
HAL Id: hal-02127064
https://hal-lara.archives-ouvertes.fr/hal-02127064

Submitted on 13 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice-Based Array Contraction: From Theory to
Practice

Christophe Alias, Alain Darte, Fabrice Baray

To cite this version:
Christophe Alias, Alain Darte, Fabrice Baray. Lattice-Based Array Contraction: From Theory to
Practice. [Research Report] LIP RR-2007-44, LIP - Laboratoire de l’Informatique du Parallélisme.
2007. �hal-02127064�

https://hal-lara.archives-ouvertes.fr/hal-02127064
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Lattice-Based Array Contraction:

From Theory to Practice

Christophe Alias
Fabrice Baray

Alain Darte

November 2007

Research Report No 2007-44

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Lattice-Based Array Contraction: From Theory to Practice

Christophe Alias, Fabrice Baray, and Alain Darte

November 2007

Abstract
We build on prior work on intra-array memory reuse, for which a general the-
oretical framework was proposed based on lattice theory. Intra-array memory
reuse is a way of reducing the size of a temporary array by folding, thanks to
affine mappings and modulo operations, reusing memory locations when they
contain a value not used later. We describe the algorithms needed to imple-
ment such a strategy. Our implementation has two parts. The first part, Bee,
uses the source-to-source transformer ROSE to extract from the program all
necessary information on the lifetime of array elements and to generate the
code after memory reduction. The second part is a stand-alone mathematical
tool dedicated to optimizations on polyhedra, in particular the computation of
successive minima and the computation of good admissible lattices, which are
the basis for lattice-based memory reuse. Both tools are developed in C++
and use linear programming and polyhedra manipulations. These tools can be
used either for memory reduction in programs – e.g, to limit memory expansion
introduced for parallelization – or for memory reduction in high-level synthesis
– e.g., to design adequate memories between communicating hardware acceler-
ators.

Keywords: Memory reduction, program analysis and source transformations, integer lattices

Résumé
Nous étendons les résultats (théoriques) antérieurs concernant la réutilisation
mémoire basée sur les réseaux entiers. Celle-ci permet de réduire la taille des
tableaux temporaires, grâce à des fonction d’accès affines et des modulos, en
réutilisant des cases contenant des valeurs non lues plus tard. Nous décrivons les
algorithmes nécessaires pour mettre en oeuvre une telle stratégie. La première
partie de notre implantation, Bee, utilise la bibliothèque de transformation au
niveau source, ROSE, pour extraire du programme les durées de vie des cases
des tableaux et pour générer le code après réduction mémoire. La seconde,
Cl@k, est un programme indépendant d’optimisations sur les polyhèdres, effec-
tuant en particulier le calcul des minima successifs et d’un bon réseau entier
admissible, bases de cette réutilisation mémoire. Les deux programmes ont été
développés en C++ et utilisent la programmation linéaire et les manipulations
de polyhèdres. On peut s’en servir soit en optimisation de programmes, par
exemple pour limiter l’expansion mémoire introduite par la parallélisation, soit
en synthèse de haut niveau, par exemple pour concevoir des mémoires adaptées
entre des accélérateurs matériels communiquants.

Mots-clés: Réduction mémoire, transformation et analyse de programmes, réseaux entiers

Lattice-Based Array Contraction: From Theory to Practice

Christophe Alias, Fabrice Baray, and Alain Darte

19th November 2007

Abstract

We build on prior work on intra-array memory reuse, for which a general theoret-
ical framework was proposed based on lattice theory. Intra-array memory reuse is a
way of reducing the size of a temporary array by folding, thanks to affine mappings
and modulo operations, reusing memory locations when they contain a value not used
later. We describe the algorithms needed to implement such a strategy. Our imple-
mentation has two parts. The first part, Bee, uses the source-to-source transformer
ROSE to extract from the program all necessary information on the lifetime of array
elements and to generate the code after memory reduction. The second part is a
stand-alone mathematical tool dedicated to optimizations on polyhedra, in particu-
lar the computation of successive minima and the computation of good admissible
lattices, which are the basis for lattice-based memory reuse. Both tools are developed
in C++ and use linear programming and polyhedra manipulations. These tools can
be used either for memory reduction in programs – e.g, to limit memory expansion
introduced for parallelization – or for memory reduction in high-level synthesis – e.g.,
to design adequate memories between communicating hardware accelerators.

1 Introduction

The optimization of memory in multimedia applications for embedded systems has received
a lot of attention in the past years, for reducing both memory transfers and memory storage,
which have a strong impact on power consumption, performance, and chip area. In this
paper, we focus on memory storage reduction, which is important from both an architecture
and an application point of view.

On the architecture side, an important characteristic of embedded systems is that the
hardware, in particular memories, can be customized. When designing and optimizing a
programmable embedded system, the designer wants to select the adequate parameters
for cache and scratch-pad memories to achieve the smallest cost for the right performance
for a given application or set of applications. In high-level synthesis, when designing non-
programmable hardware accelerators, the designer or synthesizer can even fully design the
memories (size, topology, connections between processing elements) and customize them
for a given application. Embedded systems are thus good targets for memory optimiza-
tions. High-level synthesis projects such as [12, 26] need to rely on powerful compile-time

1

program and memory analysis to be able to automatically or semi-automatically generate a
fully-customized circuit from a high-level C-like description. For programmable embedded
systems, run-time memory reduction techniques are also possible (see for example [27]),
but it is not the topic of this paper.

On the application side, multi-media applications often make intensive use of multi-
dimensional arrays, in sequences of loops, or even sequences of nested loops, which make
them good target for static program analysis. Before the final implementations, the ap-
plications need to be rewritten several times, either by the compiler or the developer, to
go from a high-level algorithmic description down to an optimized and customized version.
For memory optimizations, the high-level description is where the largest gain can be ob-
tained because global program analysis and global code transformations can be done. For
this, it is therefore important to analyze multi-media applications at the source level.

We present an implementation of intra-array memory reuse based on lattice theory in
the source-to-source transformer ROSE [19], developed at the Lawrence Livermore National
Labs. Intra-array memory reuse was first proposed by De Greef, Catthoor, and De Man [7]
at IMEC, as a mean to reduce the size of temporary arrays. Basically, their technique
was to linearize a temporary array in some canonical way and to fold it with a modulo
operation, thus reducing its size, so that a memory cell can be reused when it contains
a dead value, i.e., a value no longer used. This problem was then considered by several
authors, with different viewpoints and techniques [13, 18, 23, 24], including some more work
at IMEC [25], until a more general framework was proposed in [5] that tries to integrate
all approaches into a unique setting. We build on this theoretical work and we bridge the
gap between its formal description in [5, 6] and the algorithmic needs, both for program
analysis and memory reduction, to really use such a framework in a compiler.

Related work Memory reduction has given rise to a large amount of work recently. In
addition to intra-array memory reuse already mentioned previously, there are two other
important aspects in memory reduction: memory size estimation and loop transformations
for memory reuse.

The first aspect is to be able to give estimations on the number of values live at a
given time [30, 31, 1, 28, 2]. Such estimations can be lower bounds or upper bounds.
Lower bounds give indications and guides for further loop transformations, while upper
bounds can also be used for memory reduction. Although some of these techniques can
give parametric memory estimations, i.e., closed-form expressions in the parameters of the
program, they are of no use for building an appropriate memory mapping that can actually
lead to such a memory size. This is the main difference with intra-array memory reuse,
which leads to actual memory allocations. Note also that the memory allocations that we
derive are, by nature, upper bounds for memory size estimation.

The second aspect of memory reduction is to go beyond memory optimization of an
already-scheduled program and to transform the program, i.e., to schedule it in another
way, so that it consumes less memory. Typically, the goal is to reduce the lifetime of
temporary values and increase the temporal reuse of values. Array contraction (see for

2

example [22, 4]) is a form of memory reduction that can be achieved with program trans-
formation, in particular loop fusion. All the classical work on loop transformations for
data locality, starting from [29], are also relevant here, even if they do not exactly target
memory reduction. We cannot cite them all. An interesting recent work is [20], which
studies the effect of loop transformations on lifetimes of array variables.

2 Background Notations and Definitions

We use the classical notations used for describing, analyzing, and transforming codes with
nested loops and multi-dimensional arrays, as introduced in [9] as static control programs.
Each particular execution of a statement S – an operation – is represented by (S,~i) where~i
is the iteration vector, which represents the loop indices of the surrounding loops. We
make the standard assumption that loops are affine, i.e., a loop index takes all possible
integer values from the loop lower bound to the loop upper bound and these bounds
are max (resp. min) of affine expressions of surrounding indices. In other words, for
each statement S, the iteration vector ~i spans, in lexicographic order, all integer points
of an iteration domain IS, which is a polyhedron. This affine framework also accepts
if-statements as long as conditions can be analyzed as affine inequalities on loop indices.
Similarly, we assume that arrays are accessed with affine functions of loop indices, otherwise
some conservative approximations need to be done, when analyzing the program, as done
in [17, 3].

For memory reduction, we focus on temporary arrays, i.e., those used for intermedi-
ate computations in a procedure and that are neither live-in, nor live-out. Only intra-
procedural information is needed to optimize them. We want to derive a storage-saving
mapping σ(~i) from the index space of a given array A to a set of storage locations indexed

by addresses, with σ(~i) = M~i mod ~b, where M is a matrix, ~b is a vector, and the modulo
operation is applied component-wise. Such a mapping σ is called a modular mapping and
denoted by (M,~b). The smallest the product of the components of ~b, the smallest the

required memory. To get an adequate matrix M and an adequate vector ~b, our goal is to
make practical the formalism and techniques proposed by Darte, Schreiber, and Villard
in [5, 6]. This formalism generalizes, at least in theory, the previous techniques proposed, in
particular, by De Greef et al. [7], Lefebvre and Feautrier [13], Quilleré and Rajopadhye [18],
Strout et al. [23], Thies et al. [24].

Figure 1 depicts the main steps of our array contraction method. These steps are
described below.

Step 1 For deriving memory allocations with intra-array reuse, a possibility is to first
compute, in an abstract way, for each array index, the first time it is written (first write)
and the last time it is read (last read). We will make sure that, between the first write and
the last read, the memory location is not overwritten when using the modular mapping σ:
we call this “interval” the lifetime of the array index. As pointed out in [6], when a
given array location is written several times, we could be more accurate, distinguish the

3

Input Program

Step 1. Lifetime Analysis of Array Elements

Step 3. Strictly Admissible Lattice Computation

Step 4. Allocation Computation

Step 5. Code Generation

Optimized Program

Set DS of conflicting index differences (~i −~j) with ~i ./ ~j

Strictly admissible lattice Λ for DS

Modular mapping σ such that ker σ = Λ

ROSE Library

Step 2. Conflicting Index Differences Computation

Relation ./ defining conflicting array indices

Figure 1: Overview of the method

different defined values, and work with a union of “intervals” (between each write and its
last corresponding read), instead of a single one. But this would make everything more
complicated. Also, a pre-transformation of the code, renaming arrays, is possible if needed
to get the same effect. We do not address this extension in our current implementation.

Step 2 Once the lifetime of array indices is analyzed, we can define conflicting indices:
two array indices ~i and ~j conflict (denoted by ~i ./ ~j) if their lifetimes intersect. We will
make sure that such indices are not mapped to the same memory location through σ, i.e.,
~i ./ ~j,~i 6= ~j ⇒ σ(~i) 6= σ(~j). If DS denotes the set of all ~d such that ~d =~i −~j, with ~i ./ ~j,

the previous condition is equivalent to ~d ∈ DS, σ(~d) = 0 ⇒ ~d = 0, i.e., ker(σ) ∩ DS = {0}
where ker(σ) is the set of all ~i such that σ(~i) = 0 (the kernel of σ). Step 2 consists in
building this set DS of conflicting index differences or an over-approximation. Steps 1
and 2 are detailed in Section 3.

Step 3 The kernel of a modular mapping σ = (M,~b) from Zn to Zp is a sublattice of Zn.
A lattice Λ with Λ∩DS = {0} is a strictly admissible lattice for DS. Given such an integer

lattice, it is easy to build a mapping (M,~b) whose kernel is Λ and such that the product of

the components of ~b (the memory size) is equal to the determinant of Λ (Step 4). In other
words, the search for a good modular mapping is reduced to the problem of determining a
strictly admissible integer lattice for DS with small determinant. Algorithms and heuristics
to find such a lattice are detailed in Section 4.

Steps 4 and 5 are straightforward and will not be detailed. Step 4 consists in building,
from a lattice Λ, a matrix M and a vector ~b so that the kernel of (M,~b) is Λ. This may
need some standard matrix computations (Hermite or Smith normal forms). Heuristics

4

#define N 100

S1 y[0][0] = r[0];

beta[0] = 1;

alpha[0] = r[0];

for(k=1; k<=N-1; k++) {

beta[k]=

beta[k-1] - beta[k-1]*(alpha[k-1])^2

sum[0][k]=r[k];

for(i=0; i<=k-1; i++)

S2 sum[i+1][k] =

sum[i][k] + r[k-i-1]*y[i][k-1];

alpha[k] = -sum[k][k] * beta[k];

for(i=0; i<=k-1; i++)

S3 y[i][k] =

y[i][k-1] + alpha[k]*y[k-i-1][k-1];

S4 y[k][k] = alpha[k];

}

for(i=0; i<=N-1; i++)

S5 out[i] = y[i][N-1];

1 N − 3 N − 2 N − 1−11 − N 2 − N 3 − N 0

1

−1

2

−2

N−N

Λ =

(

N − 2 −1
1 2

)

=⇒ σ(i, j) = (i mod 1, 2i + j mod 2N − 3)

d2 = ∆j

d1 = ∆i

#define N 100

#define M 197

S1 y[0] = r[0];

beta = 1;

alpha = r[0];

for(k=1; k<=N-1; k++) {

beta = beta - beta*(alpha)^2

sum = r[k];

for(i=0; i<=k-1; i++)

S2 sum = sum + r[k-i-1]*y[(2*i+k-1)%M];

alpha = -sum * beta;

for(i=0; i<=k-1; i++)

S3 y[(2*i+k)%M] = y[(2*i+(k-1))%M] +

alpha*y[(3*k-2*i-3)%M];

S4 y[(3*k)%M] = alpha;

}

for(i=0; i<=N-1; i++)

S5 out[i] = y[(2*i+N-1)%M];

(a) (b) (c)

Figure 2: (a) Durbin’s kernel, (b) Set DS of conflicting index differences for array y
(polytope), an optimal integer lattice Λ (grey points), and a corresponding mapping σ (all
other temporary arrays are scalarizable), (c) Transformed program.

developed in Step 3 can also give directly the modular mapping. See [6] for more details,
we just use what is explained there. Finally, Step 5 consists in replacing each access A(f(~i))
to an optimized array A by the reference A(σ(f(~i))). This, again, is done thanks to the
source-to-source transformer ROSE [19]. Some refinements on σ can be done, which are
mentioned in Sections 3 and 4.

Main example We will use, as running example, the classical Durbin’s kernel, which
solves a Toeplitz system with N unknowns. See its code in Figure 2.(a). The array r is
an input array, the array out is an output array, the arrays alpha, beta, sum, and y are
temporary arrays, thus subject to memory reduction. In this example, any sophisticated
tool should detect that arrays alpha, beta, and sum can be replaced by scalars. For array
sum, this check requires inter-loop analysis. Our tool finds easily these complete memory
reductions because, for each of these arrays, the set of conflicting index differences DS
is reduced to {0}. More interesting is the case of array y that can be optimized but not
completely. It is not too difficult to check that y can be folded into an array of size N × 2,
with the mapping σ(i1, i2) = (i1, i2 mod 2). In other words, it is correct to replace, in the
code, all occurrences y[c1][c2] by y[c1][c2 mod 2]. We will illustrate how to use DS to find
automatically such a mapping.

We point out that the best modular mapping for y is σ(i1, i2) = 2i1 + i2 mod (2N − 3),
with a slight memory size improvement compared to the previous mapping. Being able
to derive automatically such a mapping, in a parametric way and for a general situation,
is, to our knowledge, an open problem. However, for a fixed and small enough value of
N , our implementation of the exhaustive search proposed in [6] can find such a mapping.
For this particular example, the gain of 3 memory cells is certainly not worth the price of
the complicated modulo expression. However, for the purpose of illustration, we give in
Figure 2.(b) and (c) the set DS and the transformed program with contracted arrays. �

5

3 Lifetime Analysis of Array Elements

This section describes the algorithms, used in the first part of our tool, to compute the
set DS of conflicting index differences, needed to compute modular allocations. This
amounts to compute the conflict relation ./, which is done thanks to an accurate lifetime
analysis on array elements. We illustrate this analysis with the array y of our main example.

3.1 Exact Lifetime Analysis

The lifetime of an array cell ~c is the “time interval” between its initialization and its last
read. Classical methods handle arrays as scalar variables and make a too rough approx-
imation of control flow to be used here. This section explains how to compute the first
operation writing ~c (its initialization) and the last operation reading ~c, for static control
programs. Our method is similar on many aspects to exact instance-wise dataflow analysis
and revisit some ideas of [9].

3.1.1 First Write of an Array Element

Consider a statement S in a static control program:

S : A[u(~i)] = . . .

where ~i is the iteration vector of S and u an affine function. Consider a cell ~c of A and
denote by WS(~c) the set of operations (S,~i) writing A[~c]. Each operation must be valid
and write A[~c], i.e., WS(~c) = {(S,~i) | ~i ∈ IS, u(~i) = ~c}. Writing S1, . . . , Sn the statements
assigning A and denoting by � the execution order between operations, the first operation
writing A[~c] is FW(~c) = min�

⋃

i WSi
(~c), rewritten as:

FW(~c) = min
�

{min
�

WS1(~c), . . . , min
�

WSn
(~c)} (1)

Following [9], the sequencing predicate between two operations (S,~i) and (T,~j) can be
defined thanks to the strict lexicographic order <l between iteration vectors: (S,~i) ≺ (T,~j)
iff a) ~i[1..M] <l

~j[1..M] or b) ~i[1..M] = ~j[1..M] and S is before T in the text order, where
M is the depth of the maximum common loop nest of S and T . In particular, min� WS(~c)
boils down to compute the lexicographic minimum of the polyhedron {~i |~i ∈ IS, u(~i) = ~c}.
When the polyhedron depends on parameters (as ~c here), classical algorithms of integer
linear programming cannot be applied and we need to use parametric integer programming
techniques [8]. The tool PIP [16] implements such techniques and outputs a selection
tree, called QUAST (QUasi-Affine Selection Tree), whose nodes are affine relations on
parameters and whose leaves provide the relevant lexicographic minimum for each subset
defined by these relations.

6

Main example (cont’d) By definition, the set WS3(~c) of instances of S3 writing y[c1][c2],
with ~c = (c1, c2), is:

{(S3, k, i) | 1 ≤ k ≤ N − 1, 0 ≤ i ≤ k − 1, i = c1, k = c2}

which is reduced to the operation (S3, c2, c1), whenever (c2, c1) is a valid point of the
iteration domain of S3. In general, we use PIP to find the lexicographic minimum. Here,
since the access function u is one-to-one, we can just use the iteration domain inequalities
and get the QUAST:

min� WS3(c1, c2) =

if N ≥ 2 then
if 1 ≤ c2 ≤ N − 1 then
if 0 ≤ c1 ≤ c2 − 1 then

(S3, c2, c1)
else ⊥

else ⊥
else ⊥

where ⊥ stands for the empty solution. �

Once the different min� WSi
(~c) are computed, it remains to combine them in order to

find the global first FW(~c) as precised in Equation 1. Since the min� WSi
(~c) are QUASTs

of operations, they cannot be compared directly with the sequencing predicate. In [9],
Feautrier provides simple rules to get the min�{Q1, Q2} given two QUASTs Q1 and Q2:

min�{Q,⊥}
1

−→ Q

min�{(S,~i), (T,~j)}
2

−→ if (S,~i) � (T,~j) then (S,~i)

else (T,~j)

min�{Q, if C then Q1 else Q2}
3

−→ if C then min�{Q,Q1}
else min�{Q,Q2}

Symmetric cases need to be considered too, as in [9].

Main example (cont’d) Due to space limitations, we do not provide the full QUAST of
FW(~c). Instead, we show an equivalent set of clauses (~i ∈ Dk : ωk(~i))k∈J1,nK where the Dk

are disjoint polyhedra and the ωk(~i) are operations. Such a set of clauses will be referred
as a flattened QUAST. We get:

FW(c1, c2) =























































c1 = 0, c2 = 0 (S1,)

0 ≤ c2 ≤ N − 1
0 ≤ c1 ≤ N − 2
c1 < c2

(S3, c2, c1)

0 ≤ c1 ≤ N − 1
0 ≤ c2 ≤ N − 1
c1 = c2

(S4, c1)

7

Here, the computation of the local first writes min� WSi
(~c) is easy as y is in single assign-

ment. The main difficulty is the combination of QUASTs to get the global first write. One
could also try to remove redundant constraints. �

3.1.2 Last Read of an Array Element

In the same manner than for the first write, the last operation reading an array cell is
derived from local reading sets. To make explanations simpler, each statement is assumed
to contain at most one reference to array A. Given a statement S reading A[u(~i)], we let
RS(~c) = {(S,~i) | ~i ∈ IS, u(~i) = ~c}. Writing S1, . . . , Sn the statements reading A, the last
operation reading A[~c] is LR(~c) = max�

⋃

i RSi
(~c), rewritten as:

LR(~c) = max
�

{max
�

RS1(~c), . . . , max
�

RSn
(~c)}

We first derive each local last read max� RSi
(~c), which boils down to compute the lex-

icographic maximum of the parameterized polyhedron {~i | ~i ∈ ISi
, u(~i) = ~c}. Then,

the resulting QUASTs are combined to obtain the global max�, using the same rules
as before, where each min is replaced by a max and the right hand-side of rule 2 by
if (S,~i) � (T,~j) then (T,~j) else (S,~i).

Main example (cont’d) Our algorithm finds automatically the following last read of
y[c1][c2]:

LR(c1, c2) =







































































0 ≤ c1 ≤ N − 2
0 ≤ c2 ≤ N − 2
2c1 > c2

c1 ≤ c2

(S3, c2 + 1, c1)

0 ≤ c1 ≤ N − 2
0 ≤ c2 ≤ N − 2
2c1 ≤ c2

(S3, c2 + 1, c2 − c1)

0 ≤ c1 ≤ N − 1
c2 = N − 1

(S5, c1)

Let us explain this result intuitively. First, note that, for each (k, i) ∈ IS2 , the read of
y[i][k − 1] in (S2, k, i) is then repeated in (S3, k, i). Thus, none of the instances of S2 can
be a last read for y. Now, let us focus on S3. For each (k, i) ∈ IS3 , k < N − 1, the array
cell y[i][k] written by (S3, k, i) is read twice, by (S3, k + 1, i) (for the reference y[i][k-1])
and (S3, k + 1, k − i) (for the reference y[k-i-1][k-1]). The last read of y[i][k] is thus
max�{(S3, k+1, i), (S3, k+1, k− i)}, which boils down to find the maximum of i and k− i,
with i < k, i.e., i when 2i > k (first clause) and k− i when 2i ≤ k (second clause). Finally,
with (k, i) ∈ IS3, k = N − 1, the array cell y[i][k] will be read in (S5, i) (last clause). �

8

3.2 Computing the Conflict Relation

As explained in Section 2, two array indices~i and ~j conflict if their lifetimes [FW(~i),LR(~i)]
and [FW(~j),LR(~j)] intersect. In other words, the conflict relation ./ is:

~i ./ ~j ⇐⇒ FW(~i) ≺ LR(~j) and FW(~j) ≺ LR(~i)

With the quasts FW(~i) = (~i ∈ Dk : ωk(~i))k∈J1,pK and LR(~i) = (~i ∈ D′
k : ω′

k(~i))k∈J1,qK

which define partitions of the index set, we get the relation ./ through a union of sets. We
consider all p2q2 sets Ck,l,m,n (many are empty) defined for k ∈ J1, pK, l ∈ J1, qK, m ∈ J1, pK,
n ∈ J1, qK, by:

Ck,l,m,n = {(~i,~j) | ~i ∈ Dk ∩ D′
n, ~j ∈ D′

l ∩ Dm,

ωk(~i) ≺ ω′
l(~j), ωm(~j) ≺ ω′

n(~i)}

Then
~i ./ ~j ⇔ (~i,~j) ∈

p
⋃

k=1

q
⋃

l=1

p
⋃

m=1

q
⋃

n=1

Ck,l,m,n

Decomposing the predicate ≺ into affine inequalities, we can write Ck,l,m,n itself a union
of sets, and more precisely of polytopes. One can show that p and q are always finite
non-parametric values, of the same order than the number P of statements of the program.
This consequently provides an O(P 4) algorithm to compute the conflict relation. Despite its
apparent complexity, this method is fast enough in practice since it just performs constraint
concatenations.

Once the set {(~i,~j) | ~i ./ ~j} is obtained as a union of polytopes = ∪Qk, it remains to

compute the set DS = {~d | ~d =~i −~j ∧~i ./ ~j}. Adding the constraint ~d =~i −~j to Qk, we

obtain an integral polyhedron Pk in a vector space of dimension dim~i + dim~j + dim ~d =
3 dim~i. It remains to project each Pk on ~d to obtain DS, DS = ∪r

k=1 Pr(Pk, ~d). In general,
DS is not a polytope as required by the heuristics described in Section 4. We thus compute
its convex hull, which is an over-approximation, thanks to Polylib [16].

Main example (cont’d) We automatically get the set DS of conflicting differences
~d = (d1, d2) for array y depicted in Figure 2.(b). It is defined by the following constraints:















−(N − 1) ≤ d1 + 2d2 ≤ N − 1
−(N − 1) ≤ d1 − d2 ≤ N − 1
−1 ≤ d2 ≤ 1
−(N − 1) ≤ 2d2 ≤ N − 1

It is possible to find this set by analyzing the program by hand. However, even for such
a simple example, the computation of DS can be very tricky. Thus, even in the case
where the designer wants to choose the modular mapping him/herself, instead of relying
on heuristics, it is very useful to be able to use an automated analysis to compute this
fundamental (for lattice-based memory allocation) object DS. This is what the first part
of our tool provides. �

9

4 Deriving Strictly Admissible Lattices

This section describes the algorithms we use in the second part of our tool, a stand-alone
program devoted to polyhedral optimizations, to find good admissible lattices for a 0-
symmetric polytope. We bridge the gap between the abstract description of the heuristics
given in [5, 6] and an actual implementation. Currently, we use our program not only to
find good mappings automatically and evaluate previously-proposed heuristics, but also to
invent new heuristics and help us finding optimal mappings in a semi-automatic way. For
example, we mentioned that the optimal modular mapping for the array y in Section 2
has memory size 2N − 3. Even if heuristics are good enough here (with memory size 2N),
finding the optimal in a parametric way is harder: we used our tool to find the optimal
for a few values of N , then proved by hand that 2N − 3 is optimal. The same is true for
triangular domains, see the example hereafter. In other words, this tool should be viewed
as a platform for the development, understanding, and exploration of mappings.

As explained in Section 2, finding a valid modular mapping (M,~b), for a set of conflicting
indices DS ⊆ Zn, amounts to find a strictly admissible integral lattice Λ for DS, i.e., a
sublattice of Zn whose intersection with DS is reduced to {0}. By construction, DS is 0-
symmetric and is described or over-approximated as the integer points within a polyhedron
K. This polyhedron K is described either by its vertices or by a polyhedral representation
{~x | A~x ≤ ~c}. Currently, our tool has the following functionalities:

• Computation of optimal strictly admissible integer lattice by exhaustive search with
the approach suggested in [6].

• Computation of the successive minima and of a set of corresponding minimum vectors.

• Computation of the gauge functions Fi and F ∗
i ;

• Implementation of the generalized basis reduction [14];

• Implementation of the different heuristics of [5].

We now explain the key algorithmic points underlying these developments, focusing only
the non-obvious ones.

4.1 Rogers’ Heuristic

The first heuristic proposed in [5, 6] to get a strictly admissible integer lattice is an adap-
tation of a mechanism due to Rogers [11], for a 0-symmetric polytope K in dimension n.

Heuristic 1

• Choose n positive integers ρi, s.t. ρi is a multiple of ρi+1, and dim(Li) ≤ i− 1, where
Li = Vect(K/ρi ∩ Zn).

• Choose a basis (~ai)1≤i≤n of Zn s.t. Li ⊆ Vect(~a1, . . . ,~ai−1).

• Define Λ the lattice generated by the vectors (ρi~ai)1≤i≤n.

10

The correctness and worse-case quality of such a strategy are analyzed in [5, 6]. It gives
a correct mapping when ρiλi(K) > 1 with λi(K) the i-th successive minimum of K:

λi(K) = min{λ > 0 | dim(Vect(λK ∩ Zn)) ≥ i}

We now explain how we compute the scaling factors ρi and the basis (~ai)1≤i≤n. The
first difficulty is to compute the successive minima. These minima are also useful to get
the “dimension of the problem”, i.e., the dimension p ≤ n of the vector space generated
by the integer points in K. Indeed, a complete memory folding can be done for the n − p
other dimensions (i.e., each modulus is 1), while the p “full” dimensions may need a folding
with modulus greater than 1. This mechanism generalizes the projections used in [18].

4.1.1 Computing the Successive Minima

The first successive minimum λ1(K) is the smallest rational number λ such that the poly-
hedron K/λ contains an integer point ~x 6= 0, i.e., it is defined by:

λ1(K) = min{λ ∈ Q | ∃~x ∈ Zn, ~x 6= 0, A~x ≤ λ~c}

The constraint ~x 6= 0 makes this system not linear. But, if there exists such an ~x, then
xi ≥ 1 or xi ≤ −1 for some i. Moreover, as K is 0-symmetric, if ~x ∈ K, then −~x ∈ K, so
we can look only for ~x such that xi ≥ 1 for some i. In other words, we can compute λ1(K)
as the minimum over n values, each computed by mixed integer linear programming:

λ1(K) = min
1≤i≤n

min{λ ∈ Q | ∃~x ∈ Zn, xi ≥ 1, A~x ≤ λ~c}

This gives λ1(K) as well as a corresponding solution ~x1.

Main example (cont’d) We explained how DS can be computed in an exact way, even
when N is a parameter, as the integer points within the polytope K (when N ≥ 3):

K = {(i1, i2) | − (N − 1) ≤ i1 + 2i2 ≤ (N − 1),
−(N − 1) ≤ i1 − i2 ≤ (N − 1), −1 ≤ i2 ≤ 1}

see Figure 2.(b). The first minimum of K is 1/(N − 1), obtained when looking for a point
~x such that x1 ≥ 1. Notice that, here, we give the solution in a parametric way but, as we
will explain, our current implementation for the computation of successive minima assumes
N is fixed. �

Now, suppose that λ1(K), . . . , λi−1(K) have been computed, with their corresponding
~x1, . . . , ~xi−1. The i-th minimum is the smallest λ such that K/λ contains an integer
point ~x, linearly independent with ~x1, . . . , ~xi−1. To express this condition, we first compute
a basis of Zn whose first (i − 1) vectors span the same space as ~x1, . . . , ~xi−1. For that, we
define the n × (i − 1) matrix X with columns ~x1, . . . , ~xi−1, and we compute the Hermite
form [15] of X: X = QH where Q is a n × n unimodular matrix and H is a n × (i − 1)

11

matrix whose top (i − 1) × (i − 1) submatrix is nonnegative, upper triangular, and the
rest of H is zero. We then make the change of basis ~x = Q~y. In this representation, ~x
is linearly independent with ~x1, . . . , ~xi−1 if and only if yj ≥ 1 or yj ≤ −1 for some j ≥ i.
Again because K is 0-symmetric, we have:

λi(K) = min
i≤j≤n

min{λ ∈ Q | ∃~y ∈ Zn, yj ≥ 1, AQ~y ≤ λ~c}

Solving this system, we get λi(K), a corresponding solution ~yi and, finally, ~xi = Q−1~yi.
Continuing this way, we obtain all successive minima λi(K), one after the other, by solving
n(n + 1)/2 mixed integer linear programs.

4.1.2 Mixed Integer Linear Programming

For computing the successive minima with mixed integer linear programming, we tried
two implementations that work for a non-parameterized 0-symmetric polytope K. Both
compute of course the same successive minima λi(K) but possibly with different ~xi’s as
these are not uniquely defined.

Our first implementation uses the public-domain tool GLPK [10] and is easy to interface.
The only problem is that the rational numbers λi(K) are returned as float numbers, and
not as the quotient of two integers. However, as each ~xi is an integer vector, we use a
post-processing step to compute λi(K) as a fraction: it is the smallest rational number
such that A~xi ≤ λ~c. We thus consider each equation of this system to build λi(K) as the
quotient of two integers.

Our second implementation uses PIP [8, 16], a parametric linear programming solver,
which gives the lexicographic minimum in a parameterized polyhedron {A~x ≤ B~n + ~c}
where ~x represents nonnegative unknowns and ~n represents nonnegative integer parameters.
Using PIP is a bit tricky. Indeed, some pre-processing must be done to cope with the fact
that unknowns are nonnegative, but this is just a technical problem. More important
is that, here, we want to use PIP for mixed integer linear programming. For that, as
explained in [8], the first step is to consider that integer unknowns (~x in our system) are
parameters and find, with parametric (rational) linear programming, the minimum of λ as
a function of ~x. The solution is a QUAST, where each leaf u of the tree gives a solution
λ(u) as an affine expression f (u)(~x) of ~x, valid when ~x belongs to some polyhedron P (u).
The second step finds, for each leaf u, thanks to integer linear programming, the minimum
of f (u)(~x) over all integer elements ~x of P (u). The minimum of these minima gives the
desired minimum λ.

Main example (cont’d) Suppose N = 100 for example. Our GLPK implementation
first finds λ1(K) = 0.010101 . . . with ~x1 = (1, 0), and λ1(K) is recomputed as 1/99. Then,
it finds λ2(K) = 1 with ~x2 = (0, 1). Our PIP implementation finds λ1(K) directly as the
fraction 1/99 for ~x1 = (1, 0). Then, as PIP looks for the lexicographic minimum, it finds
~x2 = (−98, 1), λ2(K) = 1. Thus, the ~xi may not be the same with GLPK or PIP, while
the λi are uniquely defined. �

12

When none of the mixed integer linear programs solved to get λi(K) has a solution, K is
not full-dimensional and we directly get, with no additional effort, the minimal vector space
that contains all integer points of K. As previously mentioned, this is important to find a
good lattice/mapping and not fall into traps due to skewed and flat polytopes K. As for
complexity, although integer linear programming is NP-complete, the two implementations
are very fast, at least for the practical cases that arise in our memory allocation problems,
all of small dimensions. Compared to the time needed to analyze the program and compute
K itself, running times are not worth mentioning. This is maybe the most important
conclusion of our implementation study: the limiting factor, in terms of complexity, for
lattice-based memory allocation is the required program analysis, not the search for good
admissible lattices. Thus, the apparently heavy machinery proposed in [6] to get modular
appings is only complicated mathematically, but it is not costly in practice.

What about parameterized polytopes? As mentioned, using PIP is bit more complicated
than using GLPK. However, it has some parametric capabilities that GLPK does not
have and our hope was to be able to derive λi(K) (or at least ~xi) even if K is linearly
parameterized as {A~x ≤ B~n + ~c}. Unfortunately, this does not work as λ is then a
multiplicative factor of the parameters ~n in the linear programs that need to be solved.
Looking for 1/λ instead of λ leads to the same difficulty as 1/λ is now a multiplicative
factor of ~x. Also, even if we were able to compute λ1(K), our technique to make sure
that ~x2 and ~x1 are linearly independent would fail if ~x1 is parameterized too, unless we
can complete ~x1 into a basis in a parametric way. So, this seems difficult. But λ1(nK) =
λ1(K)/n, with the same minimum vector, so there must be a way to express, at least in
some cases to be specified, each 1/λi(K) as a QUAST of parameters. Unfortunately, so
far, we did not find a way to compute the successive minima of a linearly parameterized
polyhedron.

4.1.3 How to Choose the (ρi)1≤i≤n and (~ai)1≤i≤n

Once the successive minima are computed, one can easily choose the scaling factors ρi and
an adequate basis (~ai)1≤i≤n of Zn, as required by Heuristic 1.

For the vectors (~ai)1≤i≤n, a possible choice, suggested in [5], is to use the vectors ~xi

associated with the successive minima λi(K). Indeed, if ρiλi(K) > 1, then the vector space
Li = Vect(K/ρi∩Zn) has at most (i−1) dimensions. Furthermore, Li ⊆ Vect(~x1, . . . , ~xi−1).
However, the vectors (~xi)1≤i≤n, although they form a basis of Qn, may not form a basis
of Zn. To get a basis of Zn, we apply the same Hermite normal form trick that we used
previously. We compute X = QH and we define the vectors ~ai as the columns of Q.

For the scaling factors ρi, a possibility is to choose ρi to be the smallest power of 2
strictly larger than 1/λi(K). It turns out however that the divisibility condition for the ρi

in Heuristic 1 is often useless in practice. Most of the time, especially in small dimensions,
it is enough to choose ρi = b1/λi(K)c + 1 to get a (smaller) strictly admissible integer
lattice. If not, our current implementation increments the ρi, one at a time, in a round-
robin fashion, and checks if this gives a solution. We call this heuristic Heuristic 1.a. At
each step (in general one or two), we need to check whether the selected lattice (ρi~ai)1≤i≤n

13

is strictly admissible for K = {A~x ≤ ~c}. This amounts to check that there is no ~x 6= 0
such that ~x =

∑n

i=1 xiρi~ai and A~x ≤ ~c, ~x 6= 0}, where each xi is an integer. This can be
done by solving n linear programs, using the same technique we used to compute λ1.

Finally, it remains to compute a mapping whose kernel is the selected lattice. If Q is
the matrix whose columns are (~ai)1≤i≤n and ~b the vector whose components are (ρi)1≤i≤n,

a suitable mapping is σ(~i) = M~i mod ~b where M = Q−1.

Main example (cont’d) For this example, a good mapping is particularly simple to find
by hand because the progress of uses along the array y follows the canonical dimensions of
the array. Let us see what our implementation finds. Assume that N = 100. With GLPK,
we get λ1(K) = 1/99 and λ2(K) = 1 for ~x1 = (1, 0) and ~x2 = (0, 1). With Heuristic 1, we
get ρ1 = 128 and ρ2 = 2 with the mapping σ(i1, i2) = (i1 mod 128, i2 mod 2), which can be
simplified into σ(i1, i2) = (i1, i2 mod 2) as 0 ≤ i1 < N ≤ 128. With Heuristic 1.a, we will
select directly ρ1 = 99+1 = N , even if the initial array size in the first dimension is larger.
In practice, Heuristic 1.a is more realistic. Going to the next power of 2 as in Heuristic 1
can lead to a loss in memory. �

We point out that, in practice, one should pay attention to the “complexity” of the
derived lattice and of the resulting mapping. So far, the only optimizing criterion was
the size of the memory, i.e., all mappings leading to the same memory size are considered
equally good. But some can lead to simpler access functions (without even mentioning
cache access). A possibility to get simple lattices is to minimize, when looking for each ~xi,
its components in absolute value. One can also use, after all ~xi are computed, a form of basis
reduction to get a simpler basis. One example is the generalized basis reduction of Lovász
and Scarf [14] that we implemented. On random polytopes, we saw some improvements but
this was not convincing on polytopes arising from simple programs. For Heuristic 1.(a),
to preserve the successive vector spaces Li, one can limit the modifications to “upper
triangular” changes, i.e., simplifying ~xi with linear combinations of the previous ~xj, j < i.
But how to derive the “simplest” mapping for a given lattice is still an issue.

Main example (cont’d) To illustrate these possible complications, consider the basis
found by our implementation with PIP: (1, 0) and (−98, 1). This basis leads to the “dirty”
mapping σ(i1, i2) = (i1 + 98i2 mod 100, i2 mod 2) with Heuristic 1.a. It can be simplified
into σ(i1, i2) = (i1 − 2i2 mod 100, i2 mod 2) but, still, this is more complicated than the
mapping found with GLPK. To get ~x2 = (0, 1) as for GLPK instead of ~x2 = (−98, 1), we
need to complete our implementation so that it simplifies the basis. Looking for ~x2 with
minimal components in absolute value would lead to ~x2 = (0, 1). One can also simplify ~x2

with ~x1: L2 is preserved and this also leads to (0, 1) = (−98, 1) + 98(1, 0). �

4.2 Heuristics based on gauge functions

We tried different heuristics on thousands of 0-symmetric polytopes that we randomly
generated. Heuristic 1.a, the variant of Heuristic 1 explained in the previous section, is, on

14

average (but not always), the one that leads to the smallest lattices. However, as explained
in the previous section, it requires the computation of the successive minima – with mixed
integer linear programming – and the computation of adequate scaling factors – with
integer linear programming – if we choose ρi in a more accurate way than just the smallest
acceptable power of 2. Although these computations may appear very expensive, for the
practical cases arising from programs, this can be done very quickly so using Heuristic 1.a
is possible in practice. However, as mentioned, we do not know how to use this heuristic
for parameterized polytopes and this may be a problem for practical memory reuse when
optimizing programs. This is less true for high-level synthesis where the parameters are in
general known at compile-time although using parametric techniques as late as possible in
the transformation process would be a plus.

Unlike Heuristics 1 and 1.a, the two heuristics that we describe in this section can
be easily parameterized. These are the heuristics proposed in [5, 6] as generalizations of
the heuristic of Lefebvre and Feautrier [13]. They lead to memory allocations of the form

σ(~i) = M~i mod ~b where~b can be linearly parameterized if K itself is linearly parameterized.
However, one needs to give them, as input, a non-parameterized basis, or alternatively, a
non-parameterized matrix M . Before, let us recall some definitions from [5, 6].

The function F (~x) = min{λ > 0 | ~x ∈ λK} defines a norm such that F (α~x) = |α|F (~x),
called the gauge function of K. Given some vectors (~ai)1≤i≤n, one can define Fi(~x) =
min{F (~y) | ~y ∈ ~x + Vect(~a1, . . . ,~ai−1)}, which is connected to the gauge function of the
projection of K along the vectors ~a1, . . . , ~ai−1. The next heuristic uses the functions Fi.

Heuristic 2

• Choose n linearly independent integral vectors (~a1, . . . ,~an).

• Compute Fi(~ai) = min{F (~y) | ~y ∈ ~ai + Vect(~a1, . . . ,~ai−1)}, for 1 ≤ i ≤ n.

• Choose n integers ρi such that ρiFi(~ai) > 1.

• Define Λ the lattice generated by the vectors (ρi~ai)1≤i≤n.

Again, we refer to [5, 6] for the correctness and worse-case quality of such a strategy. We
focus here on the implementation details. The only algorithmic need is to compute Fi(~ai)
for all 1 ≤ i ≤ n. Here is how we proceed. We have:

Fi(~ai) = min{F (y) | ~y ∈ ~ai + Vect(~a1, . . . ,~ai−1)}

= min{λ > 0 | ~y ∈ λK, ~y = ~ai +
i−1
∑

j=1

yj~aj}

= min{λ > 0 | A~y ≤ λ~c, ~y = ~ai +
i−1
∑

j=1

yj~aj}

15

If K is not parameterized, the last expression can be solved with (rational) linear
programming. Otherwise, if K = {A~x ≤ B~n + ~c}, then λ is a multiplicative factor of the
parameters and PIP cannot be directly used. But:

Fi(~ai) = min{λ > 0 | ~y ∈ λK, ~y = ~ai +
i−1
∑

j=1

yj~aj}

and, with ρ = 1/λ and ~z = ρ~y, we have

Fi(~ai) = min{1/ρ > 0 | ~z ∈ K, ~z = ρ~ai +
i−1
∑

j=1

zj~aj}

= 1/ max{ρ > 0 | A~z ≤ B~n + ~c, ~z = ρ~ai +

i−1
∑

j=1

zj~aj}

The last expression shows that, using PIP, we can find the inverse of Fi(~ai) with rational
parametric linear programming, even for a linearly-parameterized polytope K.

Once all Fi(~ai) are computed, we let ρi = b1/Fi(~ai)c + 1. If (~ai)1≤i≤n defines a basis

of Zn, again, the mapping is σ(~i) = M~i mod ~b where M is the inverse of the matrix whose

columns are the ~ai and ~b is the vector defined by bi = ρi.

Main example (cont’d) For our running example, with ~a1 = (1, 0) and ~a2 = (0, 1),
we find 1/F1(~a1) = N − 1 and ρ1 = N , then F2(~a2) = 1 and ρ2 = 2, with the mapping
σ(i1, i2) = (i1 mod N, i2 mod 2). Also, as mentioned in [5], with a slight basis change, we
can also obtain a valid 1D mapping as σ(i1, i2) = 2i1 + i2 mod 2N . For this particular
case, we are not far from the optimal σ(i1, i2) = 2i1 + i2 mod 2N − 3. Picking the vectors
in the opposite order leads to ρ1 = 2, ρ2 = N and the mapping (i2 mod 2, i1 mod N). We
can also get the valid 1D mapping Ni2 + i1 mod 2N . �

An alternative view of Heuristic 2 is Heuristic 3 below, which directly builds a valid
mapping, instead of a strictly admissible integer lattice. This is Lefebvre and Feautrier’s
approach, generalized to an arbitrary set of independent vectors (~ci)1≤i≤n. The details
of the connection with Heuristic 2 is explained in [5]. This is a dual view of the same
approach. The function F ∗

i is the equivalent of Fi but for K∗, the polar reciprocal of K,
which is K∗ = {~y | ~x.~y ≤ 1 for all ~x ∈ K}. For the implementation, we use the alternative
definition of F ∗

i (~ci) as F ∗
i (~ci) = sup{~ci.~x | ~x ∈ K,~cj.~x = 0, ∀j < i}.

Heuristic 3

• Choose n linearly independent integer vectors (~c1, . . . ,~cn).

• Compute F ∗
i (~ci) = sup{~ci.~x | ~x ∈ K,~cj.~x = 0, ∀j < i}, 1 ≤ i ≤ n.

• Choose n integers ρi such that ρi > F ∗
i (~ci).

• Let M be the matrix with row vectors (~ci)1≤i≤n and ~b the vector such that bi = ρi.

16

Kernel Array Storage mapping found Method Runtime (s)
Identifier Original Mapping Compressed H1 H2 H3 OPT DS OPT

durbin.c alpha 100 i 7→ i mod 1 1 × × × × 0.1 0.3
beta 100 i 7→ i mod 1 1 × × × × 0.1 0.002
sum 10000 (i, j) 7→ (i mod 1, j mod 1) 1 × × × × 0.5 0.003
y 10000 (i, j) 7→ (i mod 100, j mod 2) 200 × × × 1.8

(i, j) 7→ (i mod 1, 2i + j mod 197) 197 × 17
reg detect.c sum t 36 (i, j) 7→ (i mod 6, j mod 6) 36 × × × 0.1

(i, j) 7→ (i mod 3, i + j mod 9) 27 × 0.2
mean 36 (i, j) 7→ (i mod 6, j mod 6) 36 × × × 0.07

(i, j) 7→ (i mod 3, i + j mod 9) 27 × 0.3
diff 2304 (i, j, k) 7→ (i mod 6, j mod 6, k mod 64) 2304 × × × 0.1

(i, j, k) 7→ (i mod 3, i + j mod 9, k mod 64) 1728 × –
sum d 2304 (i, j, k) 7→ (i mod 1, j mod 1, k mod 1) 1 × × × × 0.7 0.004

dynprog.c c 100 (i, j) 7→ (i mod 9, j mod 9) 81 × × × 0.5
(i, j) 7→ (i mod 1, 13i + j mod 61) 61 × 0.6

sum c 1000 (i, j, k) 7→ (i mod 1, j mod 1, k mod 1) 1 × × × × 6.1 0.004
gauss.c g acc1 10000 (i, j, k) 7→ (i mod 1, j mod 1, k mod 1) 1 × × × × 0.7 0.01

g acc2 10000 (i, j, k) 7→ (i mod 1, j mod 1, k mod 1) 1 × × × × 0.9 0.007
g tmp 2500 (i, j) 7→ (j mod 50, i mod 48) 2400 × × 0.07 46 min

(i, j) 7→ (i mod 48, j mod 50) 2400 × × × |
(i, j) 7→ (j − i mod 2, 24j − 25i mod 1200) 2400 × |

mot detect kern.c Delta 68121 (i, j, k) 7→ (k mod 10, j mod 1, i mod 1) 10 × × 3.9 0.3
(i, j, k) 7→ (i mod 1, j mod 1, k mod 10) 10 × × × |

ODelta 842 i 7→ i mod 1 1 × × × × 0.4 0.002

Figure 3: Experimental results for the kernels given in appendix. The time spent in the
lifetime analysis (DS) and in the optimal method (OPT) are given for a Pentium III CPU
800Mhz with 256 MB RAM.

This time, it is easy to see that, with no additional transformation, F ∗
i (~ci) can be

computed with parametric (rational) linear programming if K is linearly parameterized.
In other words, as the function Fi and F ∗

i are the inverse of each other (see [5] for more
details), we can implement Heuristics 2 and 3 if either K or K∗ is linearly parameterized,
for a non-parameterized basis. We implemented both heuristics (which give, by nature, the
same results for dual basis (~ai)1≤i≤n and (~ci)1≤i≤n, when vectors are picked in the opposite
order), trying different basis as input: identity, identity up to a permutation of rows or
columns (this can be viewed as a generalization of the technique of [7]), basis given by the
successive minima, basis given by generalized basis reduction, etc. All these techniques are
fast enough to allow such attempts. We then pick the best solution.

5 Experiments

Our stand-alone mathematical tool Cl@k (Section 4) provides the heuristics of [5, 6] (and
some other) while our program analyzer tool Bee (Section 3) makes the link with programs,
i.e., computes the lifetime analysis of array elements required by the heuristics and gen-
erates the final C program with the allocations. Several libraries are involved, including
ROSE [19], Polylib and PIP [16]. ROSE is a compiler framework providing simple mech-
anisms to read and write a program abstract syntax tree. It uses the SAGE intermediate
representation and exploits ideas of the Nestor library [21]. We use ROSE to extract itera-
tion domains IS and array index functions from static control programs written in C. Both
AST traversals (top-down and bottom-up) and rewrite facilities are consequently used in
our tool. The polyhedral operations required by the different steps of our method are
computed thanks to the Polylib library [16]. Finally, the lexicographic minima/maxima of
integral polytopes are derived thanks to the PIP library [8, 16].

17

We applied our tools to contract temporary arrays of several image processing ker-
nels [31] 1. We chose these kernels as they are used in all related papers and because
they are short enough to be given here (see appendix). Figure 3 gives the results of our
experiments. The benchmarks gather (1) our main example with N = 100 (durbin.c), (2)
a real-time regularity detection used in robot vision, (3) a toy example similar to dynamic
programming, (4) a 2D Gaussian blur filter used in image processing, (5) a motion detec-
tion algorithm used in the transmission of real time videos on data networks. The “Array”
column gives the temporary arrays to contract. The “Mapping” column shows the final
allocation σ found by the different methods. The mapping definitions assume that the
operator mod has the weakest priority, i.e., i + j mod 10 stands for (i + j) mod 10. The
“Compressed” column gives the array size after remapping, i.e., the product of the moduli.
The “Runtime” column gives, for each array, the runtime for the computation of lifetime
analysis (DS) and the runtime for the exhaustive search leading to size-optimal mappings
(OPT). We now analyze these results and draw some conclusions from this study.

In terms of complexity, we point out again that the main factor of the complete strategy
is the analysis itself. The runtimes of the different heuristics are so small they are not
worth mentioning. The search for an optimal mapping is, however, too costly for large
sizes. Indeed, this search is not optimized, it simply checks all determinants starting from
a pre-computed lower bound and the number of determinants to consider can become very
large. We also point out that, although previous approaches do not use the concept of
DS (the search for the mapping is often combined with the analysis itself), they all use a
lifetime analysis that is not cheaper than the computation of DS.

In terms of contraction, it appears that most temporary arrays can be contracted,
leading to a very good compression ratio. Our study also confirms that, for some practical
cases, the various heuristics give a similar (if not the same) result and that one can even
restrict to a simple basis such as the identity matrix (or a permutation of it). This is
because the loop indices (the “schedule”) are often aligned with the array indices. We also
point out that the principles used in Heuristics 2 and 3 are combinations of the principles
of the heuristics of [13] (to get the moduli) and of [18] (to get the right projection when DS
is not full-dimensional) and that, again on simple examples, results can thus be similar.
But there is a fundamental difference: we can apply the heuristics based on DS even if
the initial program is not in single-assignment form and even if there are more than one
statement writing a given array. For example, in [18], there must be, by principle, a one-to-
one correspondence between arrays and statements. Indeed, the mapping is derived by a
matrix relation between the unique schedule and the unique access function corresponding
to an array. If the array is written by several statements, even if each array element is
written once, the program needs to be changed so that each statement writes in a separate
memory. For example, in Durbin’s kernel, S4 and S3 would need to write in two different
arrays, unless S4 is pushed into the previous loop (inverse of loop peeling) and converted
into an instance of S3. This is possible here, but certainly not in general. Therefore,
a technique based on the set DS seems superior because it can handle more programs

1Many thanks to Florin Balasa who gave us these code examples.

18

(even parameterized ones) and because it gives more freedom to compute the mapping as
the program analysis is decoupled from the computation of the strictly admissible integer
lattice.

A particular form of array contraction is array scalarization, when an array can be
completely transformed into a scalar. This is a particular case of our memory reduction
technique. Indeed, an array can be scalarized if and only if its corresponding DS is reduced
to {0}. Also a modulus equal to 1 corresponds to a dimension removal. We let the reader
check that, for the codes given in appendix many arrays have been scalarized. The only
case we miss is for the kernel (5). This is due to the fact that DS is over-approximated
due to integer divisions in the derived clauses, which prevents us to see that DS is indeed
equal to {0}. We know how to handle such cases correctly though it is not available yet in
our current implementation.

Finally, the results in Figure 3 indicate that, although the heuristics are quite good in
order of magnitude, there is still some space for improvement compared to the optimal,
especially when DS has a strange shape. We have already mentioned the case of the array
y in our running example, but the difference between N , the size found by the heuristics,
and the optimal size 2N − 3 is not worth the price of the complicated access function.
However, consider the kernel (2) and the different triangular-shaped arrays mean, sum_t,
and diff. Although these arrays could be removed if some loop fusion was done, let us
focus here on reducing their size without changing the program schedule.

Consider the 2D array mean for example. Its size is N 2 but only N(N + 1)/2 ∼ N 2/2
elements are live. They all conflict since they are all written before any is read. This
defines the set DS = {(i, j) | |i| < N, |j| < N, |i − j| < N}. Surprisingly, none of the
heuristics proposed here and in previous papers is able to find any reduction. But some
reduction is possible with a modular mapping, leading to a memory size, not of order N 2/2,
but of order 3N 2/4. An optimal mapping is (i, j) 7→ (i + j mod 3m, j mod m) if N = 2m
and (i, j) 7→ (i − (3m + 2)j) mod (3m2 + 3m + 1) if N = 2m + 1. How can we find such
a mapping? First, we can use our exhaustive search to find optimal mappings for small
values of N . If some pattern appears, we can try to generalize the mappings, then prove
their optimality. This how we proceeded here, thus in a semi-automatic process.

We can go further and use the same principle to automatically derive good parametric
mappings. Indeed, pick a small value of N , for example 1. Find an optimal strictly
admissible lattice for DS = {A~x ≤ ~b}. For the array mean, we get the lattice Λ generated
by (3, 0) and (1,−1), with determinant 3. Multiplying by λ, we get that λΛ is strictly

admissible for {A~x ≤ λ~b}. For the array mean and λ = N − 1, we get a memory size
3(N − 1)2, which is not what we want. But we can be more subtle: if Λ is strictly

admissible for {A~x ≤ ~b}, it is weakly admissible (i.e., boundary intersection is acceptable)

for {A~x ≤ ~b + ~1}, which is here {A~x ≤ 2~b}. Multiplying by m, we get that mΛ is weakly

admissible for {A~x ≤ 2m~b} and thus strictly admissible for {A~x < N~b}. We retrieve the
optimal mapping for N = 2m with size 3m2. The same mapping is valid for N = 2m − 1
with size ∼ 3N 2/4, though not optimal. In future work, we plan to use such a generalization
principle to derive good parametric mappings.

19

6 Conclusion

We have presented a complete and effective compile-time analysis to contract arrays. An
element-wise lifetime analysis for arrays has been proposed that computes the first (resp.
last) statement instance writing (resp. reading) a generic array cell. We have shown
how this algorithm can be used to build the set of conflicting array cells, required by
the contraction methods described in [6], for which we proposed a complete and efficient
implementation. Experimental results on a few kernels are provided and show important
compression ratios, confirming the efficiency of the method. The whole analysis takes a
few seconds for each benchmark on a Pentium III CPU 800MHz, with 256MB RAM, and
most of the execution time is spent in lifetime analysis. We point out that computing last
reads is more expensive that computing first writes, as there are more reads than writes in
general. Some work needs to be done to accelerate this process.

Our method is however restricted to programs with affine array index functions and
loops. In future work, we plan to address general programs by providing a conservative life-
time analysis (containing the real lifetime). Our lifetime analysis is actually able to provide
lifetimes depending on a parameter (typically, N in the running example). Unfortunately,
part of our current implementation is not yet able to handle them. We also propose to
address this point in a future work. Finally, as mappings obtained from different methods
of [6] can impact on spatial data locality, it would be good to have a method to select the
best one.

References

[1] F. Balasa, P. G. Kjeldsberg, M. Palkovic, A. Vandecappelle, and F. Catthoor. Loop
transformation methodologies for array-oriented memory management. In Proceedings
of the IEEE 17th International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP’06), pages 205–212, Washington, DC, USA, 2006.

[2] P. Clauss, F. J. Fernandez, D. Gabervetsky, and S. Verdoolaege. Symbolic polynomial
maximization over convex sets and its application to memory requirement estimation.
Technical Report ICPS number 06-04, Université Louis Pasteur, Oct. 2006.

[3] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataflow analysis. In Pro-
ceedings of 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PLDI’95), Santa Barbara, CA, July 1995.

[4] A. Darte and G. Huard. New complexity results on array contraction and related
problems. Journal of VLSI Signal Processing-Systems for Signal, Image, and Video
Technology, 40(1):35–55, 2005.

[5] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory allocation. In 6th ACM
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES’03), pages 298–308, San Jose, USA, Oct. 2003.

20

[6] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory allocation. IEEE
Transactions on Computers, 54(10):1242–1257, Oct. 2005.

[7] E. De Greef, F. Catthoor, and H. De Man. Memory size reduction through storage or-
der optimization for embedded parallel multimedia applications. Parallel Computing,
23:1811–1837, 1997.

[8] P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle,
22(3):243–268, 1988.

[9] P. Feautrier. Data flow analysis of scalar and array references. International Journal
of Parallel Programming, 20(1):23–53, 1991.

[10] GNU Free Software. GLPK (GNU Linear Programming Kit).
http://www.gnu.org/software/glpk.

[11] P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North Holland, second
edition, 1987.

[12] V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C. Cronquist, and M. Sivaraman.
PICO: Automatically designing custom computers. IEEE Computer, 35(9):39–47,
Sept. 2002.

[13] V. Lefebvre and P. Feautrier. Automatic storage management for parallel programs.
Parallel Computing, 24:649–671, 1998.

[14] L. Lovász and H. E. Scarf. The generalized basis reduction algorithm. Mathematics
of Operations Research, 17(3):751–764, 1992.

[15] M. Newman. Integral Matrices. Academic Press, 1972.

[16] PIP/Polylib: The Parametric Integer Programming’s home.
http://www.piplib.org.

[17] W. Pugh. The Omega test: A fast and practical integer programming algorithm for
dependence analysis. Communications of the ACM, 8:102–114, Aug. 1992.

[18] F. Quilleré and S. Rajopadhye. Optimizing memory usage in the polyhedral model.
ACM Transactions on Programming Languages and Systems, 22(5):773–815, 2000.

[19] D. J. Quinlan. ROSE: Compiler support for object-oriented frameworks. Parallel
Processing Letters, 10(2/3):215–226, 2000.

[20] J. Ramanujam, J. Hong, M. Kandemir, and A. Narayan. Reducing memory require-
ments of nested loops for embedded systems. In DAC’01: Proceedings of the 38th
conference on Design automation, pages 359–364, 2001.

21

http://www.gnu.org/software/glpk
http://www.piplib.org

[21] G.-A. Silber and A. Darte. The Nestor library: A tool for implementing Fortran
source to source transformations. In High Performance Computing and Network-
ing (HPCN’99), volume 1593 of Lecture Notes in Computer Science, pages 653–662.
Springer Verlag, Apr. 1999.

[22] Y. Song, R. Xu, C. Wang, and Z. Li. Improving data locality by array contraction.
IEEE Transactions on Computers, 53(9):1073–1084, 2004.

[23] M. M. Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-independent storage
mapping for loops. In 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’98), pages 24–33, San Jose,
USA, 1998. ACM Press.

[24] W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe. A unified framework for schedule
and storage optimization. In International Conference on Programming Language
Design and Implementation (PLDI’01), pages 232–242. ACM Press, 2001.

[25] R. Tronçon, M. Bruynooghe, G. Janssens, and F. Catthoor. Storage size reduction by
in-place mapping of arrays. In A. Cortesi, editor, Verification, Model Checking and
Abstract Interpretation, Third International Workshop, VMCAI 2002, volume 2294 of
LNCS, pages 167–181. Springer Verlag, 2002.

[26] A. Turjan, B. Kienhuis, and E. Deprettere. Translating affine nested-loop programs to
process networks. In 7th ACM International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (CASES’04), pages 220–229, Washington DC,
USA, Sept. 2004.

[27] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic allocation for scratch-pad
memory using compile-time decisions. ACM Transactions on Embedded Computing
Systems, 5(2):472–511, 2006.

[28] S. Verdoolaege, H. Nikolov, and T. Stefanov. Improved derivation of process networks.
In 4th Workshop on Optimization for DSP and Embedded Systems (ODES-4), New
York, USA, Mar. 2006.

[29] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings of
the ACM SIGPLAN 1991 Conference on Programming Language Design and Imple-
mentation (PLDI’91), pages 30–44, 1991.

[30] Y. Zhao and S. Malik. Exact memory size estimation for array computations without
loop unrolling. In DAC’99: Proceedings of the 36th ACM/IEEE conference on Design
automation, pages 811–816, 1999.

[31] H. Zhu, I. I. Luican, and F. Balasa. Memory size computation for multimedia process-
ing applications. In ASP-DAC’06: Proceedings of the 2006 conference on Asia South
Pacific design automation, pages 802–807, 2006.

22

A Source code of kernels

gauss.c

#define M 50

#define N 50

#define T 1

void main() {

int x, y, k, tot[4];

int in_image[N][M]; //live-in

int Gauss[4]; // live-in

int gauss_image[N][M]; // live-out

int g_tmp[N][M];

int g_acc1[N][M][4];

int g_acc2[N][M][4];

tot[0]=0;

for (k=T-1; k<=1+T; k++)

tot[k+2 - T] = tot[k+1 - T]

+ Gauss[k - T];

for (k=T-1; k<=1+T; k++)

tot[k+2 - T] = tot[k+1 - T]

+ Gauss[k - T];

for(x=1; x<N-1; x++)

for(y=0; y<M; y++) {

g_acc1[x][y][0]=0;

for(k=T-1; k<=1+T; k++) {

g_acc1[x][y][k+2-T] =

g_acc1[x][y][k+1-T]

+ in_image[x+k][y] * Gauss[k-T];

}

g_tmp[x][y] =

g_acc1[x][y][3]/tot[3];

}

for(x=1; x<N-1; x++)

for(y=1; y<M-1; y++) {

g_acc2[x][y][0]=0;

for(k=T-1; k<=1+T; k++) {

g_acc2[x][y][k+2-T] =

g_acc2[x][y][k+1-T]

+ g_tmp[x][y+k-T] * Gauss[k-T];

}

gauss_image[x][y] =

g_acc2[x][y][3]/tot[3];

}

}

reg detect.c

#define N 6

#define M 5

#define P 64

void main() {

int i, j, k;

int sum_t[N][N], mean[N][N];

int diff[N][N][P], sum_d[N][N][P];

int tangent[M]; // live-in

int path[N][N]; // live-out

for(j=0; j<=N-1; j++) {

sum_t[j][j] = tangent[(N+1)*j];

for(i=j+1; i<=N-1; i++)

sum_t[j][i] = sum_t[j][i-1]

+ tangent[i+N*j];

}

for(j=0; j<=N-1; j++)

for(i=j; i<=N-1; i++)

for(k=0; k<=P-1; k++)

diff[j][i][k] = sum_t[j][i];

for(j=0; j<=N-1; j++)

for(i=j; i<=N-1; i++)

sum_d[j][i][0] = diff[j][i][0];

for(k=1; k<=P-1; k++)

sum_d[j][i][k] =

sum_d[j][i][k-1]

+ diff[j][i][k];

mean[j][i] = sum_d[j][i][P-1];

for(j=0; j<=N-1; j++)

for(i=j; i<=N-1; i++)

if (j>0) path[j][i] =

path[j-1][i-1]

+ mean[j][i];

else path[j][i] = mean[j][i];

}

23

mot detect kern.c

#define m 4

#define n 4

#define M 32

#define N 32

void main() {

int i, j, k, l, ODelta[(M-m+1)*(N-n+1)+1];

int Delta[M-m+1][N-n+1][(2*m+1)*(2*n+1)];

int A[(m+1)*(m+1)][(n+1)*(n+1)]; // live-in

int opt[1]; // live-out

ODelta[0]=0;

for(i=m; i<=M; i++)

for(j=n; j<=N; j++) {

Delta[i][j][0]=0;

for(k=i-m; k<=i+m; k++)

for(l=j-n; l<=j+n; l++)

Delta[i][j][(2*n+1)*k-(2*n+1)*i

+l-j+(2*m*n+m+n+1)] =

A[i][j] - A[k][l] +

Delta[i][j][(2*n+1)*k-(2*n+1)*i

+l-j+(2*m*n+m+n)];

ODelta[(N-n+1)*i+j-(m*N-m*n+m+n+1)] =

Delta[i][j][(2*m+1)*(2*n+1)] +

ODelta[(N-n+1)*i+j-(m*N-m*n+m+n)];

}

opt[0] = ODelta[(M-m+1)*(N-n+1)];

}

dynprog.c

#define N 10

void main() {

int i, j, k;

int W[N][N], c[N][N]; // live-in

int sum_c[N][N][N];

int out[1]; // live-out

for(i=0; i<=N-2; i++)

for(j=i+1; j<=N-1; j++) {

sum_c[i][j][i] = 0;

for(k=i+1; k<=j-1; k++)

sum_c[i][j][k] = sum_c[i][j][k-1]

+ c[i][k] + c[k][j];

c[i][j] = sum_c[i][j][j-1] + W[i][j];

}

out[0] = c[0][N-1];

}

24

	1 Introduction
	2 Background Notations and Definitions
	3 Lifetime Analysis of Array Elements
	3.1 Exact Lifetime Analysis
	3.1.1 First Write of an Array Element
	3.1.2 Last Read of an Array Element

	3.2 Computing the Conflict Relation

	4 Deriving Strictly Admissible Lattices
	4.1 Rogers' Heuristic
	4.1.1 Computing the Successive Minima
	4.1.2 Mixed Integer Linear Programming
	4.1.3 How to Choose the (i)1i n and (i)1 i n

	4.2 Heuristics based on gauge functions

	5 Experiments
	6 Conclusion
	A Source code of kernels

