
HAL Id: hal-02191377
https://hal-lara.archives-ouvertes.fr/hal-02191377

Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algorithm of search of nearest neighbors leading to
average computing time per point independent of the

total number of points
Claude Delannoy

To cite this version:
Claude Delannoy. An algorithm of search of nearest neighbors leading to average computing time
per point independent of the total number of points. [Research Report] Note technique CRPE n°
36, Centre de recherches en physique de l’environnement terrestre et planétaire (CRPE). 1976, 22 p.,
graphiques. �hal-02191377�

https://hal-lara.archives-ouvertes.fr/hal-02191377
https://hal.archives-ouvertes.fr

CENTRE NATIONAL D'ETUDES

DES TELECOMMUNICATIONS

CENTRE NATIONAL DE LA

RECHERCHE SCIENTIFIQUE

CENTRE DE RECHERCHE EN PHYSIQUE

DE L'ENVIRONNEMENT TERRESTRE ET PLANETAIRE

NOTE TECHNIQUE CRPE/ 36

AN ALGORITHM OF SEARCH OF NEAREST NEIGHBORS

LEADING TO AVERAGE COMPUTING TIME PER POINT INDEPENDENT

OF THE TOTAL NUMBER OF POINTS

par

Claude DEIANNOT

C.R.P.E./P.C.E.

45045 - ORLEANS CEDEX, France

Le Chef du Département PCE Le Directeur

Décembre 1976

2.

ABSTRACT

A new algorithm of search of nearest neighbors is

proposed. It is based upon the partition of the vorking domain

in cells. It présents two major characteristics. First, the

average number of distance calculations can be done as small

as required. Secondly, the average computing time per point is

indépendant of the total number of points to be classified.

The theoretical behavior has been studied for a

uniform distribution in a plan. Expérimental vérifications are

provided.

3

1 - INTRODUCTION

Nearest neighbor techniques are important non

parametric procédures used for multivariate density estimation

and pattern classification. In both cases, we hâve to find

the k nearest neighbors of some point x in a set E of N points ;

in pattern classification x do not belong to E vhile it does in

density estimation,,

Many algorithms or preprocessing schemes hâve been

proposed to reduce storage or processing requirements. But,

in ail cases, the computing time per point is an increasing

function of N. Hère, ve are proposing a new algorithm vhich

leads to average computing time per point indépendant of N.

In a first time, after problem formulation, we shall

see the proposed method. Then ve shall examine how such an algo-

rithm theoretically behaves. Lastly expérimental vérifications

vill be described.

4.

2 - PROPOSED METHOD

2.1. Problem Formulation

Let E and F be two sets of points of R (every point is

defined by its p real coordinates)

We suppose that a distance d has been defined on R .

The problem is to find, for each point x belonging to F,

what is called its "nearest neighbor in E" ; that means the

point (supposed unique) y � E so that :

d(x,y) = inF d(x,y)

YE. E

More generally, we could hâve to find the k nearest neighbors

of each point of F. Hère, for purpose of simplification, ve shall

suppose k = 1 .

2.2. Basic idea

If we had to make a manual search of the nearest neighbor

of a point x, we should proceed geometrically and we should

consider only a neighborhood of x.

So the basic idea of the algorithm vill be a simulation

of this manual process. On that purpose we are going to make a

partition of the whole domain G (union of the two sets : G = EL�F)

in cells.

So the search of y , nearest neighbor of x, vill be limitated

to a search in one or several cells.

We shall hâve two kinds of treatments :

(i) a preprocessing for the partition of G. This will be done

once for ail points of F.

(ii) a répétitive treatment which will be the same for each

point of F.

Let us examine this in more détails.

5.

2.3. Preprocessing

In a first time ve détermine the smallest hyper-cube of R

(called H) which contains G. It is defined by p pairs of

coordinates (min. , max.) i = 1 , p

Then we make a partition of each segment
min. , maxiJ

in parts. Let us note that we can choose as ve vant values

of and the size of the parts.

In so doing , we hâve made a partition of H in "A A .

cells. For each cell we set a list of points of E which belong

to it.

6.

2.4. Example

(i) Let us see how this preprocessing works on a simple

example. Suppose we hâve E = F, 14 points of the plan (p = 2)

distributed as shown in figure 1. Suppose that d is the

euclidian distance. We choose A
=4, A = 3

and we make

equal parts.

- Figure 1 -

7.

In a first time, we détermine the smallest rectangle

containing our set G = E = F (in thick lines on fig. 1).

Then we make a partition in 4 X 3 equal cells. So we can set

the following list of points belonging to each cell (on figure 1

cells are identified by encircled numbers) :

Table 1 : List of points per cell

While we are considering this example, let us see

how ve may proceed to find the nearest neighbor of some point.

(ii) Search of the nearest neighbor of point 1

We détermine the cell to which belongs point 1 ; it is cell

number I. So, we first make a search in that cell. By looking up

table 1, we hâve to compute two distances : d(l ,2) and d(l,3).

So we find that 2 is the nearest neighbor of 1 in cell I. Hère d(1,3)

is smaller than distance between point 1 and the outline of the

cell 1 ; so we are sure that 2 is the nearest neighbor of point 1.

(ii) Suppose now that we hâve to find nearest neighbor of point 4.

Proceeding in the same way as for point 1, we find

that point 5 is the nearest neighbor of 4 in cell VI. But d(4,5)

is greater than distance between 4 and the outline of cell VI.

8.

So ve are not sure that 5 is really the nearest neighbor of 4

and it is necessary to extend the search to cells which are

contiguous to cell VI. Hère, we should hâve found that the nearest

neighbor of 4 was point 6.

Let us see whatthe algorithm vill be in a general case.

2.5. Algorithm of search of nearest neighbor of a point.

With following notations :

o

C
: cell containing point x

C domain formed by the union of Cxi-1 and of the cells

vhich are next to it.

(so C contains (2 i + 1)P cells)

d(x , C) : minimum distance between x and the outline of C

the processing of one point can be done as in flow-chart of

figure 2.

9.

Figure 2 � Search of the nearest neighbor Y of

one point x

10.

3 - THEORETIC BEHAVIOUR OF THE ALGORITHM

3.1. Introduction

Usually such algorithms are characterized by the average

number
n

of distances vhich it is necessary to compute

(or to examine if ve keep in memory an array of distances)

to find the nearest neighbor of a point.

However the average computing time per point t can be

expected to be about given by :

t =
n t

+
n3 t3

(1)

vhere : n
c

is the average number of cells that need to

be examined to find the nearest neighbor

of a point.

t
c

computing time of initialization of the

search in a cell

t
time required by one distance calculation

So, ve are going to examine hov the quantities nc and ib

behave and what conclusions may be applied to average

computing time per point.

3.2. Hypothesis

Let us suppose that

(i) ve are in a tvo dimensions problem (p = 2)

(ii) E = F so that G = E = F

(iii) the N points of G are drawned according to a

uniform distribution

(iv) we hâve
N square cells of same size

(v) there are no edges effects

11.

3.3. Expression of
P

In a first time, let us see vhat are the expressions of

quantities
P :

probability that the nearest neighbor of a

point x belong to C
k (C k

being domain defined in section 2.5.)

As distribution of point x is uniform, P
vill be indépendant

of x and ve can write :

Pk
=

f h(y) P(y) dy (2)

vith P(u) probability that a circle of ray u contain

at least one point.

h(u) : distribution of the random variable : distance

betveen some point and the edge of domain C
k

(i) Détermination of
Pk

The probability that in a circle of ray u, ve find at least

one point is

P(u) = 1 - (1 -
^)N (3)

N
c

To avoid edges effects, let us suppose that

H -* «-

vith - N
= N = constant

c

Then (3) becomes

P(u) = 1 - e �i7lNpc
u 2

(4)

12.

(ii) Détermination of h

The probability that distance d betveen a point x

and the edge of C
k

be smaller than k + d is given by

H(k + °() = 1 - 4 (i - �* 2 for û� £ 10 i]

So, the distribution h is :

h(k + °�) = 4(1 - 2 �*) if °\ e (Jo , 2

vith k + o� = v , ve find

h(v) = 4(1 + 2 k - 2 v) if v d [k, k + i]

h(v) =0
if v k k + 2

1
(5)

(iii) Détermination of
Pk

Using relations (4) and (5) in (2) ve find

Pk =
4 f

1
(1 + 2 k - 2 x) (1 - e" À2 2 dx

k

vith 2 = il N

Finally ve obtain :

2

Ve can remark that
P, k

is only depending on k and N
pc

Especially it is indépendant of N.

13.

3.4. Behaviour of
n, d

and
n c

(i) The average number of cells that need be examined to find

the nearest neighbor of some point is given by :

00

where : 8k represents the number of cells vhich

belongs to
C k

and not to
Cxk-1

P - Pk-1
is the probably that nearest neighbor

of x be in C
k

and not in C
k-1

x x

(ii) In the same vay , the average number of distances that

need be computed to find the nearest neighbor of a point

is given by

vhere
M

is the average number of neighbors of a point x

belonging to C
;

it may be shown to be given by

14.

(iii) So, using (6) in (7) and (8), we can compute theoretical

values of
n.

and n in function of N . They are represented

in full lines on figure 3.

- Figure 3 -

Theoretical (full lines) and expérimental (crosses) values

of n
c

and
n, d

in function of N
pc

15.

3.5. Conséquences

(i) the behaviour of the algorithm is indépendant of the

total number N of points.

(ii) the number of distances calculations can be done as

small as ve want (vithin the limits
n '

1). Hovever, in

practice ve must consider average computing time per point t

given by (1) in section 3.1. Figure 3 shovs that t vill

présent one

or some

minima for values of
N

vhich vill dépend

on value of _d . So optima values of N
vill

be depending

c

on programmation techniques used.

16.

4 - EXPERIMENTAL "VERIFICATIONS

4.1. Working hypothesis

To confirm theoretical behaviour, ve proceeded so :

(i) a program was written in Fortran IV, it ran on

IBM 370/168

(ii) E was a set of N points dravned at random according

to a uniform distribution in the domain

[o , i]
X

| 0 , i] (so p = 2)

(iii) Ve made a partition of the domain in A equal

cells (so A
2

- \)

(iv) Ve searched the nearest neighbor in E of each point of E.

4.2. Behaviour of
n,

and n in function of N

For N = 1000, we computed average values
n

and n

for différent values of � corresponding to différent values

of N
pc

Results are represented by crosses on figure 3.

As far as n is concerned, ve hâve an excellent

vérification of theory. For
n ,

small divergences are

appearing at the extremeties of the curve ; they can be

explained by edges effects.

17.

4.3. Average computing per point

In each of the preceding cases, average computing time

per point was determined. It is shown in figure 4 (vertical

segments represent variances of the errors on expérimental

measures).

Ve can remark that only one minimum is appearing.

In its neighbourhood, ve note that computing time is

multiplied by 2 vhen N
pc

is about multiplied or divided

by 10. This fact can be very useful in practical cases

because generally N
pc

vill not be constant on the vhole

domain G

- Figure 4 -

Average computing time per point

p = 2 N = 1000

18.

4.4. Indépendance of N

For a given value of
N

(1 hère) we determined
n, ,

n

and t for différent values of N.

The results (figure 5) shov that, for N sufficiently great

(to avoid edges effects) expérimental values of n
and nd

(crosses) are very closed to the theoretical ones (in dotted

lines). In the same time, value of t is significantly

becoming constant.

- Figure 5 -

n , n,
and T in function of N

19.

4.5. Remark

Other expérimental déterminations were made vhich are not

presented hère. Especially indépendance of N has been verified

for

(i) uniform distribution for p = 3, 8

(ii) normal distribution for p = 2

5 - CONCLUSIONS

Ve think that more theoretical studies are necessary

about this algorithm. Especially, distributions différent of

uniform one should be considered.

Moreover, on a practical point of view, computing

time per point could be improved by some techniques. Among

them, we can note :

(i) Suppression of some distance calculations

(ii) Lowering n by considering cells in a certain

order

(iii) More efficient table look-up (writing in assembler

langage or using hardware table look-up)

(iv) Cells of variable size ; the size could be determined

in function of local density.

Hovever, ve may already note that this algorithm

présents tvo major characteristics :

(i) The average number of distances calculations can

be done as small as required.

(ii) The average computing time per point is indépendant

of the number of points to be classified. So, in

comparison vith others algorithms,it vill be as

much better as we shall consider greater sets

of points.

20.

-REFERENCES-

1 Richard 0. Duda, Peter E. Hart, Pattern classification

and scène analysis, Willey interscience, 1973.

2 Jérôme H. Friedman, Forest Baskett, Léonard J. Shustek,

An algorithm for finding nearest neighbors,
IEEE Trans. on computers, october 75.

3 Hart, P.E., The condensed nearest neighbor rule, IEEE Trans.

Computers, May 68.

4 E.A. Patrick, F. Fischer, A generalized k nearest neighbor

rule, Info and control 16, 128-152 (1970).

