantation de ces sous-filtres mais plus généralement

l'architecture des filtres RIF en vue de leur intégration VLSI.

Nous présentons une approche unifiée pour tous les algorithmes rapides

de filtrage RIF. Le théorème du reste chinois (TRC) constitue la base de

l'approche. Tout d'abord nous formulons le filtrage RIF comme un produit

polynomial. Ensuite l'application du TRC se fait en trois étapes: 1) interpolation;

2) filtrage; 3) reconstruction. L'approche se termine par le recouvrement. Sous

une présentation pseudocyclique, il est facile de démontrer quelques propriétés

utiles des algorithmes. Les algorithmes classiques sont examinés dans ce cadre.

Mais l'unification de ces algorithmes n'est pas notre seul objectif. Nous

présentons aussi des nouvelles possibilités apportées par cette approche, qui

permet d'établir en particulier tous les algorithmes intermédiaires entre

traitements temporels et fréquentiels. Nous traitons les algorithmes de petite

longueur en détail. Ces algorithmes permettent de réduire la complexité

arithmétique en gardant comme brique de base des filtres RIF d'ordre plus petit.

Ils sont donc ouverts à diverses implantations.

Nous étudions ensuite l'aspect arithmétique du multiplieur-accumulateur

d'une part, et de nouvelles architectures d'autre part. Une conception compacte et

régulière de l'arbre de Wallace est proposée pour surmonter les difficultés qui

empêchaient l'application de cette structure par ailleurs très efficace au niveau du

temps de calcul. Nous présentons quelques nouveaux accumulateurs rapides.

L'architecture du filtre RIF par l'arithmétique distribuée est analysée en détail.

Nous présentons de nouvelles structures ayant les caractéristiques suivantes: sans

ROM; avec l'additionneur carry-save comme brique de base; avec accumulation

rapide. En particulier, un nouveau codage est proposé pour profiter de la symétrie
des coefficients afin de réduire la quantité de matériel et d'accélérer le calcul.

SUMMARY

The finite impulse response (FIR) filter plays one of the most important

rôles in digital signal processing. It often represents the major computational

load in a System either in software or in hardware.

The dissertation is divided in two parts. The first part deals with the

problem of reducing the arithmetic complexity in FIR filtering. We présent a

class of algorithms allowing to "eut" a usual filter into several subfilters in

such a way that the number of opérations is reduced. The second part studies

not only the implementation of thèse subfilters but more generally the

architecture of FIR filters for Very Large Scale Intégration (VLSI).

We présent a unified approach to ail the fast FIR filtering algorithms.

The Chinese Remainder Theorem (CRT) constitutes the basis of the approach.

First of ail, we formulate the FIR filtering équation as a polynomial product.

Then the application of CRT is made in three steps: 1) interpolation; 2) fitering;

3) reconstruction. The approach finishes by overlapping. Under a pseudocyclic

présentation, some interesting properties of algorithms are demonstrated. The

classical FIR filtering algorithms are examined in the context of this

approach. But the unification of ail the FIR filtering algorithms is not our only

objective. We présent also several new possibilities promised by the approach,

which in particular allows to establish ail the intermediate algorithms between

processings in time and in frequency domain. We explain the short-length FIR

filtering algorithms in détail. Thèse algorithms allow to reduce the arithmetic

complexity while maintaining moderate-length FIR filters as building blocks.

Hence they are open to various implementations.

Our study is then concerned with the arithmetic aspect in one hand and

new architectures in the other hand for VLSI implementation of FIR filters.

Some improved structures are presented for Wallace-tree and fast

accumulators. The distributed arithmeic implementation of FIR filters is also

analyzed in more détail. We propose new structures having the following

characteristics: without ROM; with carry-save adder as building block; with

fast accumulators. In particular a new encoding technique is suggested for

implementing symmetric FIR filters.

(Les pages 1 à 132 correspondent à une rédaction détaillée en anglais

des résultats obtenus. Les pages 133 à 165 en donnent une version

concise en français.)

Table of Contents

Chapter 1.. 1

Introduction 1

1.1 FIR filtering algorithms 1

1.2 FIR filter architectures... 4

1.3 Terminology and remarks .. 5

Chapter 2.. 7

A unifîed approach to the fast FIR filtering algorithms.......................... 7

2.1 Formulation of FIR filtering as a polynomial product............... 8

2.2 Fast computation of a polynomial product............................... 9

2.2.1 The Chinese Remainder Theorem 10

2.2.2 Interpolation 10

2.2.3 Filtering 11

2.2.4 Reconstruction by the CRT 11

2.3 0verlap 12

2.4 Pseudocyclic convolution 13

2.4.1 Diagonalization of a pseudocirculant matrix 14

2.4.2 Transposition of an F(N,N) algorithm 14

2.4.3 Identical arithmetic complexity in direct and

transposed forms 17

2.5 Remarks.. 18

Chapter 3 19

Review on the FIR filtering algorithms and new possibilities 19

3.1 Review on the classical algorithms 19

3.1.1 FFT-based algorithms..... 20

3.1.2 Algorithms using aperiodic convolutions 22

3.1.3 Winograd algorithms 25

3.2 Short length FIR filtering algorithms 28

3.3 Shorter FFT-based algorithms 29

3.4 Short length complex FIR filtering algorithms....................... 33

3.5 Remarks '...37

Chapter 4 41

Short length FIR filtering algorithms 41

4.1 Introduction... 41

4.2 Article 1. 42

4.3 Article 2 50

Chapter 5 79

Fast multiplier-accumulator...79

5.1 Multiplier-accumulator 79

5.2 Réduction of the number of partial products 79

5.2.1 Booth's encoding 80

5.2.2 The modified Booth's encoding (MBE)81

5.3 Multioperand summation.. 83

5.3.1 Using carry-save adder (CSA) 83

5.3.2 Wallace-tree and its compact layout 85

5.4 Fast accumulator... 88

5.4.1 Carry-save (uni-operand) accumulator 89

5.4.2 Bi-operand and multi-operand accumulator 90

5.5 Pipelined multiplier-accumulator and new schemes92

5.6 Remarks...... 95

Chapter 6...... 97

New results on the distributed arithmetic implementation of FIR

filters......... 97

6.1 The principle of distributed arithmetic 98

6.2 New structures of general FIR filters 100

6.2.1 Fast accumulation... 100

6.2.2 Adder-based structures.. 101

6.2.3 Using the modified Booth's encoding........................ 105

6.3 Symmetric FIR filters 107

6.3.1 Direct implementation ... 107

6.3.2 Using a new encoding 108

6.3.3 Pipelining... 111

6.4 Bit-parallel implementation ... 112

6.4.1 Bit-slice approach.. 112

6.4.2 Symmetric FIR filters .. 112

6.5 Remarks 113

Chapter 7... 115

Conclusion and perspectives.. 115

7.1 Conclusion... 115

7.2 Perspectives ... 116

7.2.1 Multiprocessor implementation ofFIR filters 116

7.2.2 Application of fast FIR filtering algorithms to LMS

adaptive filters 116

7.2.3 Silicon compiler for FIR filter implementation.......... 117

Appendix... 119

Fixed-point error analysis of short-length FIR filtering algorithms...... 119

1. Major assumptions.... 119

2. Quantization error in direct FIR filter computation................ 121

3.111ustrative example for error analysis in short-length FIR

filtering algorithms ... 121

3.1 Analysis for direct radix-2 algorithm.......................... 121

3.2 Analysis for transposed radix-2 algorithm.................. 122

3.3 Considération for réduction of errors.......................... 123

3.4 Error analysis for quantization of coefficients.............. 124

4. Conclusion 125

Références 127

Version concise en français... 133

Chapter 1 -1-

Chapter 1

Introduction

The finite impulse response (FIR) filter plays one of the most important

rôles in modem digital signal processing. It exhibits some nice properties:

Dallowing linear phase implementation so that there is no phase distortion

after filtering;

2) stability;

3) arbitrary approximation to any frequency response;

4) good quantization performance.

Thèse properties make the FIR filter widely used in a large number of

applications, for example, the télécommunications. However the main

disadvantage of the FIR filter is the requirement of a great number of

arithmetic opérations in both software and hardware implementations.

The first part of this thesis is concemed with the problem of reducing

the arithmetic complexity of FIR filters. The main issue is to construct and

implement fast algorithms.

Since digital signal shows better performance than analog signal in

diverse aspects such as précision, sensitivity to environment, conservability,

etc., many traditional analog devices are being replaced by digital ones.

However digital devices run in general more slowly than their analog

counterparts. As real time signal processing requires higher and higher

speed, another question arises: how to design a high speed FIR filter? A study

on this problem constitutes the second part of the thesis.

1.1 FIR filtering algorithms

In the mid-60 the rediscovery of fast Fourier transform (FFT) algorithm

by Cooley and Tukey [Coo65] has changed the world of digital signal

processing. It is soon realized that FIR filters can be computed efficiently

through FFT [Sto66]. Stockham's algorithm seems to be the earliest fast FIR

filtering algorithm. This algorithm still enjoys a great popularity, if not the

greatest. Agarwal and Burrus [Aga74] proposed some fast aperiodic

Chapter 1 -2-

convolution algorithms for FIR filtering. Their algorithms are characterized

by direct yet fast computation instead of transformation. Winograd [Win80]

also presented an original class of FIR filtering algorithms without

transformation. At the same time he gave the lower bound of the arithmetic

complexity of computing an FIR filter.

The main feature in thèse algorithms is to compute N consécutive

outputs together so that redundancy between N computations can be removed.

It is tacitly assumed that N is not smaller than the filter's length. Thèse

algorithms were derived and tended to be optimized under such an

assumption that a multiplication costs much more time than an addition.

The progress in semiconductor and computer technologies has altered

the criteria for a fast algorithm. Multiplication time is no longer dominant in

modem computers. For example in the widely used TMS320 Digital Signal

Processor séries, a multiplication plus an accumulation requires the same

time as an addition alone does. However the classical FIR filtering algorihtms

are not suitable for implementation on thèse processors, because of their

complex structure. The need for algorithms not only computationally efficient

but also structurally implementable émerges.

This is our motivation to présent a new class of FIR filtering algorithms

[Mou87]. Thèse algorithms are also proposed independently by other authors

for implementation using filter banks [Vet88] or in VLSI [Kwa87]. They

présent a number of good properties such as arithmetic opération réduction

and regular structure, particularly suitable for real time signal processing.

Ail thèse algorithms appear quite différent from each other.

Nevertheless they inherently belong to the same class of algorithms. In

Chapter 2, we présent a unified approach to the fast FIR filtering algorithms.

The Chinese Remainder Theorem (CRT), which is well known for deriving

fast polynomial product algorithms, constitutes the basis for that approach.

First of ail, we show that the FIR filtering can be formulated as an

polynomial product. Then the application of the CRT takes place in three steps:

1) interpolation; 2) filtering (multiplication in wide sensé); 3) reconstruction.

Finally overlapping is performed to get the filter's output. Overlap in FIR

filtering algorithms differs them from other convolution algorithms. By taking

into account the overlap, we may further reduce the number of opérations.

The FIR filtering algorithms thus constructed are in the form of a

Chapter I -3-

pseudocyclic convolution: a pseudocirculant matrix [Vai88] multiplied by a

vector. Ail the fast algorithms can be seen as a diagonalization of the

pseudocirculant matrix. Under the pseudocyclic convolution, we can prove

easily certain useful properties of the algorithms such as transposition and

identical complexity in both direct and transposed form.

In Chapter 3, the classical algorithms of Stockham, Agarwal�Burrus,

and Winograd will be reviewed in the light of the approach. Their dérivations,

relations to each other will be addressed, leading to a better understanding of

the advantages as well as the limits of thèse algorithms. However the

unification of the algorithms is not our unique objective. We will show some

new possibilities promised by the approach, which in particular allows to

establish ail the intermediate algorithms between processing in frequency and

in time. Among them, three types of algorithms are of spécial interest: short-

length FIR filtering algorithms (SLFIR), shorter-FFT based algorithms

(SFFTA) and short length complex FIR filtering algorithms (SLCFIR). The

first one reduces the arithmetic complexity by maintaining the multiply-

accumulate structure, which is suitable for many implementations. SFFTA

allows to establish a number of algorithms meeting various trade-offs between

arithmetic complexity, structural regularity and System delay. SLCFIR

algorithms are the complex counterpart of SLFIR, suitable for fast complex

FIR filtering. The combination of SFFTA and SLCFIR will resuit in some

algorithms requiring less opérations than the classical FFT-based ones, a fact

going to the opposite of the general belief that the latter is the most efficient for

large block processing.

Chapter 4 deals with the short length FIR filtering algorithms (SLFIR)

in a detailed manner, based on two articles of the author (joint with

P.Duhamel) [Mou87,Mou89]. Thèse algorithms compute together a few

number of filter outputs, allowing reducing the arithmetic complexity while

maintaining smaller FIR filters as computing kemels. Hence, they are open to

a wide range of implementations, including Digital Signal Processors (DSP's),

VLSI, and even general purpose computers. The inhérent parallelism of the

algorithms allows also single-instruction-multiple-data (SIMD) multi-

processor implementation. General rules are provided for combining several

SLFIR algorithms to construct composite length FIR filtering algorithms.

Their arithmetic complexities are evaluated and compared to FFT based

algorithms under various criteria.

Chapter 1 -4-

1.2 FIR filter architectures

The VLSI technology has greatly boosted the implementation of the

digital devices. As emphasized by the title of the thesis, our device of interest is

the FIR filter. There are various ways of implementing an FIR filter. For low

speed applications, such as speech processing, we use mostly Digital Signal

Processors where the principal working horse is a multiplier-accumulator.

For high speed applications, such as télécommunications, we should fully

integrate an FIR filter either in bit sériai or in bit parallel methodology. The

architecture is very important to an IC implementation. It prédominâtes the

speed and design complexity which are essential to a realizatoin. Moreover in

the first part the new filtering algorithms require FIR filters as building

blocks. Thus we consecrate the second part to the study of some architectures

for an FIR filter.

Chapter 5 is devoted to the review of arithmetic aspects of multiplier

accumulator design and the investigation of new schemes. This study also

serves as préparation for the subséquent chapters. We will review the

réduction of partial products using Booth's encoding [Boo51] and the modified

Booth's encoding [Mac61], summing of multiple operands using carry-save

array and Wallace tree [Wal64], and fast accumulators. A compact y et regular

Wallace tree design is proposed to overcome a belief that Wallace tree is not

practical or not implementable [Vui81,Mon88]. Some new accumulators will

be presented which allow faster implementation than ever known

architectures to date.

Chapter 6 addresses the distributed arithmetic implementation of digital

filters. It is often characterized by a lookup table or a ROM [Cro73,Bur77]. As

the technology evolves, the ROM becomes the bottleneck to speed and occupies

large chip area. We will présent some new structures having following

features: without ROM, massive use of carry-save adders and Wallace tree,

and fast accumulation. Symmetric FIR filter is widely used for obtaining

linear phase in signal processing. Its implementation can be further

simplified owing to the symmetric coefficients. The architectures of symmetric

filter is particularly studied. A new encoding is proposed to increase the speed

both in bit sériai and in bit-parallel design. Fully parallel implementation of

FIR filter is also addressed. The new encoding proves to be more efficient than

the modified Booth's encoding for parallel symmetric filter implementation.

Chapter 1 -5-

Chapter 7 concludes the thesis and discusses the future research

directions.

1.3 Terminology and remarks

For the sake of a clear présentation, it is necessary to clarify certain

terminologies. It is often confused between linear convolution, cyclic

convolution, aperiodic convolution, polynomial product and FIR filtering.

What are their relations and their différences? We begin our explanation by

stating their differences:

a) linear convolution, aperiodic convolution, polynomial product are the same

opération on two finite length séquences: one of length M, the other of length

N. Their computation are often expressed as a polynomial product of a (M-l)-

degree polynomial and a (N-l)-degree one:

y0+yiz+y2z2+-+yM-+N-izM"N"1

= (h0 +htz +h2z2 +...+ hM.1zM-1)(x0 +Xlz + x 2zZ +...+xN.1zN-1) (L1)

The resuit is a séquence of M+N-1 numbers. In the sequel, only the terms

"aperiodic convolution"(AC in short) and "polynomial product" are employed.

When M=N, we often call it a radix-M aperiodic convolution or polynomial

product.

b) cyclic convolution is an opération on two séquences of equal length M. Under

polynomial présentation, it is well illustrated by the product of two (M-l)-

degree polynomials modulo (zM-l):

y0+yiz + y2z2"k"+yM-izM"1
= (h0+h1z+h2z2+...+ hM.1zM-1)(x0+x1z+x2z2+...+xM.1zM-1) mod(zM- 1) (1.2)

The resuit is also a séquence of M numbers. We will term it as length-M cyclic

convolution.

c) FIR filtering is an opération on two séquences: an infinite one and a finite

one of length M. Using z-transform, it can be formulate as a product of two

polynomials: one of infinité degree , the other of degree M-l.

yo+yi2-^22"*"-
= (h0+h1z+h2z2+...+ hM-i zm-l)(X0+ x1z + x2Z2 +......) (1.3)

Chapter I -6-

The resuit is an infinité séquence. This opération is refered to as length-M FIR

filtering.

Although the three opérations are quite different from each other, they

are closely related:

1) an aperiodic convolution of a length-M séquence and a length-N one can be

computed by a length-(M+N-l) cyclic convolution.

2) a length-L FIR filtering can be computed by sectioning the infinite séquence

into blocks of M numbers, then using an aperiodic convolution of a length-M

séquence and a length-L one plus overlap-add. According to a), cyclic

convolution applies too.

3) a length-L FIR filtering can be computed by sectioning the infinite séquence

into overlapped blocks of N numbers with K overlapping ones (K�N), then

using length-N cyclic convolution. This method is often called overlap-save.

In the first part, we deal with above ail the FIR filtering algorithms. The

filter's coefficients are taken as constant or fixed. However they can be

extended to computing adaptive transversal filters [Duh89] in a fast way;

In the second part, our attention is mainly concentrated on the FIR filter

architectures. However, the resuit in the Chapter 5 is applicable to a wider

range of digital System design: multipliers, ALU of a general purpose

processors and inner product computers, etc. The resuit in the Chapter 6 is

also suitable for implementing inner produet computers and adaptive

transversal filters.

Chapter II -7-

Chapter 2

A unifîed approach to the fast FIR filtering
algorithms

FIR digital filters are widely used in digital signal filtering, and belong

to the set of the most time consuming tasks in many Systems. It is therefore of

interest to dérive efficient algorithms for computing FIR filtering. Many

différent approaches hâve been applied to solve this problem. Cyclic

convolution based algorithms were first proposed [Sto66] soon after the

rediscovery of fast Fourier transform algorithm (FFT). Aperiodic convolution

algorithms were also applied to the FIR filtering [Aga74]. Thèse algorithms

are very efficient in terms of arithmetic complexity, and are therefore well

suited for implementation on general purpose computers. A direct approach

working directly on the FIR filtering équations was also proposed by Winograd

[Win80]. Ail thèse algorithms are featured by the fact that arithmetic efficiency

is obtained by working on large data blocks, and involve a global exchange of

data inside this large vector.

The évolution of VLSI technology and the émergence of Digital Signal
Processors hâve greatly boosted the real time signal processing. However,

thèse kinds of implementations bring about some new constraints, and ail the

above algorithms are not always efficiently implemented through thèse new

technologies because of their complex structure. For example, DSP's are

highly optimized for implementing a multiply-accumulate opération.

Therefore, ail those "fast" algorithms were less efficient than the

straightforward one when implemented on DSP's, except for very large filters

or data blocks.

To overcome thèse problems, the authors proposed recently a new class

of algorithms [Mou87]. Similar approaches were independently proposed at

the same time by Vetterli [Vet88] and Kwan-Tsim [Kwa87].

At first glance, the new algorithms are quite différent from the

classical FIR filtering algorithms (large block convolution). Nevertheless, in

Chapter II -3-

this paper we will show that ail the above algorithms can be derived in a

unified way and that this new approch provides ail the intermediates between

direct FIR computation and large block fast convolution algorithms, and

between processing in time and in frequency, while opening some new

possibilities.

Our objective is to unify ail the main FIR filtering algorithms and to

review the basic aspects of their dérivation, in order to contribute to a better

understanding to this problem, while providing some directions of the search

for new algorithms.

The first step of the approach consists in a formulation of FIR filtering

as a product of two polynomials (also used in [Mou87,Kwa87,Vet88]), which is

then computed through the Chinese Remainder Theorem (CRT).

Interpolâting the polynomial product in différent domains leads to différent

classes of algorithms while interpolating in different points leads to different

algorithms in the same class. Thirdly this formulation is shown to lead to

overlap-add algorithms. Transposition of the algorithms can resuit in ail the

overlap-save ones. We will show that the overlap-add and overlap-save

techniques are essential to ail kinds of algorithms, even to the FIR transversal

fîlter itself. Since overlap-add and overlap-save schemes are the transpose of

each other we show that they hâve the same arithmetic complexity.

2.1 Formulation of FIR filtering as a polynomial product

The FIR filtering is usually expressed as a convolution of two

séquences: a finite séquence (hi) and an infinité one {xi}. The resuit of the

convolution is also an infinité séquence {yi}. Their relation is as follows:

yn=I x^^i n = 0, 1, 2 ,~
i-0 (2.1)

It can be also written in the z-domain as a polynomial product of H(z) and X(z):

Y(z)=H(z)X(z) (2.2)

H(z), X(z) and Y(z) are the z transform of {hi},{xi} and {yi} respectively. H(z) is a

polynomial of finite degree (L-l) while the other two are of infinite degree.

By applying polyphasé décomposition [Bel74] to each of the three terms

in eq.(2), we get a polynomial product as follows:

Chapter II -9-

Y0+Y1z-i+...+YN.iz'N+1

= (H0+HlZ-i+.. ,+Hn.jZ-n+i)(Xo+XlZ-i+...+XN_lZ-N+i) (2.3)

where {Hi}, {Xi} and {Yi} are polynomials in z"N :

L/N-l

Hj (ZN) L hmN -+- j z" mN
m =

ee

Xk(zN) = S XmN + k z
mN

jjci = 0, 1,
m=O 0

y i (ZN) YmN -" i i mN
m = 0 (2.4)

In fact, H(z"l), X(z"l) and Y(z"l) are each decimated into N interleaved

séquences. The decimation rate N will be an important factor in our approach

to construct fast FIR filtering algorithms. It represents the number of

consécutive outputs to be computed together.

2.2 Fast computation of a polynomial product

The right side of eq.(2.3) is a product of two finite degree polynomials

whose coefficients are themselves polynomials. The product has 2N-1

coefficients:

Q(z) sP^PgCz)

= Co + Cl Z + ... + CN-1 Z (N-l) +...+ C2N-2 z�2N-2) (2.5)

where

Pl(z) = Ho + Hl z + ... + HN-1 zN-i

P2(z) = Xq + Xi z + ... + XN_! zN-i (2.6)

Direct computation of {Ci} would require N2 multiplications between

{Hj} and {Xi}. Although such multiplications are in fact still FIR filterings, we

take them first as usual multiplications. Nevertheless the application of the

Chinese Remaider Theorem (CRT) is known to largely reduce the arithmetic

Chapter II -10-

complexity. Using the CRT, Winograd has proved that (2N-1) multiplcations

are sufficient to compute {Ci}, instead of N2. The theory of Winograd

establishes the basis for fast algorithms.

Since the CRT plays an important rôle in fast algorithm dérivation, let

us first describe it.

2.2.1 The Chinese Rematnder Theorem

This theorem dates back to A.D.100 [Sod86]. Originally, it is a part of

number theory. We are only interested in its extension to polynomial ring,

since we discuss the polynomial product.

Chinese Remainder Theorem: Given a ring of polynomials modulo P(z) and

P(z) pi (z) i=l
{Pi(z)} are relatively prime, i.e., p^z) has no common factors with pj(z) when i;t:j

for ijs {1,2,...,s}. Then for any polynomial Q(z), the following équation holds:

s

Q(z) jT.(z)q.(z) mod P(z)
i=l

where

q i(z) sQ(z) mod p i(z)

T i(z) 1 mod p i(z)

0 modp.(z) for * i.

The theorem states that, given only the residues {qj(z)} of an unknown

polynomial Q(z) in s distinct polynomial rings modulo Pj(z), we can reconstruct

Q(z) in the polynomial ring modulo P(z) from thèse residues. Q(z) will be

unique if P(z) has higher order. The reconstructing polynomials {Tj(z)} dépend

only on {pj(z)} and can be obtained by solving the following équation:

s

T i(Z) fj(z) rip/2) 2 1 mod Pi(z)
j =

2J12 Interpolation

The use of the CRT for computing a polynomial product is made mostly

Chapter II -11-

by choosing :

pi(z) = z-ai; i=0,1,...,2N-2 and
a**^

if j;=i (2.7)

It is easy to evaluate:

M-l

P (ai) =Px(z)
mod (z- a.) = L Hk af

k =

N-l

P2(a.)sP2(z)mod (z-ai)= ZXjai

2.2.3 Filtering

For obtaining the final resuit Q(z), we need to know the values Q(a�)

which is the residue Qj(z) of Q(z) modulo (z - jaj). Since Q(z) is the product of Pl

and P2, we hâve

qi(z)=Q(ai) = P^aj) P2(a¡); i=0,1,...,2N-2 (2.9)

Let us recall that PiCaj) and P2(ai) are the combinations of {Hj} and {Xi}

respectively, while the latters are functions of z-N. Hence the above équations

are still FIR filterings but at the sampling rate N times lower than the initial

one.

Since the filter coefficients are constant, we can compute (Pl(ai), i =

0,1,...,2N-2} before the filtering. This is one of the reasons that the

computational load can be reduced, resulting in fast algorithms. This

computation will not be taken into account in the subséquent évaluation of

arithmetic complexity.

2.9 4 Reconstruction by the CRT

(Ti) are precomputed, and when Pi(z) = z - ai, it turns out that their

expression is fairly simple:

N+M-2
z-a. P(z)

j-o l J P (a i) (z - a)

J*1 (2.10)

and application of the CRT results in Q(z):

Chapter II -12-

N+M-2 N+M-2 z-a. N+M-2
Q(a)

Q(z)= iQcap n i-^r=p(z) i pVa v , i=o j=o
1 J i=o P(ai)(z-ai)

i. j (2.11)

which is very similar to the interpolation formulae of Lagrange. This is why

(ai) are often refered as interpolation points.

23 Overlap

By comparing the left side and the right side in eq.(2.3) or (2.5), we get:

YN-1 = Cn-i

Yi =Ci+Ci+Nz-N; for i = 0,1,..., N-2 (2.12)

We can observe that eq.(2.12) represents a procédure of overlap-add.

AU the (Ci; i = 0,1,..., 2N-2} are computed at one time and a block of N outputs

{Yi} is obtained by adding the terms {Ci+N; i=0,l,...,N-l} overlapping from the

previous block. Till now we hâve accomplished ail the steps for constructing

an FIR filtering algorithm, as summarized below :

1) decimating H(z), X(z) and Y(z) at rate N to formulate the FIR filtering as an

polynomial product ;

2) interpolation of Pl and P2 at 2N-1 appropriate points a^ ;

3) filtering like a dot product : Q(aj) = P^aj) P2(ai) , i = 0, 1,..., 2N-2;

4) reconstruction of Q(z) from its interpolated values Q(aj);

5) overlap according to eq.(2.12).

A general scheme is given in Fig.2.1. The above algorithm computes a block of

N outputs.

The overlap differs the FIR filtering from other kinds of convolutions.

It guarantees the continuity of computation and makes the filter running,

while the cyclic convolution or the aperiodic convolution is a "local"

computation.

It is well-known that a transversal FIR filter can be transposed. The

transposed filter has the same transfer function. However the above

Chapter 11 -13-

algorithms can be also transposed as will be shown in the following. This will

lead to some connections between several types of algorithms.

Fig.2.1 General fast FIR filtering scheme

2.4 Pseudocyclic convolution

We dénote in the following an algorithm computing N outputs of the

filter and using N2 as decimating rate by FtN^Njj). Although algorithms can

be derived for N19tN2, we will show in the Chapter 4 that they involve very

complex structures and do not hâve any advantage over other algorithms. We

will concentrate our investigation on the case where N =N2.

Considering eq.(2.3) and eq.(2.12) we may write the following équation :

The right side is the product of a pseudocirculant matrix [Vai88] and a vector,

or pseudocyclic convolution, which is in fact an F(N,N) System. In the context

of pseudocircularity, we will show in the following the way to transpose an

F(N,N) System and the way to obtain transposed version.

Chapter II -14-

2.4.1 Diagonalization of a pseudocirculant matrix

In cyclic convolution, a fast algorithm diagonalizes a circulant matrix,

the diagonalizing matrix is refered as rectangular transform [Aga76]. By

analogy, a fast FIR filtering algorithm diagonalizes a pseudocirculant matrix.

However the diagonalization hère means a generalization of its conventional

sensé.

For example, a 2x2 pseudocirculant matrix can be diagonalized as

follows [Kwa87,Vet88]:

(2.14)

It is just the matrix représentation of the algorithm presented in [Mou87]. In

gênerai an NxN pseudocirculant matrix can be diagonalized in to an MxM

diagonal matrix with 122N-1. This lower bound is the natural resuit of

Winograd's theory [Win80j. AU the 'fast' algorithms hâve M�N2.

We may also define a rectangular transform for the pseudocyclic

convolution. There exists the term z-N in the transform matrix which recalls

the continuity of computing. However most of the subséquent présentations

employ other terminologies, in order to differ the FIR filtering algorithms

from the cyclic convolution.

Vaidyanathan [Vai88] proposed a diagonalization of pseudocirculant by

similarity transform, but this does not lead to fast algorithms, because the

éléments in the diagonal matrix are complex polynomials rather than simple

numbers.

2.4.2 Transposition of an F(N,N) algorithm

Let us consider an F(N,N) algonthm as an (N-input, N-output) System

shown in Fig.2.2(a). Its transmission matrix is pseudocirculant:

Chapter n -15-

I-10 Hl ... HN-1

�hn-i Ho

P(z)=
' '

.. H,

z Hi - 0 - Z HN-i 0

The transposed System (shown in Fig.2.2(b)) will hâve PKz), which is

the transpose of P(z), as its transmission matrix according to Tellegen's

Theorem for digital networks [Cro83].

Fig.2.2 (a) initial System; (b) transposed System.

Unlike (1-input, 1-output) Systems, an (N-input, N-output) system's

transpose will not perform the same fonction as the initial one unless P(z) is

symmetric, i.e., P(z)= pt(z). Owing to P's Toeplitz structure, we can manage to

get the transposed System performing the same function as the initial one.

The transposed System is as follows:

YN-2 Hi Ho ..
xt N-2

. Z tiffml
Y' o

HN-1 H: Hq
X' 0

(2.16)

Chapter H -16-

If we permute the input éléments {X'j} and the output éléments 7i) in such a

way that their order is reversed, we will get the transposed System to perform

the appropriate function:

0
1-10 Hl". HN-l x,

Y\ z-NHN-i Ho ..
xt

.... Hl ;

LY'nJ
[z-NHl z-nHN-ihJLX'n-i.J (2.17)

The above démonstration is general, so that ail (N-input,N-output)

Systems whose transmission matrix is Toeplitz can be transposed to perform

the same function as the initial System after permuting the inputs and outputs

in a reversed order. Thus, it can be applied to ail kinds of convolution Systems.

Winograd has already proposed to transpose circular convolution algorithms

in the same manner [Win80]. We summarize this principle as the following

theorem.

Theorem: Having Toeplitz transmission matrix is sufficient for an (N-input,N-

output) System to be transposed and to perform the same function after

permuting the inputs and outputs in a reversed order.

Hence, we can transpose an F(N,N) algorithm in a rather easy way. In

fact, a fast F(N,N) algorithm diagonalizes a pseudocirculant matrix:

P(z) = AfjxM Hmxm BmxN (2.18)

where HMxM is a diagonal matrix. Then the transposition of P(z) is

Pt(z) = BtHAt (2.19)

Permuting the inputs and outputs in a reversed order is équivalent to

multiply J= antidiag(l,l,...,l). Then the following équation holds:

P(z) = (JBt)H(AtJ) (2.20)

Therefore, we get the transposed version of (2.18). The new pair of

diagonalizing matrix is (JBfc) and (AM).

Chapter II -17-

Let us consider as an example an F(2,2) algorithm, as given in (2.14). It

is expressed in matrix form as:

JoJlz'2hi hojLxo.

L i o 2]
01

l
0K

therefore

A

L 1 0 0 1 z - -2 1]
B- 1 1

Following (2.20), we obtain the transposed version of (2.21):

1
1

0 1

v
x

2.4.3 Identical arithmetic complexity in direct and transposed forms

It is clear, following the above explanations, that the multiplicative

complexity is not changed by transposition. Let us consider the additive

complexity in an (N-input,N-output) System.

A digital network is composed of only branches and nodes. There are two

kinds of nodes: a (M,l) summing node that adds M inputs into 1 output, and a

(1,M) branching node that branches 1 input into M outputs. A (M,l) summing

node can be split into M-l (2,1) summing nodes. A (1,M) branching node can be

also split into M-l (1,2) branching nodes. Then it is easy to transform the

network to an équivalent one having only (2,1) summing nodes and (1,2)

branching nodes. After transposition, the summing nodes become branching

nodes and vice versa.

Chapter II -18-

The number of additions in the initial network is equal to that of (2,1)

summing nodes, denoted by Ns. The number of additions in the transposed

network is equal to that of (2,1) brancbing nodes in the initial network, denoted

by Nb. The additive complexity in initial and transposed algorithms is

identical if and only if Ns=Nb, and we show in the following that this property

holds for (N-input, N-output) Systems.

Proof: For an (N-input,N-output) network, if we connect the N inputs to the N

outputs graphically, we get a closed network where every branch coming out

from a node should enter into another node. Then the number of outputs of ail

nodes is equal to that of inputs of ail nodes. A (2,1) summing node has two

inputs and one output while a (1,2) branching node has one input and two

outputs. We get:

Nb+2Ns=2Nb+Ns

Ns=Nb

end of proof.

2.5 Remarks

A general approach to dérive fast FIR filtering algorithms has been

described. Some parameters such as decimating rate N and interpolation

points are not defined. We will show in the next chapter how the choice of

thèse parameters affects the resulting algorithm. In fact ail the classical

algorithms choose N tacitly greater than the filter's length. However it is also

feasible using smaller N to dérive algorithms of interest.

The pseudocyclic convolution is a good représentation of the FIR

filtering process. Several properties, such as transposability of an F(N,N)

algorithm, equality of arithmetic complexity in direct and transposed form,

hâve been proved under the représentation.

Chapter m -19-

Chapter 3

Review on the FIR filtering algorithms and new

possibilities

In this chapter we will show that the classical algorithms are shown to

be spécial cases of the approach presented in the previous chapter. Thèse

algorithms include three typical ones: FFT-based algorithms proposed by

Stockham [Sto66]; Algorithms using aperiodic convolutions proposed by

Agarwal and Burrus [Aga74]; Winograd algorithms [Win80].

Some new possibilties are also investigated. First the recently proposed

algorithms [Mou87,Kwa87,Vet88], termed short length FIR filtering

algorithms (SLFIR), are briefly described. A comprehensive study on this

class of algorithms is in the next chapter. Secondly we présent shorter FFT-

based algorithms while in the frequency domain either real or complex FIR

filterings are performed. This class of algorithms represents ail the

intermediate ones between processing in time and in frequency. Short length

complex FIR filtering algorithms(SLCFIR) will also be derived using the

approach.

It is a general belief that when the filter's length L is large, classical

FFT-based scheme will outperform ail the other algorithms. However the

combination of short length real and complex FIR filtering algorithms and the

shorter FFT-based schemes results in an algorithm requiring even less

arithmetic opérations than the classical ones as far as L^4.

3.1 Review on the classical algorithms

The "fast" (in the sensé of reducing arithmetic complexity)

computation of FIR filtering through FFT and its inverse was soon recognized
to be speed-efficient on general-purpose computers [Sto66] after the rediscovery
ofFFT. High speed convolvers based on FFT's were also built in hardware.

Chapter III -20-

Nevertheless, the FFT-based FIR filtering implies to work on large

overlapping signal block, thus resulting in heavy hardware requirement.

Furthermore, since most Digital Signal Processor (DSP's) are optimized for a

multiply-accumulate structure, transform-based FIR filtering is of no

practical interest on DSP's.

There were the motivations for the proposai of a new class of

algorithms [Mou87], reducing the arithmetic complexity but retaining the

multiply-accumulate structure.

However the above two classes of algorithms hâve quite différent

présentations. Nevertheless, we will show in the following that they are just

spécial cases of the general scheme in Fig.2.1.

3.1.1 FFT-based algorithms

Let us choose N � L, then

Hi (z-N) = hi 0 £ i sIrI

=0 LSisN-l (3.1)

Replacing {Hi} in eq.(2.6) by the the above terms, we get:

Px(z) = ho + hxz + h2Z2 + ... +hL.1zL-1 (3.2)

P2(z) remains unchanged as in (2.6). Since the polynomial Pi is now of degree

L-l and the minimum number of necessary interpolation points is N+L-1

instead of 2N-1. If we choose K(�N+L-1) points on the unit circle {exp(-27ti/K); i

= 0,1,..., K-1) as interpolation points, then

k =

* = (3.3)

{P:(ai); i = 0,1,...,K-1} is the length-K DFT of {hi ; i = 0,1,...,L-1} so that FFT's

applies for the computation of the interpolation values. Likewise, (P2(ai); i =

Chapter III -21-

0,1,...,K-1} is the length-K DFT of (Xi; i = 0,1 N-l}. After the pointwise

multiplications Pl(ai)P2(ai) = Q(ai), we can show:

N+L-2 N+L-2 ..

i-o j=o (3.4)

The coefficients of Q(z) is exactly the inverse DFT of (Q(ai)}:

N+L-2

j N Y, Q(ai)WU
J w i-o (3.5)

The overlap-add technique is then applied to get the correct filter outputs.

Fig.3.1 depicts the gênerai scheme for ail the FFT-based algorithms. {P1(ai)}

can be precomputed. Its computation will not be counted in the subséquent

évaluation of arithmetic complexity.

Fig.3.1 FFT-based overlap-add FIR filtering scheme

Due to the complex interpolation points ail the computations hâve to be

performed in the complex domain. When the data is real, we can apply the

real-valued FFT algorithms to remove the redundancy that appears in the

computation [Duh87,Sor87].

Chapter m -22-

Let us take a simple example of computing a length- 2m filter, usually

we choose N=L=2m so that a length-2L DFT's and its inverse can be used to

compute the N outputs together. Then K should be 2L(=2m+1) instead of 2L-1,

since a length-2L DFT's is much more easier to implement than a length-(2L-

1) one. Suppose we use the split-radix FFT and eliminate unnecessary

additions on input and on output. The resulting arithmetic complexity is:

ILIa) length-2m real filter (per 2m outputs):

Mr =2m (2m-l)+3

Ar =2m(6m-2)+3

the arithmetic complexity per output is:

mr = 2m-l+3»2-m

ar =6m-2+3«2-m

mr + ar = 8m-3+6»2-m

A 3-real-multipHcation-and-3-real-addition [Nus82] algorithm is used for the

complex number multiplication for the above évaluation of arithmetic

complexity.

There is a slight difference in arithmetic complexity between the above

scheme and a length-2m+l cyclic convolution:

Mr = Mcc(2m+i)

Ar = AcC(2m+1) - 2m - 2

The difference is due to the fact that the input block of length 2m is padded with

2m zeroes.

3.1.2 Algorithms using aperiodic convolutions

Agarwal and Burrus [Aga74] presented a class of algorithms using

small radix aperiodic convolution (AC) algorithms to compute recursively a

long polynomial product and then overlapping.

Chapter III -23-

A radix-2 fast aperiodic convolution algorithm can be derived by the

CRT using {0,1,00} as interpolation points:

(x 0 + XjZXhg-h hjz)

= xoho + [(x0 + xl)(ho + hl) - xoho - xlh 1]z + xlh iz (3.6)

Only 3 multiplications are required instead of 4.

We will show how to use the above algorithm to dérive FIR filtering

algorithms.

Let the decimating rate N=L (the length of the filter, assumed even).

The filtering équation becomes:

Y 0 + Ylz+...+ YL.1zL-^

=
(ho + hlZ+...+ hL-lzL-1)(X 0 +Xlz +...+XL-lzL-1) (3.7)

A reorganization of the above équation leads to:

(Y0 + Y1Z+...+ Yl/2_1Z^-1)+zL/2(Yl/2+.�.+ Yl_iZL/2-1)

ho
+

h1z+...+ h L/2-1 ZL/2-1)+ ZL/2(h L/2 +... + hL-1 ZL/2-I)i x

xo +X 1z +...+ X L/2-1 ZL/2-1) + Z L/2 (X L/2 +... + XL-1 ZL/2-1)i (3.8)

or

EO + Elz1^^ (GO+Glz^) (FO+Flz^)

with

EO = Y0+YlZ+...+ Y
L/2-lzL/2-1 El = Y

L/2
+ y

L/2+1 z
+...+

Y L/2-lzL/2-l

G0= ho + hiz hL/2_1zL/2~1 Gl = hL/2 + h L/2+ lz + hLl2_lzL'2'1

FO = Xo + x 1z X L/2-1 ZL/2-1 FI =XL/2
+
x L/2+1 z +...+ XL/2_1z^2-i

Such formulation allows us to apply the radix-2 AC algorithm, resulting in:

EO + Elzu2

= GOFO+ [(GO+ Gl) (FO+F1) - GOFO- G1F1] zu2 + GlFlzL (3.9)

By overlapping, we get:

Chapter III -24-

EO = GOFO+ GlFlzL

El= (GO+ Gl) (F0+F1) - GOFO- G1F1 (3.10)

About 25% réduction can be achieved in the number of arithmetic opérations.

This gain is obtained by removing the redundancy existing between computing

two groups of outputS:{YO,Yl,...,YU2-Û and (YU2, YL-11.

Since GOFO, (G0+G1XF0+F1), G1F1 are themselves aperiodic

convolutions, we can once more apply the radix-2 AC algorithm to them before

overlapping. This is équivalent to a recursive interpolation using the same

interpolating points. Further gain in arithmetic complexity can be obatined by

removing the redundancy in computing four groups of outputs: {YO,Yl,...,YU4-

i}, {Yl/4,...,Yl/2-i}, {Yl/2,,...,Y3L/4-i} and {Y3L/4,...,YL-i}. Evidently this

procédure can be recursively applied, resulting in further réduction in

arithmetic complexity. Agarwal and Burrus presented this technique using

multidimensional formulation [Aga74].

For L=2m , a thorough recursion using the radix-2 algorithm results in

an fast algorithm requiring 3m multiplicatons, instead of 4m by direct

computation. The additive complexity is evaluated in [Nus82]. Otherwise (L-l)

additions are necessary for overlapping to establish an FIR filtering

algorithm. The arithmetic complexity of the filtering algorithms thus

constructed is given in Table.3.1.

Table.3.1 Arithmetic complexity of Agarwal�Burrus filtering algorithms (per

N outputs).

N MA

2 3 4

4 9 22

8 27 88

16 81 310

64 729 3262

128 2187 10168

256 6561 31271

Chapter III -25-

The above formulation of a long aperiodic convolution as a radix-2 one

is rather decimation-in-frequency, by analogy of the terms for defining FFT's.

It is also feasible to dérive a decimation-in-time algorithm by the following

formulation:

(Y0 + y 2Z2 +... + YL/2_1zL-2)
+ Z (y 1+' + YL_1zL-2)

=
[(ho + h2z2 +...+ hL/2_lZL"2)+

z (h1 +...+ hL_lZL"2)] x

[(X0 + X 2Z2 +...+ X L/2-1 ZL-2)+ Z(X 1 +...+ XL_1zL-2)]

(3.11)

The radix-2 AC algorithm is then applicable to the above équation. Further

recursion results in an algorithm with the same arithmetic complexity as

before. A general scheme is given in Fig.3.2 for small-radix aperiodic

convolution based FIR filtering algorithms.

Fig.3.2 Fast FIR filtering scheme by Agarwal�Burrus technique

This kind of algorithms is often préférable for computing small or

médium size FIR filters as well as for full précision implementation[Aga74].

3.1.3 Winograd algorithms

Winograd's theory [Win80] on the arithmetic complexity of computation

is a milestone for fast FIR filtering algorithms as well as for FFT and

polynomial product algorithms. He proposed an original class of FIR filtering

Chapter III -26-

algorithms and provided the lower bound on the number of multiplications for

computing an FIR filter.

It is intended by Winograd to compute the FIR filtering under the

présentation below:

"v� fx x 1 Xn hL-1

Yn-1 x n-L T x n-L i + x n - h L-2

It is tacitly assumed to compute L outputs together, given L the filter's length.

First of ail, a small radix aperiodic convolution algorithm, for example

the one in eq.(3.6), is transposed to compute the following opération in a fast

way [Win80]:

[Yn f"Xn-l Xn - "Pxl rXn-i(hi+ho)-(Xn-l-Xn)ho

.ya-J LXn-2 Xn-llhoJ LXn-l(hl+ho)+(Xn-2-Xn-l)hJ (3.13)

This is an algorithm computing 2 outputs of a length-2 FIR filter with only 3

multiplications. Eq.(3.12) can be formulated in block form:

"El"!

[TO

FlTGl" lEo = lF2 Fa GO (3.14)

with

Yn Y n - L L-l L/2-1

Yn-1 yn-L/2-l L-2 hL/2-2

El= ' E0= Gl= G0=

.yn-L/2 + J Lyn-L+1 LhL/2J ho

Chapter III -27-

Xn-L+1* ' ,Xn-L/ 2-1 Xn-L/

Xn-L xn - L + 1 xn-L 12-1

F0=

. n-3L/2+2 n-L n-L+1 .

n-L/2 n-L/2+1 ' n -

Fl

_n-L+2 n-L/2 n-L/2 + 1-

n-3L/2+l n-L-1 n-L

n-3L/2 n-3L/2+l ' n-L-1

F2

X
XX

Then (3.13) applies to the above computation for réduction of arithmetic

complexity:

�Eli fFO (Gl + GO) -

(FO - Fl) GO" JEoJ = lFO (01 + 00) + (F2 - FO) GlJ (3^5)

Further itération of the algorithm in (3.13) is feasible in computing

FO(G1+GO), (FO-Fl)GO, (F2-FO)Gl. For L=2m, a thorough itération results in 3m

multiplications. The arithmetic complexity for certain lengths is listed in

Table.3.2.

Since eq.(3.13) is just the transpose of the radix-2 AC algorithm in (3.6),

the recursive application of (3.13) is the transpose of that of (3.6). Hence we can

conclude that Winograd algorithms are the transpose of those of Agarwal and

Burrus.

We hâve proved in last chapter that both the direct and transposed

forms of an FIR filtering algorithm hâve the same complexity. But Table.3.2

Chapter III -28-

and 3.1 show different number of additions. The reason for such différence is

that Winograd has taken into account the redundancy due to computing two

successive blocks of outputs while Agarwal and Burrus were not concerned

with the overlap.

Table.3.2 Arithmetic complexity of Winograd filtering algorithms (per N

outputs).

N MA

2 3 4

4 9 20

8 27 76

16 81 260

64 729 2660

128 2187 8236

256 6561 25220

For example in case L=4, we hâve

xn - 3 x n - x n - 2 xn n

FO - Fl =

xn - -x n-2
x
n - 3 xn- l-

xn - 5 x n- x n - 4 xn-]

F2 - FO =

_Xn-6~Xn-4 Xn-5~Xn-3j (3.16)

Between (FO-F1) and (F2-FO), there is a common addition (xn-4 - xn-2) so that one

addition can be saved. Realizing that (xn-6 - Xn-4) is already computed for last 4

outputs, we can save one more addition. Hence in case L=4 Winograd

algorithm requires 2 less additions than Agarwal�Burrus algorithm does as

shown in Table.3.1 and 3.2. We may also remove the 2 extra additions in the

latter algorithm but it is less systematic than in the Winograd algorithm.

3.2 Short length FIR fîltering algorithms

Let N = 2. If we choose {0,1, «�} as interpolation points, then

Chapter m -29-

PjCao) = H0(Z2) P2(a0) = XqCz*)

P^ax) = Ho(z2)+ Hi(z2) P2(al) = Xo(z2)+ X^)

P1(a2) = H1(z2) P2(a2) = X1(z2) (3.17)

Application of the procédure stated in the last chapter leads to the following

algorithm:

Y0(z2) = PjCao) P2(ao) + z-2 P^) P2(a2)

Yi(z2) = Pa(ai) P2(ai) - P1(a0)P2(a0) - P1(a2)P2(a2) (3.18)

Différent authors hâve presented this resuit in their own way

[Kwa87,Mou87,Vet88]. Of course further décompositions are still feasible,

together with higher radix or mixed radix décomposition.

There are four simplest interpolation points in real number domain

{0,1,-1,°°}. The other variants can be obtained by using interpolation point sets

like {0,-l,«�}, {0,1,-1} or {l,-l,oo}. Although interpolation points other than {0,1,-

1,~} can be used, they will lead to much more complicated algorithms and

become out of practical interest. A study of real FIR filtering algorithms with

small N can be found in the next chapter.

3.3 Shorter FFT-based algorithms

We présent two new schemes in this section as results of the approach:

one is based on shorter FFT's (length ofFFT � length of the filter), the other is

fast short length complex FIR filtering algorithms. We will show also that

combining the two schemes may resuit in less arithmetic opérations than

conventional ones as mentioned in the last section.

We hâve shown that when N is large, the terms {Pi(ai) P2(ai); ai = exp(-

27ti/K)} are the products of two complex numbers. Now if we choose a relatively
small N (�L), the Hi(zN) are no longer constants but higher degree polynomials

and the terms Pl(ai)P2(ai) become length-L/N either complex or real FIR

filtering. The general framework of algorithm will be a length-(2N-l) DFT's

plus 2N-1 complex FIR filters and then a length-(2N-l) inverse DFT's. Overlap-

add is performed at the last step. Nevertheless a length-2N FFT transformer is

simpler and thus is prefered [Kwa87,Mou88]. An alternate scheme is the

Chapter III -30-

transposed version, i.e., the overlap-save scheme as depicted in Fig.3.3. When

the data are real, further improvement can be brought about by applying the

fast cyclic convolution algorithm for real data [Duh87,Sor87] to the

computation of the polynomial product.

Fig.3.3 Shorter FFT-based FIR filtering scheme

In Fig.3.3, the FFT and FFT -1 are used to perform the polynomial

product, the remaining task is to compute the complex filters between FFT and

FFT -1.

Let us restudy the case of computing a filter of length- 2m for the sake of

comparison. Now we choose N=U2=2m-1. Then according to eq.(2.4) we hâve

Hi = hi+hi+I/2z-L/2; i=0,l,...,L/2-l (3.19)

Using {a, = W i = exp(-21tiJ2N) = exp(-27ri/L); i=O,1,...L-1} as interpolation points,

we obtain a scheme based on length-L FFT and its inverse, instead of length-2L

one. we dérive explicitely the length-2 complex FIR filters in the frequency

domain:

Chapter III -31-

1 L/2-1

P1(w1) = f 2 HiwlJ
j-0

L/2-1 .. L/2-1

= (r 1 h.Wy) + (f X hj + L/2wlJ)z~L/2
i = 0, l..,L-l

(3.20)

The scaling coefficient 1/L is due to the inverse FFT in the scheme. By

incorporating 1/L into the complex FIR filters, L multiplications are avoided

and thé scaling is naturally performed. Since N=L/2, 2�-1 outputs are

computed. The resulting arithmetic complexity is:

IIIb) length-2m real filter (per 2m~l outputs):

Mr = 2m m+2

Aj. = 2^-1 (6m - 5)+1

the arithmetic complexity per output is:

�= 2m+2*2-m+1

a,. =6m-5+2°2-m+1

m, +�? = 8m - 5 + 8° 2-m

Taking into account the symmetry of the Fourier transform of real signal, we

hâve used in the frequency domain only two length-2 real FIR filters and N/2-1

(= 2m'x -1) length-2 complex FIR filters. The fast computation of complex FIR

filtering is similar to the fast complex number multiplication algorithm with 3

real multiplications and 3 real additions. This can be shown as follows.

Complex FIR filtering is described as:

Yr(z)+jYi(z) =[Hr(z)+jHi(z)][Xr(z)+jXi(z)] (3.21)

By applying the fast complex number multiplication algorithm, we obtain the

following complex FIR filtering algorithm:

Yr(z) = Hr(z) [Xr(z)+Xi(z)] - [Hr(z)+Hi(z)] Xi(z)

Yi(z) = Hr(z) [Xr(z)+Xi(z)] - [Hr(z)-Hi(z)] Xr(z) (3.22)

Chapter III -32-

Fig.3.4 depicts the fast complex FIR filtering scheme. Note that (Xr+Xi) needs

only one addition per output, since ail the terms computed for the previous

outputs can be stored and used for the présent output. For a length-L complex

FIR filter only 3L real multiplications and 3L real aditions are required per

complex output datum. Then (6 mults, 6 adds) are used to compute each of the

length-2 complex FIR filters.

Fig.3.4 Complex FIR filtering using three real FIR filters

Comparing a) with b), we find that the new scheme requires more

multiplications and less additions. Furthermore the sum of computational

opérations per output is reduced. In certain computers, a multiplication and

an addition require almost the same computing time. The new scheme may be

very compétitive with the conventional one. It is also compétitive in other

computers since the différence of arithmetic complexity between the two

schemes is very small. An important différence is that the conventional

scheme needs length-2L DFT's while the new scheme uses only length-L

DFT's. In general, smaller length DFT's can be more efficiently implemented.

This is another advantage of the new scheme. Since the block length is

proportional to the delay in processing, the System delay is also halved, a fact

of interest for real time processing.

We can also choose N=L/4 and {ai}={exp(-4ra/L); i=0,l,..., L/2-1}. This

results in a scheme with length-L/2 DFT's and length-4 FIR filters in the

frequency domain. The arithmetic complexity is as follows:

IIIc) length-2m real filter (per 2m-2 outputs):

Mr = 2m-2 (2m+4)

Ar = 2m-2 (6m - 5)

Chapter III -33-

the arithmetic complexity per output is:

mr = 2m+4

a,. = 6m - 5

mr + slj. = 8m - 1

This scheme results in a slight increase in the arithmetic complexity. But

such increase may be traded off by the réduction of the length of DFT's and of

System delay.

3.4 Short length complex FIR filtering algorithms

Fast short length complex FIR filters find their applications both in the

above schemes and in arbitrary length complex FIR filtering in the same

manner as in real FIR filtering. This is our motivation to study thèse

algorithms.

Eq.(3.18) is also applicable to complex filters. There are six simplest

interpolation points in complex number domain {O,l,-lj,-j,co}. Then we can

construct 20 variants from thèse points for complex filtering. Further

development of thèse variants is similar to (3.18) and will not be given hère. We

point out only that the F(2,2) algorithms with {0,1,°°}, {0,-1,°°}, {0,-j,°°} and

{0j,°°} as interpolation points require the least arithmetic complexity, i.e., 3

complex multiplications (cmults) and 4 complex additions (cadds) or (9 mults,

17 adds) in terms of real opérations.

An optimal F(3,3) algorithm requires 5 interpolation points. Since there

are six simplest interpolation points, we may choose 5 points out of them to

construct an optimal algorithm. In [Bla84], we can find a radix-3 complex

polynomial product algorithm. It uses as interpolation points,

leading to a (5 cmults, 15 cadds) algorithm. After overlap, it becomes an F(3,3)

algorithm with (5 cmults, 17 cadds) or (15 mults, 51 adds).

However by using {0,1 j,-j,°°} as interpolation points, we can obtain a

better algorithm with less additions:

(al) complex F(3,3) algorithm with (5 cmults, 15 cadds) or (15 mults, 45 adds)

Chapter III -34-

aO=xO bO=hO

al=x2 bl=h2

a2=x0+xl+x2 b2=h0+hl+h2

a3=(x0-x2)+jxl b3=h0-h2+jhl

a4=(x0-x2)-jxl b4=h0-h2-jhl

mi=ai*bi ; i=0,1,2,3,4

uO=mO+ml

ul=m3+m4

u2=m3-m4

u3=-u0+m2

y0=m0+(u3+ul) z-3

yl=u3-ju2+mlz-3

y2=u0+ju2-ul

For an optimal F(N,N) algorithm, we need (2N-1) interpolation points. As

N�4 more than seven interpolation points are required. The six previous points

are no longer sufficient. Which points should be chosen next ? It seems {ai}={±l±j}

are good candidates, since aî2 = ±2j and ai4=-4. Only a few more additions are

required with the increase of the exponent.

An F(5,5) algorithm using {O,:l:1,j:j,:tlIj} as interpolation points is given in

the appendix. It requires (9 cmults, 77 cadds) or (27 mults, 181 adds). Although

the F(5,5) is optimal in terms of multiplication count, it requires a great deal of

additions. This increase in the number of additions may not jus-tify the

minimization of the number of multiplications in certain implemen-tations

where an addition and a multiplication require almost the same time.

Then it is désirable to construct some suboptimal algorithms which

require more than 2N-1 multiplications but substantially less additions. An

suboptimal F(4,4) algorithm can be derived by twice applying the eq.(3.18),

leading to a (9 cmults, 20 cadds) or (27 mults, 67 adds) algorithm. Another way of

obtaining suboptimal algorithm is proposed in [Bal86]. In their method, the

dérivation of the polynomial Q(z) at points {O,co} are used in order to use less

interpolation points. For example, an F(4,4) algorithm can be constructed

using the interpolation values at {O,:tl,j:j,co} and the dérivation at {0}. The last

Chapter III -35-

value (=xOhl+xlhO) requires two multiplications instead of one multiplication

per interpolation points. But the number of additions can be reduced. We give

this algorithm as follows:

(a2) complex F(4,4) algorithm with (8 cmults, 23 cadds) or (24 mults, 69 adds)

aO=xO bO=hO

al=xO bl=hl

a2=xl b2=h0

a3=x3 b3=h3

a4=(x0+x2)+(xl+x3) b4=(h0+h2+hl+h3)/4

a5=(x0+x2)-(xl+x3) b5=(h0+h2 -hl-h3)/4

a6=(x0-x2)+(xl-x3) b6=(h0-h2+hl-h3)/4

a7=(x0-x2)-(xl-x3) b7=(h0-h2-hl+h3)/4

mi=aiebi; i=0,l,...,8

u0=m4+m5

ul=m4-m5

u2=m6+m7

u3=m6-m7

pO=uO+u2

pl=ul+u3

p2=u0-u2

p3=ul-u3

p4=ml+m2

yO=mO+ (pO-mO) z-4

yl=p4+(pl-p4) z-4

y2=(p2-m3)+m3 z-4

y3=p3

In eq.(3.22) a length-L complex filter is transformed into 3 length-L real

FIR filters instead of 4 by direct computation. Although fast real short length

FIR filtering algorithms can be applied to compute the three length-L real FIR

filters, we will show that deriving algorithms at first in complex domain

results in more efficient ones.

Chapter m -36-

Let us applying eq.(3.18) to complex filters. Then a length-L complex

FIR filter can be computed by three length-L/2 complex FIR filters. Further

applying eq.(3.22), we replace each of the three complex filters by three real

ones of the same length. The resulting complexity is:

4 cadds + 3 (3 adds + 3 length-L/2 real filters) per two complex outputs

= 17 adds+ 9 length-L/2 real filters per two complex outputs

Ifwe first apply eq.(3.22) then eq.(3.18), the complexity will be:

3x2 adds + 3(4 adds + 3 length-L/2 real filters) per two complex outputs

= 18 adds+ 9 length-L/2 real filters per two complex outputs

The first algorithm requires less additions.

The above discussion is in the case N=2. For higher N it is still more

recommanded to apply short length complex FIR filtering algorithms first and

eq.(3.22) then, since there are more simple interpolation points in the complex

domain than in the real one.

We may apply the F(2,2) and F(4,4) algorithm to the scheme b) and c) of

computing the length-2m FIR filter. The F(2,2) algorithm needs to consider two

outputs together in the frequency domain so that 2m outputs of the filter should

be computed together. By analogy, applying F(4,4) algorithm needs to compute

2m outputs of the filter together. The resulting arithmetic complexities are:

IIId) computing the length-2m real FIR filter using F(2,2) algorithm in

frequency domain (per 2m outputs)

Mr= 2m(2m-1.5)+5

Ar= 2m(6m-2.5)+3

the arithmetic complexity per output

mr=2m-1.5+5°2-m

ar=6m-2.5+3°2-m

mr+ar=8m-4+8 * 2-m

Chapter III -37-

To our surprise, this scheme results in réductions both in the number of

multiplications and in the number of additions for m�2, compared to the

conventional scheme a).

Ille) computing the length-2m real FIR filter using F(4,4) algorithm in

frequency domain (per 2m outputs)

Mr= 2m(2m-2)+10

Ar= 2�(6m+2.75)+l

the arithmetic complexity per output

mr= 2m-2+10 e2-m

ar = 6m +2.75+ 2-m

mr+ar=8m+0.75+ll°2-m

Although this algorithm results in a réduction in the number of

mltiplications, but it requires more additions and computes a block of 2m

outputs together. Hence this scheme is less of interest than the others. It

indicates also that the application of short length complex FIR filtering

algorithms in such schemes should be limited. Direct computation of the

filters in frequency domain may meet better trade-off between arithmetic

complexity and structural regularity.

3.5 Remarks

In this chapter, we hâve presented différent fast FIR filtering

algorithms, classical ones as well as new structures, in the context of the

approach in chapter 2. Most algorithms belong to the class of overlap-add

scheme. By transposing the overlap-add scheme, we get another class of

algorithms called overlap-save. Winograd algorithms look much différent

from the others, since they are a priori overlap-save algorithms. However they

are basically the transposes of the Agarwal�Burrus algorithms.

The approach allows us to establish ail the intermediates between

direct FIR computation and the usual fast algorithms based on cyclic

convolution of large blocks. Shorter FFT-based algorithms are developed. They

represent a class of algorithms taking into account the arithmetic complexity,

Chapter III -38-

structural regularity and System delay. Short length complex FIR filtering

algorithms are studied. Combing the last two classes of algorithms, we hâve got

some algorithms which hâve less arithmetic complexity than the well-known

FFT-based ones, which are thought to be the most efficient for large block

processing.

The fast aperiodic and cyclic convolution algorithms play an important

rôle in fast FIR filtering. But they are not équivalent to FIR filtering computation.

The other aspects should be equally considered, since the choice of N in the

formulation, the overlaping techniques hâve important influences on the

structure of realization.

Appendix

Complex F(5,5) algorithm using {O,:t1:tj,:t1:tj} as interpolation points with (9

cmults, 77 cadds) or (27 mults, 181 adds).

cO=xO+x4

cl=c0+x2

c2=c0-x2

c3=xl+x3

c4=xl-x3

a0=cl+c3 b0=(h0+h4+h2+hl+h3)/20

al=c2-jc4 bl=[h0+h4-h2-j(hl-h3)]/20

a2=cl-c3 b2=(h0+h4+h2-hl-h3)/20

a3=c2+jc4 b3=[h0+h4-h2+j(hl-h3)]/20

c5=x4+x4

c6=c5+c5

c7=x0-c6

c8=xl+jxl

c9=c7+c8

cl0=c7-c8

cll=c7-jc8

cl2=c7+jc8

cl3=x3+jx3

Cl4=x2+cl3

cl5=x2-cl3

cl6=x2-jcl3

Chapter III -39-

cl7=x2+jcl3

cl8=cl4+cl4

cl9=cl5+cl5

c20=cl6+cl6

c21=cl7+cl7

a4=c9+jcl8 b4={(h0-4h4)+xl(l+j)+2j[x2+x3(l+j)]} / [40(j-D]

a5=cl0+jcl9 b5={(h0-4h4)-xl(l+j)+2j[x2-x3(l+j)]} / [40(l-j)]

a6=cll+jc20 b6={(h0-4h4)-jxl(l+j)+2j[x2-jx3(l+j)]} / [40j(l-j)]

a7=cl2+jc21 b7={(h0-4h4)+jxl(l+j)+2j[x2+jx3(l+j)]} / [40j(j-D]

a8=x4 b8=h4/5

mi=ai bi ; i=0,l,...,8

uO=mO+ml ul=m2+m3

u2=m0-ml u3=m2-m3

pO=uO+ul pl=u2+u3

p2=uO-ul p3=u2-u3

u4=m4-m5 u5=m6-m7

u6=m4+m5 u7=m6+m7

u8=u4-ju5 u9=u6-u7

ul0=u4+ju5 ull=ju8-u8

qO=ull+ull ql=j(u9+u9)

q2=ul0+jul0 q3=u6+u7

vl=m8+m8 v2=vl+vl

v3=v2+v2 v4=v3+v3

s0=p0-m8 sl=sO+sO

s2=sl+sl s3=ql+ql

s4=s3+s3 s5=q2+q2

s6=s5+s5 s7=q3+q3

s8=s7+s7 t0=q0-v4

tl=s2+t0 t2=s4+ql

t3=s6+q2 t4=s8+q3

t5=s2-t0 t6=s4-ql

t7=s6-q2 t8=s8-q3

y0=tl+t6 z-5 yl=t2+t7 z-5

y2=t3+t8 z-5 y3=t4+(v2+m8) z-5

y4=t5

Chapter IV -41-

Chapter 4

Short length FIR filtering algorithms

4.1 Introduction

As the classical algorithms are structurally too complex for

implementation on the Digital Signal Processor, new algorithms are needed to

take into account the structure of the processor. This motivated us to présent a

new class of algorithms. This chapter deals with the short length FIR filtering

algorithms (SLFIR) in a detailed manner. Thèse algorithms compute together

a few number of filter outputs, allowing reducing the arithmetic complexity

while maintaining smaller FIR filters as computing kernels. Hence, they are

open to a wide range of implementations, including Digital Signal Processors

(DSP's), VLSI, and even general purpose computers. The inhérent

parallelism of the algorithms allows also multiprocessor implementation.
General rules are provided for combining several SLFIR algorithms to

construct composite length FIR filtering algorithms. Their arithmetic

complexities are evaluated and compared to FFT-based algorithms under

various criteria.

This chapter is based on two articles of the author (joint with

P.Duhamel) [Mou87,Mou89]. The first one shows a simple example, giving

insight to the algorithm dérivation both in time domain and in z-transform

domain. The second one présents comprehensively the short length FIR

filtering algorithms. Diverse aspects are discussed such as the dérivation,

higher-radix algorithms, composite length algorithms, performance

comparison with FFT-based algorithms. Several algorithms are given.

A fixed-point error analysis is made for the short length FIR filtering

algorithms in the appendix.

:hapter IV -42-

377

12, Article 1

FAST FIR FILTERING: ALGORITHMS A�D IMPLEMENTATIONS

ZJ. MOU and P. DUHAMEL
CSET/ PABI RPE, 38-40. rue du Central Ledert, 92131 France

Received 16 February 1911
Revised 25 May 1987

Abstract. We (irai establish through a simple example a new fast FIR filtering algorithm based on a divide-and-conquer

approach. This algorithm does not require the use of overiap techniques as is usual in the approaches based on cyclic or

aperiodic convolutions. We outline the advantages of the proposed algorithm when implemented both in software and in

hardware. Finally. we give a systematic way of deriving these algorithms.

Zusammeafassuag. Anhand eines Beispiels wird zunichst einer schneller Algorithmus fur die nichtrekursive Fîlterung

vorgestellt, der auf ciner gemeinsamen Auswertung einer zuvor aufgeteilten Berechnung beruht. Oieser Algorithmus benôtigt
keine Signalûberiappungs-Techniken wie die Methoden. die eine zyklische oder azyklische Faltung fur die lineare Fîlterung
ausnûtten. Anschlieflend wird au(die wesentiichen Voneile der Algorithmus' bei einer Hardware- oder Software- Realisierung
eingegangen. Schlieoiicb wird'angegebcn, wie derartige Algorithmen systemarisch hergeleitet werden kônnea.

Résamé. Tout d'abord, nous montrons, à l'aide d'un exemple, l'existence d'algorithmes rapides de filtrage nonrecursif basés
sur une approche de division et évaluation. Cet algorithme ne nécessite pas l'usage de techniques de 'recouvrement', comme
c'est le cas dans les approches à base de convolution cyclique ou apériodique. Puis, nous montrons les avantages essentiels
de cet algorithme, selon qu'il est implanté en logiciel ou en matériel. Enfin, nous donnons une méthode permettant de dériver

systématiquement les algorithmes de cette classe.

Keywords. Fast algorithm, FIR filtering, arithmetic complexity.

t. Introductioa

Our aim, in this paper, is to provide fast algorithms for the direct computation of the output of a

length- N digital filter:

Y, = I «.-A, » = 0,1,2

Most of the fast algorithms used for computing (1) are based on fast transfonns. This implies the use
of the cyclic convolution (2) as an intermediate step,

yq i = E « = 0,1,2 N'-l, (2)
1-0

where �n - i)N- = (n - i) mod N'. Hère, N' has to be chosen greater than N, and {Xj} and {A(} hâve to be

[extended up to N'. The {ym} are reconstructed from {y'm} (overlap-add or overlap-save technique). This
i

implies an overall organization of the fast algorithm which is rather intricate and expensive in terms of

memory and communication cast, even if the number of arithmetic opérations to be perfonned per output
has diminished [3,7].

0165- 1684/87/ J3.50 @ 1987, Elsevier Science Pubiishers B.V. (North-Holland)

Chapter IV -43-'

378 ZJ. Mou, P. Duhamel / Fast FIR Jilienng

Some work was aiso performed on aperiodic convolution algorithms, thus allowing the computation

of (1) with the aperiodic convolution (3) as an intennediate step [1, 2. 8],

�»:»* £ ' *-A. «-0,1,2,.... M-l, M»N, (3)

but thèse algorithms still require the overlap-add or overlap-save technique to reconstruct the FIR filter

output from the {y"�}. Unfortunately, the structure of thèse algorithms is weaker than that of cyclic-

convolution algorithms. Therefore, they are not widely used.

Both kinds of approaches can be named indirect ones. Furthermore, they completely lose the FIR

filtering structure, which is very easy to implement in hardware or in software (Digital Signal Processors-

DSPs-are generally optimized for FIR filtering structures). Nevertheless, a lot of work has been donc

to reduce the computationai cost of thèse cyclic and aperiodic convolution algorithms [3, 7].

But very little work has been donc directly on the FIR filtering équation (1), thus taking into account

the infinite length of both input and output séquences.

Winograd [10] has donc pioneering work in FIR filtering algorithms. His research was undertaken to

establish low-order FIR filtering algorithms, and then to extend them by tensor product. The methodology

he proposed seems to be a little far from practical use, because low-order FIR filters are not common in

practice, and because the way Winograd proposed to extend them using tensor products still requires

large memory for large N. Nevertheless, most of the resuits explained in the following are based on this

pioneering work, but extend its practical usefulness and provide systematic methods to establish the new

algorithins.

Hère, we propose new fast FIR filtering algorithms, which will be shown to be of interest both in

software and in hardware implementations. In software, we build well-stnictured algorithms reducing the

number of arithmetic opérations. In hardware, we propose FIR filter structures with higher speed and/or

lower cost than the usual ones, with a spécial mention to distributed arithmetic implementations for which

this approach seems to be particularly weil suited.

Finally, as a conclusion, we outline that thèse preliminary results can be extended in many ways.

2. A simple case

2.1. Derivation of the algorithm

Equation (1) can be written in scalar product fonn as

y� = (xn X,,-I ," .x..-N+I) .' (4)

! hN-1

and. if two outputs Y,,-I and yH are to be computed together, we can write, in matrix fonn.

YN \ X,,-I � x,_N*,/

Chapter IV -44-

Z.J. Mou, P. Duhamel ' Fast FIR Jiltenng 570

Let us suppose N to be even, and group the even and odd coefficients of {h" i = l, 2, ... , N - 1} as follows,

ho

...:c.:c "'x X.:c "'.:c A,

h3

hN-1

Let us define

A ^iXn-itX*-},... , (X.-2, X.-4. X�_v), (.T^Xn.j,... , X,,-N.:),

Ho = (ho. h:.,... h.'V-:f, Ht = (A,, h)o,... hS-I)T.

Equation (6) can now be rewritten as

Thus, we make apparent the redundancy between the computation of the two outputs V,_i and Ym.

A straightforward computation of (7) would require approximately the same computationai load as

four filters of length IN. But the reader familiar with the fast algorithms (or the usual 3 mults-3 adds

complex multiplication algorithm) will soon realize that it is possible to obtain y�_, and y, by the following

formula:

The filtering opération A(Ho + Hi) is now common between the two terms, and the overall computational

load is now approximately that of three filters of length IN, plus the linear combination {B -A) and

(A - C) (the combination Ho+ H, is precomputed for given coefficients):

8 - A = (X�_2--X-^.| , XII-4 - .:c,,-h"', x. - m ~ X�_,v»|),
(9)

Equation (9) seems to require a lot of additions. But, if we remember that the previous set of two

outputs {yn-i, y,,-) already required nearly the same opérations, we see that, for each output set (y". y..-I),

only two new input additions are to be computed: (x,_2-xB_,, x,,_,-x�). The other elements of (B-A)

and (A - C) are aiready stored in the FIR filtering processes of length 2 !N. This resuits in the diagram of

Fig. t.

In obtaining the above algorithm, we hâve explicitly taken advantage of computing several outputs at

a time to improve the compromise speedl complexity of an FIR filter, while retaining most of its structure,

which ailows to retain information from the previous computations to obtain the new outputs.

Further décompositions are of course still feasible.

Vol. 13. No. 4. Dccembcr 1987

Chapter IV -45-

Fi g. 1. An FIR filter with reduced arithmeti* complexity.

2.2. Arithmetic complexity

The number of opérations to be usually performed per output for an N-tap digital filter is

N-ladds, N mults per output. (10)

The proposed algorithm requires two input additions, two output additions, and three 5 N-tap digital

filters to compute two outputs, i.e.,

2 + §(i/V-l) adds, 24N mults per output, (11)

which means that both numbers of additions and multiplications hâve been reduced (about 25%

improvement).

If k successive décompositions are performed (i.e., 2* outputs are computed together), then the number

of arithmetic opérations to be performed per output is

4[(§)*-l] + (É)*(N/2*-l)adds, (§)*N/2* mults per output. (12)'

2.3. Implementation

When implemented on a DSP, this algorithm will be efficient as long as the overhead, due to the

input/output additions (4[(§)*-lJ in équation (12)) and the storage time will be shorter than the

improvement in the number of multiply-accumulates. This means that, for large N, the first decomposition

will certainly be of interest, while the efficiency of the following ones remains to be checked.

It is also seen that the gênerai scheme of Fi g. 1 is weil suited for muitiprocessor implementation:

compared to [6], implementation of the above algorithm would hâve saved a lot of hardware.

It can easily be seen from Fig. 1 that the sampling rate of the inputs of the three jN-tap filters is divided

by two compared to the initial one: we use three low-speed jjV-tap filters to build an N-tap filter with

, higher sampling rate.

! This can be usefui in any hardware implementation: if we hâve at our disposai a kind of filter of length

N with maximal processing speed fm, three such filters allow to construct a filter of length 2N and

maximal processing speed 2fm, at the cost of four input/output additions.

There is a case where this approach is specially well adapted: the implementation of digital filters by

distributed arithmetic [4, 9]. In fact, it is already usuai to break the initial filter into subfilters, connected

Signai Pracessinc

Chapter IV -46-

ZJ. Mou, P. Duhamel i Fait FIR jillenng 381

by additions, to reduce the size of the ROMs involved. The proposed algorithm can hence be used to

increase the throughput of the distributed arithmetic filter, while reducing the number of ROMs involved.

AU thèse implementations are under considération. Results will be reported on in a subséquent paper.

3. Systematic dérivation of fast FIR filtering algorithms

The matrix formulation (5) - (8) used to dérive the simple example of Section 2 may be direct and easy

to understand, but the following formulation in the --domain allows us to obtain strong support from a

wealthy bank of algorithms: aperiodic convoiution algorithms or polynomial product algorithms [1, 2, 3.

7. 8, 10]. It will provide a systematic way of deriving thèse fast FIR filtering algorithms.

Let us decimate the output, input, and filter coefficients of (1) by 2. (We shall thus dérive one step of

a 'radix-2' decimation.in-time algorithm.) In tenns of r-transform, we hâve

i-0 i-0

Xo(z) = r x,^-', *,�*)- 1 XZ/+IZ-i. (13)
i-0 i-0

Ho(z)" I hZiz-i. H, (z) - I h%i+IZ-i.
i-0 i-0

and the z-transform of (1), given in équation (14), can be rewritten as given in (15) or (16);

V(r)»X(z)-//(r), (14)

y0(22) + z-,yl(z:) = [X0(r2) + z-' X,(zz)][Ho(zz) + z-'//,(2-)], (15)

Y,(z2) - Xo(z2)H0(z-) + z-:!A-1(z2)//1(z2),

y1(r2)-X,(z')//0(*2) + A'0(r,)«1(z2).
(16)

Equations (15) and (16) can be understood in différent ways: équation (15) is in the form of a polynomial

product (or equivalently of an aperiodic convolution), the coefficients of which are filters. A direct

implementation is given in Fig. 2.

Fig. 2. Direct implementation of the decimated filtering équation.

Vol. 13. No. 4. Dfcnnbn l««î

Chapter IV -47-

38: Z.J. Mou. P. Duhamel FQSt FIR Jitlennf

But. if we define

a0 = X0(z:), a, = X,(:;), (17)

Ao=H0(r), h^Htiz3),

then we can apply the usual aperiodic convolution algorithm, as given in [7]:

mi = aoho. m; = (a0+ai)(Ao + '»i), "�j = �ii*i.. (18a,b,c)

to obtain

Y,, + :~iy\
=

(ml +z~:m,) + z~l("i;-'n,-m,). (19)

Ail the 'multiplications' m, involved in (19.) now represent filtering équations. Coming back to the initial

notation, one gets

......., ., .,,
(20)

resulting in the diagram of Fig. 3.

Fig. 3. The implementation obtained by directly appiying a length-2 aperiodic convolution algorithm.

Another possibility is to take équation (16) as a starting point and, after defining

a0 = 2-2X,(r:), at = X0(z2), flj-X.d2), (21)

one can easily realise that équation (16) is in the form of an FIR filter of length 2, two outputs of which

are computed:

y0 = aih0+ach}, y, = a;/i0+a,/i,. (22)

But, it was shown by Winograd [10] that FIR filtering aigorithms could be obtained by the so-cailed

'transposition' of polynomial products. By transposing (19), we get the following algorithm to compute (22):

y0 = a,(/io + /»i) + (a0-a,)/ii, y, = a,(/i0 + /i,)-(a, -a2)ho, (23)

' which, back to the initial terminology, turns out to be

:
y0(z2) = X0(z:)[H0(z:) + H, (z2)] + [r-:Xl(2:)-X0(z:)]H1(.-:),

YAz2) = X0(z2)[H0(z2) + Hl(zz)]-[X0(z2)-Xx{z2)]H0(z2),

leading to the diagram of Fig. 4.

Signai Proccssinf

Chapter IV -48-

Fig. 4. The imptementation obtained by applying a 2-iap filtering algorithm.

From the point of view of a network, the scheme of Fig. 4 is exactly the transposition of the one of

Fig. 3 (see [5] for details on network transposition). Therefore, we can get new fittering schemes by either

algorithm transposition or network transposition.

Both (20) and (24) are equally efficient in terms of arithmetic opération count, but their implementation

is différent.

But, what is the relationship with the algorithm explained in Section 2?

Careful examination of équations (8) and (24) shows that (24) is the z-domain représentation of (8),

and that the scheme of Fig. 4 can be modified into the form of Fig. 1 if we change the order of switching

and adding: they are exactly équivalent. However, we hâve not exhausted ail the possible ways to implement

radix-2 algorithms: a systematic research gives sixteen différent ones.

This approach can of course be generalized to higher decimation ratios. It is aiso possible to use different

decimation ratios on output than on input, at the cost of a slightly more involved algorithm.

We hâve thus demonstrated that most of the work donc on the aperiodic convolution algorithms directly

applies to fast FIR filtering without the need of overlap-add or overlap-save techniques, thus saving

memory in the implementation, and keeping the algorithm's simplicity.

Furthermore, since, with the proposed approach, most of the multiply-accumulate structure of the FIR

filter is retained, it allows to choose the best tradeoff between structurai and arithmetic complexity, for a

given type of implementation.

4. Conclusion

We hâve presented FIR filtering algorithms for software and hardware implementations. Thèse algorithms

are shown to hâve a regular structure, retaining the multiply-accumulate structure of the FIR filter. This

is why we believe it possible to improve the compromise speedl complexity in any case of implementation:

FIR filtering on DSPs, on gênerai purpose computers, distributed arithmetic, and so on. Further work

will be reported on in future.

The theory explained in Section 3 aiso allows to dérive higher radix algorithms and mixed radix

algorithms, and can easily be generalized to multi-dimensional FIR filtering.

! Références

[1] R.C. Agarwal and C.S. Bumis. "Fast one-dimensional [2] R.C. Agarwal and J.W. Cootey. "New algorithms for
digital convolution by multidimensional techniques digital convolution". IEEE Traits. Acousi.. Speech. Signal
IEEE Trans. Acoust-, Speech, Signal Process., Vol. 22. Process., Vol. ASSP-25. October 1977, pp. 392-410.
February 1974, pp. 1-10.

Vol. 13. No. 4. Dtctmbtr 1917

Chapter IV -49-

384 Z.J. Mou. P. Duhamel ; Fast FIR filienng

[31 R.E. Blahut. Fait Algorithms for Digital Signal Processing.
Addison-Weslcy. Reading. MA, 1985.

[4] C.S. Burrus. "Digital filter structures described by dis-
tributed arithmetic", IEEE Traits. Circuits £ Systems, Vol.

CAS-24. December 1977. pp. 674-680.

[5] R-E Crochiere and LR. Rabiner, Multirate Digital Signal
Processing, Prentice-Hall, Englewood Cliflfs. NJ. 1983.

[6] K. Hayashi. K.K. Dhan. K. Sugahara and K. Hirano.

"Design of high-speed digital filters suitable for multi-DSP

implementation", IEEE Trans. Circuits Jk Systems. Vol.

CAS-33. Ftbruary 1986. pp. 202-216.

[7] H J. Nussbaumer. Fast Fourier Trallsf- and Coniohttion

Algorithms. Spnnger. Berlin/New York. 1981.

[8] P.C. Palla. A. Antoniou and S.D. Morgera. "Higher radix

aperiodic convolution algorithms", IEEE Trans. Aeoust.,
Speech, Signal Process., Vol. ASSP-34. February 1986. pp.
60-68.

[9] A. Peled and B. Liu, "A new hardware realization of

digital filters". IEEE Trans. Aeoust., Speech, Signal Pro-
Cfts., Vol. ASSP-22, December 1974, pp. 456-462.

[10] S. Winograd, "Arithmetic complexity of computations",
CBMS-MSF Régional Conf. Séries in Applied Mathematics,
Siam Publications No. 33, 1980.

Chapter IV -50-

4.3 Article 2

Short length FIR filters and their use in fast non recursive filtering

(Submitted to IEEE Transactions on ASSP, Mai 1989)

Abstract -This paper provides the basic tools required for an efficient use of the

recently proposed fast FIR algorithms. Thèse algorithms allow not only to reduce the

arithmetic complexity but also maintain partially the multiply-accumulate structure,

thus resulting in efficient implementations.

A set of basic algorithms is derived, together with some rules for combining

them. Their efficiency is compared with that of classical schemes in the case of three

différent criteria, corresponding to various types of implementation. It is shown that

this class of algorithms (which includes classical ones as spécial cases) allows to find

the best tradeoff corresponding to any criterion.

1. Introduction

2. General description of the algorithm

3. Short-length FIR filtering algorithms

4. Composite length algorithms

5. Conclusion

Chapter IV - 51 -

1. Introduction

A lot of algorithms are known to reduce the arithmetic complexity of FIR filtering.

The widely used ones are indirect algorithms, based either on the cyclic convolution or on

the aperiodic convolution using fast transforms as an intennediate step. Direct methods

without transforms were also proposed by Winograd [1].

Both direct and indirect methods require large block processing: they make use of

the redundancy between at least L successive output computations (L is the length of the

filter) to reduce the number of operations to be performed per output point.

Furthermore, the structure of the resulting algorithm has completely changed : the

initial computation is mainly based on a multiply-accumulate (MAC) structure, while the

fast algorithms always involve global exchange of data inside a large vector of size at least

2L.

Thèse are the main reasons why the above fast algorithms are not of wide interest

for real-time filtering : Hardware implementations require pipelining the whole System

with many intermediate memories, which results in a large amount of hardware. On

another side, software implementations on Digital Signal Processors (DSP's) are not very

efficient, except for very large L, since those fast algorithms hâve lost the

multiply-accumulate structure for which ail DSP's are optimized.

In other words, the usefulness of such algorithms was diminished because the

reduction in arithmetic requirements per output point was obtained at the expense of a loss

of structural regularity.

But structural regularity is difficult to quandfy : Hardware implementations do not

require the same kind of regularity as VLSI implementations do and "structural regularity"

is still another matter when thinking of DSP implementations.

Anyway, one fact remains: MAC structure is very efficient on any type of

implementation, including those on general purpose computer.

Recently, a new class of fast FIR filtering algorithms taking thèse considerations

into account was proposed [2,3,4]: Thèse algorithms retain partially the FIR filter

structure, while reducing the arithmetic complexity. They allow various tradeoffs between

structural regularity and arithmetic efficiency, including ail classical schemes as spécial

Chapter IV - 5 2 -

cases [10]. This flexibility in the dérivation of the algorithms allows to fmd the best

possible solution in any type of implementation.

The purpose of this paper is to provide the basic tools required for the derivation of

algorithms meeting various tradeoffs in différent implementations.

A brief description of thèse new algorithms is provided in Section 2. This

description allows to understand the structure of the new algorithms: Short-length FIR

filters with reduced arithmetic complexity where ail multiplications are replaced by

decimated subfilters. Since the process can be reiterated on the subfilters, the short-length

filters are recognized to be the basic building tools of thèse fast algorithms.

Hence, Section 3 is concemed with the derivation of a set of algorithms. This

section is mostly based on Winograd's work. We bring some improvements in the

number of additions by recognizing that the FIR filtering, seen as a running process,

involves a pseudocirculant matrix [5] instead of a gênerai Toeplitz one. Another advantage

of this presentation is the easy understanding of the transposition principle in the context

of multi-input multi-output Systems, overlapping between blocks being naturally taken

into account. Using this pseudocirculant presentation, we can dérive the transposed

version of ail fast FIR filtering algorithms in a very easy manner.

Section 4 addresses the case of multifactor algorithms. Iterating the basic process

raises the question of the best ordering of the short modules and of the length where the

decomposition has to be stopped. We provide the rules for obtaining the ordering of

factors which results in the lowest arithmetic complexity. A comparison with classical

algorithms (FFT-based ones) is also provided in the case of real valued signais.

Section 5 concludes and explains some open problems.

2. General description of the algorithm

Let us consider the filtering of a séquence {xj} by a length-L FIR filter with fixed

coefficients ihil

(1)
L-l

Yn= L xn-i h n = 0,1, 2,....,co
i =

Chapter IV
- 53 -

In z-domain formulation, this convolution becomes a polynomial product :

(2)

Y(z)=H(z)X(z)

Where X and Y are of infinité degree while H(z) has degree L-l: In z domain, the filtering

équation, seen as a running process, is described by the product of an infinité degree

polynomial and a Suite degree one.

Let us now decimate each of the three terms in eq.(2) into N interleaved séquences:

(3)
UN-l

Hj(z)= I h^^z"" ;j = 0,l,...,N-l

Xk(z)= S x^^z"" ;k = 0,l N-l
m=O 0

Yi (z) IymN + iz"m i 0, N-1
m 0

Eq.(2) then becomes :

(4)
N-l N-l N-l

L Yi (zN) z[1 Hj (zN)
z"j 1 Xk (zN) z"k

i=0 j=0 k=0

Eq.(4) is in the form of a polynomial product or an aperiodic convolution. The two

polynomials to be multiplied hâve fmite degree N-l, and their coefficients are themselves

polynomials, either of finite degree, such as {Hi}, or of infinité degree, such as {Xj} or

(Yi).

Let us now forget for a while that the coefficients of the (N-l)tn degree

polynomials are also polynomials, and apply a fast polynomial product algorithm to

compute the polynomial product in eq.(4). It is well known, since the work of Winograd

[1] that the product of two polynomials with N coefficients can be obtained with a

minimum of 2N-1 general multiplications. This minimum can be reached for small N,

while for larger N the optimal algorithm involves too many additions to be of practical

interest. In that case, suboptimal ones are often prefered. Hence, application of thèse

polynomial product algorithms to eq.(4) will resuit in a scheme requiring 2N-1

"products", each one being in fact the product of a finite degree polynomial by an infinité

degree séquence, that is an FIR filtering of length-L/N.

ChapterlV - 54 -

Compared to the initial situation, the arithmetic complexity is now as follows :

Eq.(4) requires N2 filterings of length L/N, which is about L multiply-accumulates

(Macs) per output (it is only a rearrangement of the initial équation), while the fast

polynomial product based scheme requires (2N-1) filterings oflength L/N, which is about

L(2N-1)/N2 Macs per output. Thus the improvement in arithmetic complexity is

proportional to the length of the filter, and this is obtained at a fixed cost, depending on N.

This means that, for large L, this approach will always be of interest. Précise comparisons

are provided in Section 3 for each algorithm.

Slight additional improvements can be obtained by further considering eq.(4): In

fact, eq.(4) contains not only the polynomial product, which allows the arithmetic

complexity to be reduced, but also the so-called "overlap" in classical FFT-based

schemes. By equating both sides of eq. (4), we hâve :

(5)
N-1

YN-1 = 1: XN - l - i Hi
i=O

N-l k

Yk =z'N S XN+k.iHi+ S Xk.iHi 0 S k S N- 2
i=k+l i=0

or in matrix form:

(6)

YN-2 Z HN-1 Bq � � XN.2

LY°
U'% ... z-NHN-iHoJLx°

J

The right side of eq.(6) is the product of a pseudocirculant matrix [5] and a vector. Note

that {X{} and f Hi) play a symmetric rôle, hence can be exchanged in eq.(6). The equation

is clearly in the form of a length-N FIR filter whose coefficients are (Hi), of which N

outputs {Yj} are computed. Following the notations ofWinograd [1], we shall dénote in

the following an algorithm computing M outputs of a length-N FIR filter by an F(M, N)

algorithm. Considering the FIR filter as a whole, and the fast FIR algorithm as the

Chapter IV - 55 -

"diagonalization" of the pseudocirculant matrix of eq.(6) results in some circumstances in

a réduction of the number of additions involved, compared with the usual approach which

séparâtes the polynomial product and the overlap. This will be seen in Section 3.

With the explanation above, the proposed algorithms can be understood as a

multidimensional formulation of the FIR filtering, where computations along one

dimension are performed through an efficient F(N,N) algorithm, resulting in a reduced

arithmetic complexity, while the other dimension uses a direct computation, thus allowing

the process to be a running one.

Let us also point out that, if the FIR filter of eq.(5) or eq.(6) is computed through

an FFT-based scheme, and with the appropriate choice of N versus L, the usual

FFT-based implementation of FIR filters can be seen to be a member of that class of

algorithms. This is explained in [10], where it is shown that ail fast FIR schemes

including FFT-based ones can be expressed as :

- decimation of the involved séquences (N on input and output, M on the filter)
- évaluation of the obtained polynomials at N+M-1 "interpolation points" {cq};
- "dot product" (or filtering);
- reconstruction of the resulting polynomials and overlap.

Ail the algorithms differ only by the choice of N, M, and {a.¡}.

Section 3 provides various short-length FIR filtering algorithms in the case of real

valued séquences.

3. Short-length FIR filtering algorithms

Let us first explain in some détail the simplest case : an F(2,2) algorithm, as given

in [2,3,4]: considering N = 2, {cq} = {0,1,°°}, we obtain :

(al) ao = Xi) bo = ho

ax = xo + Xi bx = ho + hi

a2 = x, b2 = hl

mi = aj bi; i = 0,1,2

yo = mo + z-2 m2

Chapter IV - 5 6 -

Yi = Mi - Mo - M2

When used in eq.(5) above, this algorithm results in the filtering scheme of Fig.l where

the problem of computing 2 outputs of a length N filter is turned into that of computing

one output of three length-N/2 filters, at the cost of 4 adds per block of 2 outputs.

Comparison of arithmetic complexities are now as follows : the initial scheme has a

cost of L mults and (L-l) adds per output point, to be compared with

3/4 L mults per output

2 + 3/2 (L/2 - 1) = 3/4 L + 1/2 adds per output.

It is seen that, excepted for very small L, both numbers of multiplications and -

additions hâve been reduced.

Successive décompositions are feasible, up to the point where the desired tradeoff

has been obtained. Of course, this tradeoff dépends on the implementation. On general

purpose computers where a multiplication and an addition require about the same amount

of time, the tradeoff allowing the fastest implementation will certainly correspond to a

decomposition near the one minimizing the total number of arithmetic opérations. On

Digital Signal Processors, a multiply-accumulate operation will in general cost one clock

cycle, and an appropriate criterion is certainly to count a Mac as a single operation. A third

criterion of interest is the minimum number of multiplications. In the following, tables

giving the minimum numbers for thèse three criteria will be provided.

Nevertheless, in nearly ail type of implementations, the situation is much alike: the

decomposition provided in Fig.l reduces the arithmetic load in a manner proportional to

L, the length of the filter, at a fixed cost (initialization of one Mac loop, or one Mac loop

plus two adds). Hence the balance between the performances of algorithms dépends on

the timing spent in the initializations. The précise N by which the splitting becomes of

interest therefore dépends on the spécifie machine or circuit. Anyway, this type of splitting

will always be of interest for large length filters, or even medium-size ones.

The remaining part of this section provides the simplest F(M,N) algorithms that

can be used to reduce the arithmetic complexity of a length-L filtering. Différent versions

are provided, resulting in various operation counts, and various sensitivities to roundoff

noise, a point which will not be dealt with in this paper.

Chapter IV - 5 7 -

The following algorithm is an F(2,2) algorithm with interpolation points {cq} =

{0, -1,°°}. It has exactly the same complexity as the previous one :

(a2) ao = Xo bo = ho

ax = Xq - xx bx = hQ - hx

a2 = xl b2 = hl

mj = aj h�i ; i = 0,1,2

yo = mo + z-2 m2

yl = mo + m2 - ml

For the sake of completeness, two algorithms computing F(2,2) with {cq} = {0,1,

-1 and {cq} = 1, -1, - are provided in Appendix B. They may be of interest as long

as roundoff noise is concerned, but they require 3 multiplications and 6 additions, that is

one more addition per output. Note that on some implementations (and essentially on

DSP's), this is not a real drawback, since thèse additions are now of the type a±b, which

can be efficiently implemented in many cases.

It is well known in the case of the usual implementation of a digital filter that the

transposition of a graph provides a digital filter with the same transfer function. Winograd

has proposed an approach allowing to obtain short-length FIR filtering algorithms by

transposing polynomial product algorithms. We hâve shown that simple overlapping of

polynomial products in eq.(5) is sufficient to construct FIR filtering algorithms. The

transposition of polynomial products is not necessary. It only provides alternative

versions of the algorithms. In the context of pseudocirculant matrix, we can transpose the

algorithms in a much easier way, and we can prove that the total arithmetic complexity of

ail thèse algorithms is not changed by the transposition operation (both number of

multiplications and additions). More détails are given in Appendix A.

The following algorithms are the transposed versions of algorithms (al) and (a2).

(a3) ao = xo - x, bo = ho

ai = xq bx = h0 + hx

a2 = Z-2 X, - Xo b2 = hj

mi = aibi; i = 0,1,2

Chapter IV - 5 8 -

Yo = mi + m2

yl = m1 - mo

(a4) ao = Xq + xx bo = ho

ai = Xq bx = h0 - hx

�Z-2 xx +Xo b2 = hl

mi = aibi; i = 0,1,2

y0 = mx + m2

YI = IDo - ml

The use of (a3) in a large FIR filter is provided in Fig.2.

Iterating the above algorithms results in radix-2 FIR algorithms, with a tree-like

structure, as proposed in [4].

Higher radix algorithms can also be derived, and should be more efficient, as seen

at the end of Section 2, since the ratio (2N-1VN2 decreases. However, an optimal F(3,3)

algorithm would require 5 différent interpolation points, that is one more than the simplest

ones: {cq} = {0,1,-1, ?,oo}, and the next simplest choices of the last interpolation point

{±24:1/2} resuit in an increased number of additions, and an increased sensitivity to

roundoff noise. This is the reason why it is advisable to use a suboptimal F(3,3) algorithm

which provides a better tradeoff between the number of multiplications and the number of

additions.

Such an algorithm can be obtained by applying twice the algorithm (al) as follows.

Let us remark that (al) is based on the following équation :

(8)

(xo + xi z-1) (ho + hl z-1)
= x0 ho + xi hl z-2 + [(xo + xx) (ho + hl) - xo ho - x: hj z-1

Inspired by eq.(8) we rewrite the radix-3 aperiodic convolution equation as follows :

(9)

[xo + (xx + x2 z-1) z"1 [ho + (hl + h2 z-1) z-1]
= (xo + Fz- 1) (ho + Gz-l)

= xo ho + [(xo + F) (ho + G) - xo ho - FG]z-l + FGz-2

Then, the algorithm in eq.(8) is once more applied to the computation of

Chapter IV - 59 -

(xo+F)(ho+G) and FG which are still radix-2 aperiodic convolutions. This results in an

aperiodic convolution algorithm requiring 6 mults and 9 adds (an optimal one would

require 5 mults and 20 adds [11, pp. 86]). Overlap has then to be performed by merging

the terms zO and z-3, and the term z-1 and z-4, with the appropriate delay. Hence, the

F(3,3) algorithm seems to require 2 more adds than the corresponding radix-3 aperiodic

convolution algorithm. Nevertheless, considering the redundancy during the overlap in

F(3,3) algorithm allows a further réduction of the number of additions to 10 adds, the

lowest number of opérations to our knowledge.

(a5) ao = xo bo = ho

ai = xi bi = hl

a2 = X2 b2 = h2

a3 = xo + xi b3 = ho + hl

a4 = xx + x2 b4 = hj + h2

a5 xo + a4 b5 = ho + hj + h2

mi = ajbi; i =0,1,2,3,4,5

1:0 = mo - m2 z-3

ti = m3 - ml

t2 = m4 - m1

yo to + tz z-3

Yi = h to

Y2 M5 - tl - t2

The use of this F(3,3) algorithm to reduce the arithmetic complexity of a larger FIR

filter is provided in Fig.3, showing that the overall structure is that of a multirate filter

bank, where JH, + H2, Hi, Hq + Hb H2, Ho, Ho + Hl + H2 } are decimated FIR filters.

Transposition of algorithm (a5) results in the following one, which is depicted in

Fig.4.

(a6) ao = x.2 - xi bo = ho

ax = (xo -x2 r3) - (xx - Xo) bx = hl

a^ = - ao z-3 b2 = h2

a3 = (xl - x0) b3 = ho + hl

a4 = (Xo -x2 z-3) b4 = ht + h2

Chapter IV - 6 0 -

a5 = xo b5 = ho + hl + h2

mi = aibi ; i =0,1,2,3,4,5

y0 = m2 + (m4 + m5)

yx - mj + m3 + (m4 +m5)

y2 a mo + m3 + m5

When used in a length-L FIR filter, both schemes (a5) and (a6) require 2L/3

multiplications and (2L+4)/3 additions per output point, to be compared with L and L-l

opérations respectively in the direct computation. This means that the computational load

has been reduced by nearly 1/3.

Careful examination of Fig.l - 2 and 3-4 shows that the distribution of the

additions between the input samples and the subfilters' outputs is not the same in the initial

algorithms and their transposed versions: In ail cases, transposed algorithms hâve more

input additions and less output additions. This fact should give them more robustness

towards quantization noise.

Another case, which looks interesting at first glance is as follows: why not

decimating the filter by a factor of 2, and X and Y by a factor of 3? This would be solved

by an F(3,2) algorithm, which requires 3 + 2 - 1 = 4 interpolating points, that is the very

number of the simplest interpolating points {0,1,-1,oo}. This means that F(3,2) or F(2,3)

are the largest filtering modules that can be computed effîciently with an optimum number

of multiplications :

(a7) ao = x3 - xi bo = ho

a! = Xi + x2 bx = (ho + hi)/2

a2 = xi - x2 b2 = (ho - hl)/2

a3 = x2 - xo b3 = hl

mj = aibi ; i= 0,1,2,3

y0 = (mx + m2) - m3

yi = mi M2

y2 = mo + (mi + m2)

This algorithm looks promising, since the same performance as an F(3,3)

Chapter IV
- 61 -

algorithm is obtained with a simpler one: F(3,2) requires 4 multiplications and 8 additions,

which means-that it reduces of the number of Macs by 1/3, at the cost of 8 additions.

Nevertheless, problems arise when using this algorithm for speeding up the computation

of a large length-L filter. The overall structure is depicted in Fig.5, where the main

computing modules are a kind of 1/3 FIR decimators. Obtaining 3 successive outputs of

the filter requires the computation of 4 length-L/2 inner products plus 13 adds, to be

compared with algorithm (a5) which requires 6 length-L/3 inner products, plus 10 adds.

Therefore, (a7) and (a5) hâve nearly the same arithmetic complexity. But (a7) requires 3L

memory registers, instead of 2L registers in (a5), and a more complex control System,

since the inner products are not true FIR filters any more.

AU aperiodic convolution algorithms can be tumed into FIR filtering algorithms by

appropriate overlap. Suboptimal higher-radix(�5) aperiodic convolution algorithms can be

derived using the approach in [12]. An F(5,5) algorithm based on this approach is given

in Appendix B. This algorithm, requiring 12 mults and 40 adds is not optimum as far as

the number of multiplications is concemed, but reaches the best tradeoff we could obtain.

Ail thèse F(N,N) algorithms are clearly similar to the ones proposed by Winograd

[1]. They differ essentially on several points :

First, the recognition that, by using decimated séquences, the arithmetic

complexity of an FIR filter can be reduced as soon as two ouputs of the filter are

computed regardless of the filter's length. Winograd's algorithms always require the

computation of at least as many outputs as the filter's order.

Second, a straightforward derivation through eq.(4) of the F(N,N) algorithms by

polynomial product algorithms which were extensively studied in the littérature.

Third, a reduction in the number of additions, which is made feasible by naturally

taking into account the "overlap" between two consecutive blocks of outputs (Hence the

use of the pseudocirculant matrix).

Fourth, a new interpretation, in the context of pseudocirculant matrix, of algorithm

transposition and a systematic method of obtaining transposed versions. (See appendix A)

4. Composite length algorithms

We hâve explained in Section 2 that the application of an F(N,N) algorithm could

Chapter IV - 6 2 -

break the computation of a length-L FIR filter into that of several length-L/N filters, in

such a manner that the arithmetic complexity is decreased. Nevertheless, the same process

can iteratively be applied to the subfilters of length L/N as well, leading to composite

length algorithms.

This section is concerned with the problem of finding the best way of combining

the small-length filters, depending on various criteria.

We first evaluate the arithmetic complexity of a length L = N^^ filter, when

using two successive décompositions by FCN^^) first , and then by F(N2,N2). Let us

assume that, with the notations of Section 3, the length-Ni filter requires Mi

multiplications and Ai additions.

The first décomposition by F(N1,N1) turns the initial problem into that of

computing Ml filters of length N2 L2 at the cost of Ax additions. Further decompositions

of the length-N2 L2 subfilters using F(N2,N2) require the consideration of a block of N2

outputs of thèse subfilters (hence a block of NI N2 outputs of the whole filter). Each of

thèse subfilters is then transformed into M2 filters of length L2 at the cost of A2 additions.

The global decomposition thus has the following arithmetic complexity:

N2 Ax additions + Ml [M2 length-1,2 subfilters + A2 additions].

That is :

(10) M = Ml M2 L2

(11) A N2 A, + Ml A2 + Ml M2 (L2 - 1)

Let IDï = Mj/Ni and ai = A/Ni where i=1,2. mi and % are the numbers of

operations (mults and adds respectively) per output required by F(Ni,Ni). Since eq.(10)

and (11) are the arithmetic load for computing (NI N2) outputs, the numbers of operations

per output for the whole algorithm are :

(12) m = ml m2 L2

(13) a = a: + ml a2 + ml m2 (L2 - 1)

An application of F(N2,N2) first, followed by F(N1,N1) would resuit in the same

number of multiplications , and a number of additions which will be higher than eq.(13)

Chapter IV - 63 -

as long as :

(14) a, + ml 02 � a,2 + m.2 a, or (n^-iyai � (m2 -l)/a2

or, equivalently:

(15) (M1-N1)/A1�(M2-N2)/A2

Let us define

(16) Q[F(Ni,Ni)] = K - D/aj = (N4. -Ni)/Ai

Q is a parameter spécifie of an algorithm. Its use has already been proposed in [8] for the

cyclic convolution. Eq.(15) means that the lowest number of additions is obtained by first

applying the short length FIR filter with the smallest Q, and then the one with the second

smallest Q and so on. Table. 1 provides Q[F(N,N)] for the most useful short-length filters.

Two useful properties of Q[F(N,N)] are as follows :

- A straightforward FIR filtering "algorithm" has Q[F(1,N)] =1, whatever N is.

This means that, in order to minimize the number of additions, they must be located at the

"center" of the overall algorithm, as was implicitely assumed up to that point.

- Iteratively applying an algorithm F(p,p) to obtain F(pk,pk) results in an algorithm

with the same coefficient Q:

(17) Q[F(pk,pk)] = Q[F(p, p)]

The démonstration is easily obtained by simply recognizing that applying first

F(pk,pk) and second F(p,p) or applying them in the reverse order results in the same

F(pk+l,pk+l) .

Hence, as an example, an optimal ordering for L = 120 Li =23x3x5 Lj would be :

F (5,5), F (2,2), F (2,2), F (2,2), F (3,3), F (IJL4)

Of course, when it is desired to implement a length-L filter, it is very unlikely that

F(L,L) is the most suitable algorithm for a spécifie type of implementation, even in the

case where L is composite. The best thing to do, is to search for the tradeoff minimizing

Chapter IV - 6 4 -

some criteria depending on the implementation.

It is not our propose hère to perform such an optimization in a spécial case, but we

shall try to show, in the following, that improvements are feasible whatever the criterion

is.

Assuming that L =N1...Ni...NrLr, and that a fast algorithm F(NitNj) is used for

ail Nj, a straightforward one being used for Ly., the general formulae for evaluating the

arithmetic complexity per output of a length-L filter are as follows :

(18)
r

m=L, nmi
i=l

(19)
r i-l r

i=l j=l i=l

A first criterion of interest would be the minimization of the number of

multiplications. Examination of eq.(18) shows that such a minimization is performed by

fully decomposing L into N1...Ni...NrLT, and this results in the number of opérations

given in Table.2.

Ail the operation counts are provided assuming that the signal and the filter are

real-valued, and the comparison is made with the real-valued FFT-based schemes [6,9] of

twice the filter's length. Table.2 shows that the proposed approach is more efficient than

FFT-based schemes up to L = 36, and very competitive up to L = 64 which covers most

useful lengths.

However, with today's technology, multiplication timings are not the dominant

part of the computations any more when a parallel multiplier is built in the computer, and a

very useful criterion is the sum of the number of additions and multiplications, i.e., M+A.

Table 3 provides a description of the algorithms requiring the minimum value for

such a criterion. It is seen that, although the basic F(N,N) algorithms de not improve the

criterion, ail the composite ones can be improved, and are even more efficient than

FFT-based schemes up to N = 64. Consider N = 16, for example: FFT-based schemes

hardly improve the direct computation £ 29.5 opérations per point versus 31), while

F(2,2)-based algorithm requires only 19.6 operations per point.

Chapter IV - 6 5 -

The previous criterion is well suited for general purpose computer implementation,

where ail opérations are performed sequentially, but Digital Signal Processors still state

another problem. In fact, DSP's perform generally a whole multiply-accumulate(Mac)

opération in a single clock cycle, so that a Mac should be considered as a single opération,

which is not more costly than an addition alone.

Table.4 provides a description of the algorithm minimizing the corresponding

criterion: the sum of the number of Macs and I/O additions. Of course, this criterion is a

rough measure of efficiency, since initialization time of Mac loops is not taken into

account. Nevertheless, what Table.4 shows in that even this kind of criterion, taking

partially into account the structure of DSP's, can be improved using our approach : a

length - 64 filter can be implemented using this type of algorithms with nearly half the total

number of operations (Macs+ I/O adds) per output point, compared to the trivial

algorithm. And this is obtained with a block size of only 8 points. This shows that

moderate up to large length filters can be efficiently implemented on DSP's using thèse

techniques.

Two points should be emphasized hère :

A lot of Systems requiring digital filtering hâve constraints on the input/output

delay, which prevents the use of FFT-based implementation of digital filter. Our approach

allows to obtain a reduction of the arithmetic complexity whatever the block size is. This

means that our approach allows to reduce the arithmetic complexity by taking into account

such requirements as a constraint on the I/O delay.

Another remark, which is not apparent in the tables, is that for a given filter length

L, there are often several algorithms providing comparable performance, for a given

criterion. It allows us to choose among them the one which is the most suited for the

spécifie implementation.

5. Conclusion

We hâve presented a new class of algorithms for FIR filtering, showing that the

basic building tools are short-length FIR modules in which the "multiplications" are

replaced by decimated subfilters.

We hâve provided also the basic tools required for implementing thèse algorithms:

Chapter IV - 66 -

First, we propose short-length FIR filter modules of the Winograd-type with a

small number of multiplications and the smallest number of additions. Their transposed

versions are also provided.

Second, we give some rules concerning the best way of cascading thèse

short-length FIR modules to obtain composite-length algorithms.

Finally, we show that, for three différent criteria, this class of algorithms allows to

obtain better tradeoffs than the previously known algorithms, which should make them

useful in any kind of implementation.

It is concluded that the presented algorithms allow not only to compute from

moderate to long length FIR filtering on DSP's in a more efficient manner, but also to

compute short-length (�64) FIR filtering more efficiently than FFT-based algorithms

when considering the total number of opérations.

Thèse algorithms also suggest efficient multiprocessor implementations due to their

inhérent parallelism, and efficient realization in VLSI, since their implementations require

only local communication, instead of a global exchange of data, as is the case for

FFT-based algorithms.

Appendix Several short length FIR algorithms.

F(2,2) algorithm with (3 multiplications, 6 additions), {oq} = 0, 1, - -1}.

(a8) ao = Xq bo = ho

ai " xo +xi t»! = (ho +hl)/2

a2 Xo - Xi b2 = (h0-h1)/2

mi = aibi; i = 0,1,2

y0 = mo +z-2(m1 +m2 -mo)

Yi - mx -m2

F(2,2) algorithm with (3 multiplications, 6 additions), {cq} il, - 1, 1.

(a9) a0 = x0+x1 bo = (ho +hl)/2

Chapter IV - 6 7 -

ai = x0 - xx bx = (h0 - hx)/2

az = xl b2 = hj

mi = aibi; i = 0,1,2

Yo = mg + ml -m2 +z~^m2

yx = mo -ml

F(5,5) algorithm with (12 multiplications, 40 additions). This algorithm is based on the

approach in [12].

(alO) c0 = Xo + x3 go = (ho + h3)/2

ci = xi + x4 gi = (hi + h4)/2

C2 = x2 g2 = h2 /2

c3 = Xq - x3 g3 = (h3 - ho)/2

c4 = Xi - x4 g4 = (h4 - hx)/2

c5 = x2 g5 = - h2 a

ao = co + cj + c2 bo = (go + gi + g2)/3

al = Co - Cz bl = 90 - 92

az = CI - Cz bz = gl - gz

a3 = ax + fy fy = (bx + b2) /3

a4
=

C3 - c4 + C5 b4
=

(g3 - g4 + g5)/3

a5 = c3 - C5 b5 =(-2g3 - g4 + g5)/3

a,6 = C3 + C4 b6 = (g3 + 2g4 + g5)/3

a7
=

C4 + C5 b7
=

(g3 - g4 - 2g5)/3

a8 = x0 b8 = h0

ag = xo bç = hj

a10 = x, b10 = ho

an = X4 t»n=h4

mi = aibi; i = 0,1 11

Uq = ml - m3

Uj = m2 - m3

do = mo + u0

dl ino - uo - ul

Chapter IV - 6 8 -

d2 = mo + ux

d3 = m4 - m5 + xxxj

d4 = -m4 + mg + m-j

ds = m4 + m5 + m6

ci�; * mç + m10

f0 = d2 - d5

f x = dx - d4

f2 = do - d3

f3 d2 + d5

f4 = dj + d4

f 5 = do + d3

yo = mg + z-s f5

yl = dg + z-1 (fo - m8)

Y2 f2 - Mll + z-5(f1-d6)

y3 = f3 + z-5 mn

y a = U

Chapter IV - 69 -

References

[1] S. Winograd, "Arithmetic complexity of computations", CBMS-NSF Reginal Conf. Séries in

Applied Mathematics, SIAM Publications No. 33, 1980.

[2] Z.J. Mou, P. Duhamel, "Fast FIR filtering: algorithms and implementations", Signal
Processing, Dec. 1987, pp.377-384.

[3] M. Vetterli, "Running FIR and HR filtering using multirate filter banks", IEEE Trans. Acoust.

Speech, Signal Processing, Vol. 36, N°5, May 1988, pp.730-738.

[4] H.K. Kwan, M.T. Tsim, "High speed 1-D FIR digital filtering architecture using polynomial
convolution", in Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing, Dallas, USA, April,
1987, pp.1863-1866.

[5] P.P. Vaidyanathan, S.K. Mitra, "Polyphasé networks, block digital filtering, LPTV Systems
and alias-free QMF banks: A unified approach based on pseudocirculants," IEEE Trans. Acoust.

Speech, Signal Processing, Vol. 36, N°3, March 1988, pp.381-391.

[6] P. Duhamel, M. Vetterli, "Improved Fourier and Hartley transform algorithms: application to

cyclic convolution of real data", IEEE Trans. Acoust. Speech, Signal Processing, Vol. ASSP-35,
N°6,June 1988, pp.818-824.

[7] S. Winograd, "Some bilinear forms whose multiplicative complexity dépends on the field of
constants", Mathematical Systems Theory 10 (Sept. 1977), pp.169-180. Also in Number Theory
in Digital Signal Processing (éd. by J.H. McClellan and C.M. Rader), Prentice-Hall, Englewood
Cliffs, N.J., 1979.

[8] R.C. Agarwal and J.W. Cooley, "New algorithms for digital convolution", IEEE Trans.
Acoust. Speech, Signal Processing, Vol. ASSP-25, Oct.1977, pp. 392-410.

[9] H.V. Sorensen, D.L. Jones, M.T. Heideman, C.S. Burrus, "Real-valued fast Fourier
transform algorithms", IEEE Trans. Acoust. Speech, Signal Processing, Vol. ASSP-35, N°6,
June 1988, pp.849-863.

[10] Z.J. Mou, P. Duhamel, "A unified approach to the fast FIR filering algorithms", in Proc.
IEEE Int. Conf. Acoust. Speech, Signal Processing, New-York, USA, April 1988,
pp.1914-1917.

[11] R.E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading,
MA,1985.

[12] P.C. Balla, A. Antoniou, S.D. Morgera, "Higher radix aperiodic convolution algorithms",
IEEE Trans. Acoust. Speech, Signal Processing, Vol. ASSP-34, N°l, February 1986, pp.60-68.

[13] R.E.Crochiere, L.R.Rabiner, Multirate Digital Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1983.

Chapter IV -70-

Table. 1 Quality factors for several short-length algorithms.

Algorithms Q

F(1,N) 1

F(2,2) 0.25

F(3,3) 0.3

F(5,5) 0.175

Chapter IV -71-

Table.2 Arithmetic complexity of an F(N,N) algorithm by short-length FIR and by FFT-based

cyclic convolution.

Short-length FIR FFT-based FIR Direct FIR

N M m A a Mppj m AFFT a ma

2 3 1.5 4 2 2 1

3 6 2 10 3.3 3 2

4 9 2.25 20 5 15 3.75 43 10.75 4 3

5 12 2.4 40 8 5 4

6 18 3 42 7 33 5.5 83 13.83 6 5

8 27 3.38 76 9.5 43 5.38 131 16.38 8 7

9 36 4 90 10 9 8

10 36 3.6 128 12.8 10 9

12 54 4.5 150 12.5 12 11

15 72 4.8 240 16 112 7.47 353 23.53 15 14

16 81 5.06 260 16.25 115 7.19 355 22.19 16 15

18 108 6 306 17 18 17

20 108 5.4 400 20 20 19

24 162 6.75 498 20.75 24 23

25 144 5.76 680 27.2 25 24

27 216 8 630 23.33 27 26

30 216 7.2 744 24.8 225 7.50 829 27.63 30 29

32 243 7.59 844 26.38 291 9.09 899 28.09 32 31

36 324 9 990 27.5 271 7.53 1084 30.11 36 35

60 648 10.8 2280 38 455 7.58 1955 32.58 60 59

64 729 11.39 2660 41.56 701 10.95 2179 34.05 64 63

128 2187 17.09 8236 64.34 1667 13.02 5123 40.02 128 127

256 6561 25.63 25220 98.52 3483 13.61 11779 46.01 256 255

512 19683 38.44 76684 149.77 8707 17.01 26627 52.01 512 511

1024 59049 57.67 232100 226.66 19459 19.00 59395 58.00 1024 1023

Chapter IV -72-

Table.3 Minimum sum of opérations (Mults + Adds). (mxn) means the décomposition by a fast

F(m,m) algorithm using optimal ordering followed by direct length-n FIR filters. (FFT) means

using FFT-based schemes.

N Décomposition M+A /N Block size

2 direct 6 3 1

3 direct 15 5 1

4 (2x2) 26 6.5 2

5 direct 45 9 1

6 (3x2) 56 9.33 3

. 8 (2x2x2) 94 11.75 4

9 (3x3) 120 13.33 3

10 (5x2) 152 15.2 5

12 (2x3x2) 192 16 6

15 (5x3) 300 20 5

16 (2x2x2x2) 314 19.63 8

18 (2x3x3) 396 22 6

20 (5x2x2) 472 23.6 10

24 (2x2x3x2) 624 26 12

25 (5x5) 740 29.6 5

27 (3x3x3) 810 30 9

30 (5x3x2) 912 30.4 10

32 (2x2x2x2x2) 1006 31.44 16

36 (2x2x3x3) 1260 35 12

60 (5x2x3x2) 2784 46.4 30

64 (FFT) 2880 45.00 64

128 (FFT) 6790 53.05 128

256 (FFT) 15262 59.62 256

512 (FFT) 35334 69.01 512

1024 (FFT) 78854 77.01 1024

Chapter IV -73-

Table.4 Minimum number of Macs (Length of scalar products + I/O adds). (mxn) means

the decomposition by a fast F(m,m) algorithm using optimal ordering followed by direct

length-n FIR filters. (FFT) means using FFT-based schemes.

N Décomposition MAC /N Block size

2 direct 4 2 1

3 direct 9 3 1

4 direct 16 4 1

5 direct 25 5 1

6 direct 36 6 1

8 direct 64 8 1

9 direct 81 9 1

10 (2x5) 95 9.5 2

12 (2x6) 132 11 2

15 (3x5) 200 13.33 3

16 (2x8) 224 14 2

18 (2x9) 279 15.5 2

20 (2x2x5) 325 16.25 4

24 (2x2x6) 444 18.5 4

25 (5x5) 500 20 5

27 (3x9) 576 21.33 3

32 (2x2x8) 736 23 4

36 (2x2x9) 909 25.25 4

60 (5x2x6) 2064 34.4 10

64 (2x2x2x8) 2336 36.5 8

128 (24x8) 7264 56.75 16

256 (25x8) 22304 87.13 32

512 (26x8) 67936 132.69 64

1024 (27x8) 205856 201.03 128

Chapter IV -74-

Chapter IV - 75 -

Chapter IV 76,

Chapter IV . 77 .

Chapter V -79-

Chapter 5

Fast multiplier-accumulator

5.1 Multiplier-accumulator

Multiplier-accumulator is instrumental to modem digital signal

processing. It constitutes the heart of the widely used Digital Signal

Processors (DSP's) as well as the general purpose computer.[And57]

The DSP's are often optimized for computing an FIR filter which is in

form of an inner product and calculated by successive multiply-accumulates.

The time required by a multiply-accumulate serves as a major benchmark for

various DSP's [Lee88].

This chapter will deal with the arithmetic aspects of multiplier-

accumulator as well as its VLSI layout design. The contents of this chapter

provides also the basis for the subséquent chapters where we study the

achitectures of the FIR filter which can be taken as a generalized multiplier-

accumulator.

We will also propose some new schemes for designing fast multiplier-

accumulators.

5.2 Réduction of the number of partial products

In general a BxN (B�N) multiplier is équivalent to the surnming of B

operands which are called partial products, with appropriate shift: (Assume

the numbers are in 2's complément.)

B-l

XH=(-x0+Xxi2~1)H
i=l
B-l

= -x0H+X(XiH)2_i

Chapter V -80-

{xjH; i=0,1,...,B-1} are the partial products.

If the number of partial products can be reduced, in conséquent, the

speed of the summing can be increased.

Booth's encoding [Boo51] allows to reduce more than half the number of

partial products. However Booth's encoding is difficult to implement because

of the variable number and variable position of the partial products, except for

one of the two multiplicative factors is constant. The most widely used

technique is the modified Booth's encoding [Mac61] which constantly halves

the number of partial products.

5.2.1 Booth's encoding

This technique is based on the following relation of a binary number

(not in 2's complément):

1111...l=2n+2n-l+2n-2+...+2+1=2^+1-1 (5.2a)

or in 2's complément:

1111...l=-2n+2n-l+2n-2+...+2+l=-l (5.2b)

This means that a string of l's can be transformed into two or one effective

bits. It is particularly of interest in designing multiplier which uses actually

binary arithmetic. By the principle of (5.2), n effective partial products are

reduced to only two or one products. Two kinds of partial products are possible:

{-H,H). It is originally proposed by Booth [Boo51]. Since the Booth's encoding

uses négative bits, it is also known as canonical signed bit (CSB)

représentation.

For example a 10-bit number in 2's complément after encoding

becomes:

1110011011=00(-1)0100(-1)0(-1) (5.3)

In practical design, only four partial products need to be taken into account

instead of 10. In general,more than 50% of partial products can be reduced.

Chapter V -81-

However the big problem for implementation is that we can not

systematically détermine how many and which partial products should be

taken into account.

This diffculty limits heavily the application of Booth's encoding to

multiplier design, except the case either X or H is constant. In that case,

Booth's encoding applies because we can prédétermine the number and the

position of effective partial products. Hence it is particularly of interest for full

custom design.

5 JL2 The modified Booth's encoding (MBE)

By considering three bits in X, with one bit commonly shared by the

neighboring groups of three bits, we obtain:

B-l

X = -x0+Xxi2_1
i=l

B-l

1=0 i even

where xB = 0(B even) and xfi
=
xfi+1

= 0 (B odd). (5.4)

This formulation provides the basis for the modified Booth's encoding [Mac61,

Rub75]. The binary number is transformed into a base-4 number. Its digits

Table. 5.1. Truth table of control signal génération for the modified Booth's

encoding.

Xi xi+i Xi+2 S(i) N(i) C(i)

Shift Null Complément

0 0 0 0 0 0

0 0 1 0 1 0

010 0 1 0

0 11 1 1 0

100111

1 0 1 0 1 1

110 0 1 1

111 0 0 1

Chapter V -82-

{-2xi+xj+i+xi+2) take one of the five values: {-2,-1,0,1,2}. When X multiplies H,

five partial products are possible: {-2H, -H, 0, H, 2H}. In total the number of

partial products is reduced to B/2 for B even or to (B+D/2 for B odd.

The génération of an effective partial product P(i)=(-2xi+xj+i+xj+2)H

dépends on the value of (-2xj+xi+i+xj+2). So, we can encode the five values of

(-2xj+xj+i+xi+2) into three control signais: Shift S(i), Null N(i) and

Complément C(i). The truth table is given in Table.5.1.

From the Table.5.1, we get the following logic relations:

S=
xi+1©xi+2

N
XiXi+lXi+2+XiXi+lXi+2

C= Xi (5.5)

Thèse control signais will détermine how to sélect or generate one of the five

partial products. The effective partial products P(i) is generated according to

the équation below:

p}hj'hj+l)
=
[(Shj

+
shjtl)N]ec (5.6)

and

b-1 -(b-1)
j=0 J

pj is the jth bit ofP(i) and hj is the jth bit ofH. pj is the function of {hj, hj+i}.

In Fig.5.1 we depict the scheme for partial product génération. It is not

the only way for the génération. Many alternatives are discussed in [Mon88,

Mou89].

Fig.5.1 Partial product génération using encoding

Chapter V -83-

Since the MBE results in a constant réduction of the number of partial

products to one half, and the partial products are easy to generate, it is

prefered in general multiplier design.

5.3 Multioperand summation

Having reduced and generated the partial products, we should sum

them up. This section deals with the fast multioperand summation.

Conventional BxN multiplier requires (B+N)tfa as multiplication time, tfa

denoting the time required by a full adder. The pipeline is often difficult in

such multiplier since the carries and sums hâve différent directions of

propagation. We will show in the following that the multiplication time can be

reduced.

5.3.1 Using carry-save adder (CSA)

CSA leads to important improvement in computing speed, compared to

carry-propagation adder (CPA). A CSA adds 3 numbers into 2 numbers while

a CPA adds 2 numbers into 1 number. Fig.5.2 shows the 2 adders.

In a computation we are often interested only in the final resuit. Hence

during the computation, we may use différent représentation of the

intermediate information as long as the computation can be performed much

rapidly. The carry-save adder supports such a représentation that ail the

intermediate results are two numbers: C and S, which are independent of one

another. The final resuit is the sum of the two numbers. In fact, it is not

necessary to specify them as carry and sum.

A multiplication can be seen as the summation of a number of

operands or partial products. In Fig.5.3, we depict a scheme of summing up N

numbers using a direct CSA array. We need N-2 CSAs to sum up the N

numbers into 2 numbers. Then the computing time is (N-2) tfa, given tfa the

time required by a full adder.

In designing a multiplier, we should add the final C and S to get the

product. However since our objective is to design multiplier-accumulator, we

will leave the two numbers as the input to the subséquent computations.

Chapter V -84-

Fig.5.2 Carry-save adder(CSA) and carry-propagation
adder(CPA). FA = Full Adder.

Fig.5.3 Direct CSA array for summing N numbers

Chapter V -85-

CSA array is very regular so that the design is easy. Another

advantage is that the data flow is unidirectional, which allows to insert

pipeline in the array much evenly while keeping a regular structure. In a

CPA array the data flow propagates in a diagonal way. The pipeline registers

along the diagonal can not be either evenly distributed or as regular and

compact as the CSA array.

Note that the summing time of N operands using direct CSA array is

proportional to N. A technique termed Wallace-tree allows to further speed up

the summing.

5.3.2 Wallace-tree and its compact layout

Wallace-tree [Wal61] exploits the concurrency in the summing of

multiple operands. The building block is still the CSA. However the CSA's are

organized in a tree like manner. We always center our attention on summing

N numbers to two outputs. A N-2 W-tree will be used to do the work. A 9-2 tree

is shown in Fig.5.4 to give an idea. The computing time is only 4 tfa, instead of

7 tfa using direct CSA array. In general, an N-2 W-tree requires a delay of

O(logN) full adders. The précise minimum number of layers can be

determined by the following formula [Was82]:

k= E [log3/2 N/2 1+1 ; for N�3. (5.7)

where E [Q] means the integer part of a real Q. The Table 5.2 gives a number of

N's and their corresponding k's.

Although the Wallace-tree looks very attractive, it is rarely

implemented because its structure leads to difficult routing and exagerated

area requirement. Thus a general belief is that the W-tree is unimplementable

and out of practical use [Vui83, Mon88].

In the following we propose a compact yet regular design which may

cover the most useful N. Let us consider the 9-2 tree design. We take at first the

bits of the same weight 2-k of ail the 9 operands into account and sum them up.

Further more, we should not forget the carry from the lower weight bit while

summing. Then a bit-slice W-tree can be established as shown in Fig.5.5. The

wordlevel tree is the regular assemblage of the bit-slice tree.

Chapter V -86-

Table.5.2 Number oflevels for an N-2 Wallace-tree

N k

3 1

4 2

5�N�6 3

7�N�9 4

10�N�13 5

14�N�19 6

20�N�28 7

29�N�42 8

43�N�63 9

Fig.5.4 The 9-2 Wallace-tree

Chapter V -87-

Fig.5.5 Compact and regular Wallace-tree design.

Chapter V -88-

Fig.5.6 A bit-slice 18-2 W-tree using bit-slice 9-2 W-tree

For large N, the routing may become complex. We propose a solution

suitable for this case. Instead of one column, we use two columns. For

example, a bit-slice 18-2 tree is constructed as shown in Fig.5.6.

5.4 Fast accumulator

Usually an accumulator accumulâtes a séries of numbers one after

another. It is symbolized in Fig.5.7. The time required by an accumulation,

denoted by tac is équivalent to that by an addition, i.e., proportional to the

number of bits of operands. An accumulation is often considered as an

addition.

Chapter V -89-

Fig.5.7 Conventional accumulator

However, some techniques allow to reduce tac considerably, as

presented in the following.

5.4.1 Carry-save (uni-operand) accumulator

As mentioned before, a carry-save adder adds 3 numbers to 2 numbers

in tfa time. If we route the 2 outputs, after latch, to the input of the CSA, a

carry-save accumulator is formed as shown in Fig.5.8. A séries of numbers

are accumulated one by one as usual. We define it thus as a uni-operand

accumulator. Note that tac (=tfa) is independent of the wordlength of operands.

Fig.5.8 Uni-operand accumulator using CSA.

Two numbers represent the intermediate results of the accumulation.

For obtaining the final resuit, we should sum up the two numbers. This can

be easily and economically done in most cases. For example, when L numbers

Chapter V -90-

are to be accumulated, Ltfa is required. We hâve then Ltfa time for the final

addition, which may be realized using bit-serial adder.

5.4J2 Bi-operand and multi-operand accumulator

The carry-save accumulator accumulâtes the numbers one by one. If

we accumulate more than one operand in a single computing cycle, the total

number of computing cycle can be reduced. In the case of a parallel

multiplier-accumulator, the output of CSA array or Wallace-tree is two

numbers. It is obligatory to accumulate 2 numbers each cycle.

Fig.5.9 Bi-operand accumulator.

Anderson et al. [And67] proposed a scheme allowing to accumulate

multiple operands per cycle. A scheme of interest is that of bi-operand

accumulator (see Fig.5.9). This accumulator accomplishes one accumulation

in 2 tfa time. Since the output of ail opérations using carry-save arithmetic is

two numbers, the bi-operand accumulator is mostly used [Li87,San88].

Chapter V -91-

Fig.5.10 Quadri-operand accumulator.

By the same token, we can design a quadri-operand accumulator as

shown in Fig.5.10. This accumulator accumulâtes 4 numbers in only 3tfa,

using a 6-2 Wallace-tree. This scheme can be generalized to an N-operand

accumulator by using an (N+2)-2 W-tree and routing the 2 outputs to the top of

the tree [Was82]. When N is large, the routing may become difficult and

impractical. A good tradeoff is to use an N-2 Wallace-tree plus a bi-operand

accumulator which avoids the long routing [Was82]. Another variant of

interest is based on two N/2-2 W-trees plus a quadri-operand accumulator.

This scheme allows double column design as in Fig.5.6. Ail the three alternate

N-operand accumulator designs are shown in Fig.5.11. The first one is

optimal in terms of delay but may be difficult to design. The other 2 schemes

are suboptimal but very easy to design. Since the minimum number of CSA

delays is not very sensitive to N (see Table.5.1), the third alternative may

become optimal for certain values of N. For example when N=12, both the first

and the third schemes hâve 7 CSA delays.

Chapter V -92-

Fig.5.11 Three alternatives of N-operand accumulator.

Some other schemes can be developed in the same manner: using m

N/m-2 W-trees plus a 2m-operand accumulator. We may choose appropriate m

to meet the best trade-off betwen the accumulation time and the complexity of

design.

In fact, ail multiplier-accumulators belong to the class of multi-

operand accumulator. A multiplier alone can be also implemented using

small multioperand accumulator recursion. For example when designing a

64x64 parallel multiplier, the modified Booth's encoding results in 32 partial

products. Using an eight-operand accumulator, the product can be computed

in 4 cycles.

5.5 Pipelined multiplier-accumulator and new schemes

Pipeline is a popular technique to increase considerably the processing

speed. The state-of-the-art IC technology allows larger and larger scale

intégration. The current criterion for optimal IC design is whether the circuit

minimizes the value of AT2. A is the chip area while T is the clock cycle

period.. This criterion largely favors reducing T or increasing the functional

frequency at cost of increasing the chip area. For example a réduction in T by 2

times may justify the increase in A by 4 times.

Chapter V -93-

Hence when latency is not critical, such a criterion is always

encouraging to insert pipeline registers in order to maximize the processing

speed.

When pipehning the schemes presented before, the minimum T we

can reach is 2tfa, using the bi-operand accumulator. Previous works

[And67,Li87,San88], as shown in Fig.5.12, did not exceed this limit. The lower

bound of T is limited by the number of CSAs in the accumulation loop.

Fig.5.12 Pipelined 8-operand accumulator.

Further improvement of the lower bound of T dépends on reducing the

number of CSAs in the accumulation loop. We propose some new scehmes

having only one CSA in the loop.

Chapter V -94-

Fig.5.13 Pipelined bi-operand accumulator with 4 outputs.

A rather direct approach makes use of two uni-operand accumulators

as shown in Fig.5.13. This bi-operand accumulator accumulâtes a séries of

numbers into 4 numbers. The minimum cycle time is reduced to tfa.

Theoretically, an N-operand accumulator can be constructed using N uni-

operand accumulators so that the minimum accumulation cycle time is

lowered to tfa. But it results in more complex final adder design. Then it is

often of interest to use a CSA array or W-tree to sum up N operands to 2

numbers followed by a bi-operand accumulator.

An alternative to that in Fig.5.13 is shown in Fig.5.14. It can

accumulate as fast as that in Fig.5.13 while the resuit is represented by only

three numbers. The final adder can be thus simplified.

Fig.5.14 Pipelined bi-operand accumulator with 3 outputs.

Chapter V -95-

5.6 Remarks

This chapter has been concerned with the arithmetic aspects in

designing fast multiplier-accumulators, including: réduction of the number of

partial products by the modified Booth's encoding; carry-save adder array and

Wallace-tree; fast accumulators. We hâve proposed a compact yet regular

design to implement Wallace-tree, overcoming the general belief that the W-

tree is not practical [Vui83,Mon88]. New accumulators are presented which

allow to realize the fastest accumulation, while bit-level pipeline is introduced

[Hat88].

Wallace-tree and CSA array represent the two ends of the spectrum of

N-operand summing operators: one requires the least delay with the most

irregularity for design while the other does the contrary. There are many

other types of summing tree meeting différent delay/regularity tradeoffs, for

example the 4-2 tree [Li88,San88] and the balanced delay tree [Zur86,Mon88].

The competitivity of thèse trees benefits largely from their regular design.

Since our technique allows to improve the design of Wallace-tree, we believe

that the Wallce-tree is always a good candidate for summing operator design.

Chapter VI -97-

Chapter 6

New results on the distributed arithmetic

implementation of FIR fîlters

The distributed arithmetic is an efficient bit-serial technique to

implement FIR filters [Cro73,Pel74,Bur77] or scalar products. Its principle is

to precompute the 2L possible sums of coefficients of a filter and to store them

in a 2L-word ROM, given L the number of filter coefficents. At the output of

ROM, a shift-accumulator adds B times partial sums to compute an output of

the filter where B is the number of bits of each input.

This chapter describes several new structures which improve

significantly the computing speed and hardware requirement when

implementing an FIR filter by distributed arithmetic. Thèse structures are

characterized by the following aspects:

-fast accumulation;

-without ROM;

-massive use of carry-save adders and Wallace-tree;

-regular architecture allowing easy pipeline until bit-level;

-reduced number of computing cycles per output.

Usually, one accumulation is équivalent to one addition. By applying

fast accumulation technique presented in the Chapter 5, we can largely reduce

the time of one accumulation and to perform one addition per output instead of

B additions.

The ROM occupies very large chip area and is often the bottleneck of

computing speed. By decomposing the ROM into smaller ones, we reduce the

hardware requirement and increase the speed. Ail the outputs of the small

ROMs need to be summed. In the extrême case of ROM décomposition, only

the coefficients are stored. The computing part is totally composed of parallel

adders. The adder-based architectures are parti cularly investigated in this

chapter. Ail the adders are the carry-save ones, instead of the carry-

Chapter VI -98-

propagation adders. Wallace-tree, an efficient technique usually used in

designing hardware multiplier, is applied in thèse architectures.

We will show also how to pipeline, as well as to exploit concurrency in

thèse architectures. The pipeline may be massively and easily used in the

presented architectures until bit-level. The resulting architectures keep a

great regularity which facilitâtes implementations.

The conventional scheme computes one output per B cycles. Then we

propose to apply the modified Booth's encoding (MBE) to reduce the number of

computing cycles per output to B/2 (B even) or (B+D/2 (B odd) while requiring

only a few additional hardware. The filtering speed can be thus doubled. When

the coefficients are fixed for a dedicated application, further simplification can

be achieved in a systematic manner.

Linear phase FIR filters hâve symmetric coefficients. Such symmetry

can resuit in important réduction of hardware requirement. But

straightforward implementation needs one more computing cycle, i.e., (B+l)

cycles per output. A new encoding technique is introduced to eliminate the

extra cycle, requiring B cycles per output as usual. We will also apply the

pipeline to the design of symmetric FIR filters.

Although the distributed arithmetic is originally a bit-serial technique,

it allows bit-parallel implementation as well [Li88]. The parallel

implementation will be dealt with. The new encoding technique is very

attractive for parallel design of linear phase FIR filters and shows better

performance than other alternatives.

6.1 The principle of distributed arithmetic

In this section, we give a brief review of the principle of distributed

arithmetic implementation of FIR filters.

The FIR filtering is to compute the following opération :

L-l

Yn= Shixn-i n = 0,
i=0 (6.1)

Chapter VI -99-

where {hj} are filter's coefficients and lxi) the inputs. Suppose input signal

samples are coded in 2's complément of B bits:

B-i
_k

i0 k = 1 ik *k (6.2)

this gives

L-i B-i

1=0 k=l

L- B-l L-i

=-
yh.x .

+ y (yh.x .j2~
i = k=i i = (6.3)

Since (x^, k} are binary numbers, a partial sum Pk of weight 2-k

L-1

k 0 1 L- l
1=0 î n-ik (6.4)

Fig.6.1 FIR filter structure by distributed arithmetic

Chapter VI -100-

is a function of L binary variables lxn.j ^ i = 0,1,....L - 1}. If the 2L possibles

values of the function are stored appropriately in a lookup table or in a ROM,

by addressing the ROM with the L binary variables, we get the correspondant

partial sum. A FIR filter can be thus implemented as shown in Fig.6.1. The

addressing of the ROM is performed from the least significant bit (LSB) to the

most significant bit (MSB) of each input sample (we can do it also from MSBs

to LSBs). The partial sums of different weights are shifted and accumulated

following eq.(6.3). One filter output is thus produced every B cycles. While the

MSBs are addressing the ROM at the Bth cycle, the output of ROM should be

complemented by 2 before accumulation according to the first term in eq.(6.3).

If L is large, the 2L-word ROM would not only cost too much hardware

but also limit the computing speed. An interesting way is to divide it into two

2L/2- word ROMs and to accumulate the outputs of two ROMs to form a partial

sum [Bur77]. By analogy, each 2L/2-word ROM can be further divided into

smaller 2L/4-word ROMs. After each dividing one more adder is needed to

combine the outputs of two smaller ROMs.

6.2 New structures of gênerai FIR filters

This section présents some new general FIR structures while linear

phase FIR filter structures will be found in section 6.3.

6.2.1 Fast accumulation

The results in the last chapter apply directly to increasing the

computing speed.

Using the uni-operand accumulator, we can improve at once the

scheme in Fig.6.1. While the ROM is divided into two smaller ROMs, we

should accumulate the partial sums two by two. Then a fast bi-operand

accumulator can be applied to this case, as depicted in Fig.6.2.

The further décomposition of ROM is still feasible in order to decrease

the chip area and to increase the speed. Suppose the ROM is decomposed into

N smaller 2L/N-word ROMs. Then N partial sums should be accumulated

together. N-operand accumulator, as presented in the last chapter, can be

used.

Chapter VI -101-

Fig.6.2 ROM dividing and fast accumulation

Ail thèse fast accumulators resuit in two numbers after B

accumulations. Hence only one additon is needed to sum up the two numbers

every B cycles. The final adder can be simplified using bit-serial approach.

6.2.2 Adder-based structures

In the extrême case of ROM dividing, only the coefficients are stored.

Ail the computing part is composed of adders. A rather simple and regular

structure (Fig.6.3a) using carry-propagation adder (CPA) is proposed in

[Duh88]. By using carry-save adder (CSA), a more efficient structure can be

obtained, as shown in Fig.6.3b. In this configuration one accumulation takes

time of Ltfa (L is the filter's order) which is proportional to L.

Chapter VI -102-

Fig.6.3 Adder-based FIR filter structures

We can regard the problem as an L-operand accumulation. Then we

can use a fast L-operand accumulator as the computing part. Wallace-tree is

applicable to the problem, especially in case L is not too large. When L is very

large, the design of W-tree becomes defficult.

In order to increase the speed, we should exploit the concurrency.

Pipelining can be easily introduced to the structure in Fig.6.3b. Each pipeline

in a carry-save array needs two latchs of word-length to store two outputs

while only one bit register is needed to insert one stage of pipeline in the data

array.

Chapter VI -103-

An extra advantage of pipeline is that a long filter is eut into several

shorter sections. Then we can use smaller W-trees which is easier to design.

An example using 14-to-2 Wallace-tree is given for a 48-tap filter structure in

Fig.6.4. The time required by one accumulation is 6 tfa.

Fig.6.4 Pipeplined structure with Wallace-trees. (filter length=48)

An alternative to the scheme in Fig.6.4 is to insert pipeline every 6 taps

while using direct carry-save array. Although the same speed can be reached,

it requires more hardware and results in more latency.

Chapter VI -104-

While the latency is not critic, we can use the fully pipelined CSA

array. A fully pipelined structure is given in Fig.6.5. The resulting maximum

throughput of the filter will be fmax=l/(Btfa), given B the number of bits of an

input.

Fig.6.5 Fully pipelined structure

A simple rearrangement may resuit in twice the speed in case without

pipeline or halve the latency in case with pipeline (Fig.6.6). We can still

increase the speed or reduce the latency by further dividing the CSA array.

Then more efforts should be devoted to the design.

Chapter VI -105-

Fig.6.6 Concurrent filter structure.

6.2.3 Using the modified Booth's encoding

The modified Booth's encoding £ MBE) is a widely-used technique in

designing fast multiplier. It allows to halve the number of partial products

and the number of computing cycles per output, thus 2 times faster than

conventional configuration. Détails can be found in the previous chapter. Hère

we are interested in applying it to filter design.

Then eq.(6.3) can be rewritten as follows under the MBE:

Yn = Y, hi 2-1 1 (-2xn_ik + xn_.k+1 + xn_.k + 2)4-k
i = 0 k = 0, k even

= 2-1 Y 4
Y (-2x ..+X � UJ.,+X � tJ.-)h.

k = (Xkeven 1=0 (6.5)

Then, the number of accumulations is halved and the speed can be

increased 2 times. For a B-bit number, we obtain B/2 partial sums for B even or

(B+D/2 for B odd. The structure based on the MBE is drawn in Fig.6.7.

Chapter VI -106-

Fig.6.7 Filter structure using
the modified Booth's encoding (MBE).

For a dedicated design, the filter's coefficients are constant. The

scheme can be much simplified using the technique presented in [Mou89b]. By

considering four possible combinations of two consécutive bits, we can write

eq.(5.6) under four forms:

P/0,0)=C

p.(0, 1) = (SN) ED C

PjaO)=(SN)0C

P/ll)=NeC (6.6)

Since S, N and C are the functions of three consécutive bits of X, the following

équation may simplify the logic design:

P/0, 0)=x.

Pj(0, l)=x.(xi+1+xi + 2)+ Xi+ lXi+2

Pjao) = x.exi+1©xi+2
Pjai)=x.(xi+1+xi+2) (6.7)

Chapter VI -107-

The resulting configuration is without partial product sélection as shown in

Fig.6.8. It can be a good candidate for both mask-programmable design and

silicon compilation of custom VLSI FIR filters.

Fig.6.8 Partial product génération when H is constant, (e.g. H=1.01001)

6.3 Symmetric FIR filters

Linear phase or symmetric filters are the most important ones of FIR

filter family. This section centers on their structures.

It is well known that linear phase FIR filters hâve symmetric

coefficients. That means (suppose L even):

hj^L-i-i; i = 0,l,...JV2-l (6.8)

Then eq.(6.1) becomes a length-L/2 inner product, instead of a length-L

one, plus L/2 additions.

L/2-1

1=0 (6.9)

6.3.1 Direct implementation

Since our approach is bit-serial, the L/2 additions can be performed by

L/2 sériai adders respectively. The inner product is still computed as in

general case using ROM [Pel76] as well as the techniques shown before: carry-

save adders, W-tree and fast accumulation.

Chapter VI -108-

A sériai adder is nothing but a full adder plus a carry register. While

the additions are computed bit-serially, one more bit register should be added

to each input data register as the most significant one. It is initialised by sign

extension. Then we need one more computing cycle , i.e., (B+l) cycles to

compute one output. Fig.6.9 depicts a scheme for such implementation.

Fig.6.9 Direct implementation of symmetric filter.
The computing part is omitted.(fa=full adder)

6.3.2 Using a new encoding

In bit level, (X1+X2)H is written as follows:

(XX+X2)H
B-l

(x 1,0 + x2,0 i=l U 2�1
(6.10)

(XI1+X24) take one of the three values: {0,1,2}. When X multiplies H, three

partial products are possible: {0, H, 2H).

Chapter VI -109-

The génération of an effective partial product P(i)=(x]_�i+x2,i)H dépends

on the value of (xi i+x2fi). So, we can encode the three values of (xi?i+x2,i) into

two control signais: Shift S(i), and Null N(i). The truth table is given in

Table.6.1.

Table.6.1. Truth table of control signal génération for the new encoding.

xy X24 S(i) N(i)

Shift Null

0 0 0 0

0-1 0 1

10 0 1

1111

From Table.6.1, we hâve the following relations:

S = xi4X2,i

N= xi,i+x2)i (6.11)

For each bit of the effective partial product, it is determined as below:

p. J (h., J h. J+1)= (8h. J + Sh.) J+ 1 N (6.12)

This encoding results in B partial products as usual. Hence it requires B

cycles to compute one output, one cycle less than former schemes at the cost of

slightly more complex circuitry. The new encoding scheme is depicted in

Fig.6.10.

Chapter VI -110-

Fig.6.10 Symmetric filter using the new encoding (NE).
The computing part is omitted.

When the filter's coefficients are constant in a dedicated design,

further simplification can be reached in a systematic manner as that for the

modified Booth's encoding as shown in Fig.6.8. We give below the

corresponding relations:

Pi (0, 0)
= 0

p J .(1, 0) = X 1,1 .©X . 2,1 = (X 1,1 . + X 2,1 .) X 1, 1 .X 2,

p. J (1,1 (x i, + X 2-1
.)

(6.13)

One control signal can be saved since it is équivalent to zéro (the ground).

The same technique can be also extended to design antisymmetric

filters with hi= - hL-i-i. In such case, the three possible partial products are

{-H,0,H} and two control signais should be Complément and Null.

Chapter VI -111-

6^3 Pipelining

It is of interest to pipeline the symmetric FIR filter structure. It is

trivial to pipeline the adder array. As far as pipelining the input data is

concerned, a small surprise is that no additional memory is needed. We can

do that by simple shift. An example is shown to pipeline a 12-tap symmetric

filter (Fig.6.11). Suppose each sample is coded in 8 bits.

Fig.6.11 Pipelining the shift registers in symmetric filter. Fully
pipelined computing part in (b) is omitted.

While without pipeline, we should encode the bit pairs (11,0),

(10,1)...(6,5). The positions of bits are indicated in Fig.6.11a.

Since the partial products generated by bit pairs (11,0), (10,1) and (9,2)

will be inputs of the carry save adder at the top row, the positions of thèse bit

pairs remain unchanged. The pipeline is only applied to the partial products

generated by bit pairs (8,3), (7,4) and (6,5) respectively. It is done by simple

shifting bits 8 and 3 by one register along the data flow direction, bits 7 and 4 by

two registers and bits 6 and 5 by three registers. After thèse shifts the wiring

Chapter VI -112-

becomes difficult. A regular arrangement is presented in Fig.6.11b to

overcome this difficulty, resulting in easy wiring.

6.4 Bi t-parallel implementation

The modem IC technology allows to integrate more and more

transistors. Then bit-parallel implementation of FIR filters becomes feasible.

The distributed arithmetic technique can be easily adapted to such

implementation. One example can be found in [Li88].

6.4.1 Bit-slice approach

The distributed arithmetic technique is originally a bit-serial approach.

If we suppose the input is coded in 1 bit, the filter structure can be simplified

by using L registers of one bit, without touching the computing part.

The eq.(6.3) can be written as

B-i
_k

y =-y + y y 2

with
L-1

y a k Y, h x k
i = o (6.14)

By taking Yn,k as the output of a 1-bit filter, we reconstruct the output of the

initial filter through adding the outputs of the B 1-bit filters with appropriate

shift (see Fig.6.12). Since ail the 1-bit filters are identical, we can repeat the

same design.

Using the modified Booth's encoding, the subfilters are no longer 1-bit

filters but a little more complex. However, we need only B/2 or (B+D/2

subfilters. About 50% of hardware (chip area, transistors, etc) can be saved.

6.4.2 Symmetric FIR filters

It is impossible to apply the bit-slice approach to the scheme using a

sériai adder, because we can not split the initial filter into subfilters. In

contrast, the scheme using the new encoding allows perfectly the spliting into

Chapter VI -113-

1-bit filters, so that we can take advantage of the symmetry in coefficients for

bit parallel implementation. Hence it leads also to a saving of 50% of

hardware.

Fig.6.12 Bit-parallel filter structure by distributed
arithmetic

There are two ways of achieving 50% of saving above. Firstly, the MBE

applies to ail kinds of filters with or without linear phase. Its application will

prevent from taking advantage of the symmetry. Secondly, the new encoding is

very suitable for benefiting from the symmetry. Which is better for a bit

parallel symmetric filter design? Our conclusion is that the second is simpler

since it enjoys an easier encoding than the MBE.

6.5 Remarks

We hâve presented several new FIR filter structures by the distributed

arithmetic principle, both for bit-serial and bit-parallel implementation.

Chapter VI -114-

The time required by an accumulation is drastically reduced due to the

fast accumulation. The distributed arithmetic structure is often characterized

by using ROM. But the ROM occupies a large area if realized in VLSI and

represents a bottleneck to speed. By extremely dividing the ROM we obtain an

adder-based structure. This structure is mainly investigated. Carry-save,

Wallace-tree and the modified Booth's encoding are shown to increase the

speed and to reduce the number at computing cycles. We hâve shown also how

to exploit the concurrency and to pipeline the structure.

Symmetric FIR filter structures are also studied. A new encoding is

proposed to take advantage of the symmetry, which allows efficient bit-serial

implementation as well as bit-parallel one.

A systematic simplification is proposed for custom VLSI design. The

resulting configuration is very suitable for mask programmation and silicon

compilation.

Although the study is in the context of FIR filters, many presented

techniques are applicable to the design of inner product computer and adaptive

filters.

Chapter VII
'*

-115-

Chapter 7

Conclusion and perspectives

7.1 Conclusion

This thesis has been concerned with the algorithmic and architectural

aspects of implementing the finite impulse response (FIR) filter either in

software or in VLSI.

In the study of fast filtering algorithms, we hâve dealt with the réduction

of arithmetic complexity or the number of arithmetic opérations while takmg

into account the interaction between computer architectures and algorithms.

A unified approach to dérive ail the FIR filtering algorithm has been

proposed in chapter 2. It consists of formulation as polynomial products;

interpolation; filtering; reconstruction by the chinese remainder theorem;

overlap. By choosing carefully the decimating rate in the first step

(formulation as polynomial products) and the interpolation points in the

second step, we can dérive ail the variants of FIR filtering algorithms

including the conventional ones. In the context of pseudocircularity, we hâve

presented the FIR filtering algorithms as the diagonaliszation of a

pseudocirculant matrix by rectangular matrices and proved the

transposability and the equality of arithmetic complexity in both direct and

transposed forms. Three most représentatives of conventional algorithms

(Stockham, Agarwal-Burrus, Winograd) hâve been reviewed in the light of the

approach, and some new possibilities hâve been presented in chapter 3. Next a

class of algorithms of interest is studied in détail in chapter 4. Thèse

algorithms not only reduce the number of arithmetic opérations but also

maintain the multiply-accumulate structure which can be easily implemented

in many ways.

The second part is dedicated to the architecture of VLSI implementation

of FIR filters. Our attention has been centered on the computer arithmetic,

design regularity and high speed implementation.

Chapter VII -116-

Firstly, we hâve reviewed the fast arithmetic and concurrent structure

in designing multiplier-accumulators in chapter 5. A number of innovations

has been made on the modified Booth's encoding with a constant multiplicand,

compact Wallace-tree layout and bit-level pipelined structure. New structures

for implementing FIR filter in VLSI by distrbuted arithmetic are proposed in

chapter 6. Our strength has been on the ROMless, carry-save adder based

structure. The modified Booth's encoding are applied for reducing the number

of computing cycles per output. Concurrency is largely explored using

Wallace-tree and pipeline until bit level. Symmetric FIR filter structures are

particularly studied, resulting in important savings in hardware

requirement. A spécial encoding technique is suggested for computing

opérations like (X±Y)H which are essential for symmetric filters. This

encoding is not only suitable for efficient bit-serial implementations but shows

high potential for bit-parallel ones.

7.2 Perspectives

Some directions for future research which seem important to us are

proposed below.

7.2.1 Multiprocessor implementation of FIR filters

Recently multiprocessor implementations of FIR filters were studied

[Mar86,Hay86]. It is shown that a length-L FIR filter can be implemented

using NxN processors in a SIMD (single-instruction-multiple-data) manner.

Each processor computes a length-L/N filter while N outputs of the filter are

computed together. It is not surprising that the maximal throughput can be

increased by a factor of NxN, since one output is computed in a time

proportional to L/(NxN).

However, the number of processors can be reduced using the algorithms

in chapter 4. For example, an implementation in [Hay86] is composed of 4

processors while each of them computes a length-L/2 filter. One processor can

be saved using the radix-2 algorithm. Only 3 processors are needed while the

throughput is always increased by a factor of 4. Higher radix algorithm may

resuit in more savings.

7.2.2 Application of fast FER filtering algorithms to LMS adaptive filters

Chapter VII -117-

The least-mean-square (LMS) adaptive filter [Wid60] plays an important

rôle in many applictions. Block LMS algorithms hâve been proposed by Clark,

Mitra and Parker [Cla81] to accelerate the computation while modifying the

original functions. It adapts the filter coefficients every N steps instead of one

adaptation per input while N is often greater than the filter's order. Then the

product of a Toeplitz matrix and a vector can be computed by fast Fourier

transform. It is claimed by the authors that similar performance is observed to

that of the LMS adaptive filter.

We can easily extend our FIR filtering algorithms to compute the BLMS

for N^2 without transform, which is suitable for implementation on DSP's.

However the comparison in [Cla81] was conducted using uncorrelated

input noise. It is not sure if the daim is valid under other conditions.

Neverthless no évidence is reported on the superiority of BLMS on the LMS.

Récent study [Ben89] shows that the LMS filter outperforms largely the BLMS

under some particular noise of interest.

Then the application of BLMS seems limited if the same performance as

the LMS algorithm is required.

However, the LMS adaptive filter can be computed in a both fast and

exact manner [Duh89], yet by block processing. In fact the BLMS is an

approximation to the LMS while ignoring the high order (�2) autocorrélations

of input signal. Such an approximation can be generalized to ignore higher

order (�n) autocorrélations, resulting in an arithmetic complexity/efficiency

trade-off.

The complex LMS filter [Wid75] is required in the processing of high-

frequency narrow-band signais. The complex FIR filtering algorithms in

chapter 3 are evidently applicable to the computation of the complex LMS filter

using the technique in [Duh89]. In case the block length equals 2, 56% of

réduction in arithmetic complexity can be expected.

7.2.3 Silicon compiler for FIR filter implementation

Because the FIR filter is widely used in digital signal processing, it is

désirable to generate an FIR filter for a given specification using high level

language without redesigning ail the basic cells. It is very important since the

prevailing custom designs are often required for high performance circuits.

Chapter VII -118-

We présent some considérations for a compiler using the architectures

in chapter 6 as a model. We center our attention on the compilation of

symmetric FIR filters. The following parameters should be taken into account:

-input wordlength b: It
(détermines

the length of shift registers;

-coefficient wordlength n: It détermines the width of carry-save adders

while some guard bits should be anticipated in function of the absolute sum of

ail the positive coefficients or of ail the négative ones.

-degree of pipeline: It dépends on the required throughput. Using bit-

level pipeline, the maximal throughput is 1/Obxtfa). tfa is the time required by a

full adder. For b=8 and tfa=2ns (using 1 micron CMOS), fmax = 62.5 MHz with

System clock frequency = 500 MHz.

-latency: When the latency is critical, some techniques can be used to

reduce the delay of System while maintaining high speed: such as combining

the small Wallace-tree and pipeline (see Fig.6.4) or dividing the CSA array (see

Fig.6.6).

-programmability: For constant coefficients further réduction in

material is achieved by using the équation (6.13) and the technique in Fig.6.8.

-bit-serial or bit-parallel or in-between: The compiler should be able to

increase the throughput of the filter by treating more than one bit per clock

period. The task can be relieved by using the bit-slice design (see Fig.6.12). By

doing so, it is also possible to lower the proportion between System clock

frequency and the input sampling rate.

Appendix -119-

Appendix

Fixed-point error analysis of short-length FIR

filtering algorithms

Digital représentation is just an approximation of values in reality. In

digital computers, the values are approximated by a finite number of binary

digits. The arithmetic operators therein can manipulate only operands of finite

number of bits. The results of more bits than the length of internai register

should be reduced. Such réduction is in general called quantization.

From a point of view of implementation, it is important to know the

characteristics of the quantization errors. In general, there are three sources

of quantization errors: A/D noise, quantization of coefficients and quantization

in arithmetic opérations. The A/D noise dépends on only the transfer function

of the digital filter. It is already well discussed in the literature [Chan73].

Hence, we will study only the effect of the other two sources of errors.

In the following, we first présent our assumption on the computing

environment, the properties of noises and the manner of normalization on the

the filter's s coeffcients.

Then examples are given to establish the error models for the analysis in

the algorithms. Both direct and transposed forms of algorithms are studied

and compared. Further optimization is also pointed out.

Finally, we présent the study on the effect of coefficient quantization in

thèse algorithms and compared it to the direct implementation.

1. Major assumptions

As mentioned before, the short length FIR filtering algorithms are

suitable for many implementations. A typical application is on the widely used

Digital Signal Processors (DSP's). Then our analysis will be based on the

characteristics of typical DSP's with 2's complément arithmetic. Suppose the

wordlength of internai registers is b. Consequently, both input and coefficients

Appendix -120-

have b bits, as well as the output. Moreover most DSP's hâve an accumulator of

at least 2b bits. Several garde bits are often provided to prevent from overflow

[Lee88]. So we can consider that a multiply can be done in full précision. A

scalar product by successive multiply-accumulation is also considered as in

full précision if only the b most important bits of the 2b bits in the accumulator

are retained by quantization.

There exist three kinds of quantization in those DSP's [Mey89]:

truncation, rounding and convergent rounding, where the third one performs

rounding to nearest even number (i.e. 2.5-�2 and 3.5-�4). The convergent

rounding is a hardware-implemented feature of Motorola's DSP 56000 signal

processor.

In Table. 1, the mean value Il and the variance cy2 of the error due to

different quantization methods are listed for:

a) scaling with 1/2 (one bit shift to the right).

b) wordlength réduction of 2b bits to b bits.

Table. 1 Mean and variance of the error for different quantization methods with

2's complément arithmetic. Q=2-(b"1).

a) b)

H/Q o2/Q u/Q cr2/Q

Truncation -1/4 1/16 -1/2 1/12

rounding 1/4 1/16 0 1/12

convergent rounding 0 1/8 0 1/12

Ail the following quantizations are supposed to be rounding. This will

not lost generality for other kinds of quantization error.

It is assumed that the quantization errors at different locations or at the

same location but at different instants are independent of each other. Ail

errors are uncorrelated with the signal. Then the error variance at the output

can be calculated separately for each error sources and the results superposed.

Appendix -121-

We suppose that the filter transfer fonction is normalized so that

L-l

S|hi| =
i=o (1)

The dynamics of input X(z) is limited to 1, namely, 1 xi I �1. By conséquence, we

hâve the dynamics of output I yi 1 �1.

2. Quantization error in direct FIR filter computation

Since DSP's provide at least a 2b-bit accumulator, it is not necessary to

quantize every resuit of data-coefficient multiplication. Only one quantization

is performed at the output of the filter as shown in Fig.l. The mean and

variance of error found in Table 1. For example, if rounding is performed, we

obtain u=0 and cr2=Cd2=Q2/12. The subscript d means direct computation.

Fig. 1 Quantization in direct FIR filter computation

As for coefficient quantization error, we assume the transfer function

H(z) is replaced by H(z)+N(z). It is easy to show that the corresponding error at

output is X(z)N(z). This term is presented for the following comparison. The

analysis in détail on this aspect can be found in [Chan73].

3.11iustrative example for error analysis in short-length FIR filtering

algoritbms

We give as an illustrative example an error analysis on the direct and

transposed radix-2 algorithms. The same methods can be generalized to

analyze other algorithms.

3.1 Analysis for direct radix-2 algorithm

We first establish an error model, as shown in Fig.2, for the analysis. eo

is an error due to scaling by 1/2. Since ail the successive multiply-

accumulations are supposed to be done in full précision, the only quantizations

occur at the outputs of the subfilters Ho(z), Hq(z)+Hi(z), Hi(z), which are the

Appendix -122-

responsible of errors ei, e2 and e3 respectively. Let ê3 dénotes z-2e3 , i.e., the

error in computing two previous outputs. It is also assumed that ê3 and e3 are

uncorrelated and independent of each other. There are not scaling after the

output addition since the output dynamics is limited to 1.

Fig.2 Quantization model for direct radix-2 algorithm

It is then easy to show

Eo=e2+ê3

El=2eo I Ho(z2)+Hi(z2) I +2ei+e2 + es (3)

Since I Ho(z2)+Hi(z2) 51 after normalization, then Ei^2eo +2ei+ e2 + e3.

The mean and variance of the error are respectively:

u=E[(E0+Ei)/2] � E[eo +ei+ e2 + 03/2 + ê3/2]=Q/4

21 1 Il 1 112 c
16 12 412 412

13 1
2

13 2

3.2 Analysis for transposed radix-2 algorithm

Transposing the signal flowgraph in Fig.2 does not change the transfer

function but the procédure of computing as well as the location of quantization

as shown in Fig.3.

eo and ei are roundoff errors due to the scaling by 1/2. e2, e3 and e4 are

the roundoff errors at the outputs of the subfilters. At the output, we get:

Eo=2(e0!Ho(z2)l+e2)+e4

Ei=2(eilH1(z2)l+e3)+e4

Appendix -123-

Noting 1 H0(z2) + 1 Hl(z2) 1:91 and I H0(z2) 1 2+ I Hi(z2) 1 2�1, we obtain then the

mean and variance of errors at the output:

u=E[(E0+Ei)/2]=E[e0 1 H0(z2) I +ei I Hi(z2) 1 +e2+e3+e4] £ Q/4

2 1 1 2 15 1 2 15 2

Fig.3 Quantization model for transposed radix-2 algorithm

3.3 Consideration for reduction of errors

Both direct and transposed radix-2 algorithms produce more errors than

conventional implementation. This is the price we should pay for reducing the

number of opérations. Moreover the transposed algorithm générâtes slightly

more errors than direct one does. However by carefully examining the

procédure of computation and the amplitude of the subfilters' transfer

function, we can further reduce the quantization error.

Firstly, in the direct radix-2 algorithm as shown in fig.2, we can

compute the filters HOCz2) and HlCz2) before Ho(z2)+Hi(z2). The outputs of Ho(z2)

and HlCz2) are quantized and saved in b-bit registers while the output of

Ho(z2)+Hi(z2) in the 2b-bit accumulator. Hence the quantization can be

performed after the scaling by 2 and after the addition with the other two

terms. Then Ei is modified as:

El=2eo I Ho(z2)+Hi(z2) I +ei+ e2 + e3

The variance is changed accordingly:

16 12 412 412 412

= TT2 Q = 2 ad

Appendix -124-

Similar considération is given to the computation of the transposed

algorithm. We first compute the subfilter Ho(z2)+Hi(z2) and save the output in

a b-bit register after quantization. For computing yo, we can calculate the

output of HOCz2) and quantize it after scaling since it is located in the 2b-bit

accumulator. By adding it with the output of Ho(z2)+Hi(z2), we get yo+Eo. We

can compute yi in the same way. Then

Eo= 2eo 1 Ho(z2) I +e2+e4

El= 2ell Hl(z2) I +e3+e4

Then the variance becomes:

21 Il 111291292 �16 412 412 12 772 Q = 4 ad

After optimization, we find that the transposed algorithm is slightly

better than the direct one (9/4 compared to 5/2). Compared to the conventional

implementation, one more bit allocation is largely sufficient for reducing the

error to the same level.

We note that the scaling errors due to input additions generate always

the same mean (Q/4) and variance (Q2/16) in both direct and transposed

algorithms. Whether this can be generalized to higher-radix algorithms

should be further examined.

3.4 Error analysis for quantization of coefficients

After quantization, the transfer fonctions of subfilters are approximated

by Ho+No, Ho+Hi+Ni, Hl+N2, as assumed in [Vet88]. Then the algorithm

becomes

Y0=Xo(Ho+No)+z-2Xi(Hi+N2)

Yi=(Xo+Xi)(Ho+Hi+Ni)-Xo(Ho+No)-Xi(Hi+N2)

The computation of Yo is équivalent to conventional implementation. But that

of Yi is different. We can further develop the computation of Yi as:

Yi=(Xo+Xi)(Ho+Hi)-XoHo-XiH0+Xo(Ni-No)+Xi(Ni-N2)

while the conventional computation is équivalent to the following:

Yi=Xo(Hi+N2)+Xi(H0+N0)

Appendix -125-

=XoHi+XiHo+X0N2+XiNo

The error éléments in two différent computations are respectively:

Xo(Ni-No)+Xi(Ni-N2) and X0N2+X1N0. Assume that No, Ni and N2 hâve the

same variance. Then the first term has greater dynamic range than the second

one. It means that the radix-2 algorithm is more sensitive to the coefficient

quantization effect than the conventional computation.

4. Conclusion

The quantization effects are analyzed for the short length FIR filtering

algorithms. The analysis is based on the radix-2 algorithm. But the

methodology can be generalized to the analysis of higher-radix algorithms

without difficulty. We found that the radix-2 algorithm needs no more than one

more bit to reach the same error level as conventional computation. The

transposed and direct algorithms generate nearly the same error. The

procédure of computation has important influence on the error level. Further

réduction of error can be performed by efficient use of the 2b-bit accumulator.

Using double précision computation may reduce once more the errors. The

double précision is only necessary in the output additions. Then the cost in time

may not be important.

An observation is that the radix-2 algorithm results in an increased

sensibility to coefficient quantization effect than conventional computation.

Références -127-

References

Algorithms:

[Aga74] R.C.Agarwal, C.S.Burrus, "Fast one-dimensional digital
convolution by multi-dimentional techniques", IEEE Trans. on

ASSP, Vol.ASSP-22, No.l, January 1974, pp. 1-10.

[Aga77] R.C.Agarwal, J.W.Cooley, "New algorithms for digital convolution",
IEEE Trans. on ASSP, Vol.ASSP-25, No.5, October 1977, pp.392-410.

[Bal86] P.C.Balla, A.Antoniou, S.D.Morgera, "Higher radix aperiodic
convolution algorithms", IEEE Trans. Acoust. Speech, Signal
Processing, Vol. ASSP-34, N°l, February 1986, pp.60-68.

[Bel74] M.G.Bellanger, J.L.Daquet, "TDM-FDM Transmutiplexer: Digital

Polyphasé and FFT", IEEE Trans. on Communication, Vol-22, No.9,

Sept. 1974, pp. 1199-1204.

[Ben89] J.Benesty, private communication.

[Bla85] R.E.Blahut, Fast Algorithms for Signal Processing, Addison-Wesley,
Reading, MA, 1985.

[Cha73] D.S.K.Chan and L.R.Rabiner, "Analysis of quantization errors in

the direct form for finite impulse response digital filters," IEEE

Trans. Audio Electroacoust., Vol.AU-21, No.4, Aug. 1973, pp.354-366.

[Cla81] G.A.Clark, S.K.Mitra, S.R.Parker, "Block implementation of

adaptive digital filters", IEEE Trans. Acoust. Speech, Signal
Processing, Vol. ASSP-29, June 1981, pp.744-752.

[Coo65] J.W.Cooley, J.W.Tukey, "An algorithm for the machine calculation
of complex Fourier séries", Math. of Comput., Vol.19, pp.297-301,
April 1965.

[Cro83] R.E.Crochiere, L.R.Rabiner, Multirate Digital Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, 1983.

[Duh87] P.Duhamel, M.Vetterli, "Improved Fourier and Hartley Transform

Algorithms: Application to Cyclic Convolution of Real Data", IEEE
Trans. on ASSP, Vol.ASSP-35, No.6, June 1987, pp.818-824.

[Duh89] P.Duhamel, Z.J.Mou, J.Benesty, "Une présentation unifiée du

filtrage rapide fournissant tous les intermédiaires entre traitements

temporels et fréquentiels", Proc. of 12th GRETSI Syposium, Juan-
les-Pins France, June 1989.

[Hay86] K.Hayashi, K.K.Dhar, KSugahara, K.Hirano, "Disign of high speed
digital filters suitable for multi-DSP implementation", IEEE Trans.
Circuits Syst., Vol.33, pp.202-216, February 1986.

Références -128-

[Kwa87] H.K.Kwan, M.T.Tsim, "High Speed 1-D FIR Digital Filtering
Architecture using Polynomial Convolution", Proc.ICASSP 87,
Dallas, USA, pp.1863-1866.

[Lee88] E.A.Lee, "Programmable DSP Architectures: Part I", IEEE ASSP

Magazine, Oct.1988, pp.4-19.

[Mar86] T.G.Marshall, Jr, "Transform methods for developing parallel
algorithms for cyclic block signal processing", Proc. Int. Conf.

Commun., Toronto, Canada, June 1986, pp.288-294.

[Mey89] R.Meyer, "Error analysis and comparison of FFT implementation

structures", Proceedings of ICASSP89, May 1989, pp.888-891.

[Mou87] Z.J.Mou, P.Duhamel, "Fast FIR Filtering: Algorithms and

Implementations", Signal Processing, Dec. 1987, pp.377-384.

[Mou88] Z.J.Mou, P.Duhamel, "A unified approach to the fast FIR filtering
algorithms", Proc. IEEE ICASSP, New York, USA, April 1988,
pp. 1914-1917.

[Mou89] Z.J.Mou, P.Duhamel, "Short length FIR filters and their use in fast
non recursive filterings", submitted to IEEE Trans. ASSP, 1989.

[Nus81] H.J.Nussbaumer, Fast Fourier Transform and Convolution

Algorithms, Springer, Berlin/New York, 1981.

[Por80] M.R.Portnoff, "Time-Frequency Représentation of Digital Signais
and Systems Based on Short-Time Fourier Analysis", IEEE Trans.
on ASSP, Vol.ASSP-28, Feb.1980, pp.55-69.

[Sod86] M.A.Soderstrand, W.K.Jenkins, G.A.Jullien, F.J.Taylor, eds.,
Residue Number System Arithmetic: Modem applications in digital
signal processing, IEEE Press, New York, pp. 1-2,1986.

[Sor88] H.V.Sorensen, D.L.Jones, M.T.Heideman, C.S.Burrus, "Real-
valued fast Fourier transform algorithms", IEEE Trans. Acoust.

Speech, Signal Processing, Vol. ASSP-35, N°6, June 1988, pp.849-863.

[Sto66] T.G.Stockham, "High Speed Convolution and Corrélation", Proc. 1966

Spring Joint Comput. Conf., AFIPS, Vol.28, 1966, pp.229-233.

[Vai88] P.P.Vaidyanathan, S.K.Mitra, "Polyphasé networks, block digital
filtering, LPTV Systems and alias-free QMF banks: A unified

approach based on pseudocirculants," IEEE Trans. Acoust. Speech,
Signal Processing, Vol. 36, N°3, March 1988, pp.381-391.

[Vet88] M.Vetterli, "Runing FIR and IIR Filtering Using Multirate Filter
Banks", IEEE Trans. on ASSP, Vol.ASSP-36, No.5, May 1988, pp.730-
738.

[Wid60] B.Widrow, M.E.Hoff, Jr., "Adaptive switching circuits", in 1960 IRE
WESCON Conv. Rec., part 4, p.96-104.

Références -129-

[Wid75] B.Widrow, J.McCool, M.Ball, "The complex LMS algorithm",

Proceedings of IEEE, April 1975, p.719-720.

[Win77] S.Winograd, "Some bilinear forms whose multiplicative complexity
dépends on the field of constants", Math. Syst. Theory, Vol.10, No.2,

pp.169-180,1977.

[Win80] S.Winograd, "Arithmetic Complexity of Computation", CBMS-NSF

Régional Conf. Séries in Applied Mathematics, SIAM publications,
No.33,1980.

Architectures:

[And67] S.Anderson, J.Earle, R.Goldschmidt, D.Powers, "The IBM 360
model 91: Floating point exécution unit", IBM J. Res. Develop.,
Vol.ll, January 1967.

[Boo51] A.D.Booth, "A signed binary multiplication technique", Qt. J. Mech.

Appl. Math., Vol.4, 1951.

[Bur77] C.S.Burrus, "Digital filter structures described by distributed

arithmetic", IEEE Trans. Circuits Syst., Vol.24, pp.674-680, Dec.
1977.

[But76] M.Buttner, H.W.Shusseler, "On structures for the implementation
of the distributed arithmetic", Nachrichtentech. Z., Vol..29, pp.472-
477, June 1976.

[Che85] C.F.Chen, "Implementing FIR filters with distributed arithmetic",
IEEE Trans. ASSP, Vol.33, pp. 1318-1321, October 1985.

[Cro73] A.Croisier, D.J.Esteban, M.E.Levilion, V.Riso, "Digital fil ter for
PCM encoded signais", U.S. patent, No.3 777 130, Dec. 3, 1973.

[Duh88] P.Duhamel, Z.Mou, M.Cand, "Multiplieur généralisé mettant en
oeuvre un filtre numérique", French patent pending, filed in 1988.

[Hat77] M.Hatamian, G.L.Cash, "Parallel bit-level pipelined VLSI designs
for high speed signal processing", Proceedings of the IEEE, Vol. 75,
pp.1192-1202, No.9, Sept. 1987.

[Li87] W.Li, J.Burr, "Parallel multiplier accumulator using 4-2 adders",
U.S. patent pending, filed in 1987.

[Li88] W.Li, J.Burr, A.Peterson, "A fully parallel VLSI implementation of
distributed arithmetic", Proceedings of Int. Symp. Circuits and

Systems, May, 1988, Espoo, Finland.

[Mac61] O.L.MacSorley, "High speed arithmetic in binary computers", Proc.
IRE, Vol.49, January 1961, pp.67-91.

[Mon88] L.Montperrus, "Etude d'une famille d'additionneurs et de

multiplieurs", Thèse de Doctorat de l'Université de Paris XI,
November,1988.

Références -130-

[Li87] W.Li, J.Burr, "Parallel multiplier accumulator using 4-2 adders", U.S.

patent pending, filed in 1987.

[Li88] W.Li, J.Burr, A.Peterson, "A fully parallel VLSI implementation of
distributed arithmetic", Proceedings of Int. Symp. Circuits and

Systems, May, 1988, Espoo, Finland.

[Mac61] O.L.MacSorley, "High speed arithmetie in binary computers", Proc.

IRE, Vol.49, January 1961, pp.67-91.

[Mon88] L.Montperrus, "Etude d'une famille d'additionneurs et de

multiplieurs", Thèse de Doctorat de l'Université de Paris XI,
November,1988.

[Mou89b] Z.J.Mou, W.Li, "Fast arithmetic for computing ±(W±X±Y±Z)A",
submitted for publication, 1989.

[PeI74] A.Peled, B.Liu, "A new hardware realization of digital filters", IEEE
Trans. ASSP, Vol.22, pp.456-462, Dec. 1974.

[Pel76] A.Peled, B.Liu, Digital Signal Processing Theory, Design, and

Implementation, John Wiley� Sons, New York, 1976.

[Rub75] L.P.Rubinfield, "A proof of the modified Booth's algorithm for

multiplication", IEEE Trans. on Computers, pp.1014-1015, October 1975.

[San88] M.Santoro, M.Horowitz, "A pipelined 64x64b itérative array multiplier",
ISSCC Digest of Technical papers, pp.36-37, Feb. 1988. Also in IEEE J.
Solid-State Circuits, Vol.24, pp.487-493, No.2, April 1989.

[Vui83] J.Vuillemin, "A very fast multiplication algorithm for VLSI

implementation", the VLSI Journal INTEGRATION, Vol.l,pp.39-52,
April,1983.

[Wal64] C.S.Wallace, "A suggestion for a fast multiplier", IEEE Trans.
Electronic Computers, Vol.13, pp.14-17, February 1964,.

[Was82] W.Waser, M.J.Flynn, Introduction to Arithmetic for Digital Systems
Designers, Holt, Rinehart, and Winston, New-York, 1982.

[Zur86] D.Zuras, W.H.McAllister, "Balanced delay trees and combinatorial
division in VLSI", IEEE J. Solid-State Circuits, Vol.21, pp.814-819, No.5,
May 1986.

-133-

Version Concise en Français

135

FILTRAGE RIF RAPIDE

ALGORITHMES ET ARCHITECTURES

lJntroduction

Nous commençons par rappeler différentes représentations du filtre

numérique à Réponse Impulsionnelle Finie ou du filtre RIF.

Une première représentation possible est celle en produit scalaire:
L-1

Y. = 14 «=0,1,...,00
(1)

ou en notation vectorielle:

4

�

Ia-J (2)
L étant l'ordre du filtre (nombre de coefficients).

La transformée en Z de l'eq.(l) fournit une deuxième représentation :

Y(z)=H(z)X(z)
(3)

ou

= (h0 + hlz-x +h1z~2 + ... +hL_lz~L+l){xQ +x,z-1 +x2z'2+...)

On remarque que l'équation (4) est le produit d'un polynôme de degré (L-l) et

d'un autre d'ordre infini.

Les graphes de fluence fournissent une troisième représentation

graphique (voir Fig.l).

Fig.1 Le filtre numérique à réponse impulsionnelle finie (RIF).

136

Ces trois représentations seront utilisées tour à tour dans la suite de ce

texte.

Le filtre RIF joue un rôle très important dans le traitement numérique

du signal. Il possède un ensemble de propriétés intéressantes:

1) il permet le filtrage à phase linéaire;

2) Il est toujours stable;

3) On peut le réaliser facilement;

4) il permet d'approximer une réponse frequentielle quelconque.

Mais son défaut majeur est la grande quantité de calcul qu'il représente.

Il nécessite souvent la charge de calcul principale dans beaucoup de systèmes

de traitement du signal.

Depuis la redécouverte de la transformée de Fourier rapide (FFT)

[Coo65] de nombreux algorithmes permettant de réduire la charge de calcul

ont été mis en évidence. L'algorithme par convolution cyclique utilisant la FFT

[Sto67] est le plus connu. Des algorithmes ne faisant pas appel à la FFT ont

également été proposés [Aga74,Win80], leur intérêt étant de permettre un

calcul plus efficace des filtres de longueur moyenne (�64). Tous ces

algorithmes ont pour objectif de réduire le nombre de multiplications dont le

temps d'exécution était beaucoup plus important que celui d'une addition dans

les processeurs à usage général à l'époque où ils ont été proposés.

L'évolution de la technologie semiconducteur a bouleversé le monde

scientifique. Nous avons aujourd'hui des nouveaux moyens de calcul beaucoup

plus puissants, plus flexibles ou bien plus spécialisés qu'il y a seulement

quelque années. Cette évolution est en train de changer la façon dont nous

appréhendons la complexité de calcul. Par exemple le temps d'une

multiplication n'est plus dominant dans les calculateurs à usage général.

D'autre part, les processeurs de traitement numérique du signal (DSP's)

récemment apparus présentent un certain parallélisme: une multiplication

plus une accumulation coûte seulement un temps de cycle c'est à dire le même

prix qu'une multiplication ou une addition toute seule. La différence entre le

critère ayant conduit à proposer les algorithmes classiques de filtrage RIF et le

type de machines sur lequel ils sont maintenant le plus souvent implantés

explique qu'ils ne soient véritablement efficaces ni sur ces DSP ni en circuits

intégrés (VLSI).

137

C'est pourquoi il est nécessaire de rechercher de nouveaux algorithmes

qui tiennent compte de l'architecture des processeurs. Nous avons aussi besoin

de nouvelles architectures de filtre RIF qui permettent d'une part une

implantation facile en VLSI et d'autre part un traitement rapide, les

fréquences d'échantillonnage des signaux à filtrer ne cessant pas de croître.

Notre objectif est donc de rechercher, d'une part, de nouveaux

algorithmes qui non seulement réduisent la complexité de calcul mais aussi

maitiennent la structure 'multiplication-accumulation', et d'autre part, de

nouvelles architectures, pour l'implantation en VLSI, pouvant servir de

support à ces algorithmes , mais permettant également l'intégration efficace

d'un filtre quelconque.

Dans la présentation suivante, les deux parties correspondantes

'algorithmes' et 'architectures' sont précédées d'un exemple simple

permettant de se rendre compte qu'un tel objectif est réaliste.

2. Exemple

Supposons que nous calculons 2 sorties successives d'un filtre RIF à L

coefficients, avec L pair:

ho

y* Xn Xn-l Xn-2 ��� Xn-LYl Xn-L+1 "2

.yn-l-i LXn-\ Xn-2 Xn-Î ���Xn-L+lXn-L -I

Réarrangeons l'ordre dans lesquels les calculs sont effectués dans l'eq (5), et

regroupons les termes pairs et impairs des coefficients :

yn Xn-\ Xn-3 � � � Xn-L+l Xn X"-2'" X"-L+2] hL-1

Jn-l -I LXn-2 Xn-4 � � X,,-L Xn-\ Xn-3 � ' ' Xn-L+l "0

lA-2J (6)

138

Ce regroupement, en ce qui concerne le signal d'entrée est équivalent à un

sous-échantillonnage à cadence 1/2, les deux signaux sous-échantillonnés

étant traités simultanément.

Définissons:

A = \Xn-\ Xn-S � � � Xn-L+l)

ho Il¡

h2 �

B =
(xn_2 xn_A ... xn_L) Ho = .

Hx = .

hL-2 1A-1-

C = (x" Xn-2 � � � Xn-L+2 '
(7)

Donc, l'équation (6) devient:

"y,
A

cl
[::]

'A(H0 + Hx)- (A -OH,'

A(H, + H,) + (B-A)H,\

Et l'eq. (8) montre que deux produits scalaires de longueur L peuvent être

calculés à l'aide de trois produits scalaires de longueur L/2. Comme les

coefficients du filtre sont fixes et connus, nous pouvons calculer (H0+H1) avant

le filtrage. (A-C) et (B-A) sont des additions (On considère une soustraction

comme une addition.) entre 2 échantillons successifs. La plupart d'entre elles

sont réutilisables pour calculer les sorties suivantes à l'exception de (xn_L+i-xn.

L+2) et (xn-L-Xn-L+l). En d'autres termes, seules deux nouvelles additions (xn-

Xn+l) et (xn+i-xn+2) sur les échantillons entrées sont nécessaires pour calculer

les deux sorties suivantes (Yn+l,Yn+2). Deux additions supplémentaires,

nécessaires pour combiner les trois produits scalaires suivant l'équation (8),

fournissent les sorties désirées.

La complexité initiale de calcul d'un filtre RIF de l'ordre L est:

1 produit scalaire de longueur L par sortie

139

soit L multiplication-accumulations (MACs) par sortie.

Par l'algorithme décrit dans l'équation (8), la complexité de calcul devient:

3 produits scalaires de longueur L/2 + 4 additions pour 2 sorties

soit 3L/4 MACs + 2 additions par sortie.

Donc, cet algorithme a réduit le nombre de MACs de 25% par rapport au

calcul direct.

Le graphe correspondant à l'équation (8) est donné en la figure 2: Trois

filtres de longueur L/2 à vitesse réduite d'un facteur 2 remplacent un filtre de

longueur L. Ces trois sous-filtres attendent 2 échantillons d'entrée avant de

calculer 2 sorties du filtre initial. Il s'agit donc un traitement par blocs de taille

2, corne peut le montrer également l'équation (5).

Fig.2 Un filtre RIF de longueur L par trois filtres de

longueur L/2

Les caractéristiques essentielles de cet exemple sont les suivantes:

1) Un filtre quelconque peut être calculé par des filtres de longueur plus petite

et de cadence réduite; ou bien encore, il est possible d'utiliser des filtres de

longueur et de vitesse identiques pour construire un filtre de longueur plus

longue et de vitesse plus grande.

2) Une réduction de la charge de calcul a été possible sans "casser"

complètement la structure de calcul habituelle des filtres RIF, structure qui est

très facile à implanter.

140

Le chapitre suivant présente une approche permettant de dériver les

algorithmes de filtrage RIF de manière systématique, et on montrera que les

algorithmes rapides classiques peuvent s'obtenir également dans le même

cadre.

3. Approche unifiée pour les algorithmes de filtrage RIF rapide

Dans cette section, on montre que les algorithmes rapides de calcul des

filtres RIF peuvent se décomposer en trois étapes:

1) Formulation du filtrage comme un produit polynomial;

2) Calcul rapide de ce produit polynomial;

3) Recouvrement.

Nous allons présenter chacun de ces points l'un après l'autre.

3.1 Formulation en produit polynomial

Reprenons l'équation (4) qui est déjà un produit polynomial. Mais l'un

des deux polynômes à multiplier est d'ordre infini, ce qui rend difficile le calcul

rapide du produit. En sous-échantillonnant le signal d'un facteur N, et en

décimant le fonction de transfert du même facteur, nous obtenons un produit

polynomial de deux polynômes en z-N à coefficients eux même polynomiaux .

Y0+Ylz-1 + ... + YN_lz-N+l

= (H0 0 + H lZ -1 +... + #�_lZ-"+1)(X0 + X1z"1 + ... + X�_1z-"+1) (9)

où

Y; = Y; (Z-N) Hi^Hi(z-N) X,.=X,.(z-w)

- 00 LIN-1

k=O k=O k=O

L'avantage de cette présentation est que les deux polynômes facteurs ont

maintenant le même degré (N-l). En fait, la décimation d'un facteur N

permettra de travailler sur un bloc de signal de taille N indépendant de lataille

du filtre et de réduire de manière correspondante la charge de calcul. En effet,

ayant obtenu une formulation en produit polynomial de degré fini, nous

pouvons appliquer des algorithmes rapides pour le calculer. La dérivation de

141

ceux-ci est en général fondé sur le théorème des restes chinois (TRC) que nous

allons maintenant présenter.

3.2 Théorème des restes chinois

Ce théorème se trouve dans une oeuvre chinoise de mathématiques qui

date de l'année 100. A titre anecdotique, la figure 3 montre le théorème en

chinois.

Fig.3 Le théorème des restes chinois en chinois

Une anectode liée à ce théorème raconte que le général Han Xin, l'un des

fondateurs de la Dynastie Han (206 av. J.C.-220 ap. J.C.), comptait ses soldats

142

d'une manière particulière. Il demandait à ses soldats de se regrouper par

paquets d'abord de 3, puis de 5, et enfin de 7. Au lieu de compter le nombre de

paquets, il ne retenait que les restes. A partir de ceux-ci, il savait calculer le

nombre total de soldats. Si l'anectode s'avère exacte, la date de naissance du

TRC est plus ancienne que l'oeuvre mathématique citée ci-dessus .

Ce théorème fait partie a priori de la théorie des nombres. Son énoncé est

le suivant: "Etant donné les restes d'un nombre inconnu x modulo des

nombres premiers entre eux mutuellement, nous pouvons reconstruire x

modulo le produit des nombres premiers en cause". La figure 4 interprète le

TRC.

THEOREME DES RESTES CHINOIS

Fig.4 Le théorème des restes chinois.

Le TRC s'étend aussi à l'anneau des polynômes. Son énoncé est alors

strictement parallèle à celui ci-dessus, mais nous donnons ici plus de détails

car c'est cette version qui nous sera la plus utile.

Théorème des Restes Chinois: Etant donné un anneau de polynômes modulo

P(z) et

P(z) = YlPi(z)
i=l

(10)

143

(Pi(z)} sont mutuellement premiers entre eux. Tout polynôme Q(z) est connu

modulo P(z) en fonction de ses restes mod pi(z) par l'équation suivante :

ÛWs^Wî^) modF(z)

où

�7,(z) Q(z) modpi(z) ; ce sont les 'restes'.

T, (z) = mod p, (z) ; ce sont les polynômes de reconstruction.

= 0 mod pj(z) for j * i.

Remarque: si l'ordre de P(z) � celui de Q(z), le résultat de la reconstruction est

unique et égal à P(z).

3.3 Calculer un produit polynomial par le TRC

A partir de l'équation (9), soit

Q(z) = Rx(z)R2(z)

= (H0+Hlz+... +HN_lzN-1)(X0+Xlz + ... + XN_1zN-1)
(12)

En général, on choisit un polynôme P(z) complètement factorisable en termes

du premier degré:

Pi(z) = z - ai

Les {Pi(z), i=0,...,K} sont premiers entre eux si les constantes {ai} sont

distinctes. Une évaluation de polynôme modulo (z - ai) est équivalent à une

interpolation. Et donc,

Q(z) mod (z - at)
= Q(ai)

= Rl (ai) Rz (a)

Pour que Q(z) soit unique, 2N-1 points sont nécessaires. On choisit les (ai) tels

que le calcul soit simple. Les points les plus simples sont {0,1,-1,°°}.

Les {Ri(ai)} sont calculés avant le filtrage. Ils sont des polynômes en z-N

de degré L/N-1. Les {R2(a¡)} sont les combinaisons des signaux sous-

échantillonnés. Ils sont à calculer. Chaque "reste" Q(ai) est obtenu par

multiplication de Rl(ai) et R2(ai). Tenant compte du fait que Rl(ai) et R2(ai)

144

sont eux même polynômes en z-N, cette multiplication est équivalent à un

filtrage à cadence 1/N.

3.4 Reconstruction

Pour la reconstruction, calculons d'abord

Tt= � � où P(z)=T\P(z) = V[(z-ai)

Ensuite, appliquons le TRC:

Q(z) = Rl(z) R2(z)

= (H0+H1z+... +HN_lzN-1)(X0+Xlz + ... + XN_lzN-1)

= C0 + Cyz + ... + C N-IZ N-l +... + Cw_2z2»~2
(15)

Nous obtenons ainsi le polynôme Q(z) qui est caractérisé par ses 2N-1

coefficients {Ci}. Mais ceux-ci ne sont pas les sorties du filtre. Les sorties sont

calculé à partir de {Ci} par une opération baptisée "recouvrement" (overlap en

anglais).

3.5 Recouvrement

Par les équations (9) et (15), il est évident que:

Y0+Ylz-l + ...+YN_lz-N+l

Et les sorties (Yi) s'obtiennent facilement par identification:

Yl =Ci+z-NCN+i i=0,l,...,N-2
(17)

L'équation (17) est caractéristique d'un schéma appelé habituellement en

anglais "overlap-add" dans le cas de calculs par FFT. Nous donnons ci-dessous

un schéma général pour les algorithmes rapides de filtrage RIF faisant

apparaître toutes les étapes nécessaires à leur construction:

145

Fig.5 Le schéma général des algorithmes rapides RIF

3.6 Convolution pseudocyclique

Si l'on écrit de manière matricielle l'ensemble des relations entre entrée

et sortie du filtre sur la longueur du bloc considéré, on obtient:

TY 1 Ho Hi HN-llrV
YN-2 Z HN-1 Ho ..

XN-2

... H,

Qui fait intervenir une matrice dite "pseudocyclique". Une autre manière

d'expliquer tous les algorithmes rapides connus est de dire qu'ils

'diagonalisent' la matrice pseudocirculante, avec une éventuelle augmentation

de la dimension de la matrice diagonale.

A l'aide de cette formulation, on peut montrer qu'il est possible après

permutation des entrées et sorties d'obtenir des algorithmes transposés

réalisant une fonction de transfert identique et nécessitant la même complexité

arithmétique.

Les algorithmes transposés appartiennent alors à une autre classe

connue sous le nom d' "overlap-save" dans le cadre des algorithmes

classiques.

146

4. Les algorithmes classiques dans le cadre de l'approche

Nous étudions, dans le cadre de l'approche proposée ci-dessus, la

dérivation des algorithmes classiques, en montrant leurs avantages et

inconvénients.

4.1 Algorithmes par FFT

On choisit: N � L

(Tzo + V1 + h, -,z -'+')(x 0 +xi z-i '+XN-IZ

et les points d'interpolation sur le cercle unité

ai = exp(-;'� �); K=N + L-l

L'interpolation aux points ainsi choisis est alors équivalente à une DFT de

longueur K. Souvent on choisit: K=N+L-1= 2M, parce que la 2M- DFT se

calcule efficacement.

Fig.6 Les algorithmes de filtrage RIF par FFT

4.2 Algorithmes de Agarwal-Burrus

On choisit: N�L

Yo + Yiz+. - -+YL-i ZL-1
= (ho + h1z+...+hL_lzL-l)(X0 + Xlz+...+XL_lzL-1)

(20)

147

Après regroupement par blocs

[(h0+hlz+...+hU2_l zLI2-l)+zU2(hLI2+...+hLA zLI2-')]x

Soit

(Go + Gi zL/2) (F0 + Fi ZL/2)

Rappelons l'algorithme pour le produit de 2 polynômes du 1er degré dans

Fig.7.

(xo + xiz) (ho + hiz)

= c 0 + C 1 z + C 2 z 2

point s d' int erpolations: ai
= {0, l,°o}

CQ: xoho

c i: (xo + xi) (ho + hi) - xoho - xihi

C2: xlhl

Fig.7 L'algorithme pour le produit de 2 polynômes du 1er

degré.

Appliquons cet algorithme comme suit:

(Go + Gl zL/2) (Fo + Fi ZL/2)

= GoFo + [(Go+ Gl) (Fo+Fi) - GoFo- GiFi] zL/2+ GiFiZL (22)

Réitérons-le sur les termes suivants qui sont encore des produits de polynômes

mais de degrés plus faibles:

GoFo, (Go+ Gl) (Fo+Fi), GiFi

C'est donc une interpolation récursive utilisant {0,1,°°} comme points

d'interpolation.

148

Fig.8 Les algorithmes de Agarwal-Burrus

4.3 Algorithmes de Winograd

L'exemple le plus simple est le suivant où L=N=2:

I 1 rX"-1 x" II 1=1 I

Ly-lJ U-2 *»-lJUJ Un-l(^+^))+Un-2-^-l)^j
(23)

C'est le transposé de l'algorithme qui calcule le produit de deux polynômes du

premier degré.

Quand N � L, nous devons calculer le produit d'une matrice Toeplitz et

d'un vecteur:

hn 1 ["xn_L+1 � � � *�_! xn 1 r Vi 1

hn-l 1 U-L Xn-L + l Xn-l 1 hL-2

.^n-i+lj _Xn-2L+2 X.-L Xn-L+\j_'h
(24)

En partitionnant la matrice :

149

rell rFO FllTGll
1 1=1 Il 1
LEOJ LF2 FoJLgoJ

Nous obtenons:

\E\~\ r^0(Gl + G0)-(F0-Fl)G0l

LEOJ [F0(Gl + G0) + (F2-F0)GlJ
(25)

Pour réduire davantage la complexité arithmétique, on peut appliquer la

même procédure récursivement sur les termes suivants:

FO(Gl+GO), (FO-Fl)GO, (F2-FO)Gl

Les algorithmes de Winograd sont obtenus en ultilisant un algorithme

générateur qui est le transposé de celui utilisé dans les algorithmes de

Agarwal-Burrus. Nous avons illustré ce fait par un seul exemple,mais cette

remarque est générale.

4.4 Remarques

Les algorithmes classiques présentés ci-dessus ont pour but de

minimiser essentiellement le nombre de multiplications. Ils sont intéressants

pour les processeurs à usage général, dans le cas de filtres très longs. Leur

caractéristique commune est d'utiliser de grands blocs de calcul. Leur

principal défaut réside dans le fait que leur structure est trop compliquée pour

que leur utilisation soit véritablement efficace dans les processeurs de

traitement du signal. Ils sont d'autre part difficilement implantables en VLSI,

a cause précisément de l'utilisation de grands blocs de calcul. Enfin, ces

grands blocs de calcul induisent un retard important de traitement, retard qui

peut devenir critique pour certaines applications temps réel.

5. Nouvelles possibilités

L'approche unifiée nous permet non seulement d'établir un cadre

général pour tous les algorithmes existants mais aussi de dériver des

nouveaux algorithmes. Nous allons présenter quelques nouvelles possibilités

dans les paragraphes suivantes.

150

5.1 Algorithmes de petite longueur

On choisit N=2 sans tenir compte de l'ordre du filtre. Nous obtenons:

Y0(Z2)+Yi(Z2)z = [H0(Z2)+H1(z2)z][Xo(Z2)+Xi(Z2)z] (26)

= Ri(z)R2(Z) = Q(z)

Et on interpole Q(z) aux points suivants: (ai) = {0,1,°°}. Donc:

Rl(0)=H0(z2) R2(0) = Xo(z2)

Rl(l) = HO(z2) + Hi(z2) R2(l) = Xo(z2) + Xi(Z2)

Rl(-) = Hi(Z2) R2(-) = X1(z2)

Calculons ensuite les "restes":

Q(0) =Ri(0)R2(0)

Q(l) =Ri(l)R2(l)

Q(-) = R1(oo) R2(-)

On obtient les sorties:

Y0(Z2)= Q(0) + Z2Q(oo)

Yx(Z2)= Q(l) - Q(O) - Q(oo) (27)

Fig.9 L'algorithme de petite longueur pour N=2.

Cet algorithme calcule 2 sorties d'un filtre de l'ordre L à la fois par trois

filtres de l'ordre L/2. Le nombre d'opérations est le suivant:

3L/4 multiplication-accumulations (MACs) par sortie

25% de réduction est ainsi obtenu. Cet algorithme présente les avantages

suivants:

1) Réduction de la complexité;

151

2) Maintien de la structure "MAC".

Quand N=2, seulement 3 points d'interpolation sont nécessaires pour

dériver l'algorithme. Comme il existe 4 points d'interpolation simples (c'est à

dire ne faisant pas intervenir de multiplications) : on a 4 variantes

possibles pour le cas où N=2.

Dans le cas où N=3, on aurait besoin de 5 points simples pour dériver un

algorithme optimal. Mais les points autres que {0,1,-1,°°} , ±2 par ex. génèrent

beaucoup d'additions et augmentent la sensibilité de l'algorithme. Pour N�2, il

est donc préférable de chercher des solutions sous-optimales vis à vis du

nombre de multiplications (ou de sous-filtres dans ce cas précis) , mais ne

générant pas trop d'additions.

Voici la dérivation d'un algorithme sous-optimal de radix-3:

Y0(Z3)+Yi(z3)z+Y2(z3)z2

= [H0(Z3)+Hi(z3)z+H2(z3)z2][Xo(Z3)+X1(Z3)z+X2(Z3)z2]

= [H0+Z(Hi+H2Z)][X0+z(Xl+X2z)]

= [H0+zF][X0+zG]

Itérons l'algorithme de longueur 2 sur [Hq + ZF][Xo+ZG], puis sur

[Ho+F][Xq+G] et FG. Ceci nous permet d'obtenir un algorithme de radix-3 qui

n'a besoin que de 6 multiplications (filtrages de longueur L/3), au lieu de 9 pour

un algorithme direct. La complexité de calcul est donc:

2L/3 MACs par sortie

On obtient alors une réduction de 33% par rapport aux L MACs par sortie

initialement nécessaires. Il est également possible de dériver des algorithmes

pour des tailles de blocs plus grandes. Dans ce cas, la réduction du nombre de

MACs est plus importante, alors que l'interpolation et la reconstruction

deviennent plus complexes, c'est-à-dire, il y a plus d'opérations avant et après

les sous-filtrages. L'utilité de ces, algorithmes dépendra alors de la taille du

filtre, puisque on obtient un gain proportionnel à la taille du filtre au prix d'un

nombre d'opérations fixe.

Quand N est factorisable, soit N=N]_N2, nous pouvons construire un

algorithme de radix N à partir des algorithmes de radix Ni et N2. Par

152

exemple, quand N = 6 = 2x3, nous pouvons appliquer d'abord la décomposition

radix-2 et ensuite radix-3 ou d'abord radix-3 et ensuite radix-2 pour obtenir un

algorithme de radix-6. Le nombre de multiplications (filtrages) ne varie pas

dans les algorithmes ainsi construits.

M = M(2) M(3) = 18

Cependant, le nombre d'additions dépend de l'ordre dans lequel l'itération

s'effectue. Pour cet exemple,

2x3: 42 Additions

3x2: 44 Additions

Et dans le cas où N admet plusieurs facteurs:

N=NiN2N3...NK

Nous avons défini un coefficient de qualité pour déterminer l'ordre d'itération

qui rend le nombre d'additions minimum:

Q = (Mi-Ni)/Ai

où Mi le nombre de multiplications, Ni le radix et Ai le nombre d'additions.

Voici le coefficient Q pour certains N.

N M A Q

1 L L-l 1

2 3 4 0,25

3 6 10 0,3

4 9 20 0,25

5 12 40 0,175

Le 1er algorithme à appliquer est celui qui a le coefficient de qualité le plus

faible.

5.2 Algorithmes de petite longueur pour des données complexes

Dans le corps de nombres complexes, les points d'interpolation les plus

simples sont (ai) = {O,l,-lj,-j,oo}. On peut établir des algorithmes optimaux

pour N = {2,3}. La méthodologie permettant de dériver les algorithmes est

semblable à celle décrite pour les données réelles.

Il faut cependant tenir compte de la particularité suivante du filtrage

complexe: Pour tout filtrage complexe Y(z) = H(z)X(z):

153

Yr(z)+jYi(z) =[Hr(z)+jHi(z)][Xr(z)+jXi(z)]

nous pouvons réduire la complexité de calcul par l'algorithme de

multiplication complexe à 3 multiplications réelles :

Yr(z) = Hr(z) [Xr(z)+Xi(z)] - [Hr(z)+Hi(z)] Xi(z)

Yi(z) = Hr(z) [Xr(z)+Xi(z)] - [Hr(z)-Hi(z)] Xr(z) (28)

De telle façon, un filtrage complexe est calculé par trois filtres réels (Fig.10) au

lieu de quatre.

Fig.10 Un filtre complexe par 3 filtres réels

5.3 Algorithmes par FFT courte

Dans les algorithmes classiques, la taille de bloc N est supérieure ou

égale à l'ordre du filtre L. Mais ici nous proposons des algorithmes pour N � L.

Les points d'interpolation sont :

Fig.11 Le schéma des algorithmes par FFT courte

154

Dans le cas où N�L, les multiplications dans le domaine fréquentiel sont

devenu des filtrages complexes de longueur L/N. Par exemple, pour N=L/2,

Rl(k) sont des filtres de longueur 2.

En variant le rapport entre N et L, nous pouvons dériver tous les

intermédiaires entre traitements temporel et fréquentiel, qui représentent

différent compromis entre complexité de calcul et structure régulière (la partie

"MAC"). Notons enfin que la chargede calcul de ces algorithmes peut encore

être réduite par l'utilisation d'algorithmes de petite longueur pour le filtrage

RIF complexe.

On peut montrer, et il s'agit là d'un résultat étonnant, que dans certains

cas, e.g. N = L/2, les algorithmes par FFT courte nécessitent moins

d'opérations que ceux par FFT "longue" qui sont utilisés habituellement.

155

Résumé de la partie "Algorithmes"

A.Une approche unifiée =� tous les intermédiaires entre traitements temporel

et fréquentiel.

B.Revue des algorithmes classiques=� Leurs dérivations, leurs avantages et

défauts.

C.Nouvelles classes d'algorithmes permettant :

- de maintenir l'architecture "MAC",

- de réduire le nombre d'opérations,

- d'éviter les grands blocs.

156

6. Architectures pour le filtre RIF

Dans ce chapitre, nous présentons des architectures pour implanter le

filtre RIF en circuits intégrés. Le principe de base des architectures est

l'arithmétique distribuée. Nous apportons des contributions à cette méthode

classique en éliminant la ROM et en proposant de nouvelles structures

d"accumulation rapide.

6.1 Principe de l'arithmétique distribuée

L'arithmétique est une technique de calcul du produit scalaire de deux

vecteurs dont l'un est constant. Le filtre RIF tombe bien dans le champ

d'application de cette technique parce qu'il s'écrit comme suit:

L-l

yn=Ehxn-i n = 0, oo
1=0

(29)

Supposons que y, h et x sont codés en complément en 2. Le développement de x

au niveau du bit fait apparaitre une présentation qui est la somme de plusieurs

termes similaires pondérés par des puissances de 2 (représentant le décalage

dans le calcul binaire classique):

Yn = L h(-Vu, +

i=O

= -ÉhXn.i,o+2-1 Xr,Xn_i,1+...+2-BH ÎhXn-i.EM
i=O i=O i=O

(30)

Définissons une fonction comportant L variables binaires {ai}:

L-l

R^,...,aL_l) = £ hA-M
i=O (31)

Dans le cas où les {hi} sont constants, cette fonction peut prendre au plus 2L

valeurs suivant les différentes combinaisons possibles des ai. Si ces 2L valeurs

sont stockées dans une ROM à l'adresse correspondant aux combinaisons

appropriés, nous pouvons obtenir le résultat de la fonction correspondant à une

combinaison d'entrée tout simplement en lidsant le contenu de la ROM à cette

adresse.

157

En utilisant cette fonction plusieurs fois, nous arrivons à calculer tous

les termes de la somme dans l'eq.(30). Un accumulateur en sortie de la ROM

additionne ces termes et fournit le résultat final du produit scalaire.

Le principe est illustré en Fig.12. Les registres bit-série sont enchainés

pour former une ligne à retard, classique dans tous les filtres RIF.

Fig.12 L'architecture du filtre RIF par l'arithmétique
distribuée.

Pour une implantation en circuits intégrés, la ROM devient vite

encombrante, même quand L est moyen, et donc coûte cher en termes de

silicium. De plus la ROM limite la vitesse de calcul, car elle ne permet pas

l'utilisation de techniques de pipelinage.

Si nous calculons deux produits scalaires de longeur L/2 et les

additionnons ensuite, on trouve ainsi une autre façon de calculer un produit

scalaire de longeur L qui s'avère plus simple et nécessite seulement deux

ROMs de taille 2U2. Cette solution classique (Fig.13) est nettement supérieure à

la précédente à partir d'un certain degré du filtre.

158

Fig.13 L'architecture utilisant des ROM de taille plus petite.

La décomposition des ROMs peut se faire récursivement jusqu'au

moment où les mémoires ne contiennent plus qu'un seul coefficient. Nous

obtenons ainsi une architecture par additionneurs en arbre (Fig.14) où la

mémorisation est réduit à un minimum. Le découpage de la ROM en éléments

plus fins permet non seulement de réduire la surface d'implantation , mais

aussi d'insérer des registres de pipeline si nécessaire.

Fig.14 L'architecture par additionneurs en arbre

Une implantation directe de cette architecture n'est cependant pas si

efficace que ce à quioi on pourrait s'attendre, à cause du mouvement des

retenues orthogonal à celui des sommes.

159

Pour faciliter l'implantation, nous pouvons ramener les additionneurs à

une forme linéaire qui est illustré en Fig.15. Le mouvement des retenues

(carry) est horizontal alors que celui des sommes est vertical, conduisant à un

mouvement du flot de données approximativement diagonal. C'est une

architecture régulière. Un circuit a été réalisé à base de cette structure dont le

schéma est montré en Fig.16. On peut remarquer les registres de pipelinage

antidiagonaux.

Fig.15 L'architecture par additionneurs en forme linéaire.

On peut constater que la partie 'calcul' de l'architecture accumule des

opérandes multiples à chaque temps de cycle. La vitesse de calcul dépend alors

fortement de l'accummulation multi-opérande choisie. Pour cette raison, nous

présentons des techniques d'accumulation rapide.

6.2 Accumulateurs multi-opérandes rapides

D'abord, nous rappelons le concept de l'additionneur 'carry-save' (CSA).

Le CSA additionne trois nombres en deux alors que l'additionneur habituel

additionne deux nombres en un seul (Fig.17). Ce dernier nécessite une

propagation de retenue dont le temps est proportionnel à la longueur de mots,

alors que le CSA n'a pas besoin de la propagation et son temps de calcul est

160

indépendent de la longueur de mots. Ceci est l'origine du gain en temps de

calcul apporté par le CSA.

Les accumulateurs rapides proposés sont tous à base de CSA. Nous

donnons quelques exemples en Fig.18.

Fig.17 L'additionneur habituel et l'additionneur 'carry-save'

161

Fig.18 Un jeu d'accumulateurs.

162

Dans les accumulateurs multi-opérandes, nous devons additionner

d'abord les opérandes avant de stocker et de reboucler. L'application des

structures arborescentes, comme l'arbre de Wallace (Fig.19), permet

d'effectuer une partie des calculs en parallèle, et donc d'additionner très

rapidement les opérandes.

Fig.19 L'arbre de Wallace 9-2 (l'addition de 9 opérandes à 2

sorties).

Pendant longtemps, on a considéré que les structures arborescentes

n'étaient pas implantables de manière très efficace en surface de silicium,

malgré leur vitesse de calcul extrêmement court. Récemment, certains

méthodes ont été présentées, permettant des conceptions régulières et

compactes.

5.3 Nouvelles architectures

Les nouvelles architectures sont caractérisée par:

-additionneur "carry-save" comme brique de base

-sommation rapide par l'arbre de Wallace

-possibilité de pipeliner à un niveau arbitraire

-accumulation rapide

163

La fig.20 présente une architecture à base de CSA en forme linéaire.

Celle-ci corrige le mouvement diagonal des données de la Fig.15 en les

ramenant tous vers le bas où se trouve un accumulateur bi-opérande.

Fig.20 L'architecture par additionneurs 'carry-save' en forme

linaire

Cette architecture est très facile à pipeliner. L'architecture de la Fig.21

montre un exemple avec des étages de pipelinage et aussi des arbres de

Wallace.

Il est aussi possible de pipeliner à un niveau arbitraire, éventuellement à

chaque étage de CSA pour atteindre une vitesse de calcul maximale. Une autre

variante de cette architecture est obtenue en traitant deux bits à la fois et en

appliquant le codage de Booth modifié, ce qui permet un fonctionnement

presque deux fois plus rapide, et ce avec peu de matériel supplémentaire.

164

Certaines autres variantes ont également été présentées, dont une

architecture spécialisée pour les filtre RIF symétriques. Dans ce cas, un

module commun calculant (X+Y)H est nécessaire. Un codage a été proposé

pour calculer cette opération d'une façon efficace, éliminant l'addition (X+Y).

Ce codage semble cependant plus avantageux pour une conception en bit-

parallèle qu'en bit-série.

Fig.21 L'architecture pipelinée avec des arbres de Wallace.

165

RESUME DE LA PARTIE "ARCHITECTURE"

A.Etude de l'arithmétique de base dans le cadre du multiplieur-accumulateur.

B.Nouvelles architectures de filtre par arithmétique distribuée ayant les

caractéristiques suivantes: sans ROM; additionneur 'carry-save' comme

brique de base; accumulation rapide.

C.Codage pour calculer (X+Y)H dans le filtre RIF symétrique.

