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ABSTRACT

This is the first of a series of papers, the peneral
subject of which is how toc interpret a set of simultansous measu-
rements of the three electric and three magnetic components of a
random electromagnetic wave field in a magnetoplasma. The point at
which the measurements are made 1is assumed to be stationary with
respect to the plasma, In this first paper, the following problems
are treated : how to define, within the framework of classical
electrodynamics, a distribution function that characterizes the
statistics of a linear random electromagnetic wave field in a
lossless magnetoplasma ;3 the direct problem of predicting the
statistical properties of measurements of the six components of a

field of this type, when the distribution function is known.
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T. GENFRAL INTRODUCTION

This paper prasents the first step in the developmert
of a method fnr the analysis of experimental data on linear
random (i.8. weakly turbulent) electromagnetic wave fields in
a magsnetoplasma. The method is suitable, in particular, for
analysinpg measurements of the six components of the fields of
certain natural very-low-frequencv (VLF) or extremelv-low-
frequency (ELF) electromagnetic wave phenomena, in the stucy
of the interactions between waves and energetic rparticles in
the earth's mapgnetosphere,

The wave phenomena in question are those that appeer
to be continuous and structureless, such as VLF and FLF
hiss, in contrast to discrete rheanomena such as whistlers cr

YLF emissions which have clear-cut structures in the'frenuency-
time plane (RUSSELL et al, , I1I972). Their interactions comprrise
the plasma instabilities that produce them, and also the
perturbations that they cause to particles other than those
involved in their production.

In the develapment of the theory of magnetospheric
wave-nparticle interactions during recent years, the situations
envisaged have become orogressively more and more complex,

The earliest work concerned beams of mono-energetic particles
with a single pitch angle, interacting with plane monochromatic
waves propagated at a fixed angle to the magnetic field, Soan,
however, this situation was seen to be unrealistic. In thea
magnetosphere, the interacting particles are spreac in enerqay
and in pitch angle, and must be characterized by their statistical
distribution with respect to these two variables. Accordingly
the next developments in the theory concerned interactions
between the population of energetic electrons or protons,

with a given distribution functlon, and plane monochromatic
waves, In point of fect, this is & reasonable madel for the
interactions involving natural whistlers from lightning

strokes. Hence much theoretical work has been done on interactions



hetween whistlers and enerpgetic particles, in particular on
whistley -trigeoered vV L F emissions, and on the similar
discrete emissions that can bhe trigrered by artificial
signals of fixed frequency radiated from VLF transmitters
cn the eround,

Faually important, however, are the intaractions
invelving natural VLF noise that is generated entirely
within the magnetosphere, doubtless throurshout larre reerions,
and which covers a wide range of frenauencies. At a eiven
point of observation, which may be either inside or outside
the source region, the corresponding waves arrive from different
parts of this region by different paths, with different wave-
normal directions, and all frequencies are present simulta-
neously. Accordingly, in some of the most recent work on the
pitch-angle diffusion of radiation-helt particles under the

influence of natural VLF waves, the latter are recogniied

as being spread in frequency and in direction of propagation,
and hence -like the particles- as needing to be characterized
by some kind of distribution function (LYONS et al. , 1872 ;
SCHULZ and LANZEROTTI, IS874}, '

' Therefore, in order to provide inputs tec the theory
and to test its outputs, one needs to he able to determine,
from experimental data, distribution functions for the waves
as well as for the particles, Methods for measuring particle
distribution functions are well developed, vet almost no
thought has been given as to how to make the corresponding
measurements for waves ; indeed, only recently has the nesd
for such measuremsnts been acknowledped clearly (STOREY, 1I971),

The praesent paper 1is an initial step towards the
development of one possible method for measurineg distribution
functions %or glectromagnetic waves in space plasmas
electrostatic waves reauire different methods, which will not
be discussed here.

The first couestion that arises 1is the choise of the
data on which to base the method, and the answer depends
on what practical limitations toc data cnllection are accepted.
Here it will be assumed that data Aare avaeilable et any instant

from only one proint in space. In the case of VILF electrnma-



gnetic wave fields observed from a single spacecraft. the
assumption is reasonable percause the wavelsneths in the
medium are generally much larger than the dimensions of any
practicable antennae. which means that the wave fields aAare
uniform on the scele of theg measuring device., (This is ons
respect in which the case of electrostatic waves is different).
While acceptine this limitation for present purposes. we should
remember that it could be overcome bv cocllecting data with
a suitably-disposed pair or cluster of spacsecraft.

The electromagnestic field data that are available at
a single point 1in space comprise the three orthoeonal components
of the wave electric field, and the three orthogonal components
of the wave magnetic field, in as wide a band of frequencies as
one may choose to observe., They can be measured by suitable
antennae : dipoles for the electric components, loops for
the magnetic components, These methods of measurement, though
simple in principle,are often less so in practice, particularly
for the electric field, but they have bheen discussed elsewhere
(MOZER, I973) and will not be considered here. The measuraments
will be assumed to be perfect, free both from systematic
errors and from noise of technologicel origin,and attention
will be confined to the question of how to analyze them,

Up to now, most of the methods for analyzing measurements
of the six components of an slectromagnetic wave fiesld in
space have been based on the assumption that the fiseld observed
in any narrow band of frequencies is locally and instanta-
neously like that of a single plane wave (GRARD, TI968 ;
SHAWHAN, I970 ; MEANS, I872), In this case, the data can bhe
interpreted readily to yield all the characteristic parameters
of the wave : direction of propagation, amplitude, polarization
ellipses for the electric and magnetic vectors, wave impedance,
When data on all six components are available, the method of
interpretation does not involve any assumption about the nature
of the medium ; indeed, some of the properties of the medium
can be deduced from those of the wave (STOREY, I859),.
Conversely, if the properties of the medium are known, then
certain items of the information obtained about the wave are
redundant, Specifically, when the frequency of observation
has been chosen and the direction of propagation measﬁred.

then the shapes of the polarization ellipse and the valye



of the wave impedance can ha calculated from straiehtforward
propagation theory. Ny comparine these theoretical pradictions
with the corresponding experimental results, the original
assumption of & plane wave can be put to the test., Vhen
studying V L F waves in the maesnetosphere, the polarization
is particularly useful for this purpose hecause, under very
diverse conditions, its theoretical form is almeost independent
of the plasma parameters., When this test is applied to
discrete phenomena such as whistlePs, the agreement with the
theory is often satisfactory (MEAMNS, 1972}, On the other
hand, when it is applied to continuous, structureless phenomena
such as VLF and ELF hiss, the results show frequent
discrepancies : the observed shapes of the polarizaetion ellipses
depart from their theoretical ones, and indeed fluctuate
considerably (THORNE et al, , I1I973), It follows that, for
such apparently random fields, the plane-wave model 1is much
too simple, and that some kind of statistical model is required
instead,

STOREY (I371), followinpg a surgestion made privately
by D.A. Gurnett, advocated that a natural noise field of this
type be considered as a continuum of superposed plane waves,
of different frequencies and proparated in different directions,
without any mutual phase coherence. This last condition 1is
what 1s meant by the statement at the beginnine of the
present paper, to the effect that the field in auestion is

weakly turbulent : if the observations Are being made within

the source region. the condition requires that the field be

so weak that no nonlinear effects occur ; alternatively, even
when such effects cccur at the source, the condition can still
he satisfied if the resulting nhase coherence between different
frenquences is destroved by dispersion along the path to the
point of observation, the latter being outside the source
region, The properties of such a weakly turbulent. incoherent,
or random wave field can be described statistically by =a
function that specifies how the wave esnerey density is
“istributed with resrect *n *he wave-number vectcr K ., Or
alternatively with respect to the aneular freauencv and
the direction of propagation. This concept, which is familiar
to theore ticians of plasma turbulence (BEXEFI, I766), has

yvet to win general acceptance among experimental space

physiciéts.



In the light of it, the question of how to analyze
measurements of the six components of & random electroma-
gnetic wave field in a magnetoplasme reduces to the more
specific one of how best to use these measurements to
determine the wave distribution function.

A brief discussion of this question has been
published previously (STOREY and LEFEUVRE, I974), The
present paper 1s intended to be the first in a series of
papers that reply to it in detail. Here we are concerned

with the direct problem in the statistics of random

electromagnetic wave fields : namely, given a field
characterized by a known distribution function, what are
the statistical properties of its six components ?

The plan of the paper is as follows : section 2
presents the formal definition of the distribution function
that 1is used to describe a random wave field statistically ;
section 3 describes the standard methods that are usedlfor
the statisticel description of the set of signals received
on six antennas that are immersed in the field and measure
its six components 3 section 4 gives the solution to the
direct problem (as defined above) of the relationship
between the statistics of the wave field and of the received
signals : finally section 5 offers some provisional conclusions,

Many assumptions and approximetions are made in order
to simplify the problem : all the statistical properties of
the wave field are stationary in time and space ; the plasma
is infinite, uniform, cold and collisionless ; the point
of observation is fixed with respect to the plasma ;3 wave
propagation is described by the magneto-ionic theory in its
simplified version in which the forced motion of the ions
is ignored) Their validity, and that of the basic concepts
of the paper, are discussed in appendix A,

The rationalized MKSA system of units is used

throughout,



2., STATISTICAL DESCRIPTION NF THE WAVE FIELD

In the kinetic theory of gases, the distribution
function Fg (t, T, V) for the particle species s

is defined in such a way that
>

>
Fg (£, T, v ) d?r a3y

is the ensemble average number of these perticles, at the
time t, in the volume element dar' at the point T in
coordinate space, whose velocity vectorslie in the element
a3v at the point V in velocity space.

By analogy, the distribution function F ( t, %, k) for
the wave mode m may be defined on such a way that
FooCt, £, % ¢%r alk
is the ensemble average amount of wave energy in this mode
at the time t and in the volume element dar. due to
homogeneous plane waves whose wave-number vectors lie in the
element d3k at the point ? in wave-number space., However,
since K and ; are not independent variables, the definition
of Fh involves certain conceptyal difficulties that do not
arise for Fg ; these are discussed in appsndix A,

This wave distribution function is essentially the
same as that introduced by BEKEFI (I866), in terms, however,
of "light particles”, which he does not define clearly. If
they are what are usually called "plasmons”, and each carries
a quantum of energy ¥ w where #i 1is Planck's constant and
w the wave angular freguency corresponding to the vector :,
then Bekefi's distribution function, which is even more closely
analogous to that for a species of particles of finite mass,
is equal to Fm / 4% w. Since our treatment is purely classical,
we prefer to work directly in terms of the wave energv.

Note that the definition of the function Fme 1in
terms of the energy in a particular wave mode, involves
the implicit assumption that the medium is of the type that
supports wave propagation in distinct modes, i.e. that it is
anisotropic. Surprisingly, this assumption very much
simplifies the problem in hand. The nature of the simplificaticon
may be appreciated bv considering heow one would specify the
intensity and state of polarization of a aquasi-monochromnatic
wave field that is random in the restricted sense that it is

spread in frequency, but not in respect of its direction of



propagation which is fixed and known. In the case of an
anisotropic medium, it suffices to specify the enerpy density
in each of the possible wave modes ; thus for a cold magneto-
plasma, which supports two electromagnetic wave modes, only
two parameters are recuired., On the other hand, in the case
of an isotropic medium such as free space or a non-magnetized
plasma, no less than four parameters are required, for
instance the Stokes parameters (BORMN and WOLF, I964). The
method of analysis developed in the present paper has not
vet been extended to the case of waves in isotropic media,
From here on, several assumptions will be made 1in
order to simplify the discussion : first, the medium will
be assumed to be uniform ;3 the wave field will be assumed to
be stationery in time, and the observations to be made at
a fixed point in the medium, so the variables t and ; can be
omitted ; also, it will be assumed provisionally that only
one wave mode is present, and the subscript m will be dropped
accordingly. These assumptions are discussed in the appendix A,
They enable is to write the wave distribution function simply
as F [K].
Now when the medium is optically uniaxial, as is the
case for a stationary magnetoplasma, it is more convenient
to express the wave distribution function in terms of the
angular frequency w and of the direction of propagation
(i,e. the direction of the Kk vector), as specified by the
angle 6 between this vector and the optic axis, and by
an azimuthal angle 4 (fig. I) ; the angle €6 wvaries
from 0 to w ,» and ¢ from 0 to 2w . In this
representation, the distribution function will be written
F (w, 68, 9 ) and the slement of wave energy is F (w,6 ,4 )
d3r d wde d¢ . The relation between this and the previocus
form of the distribution function is

-1 2

(1. 1) Flw, 8, $) = Vg k? sin 8 F (K)

where k = IKI and V., = |(a w / 3K ]el is the
modulus of the group velocity (BEKEFI, 1886]) ; the vector Vg



has the direction of the wave normal (or the opposite
direction, if (3w/3k)g is negativel), as distinct from the
group-ray velocity which has the direction of the geometric
optics ray (HELLIWELL, 1865),.

The representation of the distribution function
for an electromagnetic wave mode in a magnetoplasma in
terms of the variables W, 6, and$ is analogous to that
for a charged particle species, in the presence of a magnetic
field, in terms of the energy € and the pitch-angle a .
There is the difference that, for low-energy particles, the
distribution function has cylindrical symmetry arocund the
magnetic field, so no azimuthel angle is required, whereas
for waves, although most known source processes give rise teo
distributions having such symmetry. this is lost progressively
by refraction as the waAaves are propagated away from their source
region, Incidentally, it should he rememhered that the.
distribution functions of ths energetic charged particles
in the earth’'s radiation belts are not cylindricelly
symmetrical at energies such that the radii of gyration are
comparable with the linear scale of the gradients of the
magnetic field (i.e. with ap egarth radius) or with the
atmospheric scale height in the case of particles trapped
on low L - sheglls (HESS. 1968),

There is one respect in which the representation
F (w . 8, 9} of the wave distribution function is actually
better than the representation F (:] : namely, it is
unambipguous, For electromagnetic waves in a given mode.
propagated in a given direction, it is possible for a given
value of k to correspond to two (or more) different valuses
of w ., This point is 1llustrated in fig. 2, which shows
the real bBbranches of the dispersion curves for waves prope-
gated perpendicularly to the magnetic field ( 8 = n/2) 1
the electron gyrofreguency has been taken equal toc the
plasma fregquency. The abscisse is ¢ / I , where N is the

angular plasma frequency, and the ordinate is ( c/0 ) k,



where c is the spegd of light in free space : the dashed
line is the free-space dispersion curve w = ck, Mote that
the function w (k) 1is ambiguous for the extraordinary (X)
mode, thousgh not for the ordinmary (0}, whereas the function
k ( w) is single-valued for both modes. In gensral, for a
given mode, a given velue of w always corresponds to a
unique value of k, and for this reason the representation

F ( w, 8, 9) 1is to be preferred,

Another reason is that the experimenter, by means
of narrow-band filters, can select for observation waves
with frequencies w that lie between limits of his choosing.
Of course, the observed frequencies are equal to the true
wave frequencies only 1f the point of observation 1is
stationary with respect to the medium, because any motion
gives rise to Doppler shifts proportional te Kk ;3 here this
has been assumed to be the case (see appendix A.J). From this
point onwards, therefore, the distribution function for wave
energy will be used exclusively in the representation
F (ws 8 ,4 ).

In conclusion of this section, and in anticipation of
those that follow, it should be stated that the term "energy”
is employed in this paper in two different senses. In the
context of wave praopagation theory, it is used in its strict
and customary sense as above. However, when discussing the
analysis of data on the six field components, we shall use
it also in the sense of signal theory, where for instance
if x(t) and y (t) are two real time series, then

fJ x? (t) dt and IJ y2 (t) dt are their respective energies
in the time interval 0 < t < T , while IJ x (t) y (t)dt is
their interaction ensrgy. We shall distinguish between thaese
two senses by using the terms "wave energy” and "signal

gnergy” respectively ; equally we shall speak of "wave power”

and "signal power"”,



3, STATISTICAL DESCRIPTION OF THE RECEIVED SICMALS

e

3.1. Wide-band signals

When we sgek to predict the statlstics of the six
components of a random wave field, the first guestion to ask
is how these statistics should be described., As already
mentioned, the field is pictured as being made up of a
continuum of elementary plane waves of different freguencies
and with random phases, propagated through the medium in
different directions. We suppose that, at a fixed point in
the medium, continuous measurements are made of three
orthogonal electric components and three orthogonal magnetic
components of the total field, using for instance three electric
dipole antennae and three magnatic loop antennae. For the
time being, we suppose that these measursments ars mada ovAar
a wide frequency band, We take a right-handed set of rectangular
coordinate axes Oxyz, with 0z parallel to the steady megnetic
fisld, and suppose for convenience that the antennae ars
aligned parallel to these axes., Then the experimental data
consist of six wide-band signals, each proportional to ons
of the six axial field components.,
First let us consider the individual propsrties of
any one of these signals, separate from the other five, It
is the sum of all the waveforms induced on the corresponding
antenna by all the different slementary plane waves, Ths
elemantary wareform induced by any one of these waves is a
sinusoid, the phase of which bears no special relationship

to that of the sinusoid induced by any other such wave, Thus

the total signal is the sum of an infipite number of elementary
sinusoids, with infinitasimal amplitudes and random phases,

It is well known that a signel of this type is a stationary
Gaussian random process of zero mean value, and that, as such,
its statistical propertiss are described completely by 1its

mean auto-covariance function or by its mean signal power
spectrum ("auto-spectrum"],

As usual when discussing random processes, it is

convenient to in troduce the notion of a statistical ensembla,



We imagine an ensemble of random wave fields. each giving

rise to a specimen of the random signal considered. We

assume that, on going from one member to another of the
ensemble of fields, the elementary plane waves change in
amplitude, freauency, direction of pronagation. and nhasse,
while remaining consistent collectively with the given wave
distribution function. On this assumption, the received signal
is ergodic, so its auto-corariance function and auto-spectrum
can be defined alternatively in terms of time averages or

of ensemble averages,

Now let us consider the six received signals as a
whole, Besides their individual properties, we need to know
what relationships exist between them, These are described
bv the cross-covariance functions for all the fifteen possible
pairs of signals, or by the corresponding cross-spectra,

Here we prefer to work with signal auto-spectra and
cross-spectra, rather than to use covariance functions, because
the spectra are related more simply to the wave distribution
function, as we shall show later ; of course, we can get from
a covariance function to the corresponding power spectrum, or
vice versa, by a direct or inverse Fourier transform
respectively (JENKINS and WATTS, 19693,

First, let us define a 6 x 6 spectral matrix, which

groups all the statistical data together in a convenient way,
Let Ex, Ey, Ez be the axisl components of the electric field
of the wave at the point of observation, and Hx' Hy. Hz the
components of the wave magnetic field. From these variables,

>
we define a generalized electric field vector B as follows :

1.2a) E = E = E = E
(1.2b) B, = 12, H Es = 7o Hy Eg = 17, H;
where 70 is the wave impedance of free space., (Note : another

way of defining a generalized electric field vector is
mentioned in appendix B), This step in the argument 1s just

8 convenient way of regroupine the dats, and has no physical



significance. Let Eii be any component of this vector, the
subscript i running from 1 to 6. We now introduce the

6 x 6 spectral matrix, of which any element Sij ( w) is either
the auto-power spectrum of the field component E& (if i=3),
or the cross-power spectrum of the components 151 and EJ

(if 1 # 3).

These‘are "two-sided" signal power spedtra : that 1is,
they have valuss at negative as well as at positive frequencies,
They are the Fourier transforms of the corresponding covariance
functions. Since the latter functions are purely rsal, it
follows that S3y ( w) = s¥; (- w), where the asterisk
denotes the complex conjugate ; therefore it suffices to quote
the expressions for the spectra at positive frequasncies only,

At any one fresquency w,the spectral matrix contains
36 items of stetistical information about the field. It
might be thought that the number of indepandant items is less
than this, becauss the matrix is Hermitian : S1j (w ) = S3¥ (u
Hance here are only 6 independsnt auto-spectra and 15
cross-spectra. Note, howevmRr, that while the auto-spsctra
are purely rsal, since the auto-covariance functions are
symmetrical, the cross-spectra are complex, since the cross-
covariance functions are asymmetrical in general. Moreover
the real and imaginary parts of the cross-spectra ars mutually
independent, 1.e. there is no genaral relation between them,
Hence the numher of independent items of information is 36

as stated.

3.2, Narrow-band signals

Now let us consider the case where the 6 data signals
are received in a band of width Aw , centred on some frequency
Wo o We suppose moreover that this band is narrow, by
which we mean two things : firstly, that Aw <<w° 1 secondly,
that all the 36 signal powar spectra Sj;4 ( w) are essentially

constant and equal to Sij (wy, ) throughout this bend.



Then clearly the information contained in the received signals
relates only to the values of the 36 auantities Sij (wo )} 3
the guestion is how to extract the relevant information from
the data.

Let Xi (t) be the real marrow-band signal obtained by
filtering the original wide-band signal Ej (t) through the
receiver pass-band. Let x 3 (t) be the corresponding analytic
signal, i.e. the representation of X; (t) by a complex

exponential (HELLSTROM, 1868}, We now define the covariance

matrix {cij } of the set of 6 narrow-band real signals,

with (1.3) ciy = <x 3 (t) Xy (£) >

where the triangular brackets denote the (BORN and WOLF, 13964)
ensemble average or "expected valus" of the product., If the
signals are stationmary and ergodic, as has been assumed, then
these same quantities are given by the corresponding time
averages in the limit of very long times. A practical method
for estimating the elements ciJ of the covariance matrix

in this way has been described by MEANS (1972).

In order to relate these slements to those of the spectral
matrix at the frequency W, . it is necessary to define the
bandwidth Aw more precisely. If the transfer function of the
receiver is Y (w ), between the point where the signal
E i (t) enters it and that at which X4 (t) emerges, and if,
at positive frequencies, this function takes the form of a

single peak with its summit at wo , then we define

il 2
J’O IY (w) I dw

(1.4) Aw = ”
[y (woll

In engineering parlance, this quantity is known as the
noise bandwidth (BENDAT and PIERSOL, 1971),
With Aw thus defined, it follows from elementary

considerations of signal energy consservation that

2
(1.5) Ci J . 4 rw Y (wy) | S1ylw,)

The factor 4 stems from the fact that, at positive frequencies,
the amplitudes of the Fourier components of x 3 (t) are

twice those of the corresponding components of X3 (t),



4, DIRECT RELATIONSHIP BETWEEN WAVE AND SIGNAL STATISTICS

The problem is to relate the spectral matrix, which
describes the statistics of the 6 received signals, to the
distribution function, which describes those of the random
wave field, In order to do this, we shall show how each of
these entities is made up of contributions from all the
various elementary waves ; we begin with ths case where
these waves all belong to the same magneto-ionic mode.

First let us consider one such wave, which we shall
distinguish from its fellows by placing the subscript 1 in
front of every symbol that refers to it. The i'th component
of 1ts generalized electric field, which will be called

1€1 (¢, ?), varlies sinusoidally as a function of time and

of spatial position :
(1.6) 181 (t, T) = Re { 1e; exp [ i (jwt - 1?.;]]}

On the right-hand side of this equation, the symbol Re denotes
the extraction of the real part, 1e4 is the complex amplitude,
the angular frequency 1w 1s real and positive, and the
wave-number vector 1? is real because the medium 1s assumed to

be lossless, and also because only homogsneous waves are

being considered, as beflts & situation in which there are

no boundaries.

Now if, 1In coordinate space, the wave has an electro-
magnetic energy density 1p, then its distribution function,
which we shall call 1f [K], is @ 3-dimensional Dirac
distribution of strength pat the point IK in : space

>

(1.7) F K = 1p 8K - 1K)
The alternative form of this distribution function is
(1.8) 1F 0w, 6.4 ) = 1p Slw - Jw ) 8(8 - 10 ) 6[¢-1¢

where 16 and 19 are the angles that specify the direction
of 1?. The equivalence of these two expressions is evident,
because in both cases the wave energy per unit volume cof
coordinate space is given by a triple integral over the

distribution function



(1.9) 19 = rere k) a3 =/ 1F (0,6 ,4) do d& db

£
g
In spite of superficial appeararces, the expressions (1.7)
and (1.8) are cecnsistent with (1,1) ; the algebraic factors
on the right-hand side of (l1.1) asre incorporated in the
delta-functions on the right-hand side of (1.8).

The elements of the spectral matrix for this same
elementary wave are, for w positive,

(1.10) 1513 (w) = '%— 181 1e§ Slw =-jw ) ( w>o0 )

Probably the simplest way to derive this result is to obtain
the expression for the cross-covariance function of the
Esriodic signals 1ei (t) and €3 (t) at a fixed point

r, and then to take its Fourisr transfaorm,

Now, instead of considering just one elementary wave,
let us consider the subset of slementary waves fcr which the
parameters 10, 18. and 1¢ lie respectively in the ranges
from w to w + dw , from 6 to 6 + d6 , and from ¢ to ¢ + déb .
Their contrilbution to the wave snergy per unit velume of
coordinate space is § 1p , where the sum is taken over
this subset, Bv definition, the distribution function for
the random field 1s relatsd to this quantity as follows :

(1.11) F ( w, 6, ¢) duw d6 dp¢ = < I P 2>
1

Here the brackets on the right-hand side denote the ensemble
average.

Similarly, the elementary waves in.this subset make
the following contribution to the signal energy of interaction

between the field components Ej and Ej » in the frequency

range from w to w+* duw :
T R
(1.12) o039 (w) duw-= - < E 189 18 3 > ( w >0 )

At this point we introduce & crucial idea : for given
values of w , 6 . and 4. the wave energy density p is propor-
tional to the square of the amplitude of any one field component ;
the same is true of the product j1e4 19*3 ; therefore the '

ratio



(1.13) aij =

is independent of the amplitude, and is essentially the
same for all the elementary waves in the subset defined
above, 1,e., it is independent of 1. With all the possible
pairs of values of the indices i and Jj, the identity
(1.13) defines 36 such ratios. The expressions for them,
as functions of w , 68 , and ¢ and of the characteristic
parameters of the plasma, are given by the propagation
theory for the type of wave considered, i.e. by the
magngto-ionic theory in the present instance ; they are
guoted in the appendix B, It 1s at this point that our
knowledge of the properties of the medium enters into the
argument,

This idea snablaes us to writs

(1.14)  oy5 (0] do= 5 &gy (w6 9<E p> (w>o )

(1.15) - 7" 85y (w8, 4) F (w6, 9) dude dp (w>oe

with (1.15) following from (1,11), and enabling us to cancel
dw on both sides,.

Finally, in order to obtain the total auto-spectral
(i = 3) or cross-spectral ( 1 ¥ j) signal ensrgy in the
fraquency range from g to @ ¢ dw , it suffices to sum over
the complete set of elementary waves in this range, with all
possible directions of propagation.in other words, (1,15)
must be integrated over the full ranges of the angles 8 anc 4 .

Then, dividing by dw , we obtain
T IT‘.1211’
(1.16) Si3 (w) = — 'o! 3ij (w8, 9) F (w 6,4) do de

for w positive. This 1s the required result, for the special
case where only one of the two magnsto-ionic modes are

present.

In the general case where both modes are presaent
simultaneously, each spectral matrix element is just the

sum of the contributions from the two modes

- n T 2m :
(1.17) Sy ( w) - r:'f_ofo ajym (w.8,9) F (w.6,4) d& dé



whaere the subscript m denotes the wave mode.
From their definitions, it follows that the spectral
matrix Sij » together with the kernsls ajj for the two modes,

sre tensors of rank 2,



5. CONLUSION

SubjJect to the assumptions made 1in this paper. equation

(1.17) is the solution for the direct problem of determining the

statistics of the received signals when those of the wave
field are known,

As such, it alrsady provides a weak basis for
comparison between theory and experiment in the study of thse
origin of certein natural random electromagnetic wave fislds,
such as those of magnetospheric VLF and ELF hiss. If the
theory predicts the wave distribution function explicitly,
and if an accurate estimate of the spectral matrix is available
from experimental data, then ths two can be compared by means
of this equation.,

More often, however, the task of comparing theory and
experimént is less simple. The data may be degraded by noilse,
or the time of observation too short to yield good statistics.
The theory may involve one or more unknown parameters, which
have to be adjusted in order to make its predictions agres
with the data as closely as possible, There may be saveral
competing theories, none of which explains the data perfectly,
and then one wants to know whather any of these theories is
acceptable, and if so, which 1s the most pleusible., Or again,
one may be interested in analyzing some expsrimental data to
find out whatever one can about the wave distribution function.
in the absence of any theoretical model. All there are different

forms of the inverse problem, which is more difficult and

will be treated in subsequent papers.,

At the same time, further work is nesded on the dirsct
problem, in order to free the theory from the limitatiens
accepted in this paper. For instance, before it can be applied
to space-probe data on the random field of Alfvén waves in the
solar wind, the theory must be generalized to take account
of the motion of the point of observation with respect to
the medium, and to make use of data on the wave-induced
fluctuations of plasme veloclty, The application to random
wave fields other than electromagnetic must be considered.

The need to gtudy the simple spscial case of isoctropic media



has been noted already, in section 2, Another intsresting
special case 1s that in which the wave field is random in
space but not 1in time, an example being the field created

when an initially plane monochromatlc wave traverses a
spatielly irregular but temporally stationary medium. The
study of this case would begin to forge the links between two
domains hitherto independent, namely previous work on the
propagation of deterministic wave fields through random medie,
and the present work on the analysis of measurements of random

wave fields in uniform media.
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APPENDIX A : Validity of the basic concepts and assumprtions,.

In section 2, it is assumed that the random wave field
is statistically staticnary in space and in time, and that
only one wave mode is pressnt. These assumptions are less
restrictive than mipht appear at first sieht. The conditions
under which they may be considered to be satisfied acdequately
are dlscussed below,

Approximate spatial uniformity is required only to
gnsure that the structure of a sinele wave be very little
different from what it would be in an infinite uniform
medium, with properties like those of the resl medium at
the point considered. For this purpose, it is necessary that
the medium be uniform on a scale much larger than a wavelength,
The residual large-scale non-uniformity limits the meaningful
detail that the distribution function can exhibit : if L 1is
the distance over which the medium is substantially uniform,
then this functinn can he specified with a resolutiony in any
component of K. of the order of Ak = 27 /L.

Approximate temporal stationarity of the field is
needed to provide reasonable data statistics, which means
that the received signals must be statisticelly stationary
over time intervals much longer than a wave periocd. If they
are in fact so for a time T, then the distribution function
can be measured with a resolution in frequency of the order
of Aw = 2 w/T (moreover, the point of observation is
effectively statiomary if all Doppler shifts due to its
motion are less than Aw ).

Under the conditions enunciated in the previocus two
paragraphs, it is possible to define a wave distribution
function that varies with time t and with spatial position
; , as was mentioned in section 2, For this purpose, the
fields must he truncated hy means of a suitable "window”
function, of linear dimensions L and duration T, centred
on the point-instant (;, t) considered, before taking
their Fourier transforms 3 the choice of L and T also limits
the meaningful resolution of F in wave number and in frenquency

respectively,.



These same conditions justify the use of gpeometric
optics to determine how a given distribution function evolves
in time and in space (REKEFI, 1868), In the present paper,
such qguestions nave been avoided by the assumption of
stationarity.

Finelly, the assumption that only one wave mode 1is
present is satisfied over wide frequency ranges, in particular
in the range from the lower hybridfrequency up to the
electron gyro-frequency,in whichonly the whistler (ordinary)
mode 1is propagated. Even at frequencies where both modes can
be propagated, natural source mechanisms are likely to excite
one much more strongly than the other, Finally, as we saw
in section 4, this assumption can be dropped if necessary

without greatly complicating the theory,.



APPENDIX B : expressions for the kernels ai 4 and bij

The 36 functions aj 4 (w,8,9), which ara the kernels
of the set of integral enuations (1,16), were defined by
(1,13) in the course of an analysis based on & right-handed
rectangular coordinate system Oxyz, with 0z parallel to the
steady magnetic field. For pratical purposes, algebraic
expressions are required for these weighting functions in
terms of the vaeriables w, €8and ¢ , and of the characteristic
parameters of the medium,.

However, since the medium has been assumed to bs
uniaxial, the renquired expressions would have been simpler
if the analysis had been developed using a "circulerly-
polarized” coordinate system (STIX, 1962), in which the
complex amplitudes of the sinusoidal components of the

electric field vector 2 of an elementary plane wave are

(1.18) en = 8y *+ sy eL = sy - isy eP = gz

and similarly for the magnetic vector K. The subscripts
R, L, and P stand for "right-handed”, "left-handed”, and
"parallel” respectively., We now define & gensralized electric

field vector ?, the 6 components of which have the complaex

amplitudes

. f = = =
(1.198) 1 2R fo eL 3 e,
(1.18b) F4 = ZohR fs = Zth fg = Zohp

Then, redeveloping the analysis along the lines of
section 4, we are led to define a new set of 36 kernels,

(1.20) b =

fif;
iJ —

P

for which we shall now guote the expressions,

First. however, we must define the plasma parameters..
In this we shall follow STIX (1962}, with some minor
differences : in particular. we suppose that the plasma
containsonly electrons and positive ions, and that the
latter, of which there may be several specles present, are
all singly charged. Denoting the different types of charged
particle -~ including the elsctrons - by a subscrint k,

let n, be the number density for each type, m, the mass



per particle, and q, the charre per particle. For each type
of particle, we now define two charactrristic freaauencies

the aneular plasma frenuencv NI, such that

2
nq
k k
(1.21) n? - KT
K
Eomk

whgre €, is the electric permittivity of free space. and
the angular gyrofreauency
q,Bo

(1.22) Q, = - p
k

where By is the magnitude of the induction vector of the
steady magnetic field. The minus sien has hean put into this
definition so as to eive @, the sign of the natural sense of
gyration of the particles around the field (e.g. positive

for the electrons, which gyrate in a right-handed sense).

Lastly. we define three dimensionless quantities :

(1.23a) R = 1 - I
wl = Q)

(1.23h] L - 1 -

x

wlw + Qk)
2

> M
(123c) P = l - —_—
w2

Thase ocuantities are identical with those that Stix denotes
by the same symhols ; in the expressions that follow . they
represent the properties of the plasma,

From these we must define several derived quantities,
the first of which 1is the phase refractive index n for
electromagnetic waves 1in either of thes two magneto-ionic modes.
This quantity 1s the solution of the eqguation

2_1)

2

P(n-R) (n

(1.24) tanZe = -

(sn®=RL) (n2-P)

which is & quadratic in n2 with purely reel roots (STIX,1962),



For a given © and given plasma paremeters. (1.24) may have
twao, one, or no roots with n? positive. Only such positive
roots, which correspond to freely propagated modes, are to
be considered here ; negative roots correspond to evanescent
modes. Moreover. for a given positive n?, only the positive
value of n will be considered, the negative value corresponding
to a wave propagated in the opposite direction. On the
questions of the nomenclature for the two modes, and of thelr
correspondence with the roots, the reader should consult the
standard works on the magneto-ionic theory (RATCLIFFE 18589,
BUDDEN 18961},

One more dimensionlsess quantity remains to be defined.

It involves the group refractive 1lndex

(1.25) ng = [ gw [wn)]-1

and two other parameters :

(P-L) (R-n?)2 ,  (P-L)(R=n") ,
(1.26) A=2n {(P-n?)[1+ 551 - (R=-n")[1+ ' 5 J}cos“8
‘ ' (P=-R)(L-n") (P=-R)(L-n )
2 2.2
n{R=L)" (P-n") 2
(1.27) 55 Sin '@

(P-R) (L=n")

In thess terms, the required quantity is

. -1
(1.28) £= 8n_ [e (2% u)]

We are now in a position to list the 36 kernels bij' In
point of fact, it suffices to list the 6 kernels with 1=},
and 15 kernels with i#j, since the remaining 15 are given by
the relation bji = bxij, which follows from their definition

in (1,20). Here are the 21 expressions :

2,2
(1.29) by, = =) ¢
P-R
2 2,2
(1.30) by, = (Bzn JPon ) ¢ exp (214

(L=n’) (P-R)
(R-nz](P-nzl £
P-R

(131) b cote exp (14)

13



(1.32)

(1,33)

(1.34)

{1.,35)

(1.36)

(1,37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1,43)

(1.44)

{1,45)

(1.,486)

- 28 -

£ cosB

exp(21% )]

£ sinb® exp (i4 ﬂ

cot 8 exp (=14 )

cos® exp (2ig¢ ]]

Esin®

13 cos b ]

exp(=-1¢ )]

Ecos 8cot Bexp (i¢]]

2(L=-n

2

& 0059]

£cos? Baxp (214 )]

sin® cos® exp

(i ¢)

big = - 1 [n(P-nzlg cosg]
[n(R-nzl[P-L][P—n7]
b15=i 5
(L-n®) (P-R)
[ n(R-L) (P=-n2)?
b = =1
B
! 2(P=R) (L-n?)
(P-n’12(R-n?)? :
boo =
(P-R) (L-n’)?
(P-n?) (R-n?)?
b £
23 = >
(P-R) (L-n?)
n[P-nz)[R-n7J
b, = -i[ £
.24 L-n2
n(P=n2)(P-L) (R-nZ)?
6,5 = 1[ )
(P-R)(L=-n")
n(R-L) (R=n2)(P-n?)?
5,6 -1l 2(P-R) (L-n2%)2
(R-n2]2 . 2 o
b33 T pr - cot
[ 2y & 8 cot © -1% ]
b34= - iln(R=-n"™) cos Ycot Yexp (-1% )
n(P-L) (R=-n?)?
b = i
35 (P=R) (L-nZ)
n(R=L) (R-n2) (P-nZ)
b..= -1
36 2(P-R) (L-n2)
2 2
b44= n“(P=R) Ecos™ 6
rnZ(P-LJrR-nZJ
b, .= -k
45 .2
nZ(R=L) (P=-n2)
b = ;
46



nZ[P-L)2 [R-n2]2 5
(1.47) b__ = - E cos’e
23 (P-R) (L-n’)?
2 _ - _ _.2 _.2
(1.4R) b__= - nT(P=LIIR-LITP=n")(R-n") roine cost exp (-i%)
>0 2(P-R)(L-n?)?
n2(P-n2]2 (R-L]2 £ sin2e
(1049] bBB = 4(P-R] (L—nz)?

The derivation of thesse results. which is straightforward
but lengthy, will be published elsewheres. They apply to
both magneto-ionic modes ; howsver, the values of n and ofé§
are different for the two modes. so in general the bij are
different also,

These kernels can be used directly for interpreting
data on random wave fields, provided that the 6 field components
are transformed to the circularly-polarized coordinate.system
before being ussed to estimats their spectral matrix. On the
other hand. 1f one prefers to work with data in the rectangular
system 0XyzZ, then one requires the kernels aij' which are

given in terms of the by by the following expressions :

1

(1.50) a;; = T(bll 4+ bio + b2l + b22]
(151) &y, = —(by; = byp * bzl = b2))
4

(1.52) a13 = 1 (by3 + b,,)
. >

1
i
{1.54) ar3 = {b - b13)

The 3 other kernels with i and J 3 can bhe found by using

the relation =a ai; . From this set of 9 kernsels, the

ji
remaining 27 with i and/or j>» 4 can be obtained by adding 3
to the first and/or second subscript of every term in sach
expression., Thase results follow quite simply from the

definitions (1.18) and (1.18},
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FIG. 1: COORDINATE SYSTEM USED |IN THE
DEFINITION OF THE WAVE DISTRIBUTION

FUNCTION,
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FIG. 2: DISPERSION CURVES FOR PERPENDICULAR

PROPAGATION .
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