Mathias Jacquelin

Loris Marchal

Yves Robert

Complexity analysis of matrix product on multicore architectures

The multicore revolution is underway. Classical algorithms have to be revisited in order to take hierarchical memory layout into account. In this paper, we aim at minimizing the number of cache misses paid during the execution of the matrix product kernel on a multicore processor, and we show how to achieve the best possible trade-off between shared and distributed caches.

Introduction

Dense linear algebra kernels are the key to performance for many scientific applications. Some of these kernels, like matrix multiplication, have extensively been studied on parallel architectures. Two well-known parallel versions are Cannon's algorithm [START_REF] Elliot | A cellular computer to implement the Kalman filter algorithm[END_REF] and the ScaLAPACK outer product algorithm [START_REF] Blackford | ScaLAPACK user's guide[END_REF]. Typically, parallel implementations work well on 2D processor grids: input matrices are sliced horizontally and vertically into square blocks; there is a one-to-mapping of blocks onto physical resources; several communications can take place in parallel, both horizontally and vertically. Even better, most of these communications can be overlapped with (independent) computations. All these characteristics render the matrix product kernel quite amenable to an efficient parallel implementation on 2D processor grids.

However, algorithms based on a 2D grid (virtual) topology are not well suited for multicore architectures. In particular, in a multicore architecture, memory is shared, and data accesses are performed through a hierarchy of caches, from shared caches to distributed caches. We need to take further advantage of data locality, in order to minimize data movement. This hierarchical framework resembles that of out-of-core algorithms [START_REF] Irony | Communication lower bounds for distributed-memory matrix multiplication[END_REF] (the shared cache being the disk) and that of master-slave implementations with limited memory [START_REF] Pineau | Matrix product on heterogeneous masterworker platforms[END_REF] (the shared cache being the master's memory). The latter paper presents the Maximum Re-use Algorithm which aims at minimizing the communication volume from the master to the slaves. Here, we adapt this study to multicore architectures, by taking both cache levels into account. Due to lack of space, the review of related work is provided in the companion research report [START_REF] Jacquelin | Complexity analysis of matrix product on multicore architectures[END_REF].

2 Problem statement

Modeling multicore architectures

A major difficulty of this study is to come up with a realistic but still tractable model of a multicore processor. We assume that such a processor is composed of p cores, and that each core has the same computing speed. The processor is connected to a memory, which is supposed to be large enough to contain all necessary data (we do not deal with out-of-core execution here). The data path from the memory to a computing core goes through two levels of caches. The first level of cache is shared among all cores, and has size C S , while the second level of cache is distributed: each core has its own private cache, of size C D . Caches are supposed to be inclusive, which in our case means that the shared cache contains at least all the data stored in every distributed cache. Therefore, this cache must be larger than the union of all distributed caches: C S ≥ p × C D .

Our caches are also "fully associative", and can therefore store any data from main memory. Figure 1 depicts the multicore architecture model.

The hierarchy of caches is used as follows. When a data is needed in a computing core, it is first sought in the distributed cache of this core. If the data is not present in this cache, a distributed-cache miss occurs, and the data is then sought in the shared cache. If it is not present in the shared cache either, then a shared-cache miss occurs, and the data is loaded from the memory in the shared cache and afterward in the distributed cache. When a core tries to write to an address that is not in the caches, the same mechanism applies. Rather than trying to model this complex behavior, we will assume in the following that we have an ideal cache model [START_REF] Frigo | Cache-oblivious algorithms[END_REF]: we suppose that we are able to totally control the behavior of each cache, and that we can load any data into any cache (shared of distributed), with the constraint that a data has to be first loaded in the shared cache before it could be loaded in the distributed cache. Although somewhat unrealistic, this simplified model has been proven not too far from reality: it is shown in [START_REF] Frigo | Cache-oblivious algorithms[END_REF] that an algorithm causing N cache misses with an ideal cache of size L will not cause more than 2N cache misses with a cache of size 2L and implementing a classical LRU replacement policy.

In the following, our objective is twofold: (i) minimize the number of cache misses during the computation a matrix product, and (ii) minimize the predicted data access time of the algorithm. To this end, we need to model the time needed for a data to be loaded in both caches. To get a simple and yet tractable model, we consider that cache speed is characterized by its bandwidth. The shared cache has bandwidth σ S , thus a block of size S needs S/σ S time-unit to be loaded from the memory in the shared cache, while each distributed cache has bandwidth σ D . Moreover, we assume that concurrent loads to several distributed caches are possible without contention.

Finally, the purpose of the algorithms described below is to compute the classical matrix product C = A × B. In the following, we assume that A has size m × z, B has size z × n, and C has size m × n. We use a blockoriented approach, to harness the power of BLAS routines [START_REF] Blackford | ScaLAPACK user's guide[END_REF]. Thus, the atomic elements that we manipulate are not matrix coefficients but rather square blocks of coefficients of size q × q. Typically, q = 80 or 100 on most platforms.

Minimizing communication volume

The key point to performance in a multicore architecture is an efficient use of the data. A simple way to assess data locality is to count and to minimize the number of cache misses, that is the number of times each data has to be loaded in a cache. Since we have two types of caches in our model, we try to minimize both the number of misses in the shared cache and the number of misses in the distributed caches.

We denote by M S the number of cache misses in the shared cache. As for distributed caches, since accesses from different caches are concurrent, we denote by M D the maximum of all distributed caches misses: if M (c) D is the number of cache misses for the distributed cache of core c, M D = max c M (c) D . In a second step, since the former two objectives are conflicting, we aim at minimizing the overall time T data required for data movement. With the previously introduced bandwidth, it can be expressed as:

T data = M S σ S + M D σ D
Depending on the ratio between cache speeds, this objective provides a tradeoff between both cache miss quantities.

Lower bound on communication

In [START_REF] Irony | Communication lower bounds for distributed-memory matrix multiplication[END_REF], Irony, Toledo and Tiskin propose a lower bound on the number of communications needed to perform a matrix product. Their study focuses on a system with a memory of size M and concludes that the communicationto-computation ratio of a matrix product is lower-bounded by 27 8M . We have extended this study to our hierarchical cache architecture (see details in [START_REF] Jacquelin | Complexity analysis of matrix product on multicore architectures[END_REF]). In our case, the communication-to-computation is the ratio between the number of cache misses and the number of operations. With comp(c) being amount of computation done by core c, we can define this ratio for both type of caches: CCR S = M S /(c comp(c)) is the CCR for the shared cache, and CCR D = 1 p p c=1 (M D /comp(c)) is the CCR for the distributed cache (averaged over all cores c).

The overall amount of computation for the matrix product is mnz, and in all our algorithms, this amount is equally balanced among cores, so that comp(c) = mnz/p for all cores. In both case, we have been able to extend the previous bound:

CCR S ≥ 27 8C S and CCR D ≥ 27 8C D .
3 Maximum re-use algorithm for multicore architectures

In the analysis of [START_REF] Irony | Communication lower bounds for distributed-memory matrix multiplication[END_REF], lower bounds are obtained when the three matrices A, B and C are equally accessed throughout time. This naturally leads to allocating one third of the available memory space to each matrix. Indeed, the authors of [START_REF] Irony | Communication lower bounds for distributed-memory matrix multiplication[END_REF] proves that, under some conditions, this framework leads to a communication-to-computation ratio of O mnz √ M , of the same order as the lower bound. However, we point out that all three matrices do not have the same influence on the communications; in particular, elements of C are modified during the computation. This leads to trying to re-use elements of C as much as possible, which is the basis of the algorithm presented in [START_REF] Pineau | Matrix product on heterogeneous masterworker platforms[END_REF]. It proposes to split the available memory into 1 + µ + µ 2 blocks, so as to store a square block C i 1 ...i 2 ,j 1 ...j 2 of size µ 2 of matrix C, a row B i 1 ...i 2 ,j of size µ of matrix B and one element A i,j of matrix A (with i 1 ≤ i ≤ i 2 and j 1 ≤ j ≤ j 2). This allows to computes C i 1 ...i 2 ,j 1 ...j 2 + = A i,j × B i 1 ...i 2 ,j . Then, with the same block of C, other computations can be accumulated by considering other elements of A and B. The block of C is stored back only when it has been processed entirely, thus avoiding any future need of reading this block to accumulate other contributions. Using this framework, we can reach a communication-to-computation ratio of 2 √ M for a memory of size M , for large matrices.

To adapt the maximum re-use algorithm to multicore architectures, we must take into account both cache levels. Depending on our objective, we adapt the previous data allocation scheme so as to fit with the shared cache, with the distributed caches, or with both. We define two parameters that are derived from the maximum re-use algorithm, and that will prove helpful to compute the size of the block of C that should be loaded in the shared cache or in a distributed cache: In the following, we assume that λ is a multiple of µ, so that a block of size λ 2 that fits in the shared cache can be easily divided in blocks of size µ 2 that fit in the distributed caches.

• λ is the largest integer with 1 + λ + λ 2 ≤ C S ; • µ is the largest integer with 1 + µ + µ 2 ≤ C D . k k l A C λ B λ B row a C block C row in core c

Minimizing the number of shared-cache misses

In this section, we study the first objective presented in Section 2.2, namely the minimization of the number of shared-cache misses. This can be directly done by adapting the maximum re-use algorithm with parameter λ. As in the maximum re-use algorithm, a square block C block of size λ 2 of C is allocated in the shared cache, together with a row of λ elements of B and one element of A. Then, the rows of C block is distributed and computed by the different cores. This is described in details in Algorithm 1, and the memory layout is depicted in Figure 2.

In this algorithm, the whole matrix C is loaded in the shared cache, thus resulting in mn cache misses. For the computation of each block of size λ 2 , z rows of size λ are loaded from B, and z × λ elements of A are accessed. Since there are mn/λ 2 steps, this amounts to a total of M S = mn + 2mnz/λ shared-cache misses. For large matrices, this leads to a shared-cache CCR of 2/λ, which is close to the lower bound.

Minimizing the number of distributed-cache misses

Our next objective is to minimize the number of distributed-cache misses. To this end, we use the parameter µ defined earlier to store in each distributed cache a square block of size µ 2 of C, a fraction of row (of size µ) of B and one element of A. Contrarily to the previous algorithm, the block of C will be totally computed before being written back to the shared cache. All p cores work on different blocks of C. Thanks to the constraint on the size of caches (p × C D ≤ C S), we know that the shared cache has the capacity to store all necessary data. The overall number of distributed cache misses on a core will then be M D = 1 p (mn + 2mnz/µ) (see [START_REF] Jacquelin | Complexity analysis of matrix product on multicore architectures[END_REF] for details). For large matrices, this leads to a distributed-cache CCR of 2/µ, which is close to the lower bound.

Minimizing data access time

To get a tradeoff between minimizing the number of shared-cache and distributed-cache misses, we now aim at minimizing

T data = M S σ S + M D σ D .
In this case, the sketch of the algorithm, detailed in [START_REF] Jacquelin | Complexity analysis of matrix product on multicore architectures[END_REF], is the following:

1. A block from C of size α × α is
T data = 1 σ S (mn + 2mnz α) + 1 σ D (mnz pβ + 2mnz pµ).
Together with the constraint 2α × β + α 2 ≤ C D , it allows to compute the best value for parameters α and β, depending on the ratio σ S /σ D (again, see details in [START_REF] Jacquelin | Complexity analysis of matrix product on multicore architectures[END_REF]).

Conclusion

In this short paper, we proposed cache-aware algorithms for multicore processors. We have proposed a model for multicore memory layout. Using this model, we have extended a lower bound on cache misses, and proposed cacheaware algorithms. For both types of caches, our algorithms reach a CCR which is close to the lower bound for large matrices. We also propose an algorithm for minimizing the overall data access time, which realizes a tradeoff between shared and distributed cache misses. This work will be extended to more complex operations, like LU factorization, and is to be validated through simulations or real experiments.

A Toledo's lower bound on communications

In this section, we derive a lower bound on the number of cache misses. Our analysis is based on the work in [START_REF] Irony | Communication lower bounds for distributed-memory matrix multiplication[END_REF]. We consider a computing system (which consists of one or several computing cores) using a cache of size Z. We estimate the number of computations that can be performed owing to Z consecutive cache misses, that is owing to Z consecutive load operations. We recall that each matrix element is in fact a matrix block of size q × q. We use the following notations :

• Let η old , ν old , and ξ old be the number of blocks in the cache used by blocks of A, B and C just before the beginning of the Z cache misses.

• Let η read , ν read , and ξ read be the number of blocks of A, B and C read in the main memory during these Z cache misses.

Before the beginning of the Z cache misses, the cache holds at most Z blocks of data, therefore, after Z cache misses, we have:

η old + ν old + ξ old ≤ Z η read + ν read + ξ read = Z (1)
A.1 Loomis-Whitney's inequality

The following lemma, given in [START_REF] Irony | Communication lower bounds for distributed-memory matrix multiplication[END_REF] and based on Loomis-Whitney inequality, is valid for any conventional matrix multiplication algorithm

C = AB, where A is m × z, B is z × n and C is m × n.
A processor that contributes to N C elements of C and accesses N A elements of A and N B elements of B can perform at most √ N A N B N C elementary multiplications. According to this lemma, if we let K denote the number of elementary multiplications performed by the computing system, we have:

K ≤ N A N B N C
No more than (η old + η read)q 2 elements of A are accessed, hence N A = (η old + η read)q 2 . The same holds for B and C: N B = (ν old + ν read)q 2 and N C = (ξ old + ξ read)q 2 . Let us simplify the notations using the following variables:

     η old + η read = η × Z ν old + ν read = ν × Z ξ old + ξ read = ξ × Z (2)
Then the following equation is obtained:

K = ηνξ × Z √ Z × q 3 (3)
Writing K = km √ mq 3 , we obtain the following system of equation:

MAXIMIZE k SUCH THAT k ≤ √ ηνξ η + ν + ξ ≤ 2
Note that the second inequality comes from Equation (1). This system admits a solution which

is η = ν = ξ = 2 3 and k = 8 27
. This gives us a lower bound on the communication-tocomputation ratio (in terms of blocks) for any matrix multiplication algorithm:

CCR opt = Z k × Z √ Z = 27 8Z
A.2 Bound on shared-cache misses

We will first use the previously obtained lower bound to the study of shared-cache misses, considering everything above this cache level as a single processor and the main memory as a master which sends and receives data. Therefore, with Z = C S , we have a lower bound on the communication-to-computation ratio for shared-cache misses:

CCR Sopt = C S K = 27 8C S

A.3 Bound on distributed-caches misses

In the case of the distributed caches, we first apply the previous result, on a single core c, with cache size C D . We thus have

CCR c ≤ 27 8C D
We have define the overall distributed CCR as the average of all CCR c , so this result also holds for the CCR D :

CCR D ≤ 27 8C D
Indeed, we could even have a stronger result, on the minimum of all CCR c .

A.4 Bound on overall data access time

The previous bound on the CCR can be extended to the data access time, as it is defined as a linear combination of both M S and M D :

T data = M S σ S + M D σ D
We can bound M S using the bound on the CCR:

M S = CCR S × mnz ≤ mnz × 27 8C S
As for distributed-cache misses, it is more complex, since M D is the maximum of all misses on distributed caches, and CCR D is the average CCR among all cores. In order to get a tight bound, we consider only algorithms where both computation and cache misses are equally distributed among all cores (this applies to all algorithms developed in this paper). In this case, we have

M D = max c M (c) D = M (0) D = mnz p × CCR 0 ≤ mnz p × 27 8C D
Thus, we get the following bound on the overall data access time:

T data ≤ mnz × 1 σ S × 27 8C S + 1 pσ D × 27 8C D .

B Minimizing the number of shared-cache misses

In this section, we study the first objective presented in section 2.2, namely the minimization of the number of shared-cache misses. Indeed, since there are two types of cache misses with different costs, giving priority to the minimization of the mose expensive kind of cache miss is a potential way to improve performances. We therefore introduce an algorithm which aims at minimizing M S and then optimizes M D accordingly.

This can be directly done by adapting the maximum re-use algorithm with parameter λ. Remember that λ is the largest possible integer such that 1 + λ + λ 2 ≤ C S .

As in the maximum re-use algorithm, a block of size λ 2 of C is allocated in the shared cache, together with a row of λ elements of B and one element of A. Then, the block of C is divided into sub-blocks of size 1 × λ p broadcast among every distributed-caches. A row of λ p of B and one element of A are also loaded. The small rows of C are then processed by the cores and written back in shared-cache. Once this is done, another element of A is loaded in shared cache and another row of C could be updated following the same process. This is described in details in Algorithm 2.

Note that the space required in each distributed-cache to process λ p elements of C is 1 + λ p + λ p . For now, we have no assumption on the minimal size of distributed caches. We thus need to make an additional assumption on the distributed cache sizes, C D ≥ φ + √ C S where φ is a constant satisfying φ ≥ 1, to ensure that data fits into distributed-caches, that is to enforce that 1 + 2λ p ≤ C D . As a matter of a fact, we have p ≥ 2 (since we work on multi-cores), and λ ≥ 1 (at least one block of each matrices fits in shared cache). From this we notice that:

1 + 2λ p ≤ 1 + λ ≤ φ + λ ≤ φ + 1 + λ + λ 2 ≤ φ + C S ≤ C D
Therefore with this assumption on cache sizes, we are sure that distributed caches are large enough to perform the required computations.

B.1 Shared-cache misses

The number of shared-cache misses is:

M S = mn λ 2 × z × λ + λ + λ 2 = mn + 2mnz λ
In terms of block operations, the communication-to-computation ratio is therefore:

CCR S = mn + 2mnz λ mnz = 1 z + 2 λ
For very large matrices, where m, n and z are large, the communication-to-computation is asymptotically close to the value

B.2 Distributed-caches misses

The number of distributed-cache misses achieved by our algorithm is:

M D = mn λ 2 × z × λ × p × 1 + λ p + λ p p = mnz p + mnz p + mnz λ
In terms of block operations, the communication-to-computation ratio is therefore:

CCR D = mnz p + mnz p + mnz λ mnz p = 2 + p λ
This communication-to-computation does not depend upon the dimensions of the matrices, and therefore is the same for very large matrices. Hence, we can see that this is far from the lower bound derived earlier, which is

CCR Dopt = 27 8C D .

C Minimizing the number of distributed-cache misses

In this section, we will focus on our second objective which consists to minimize the number of distributed-cache misses. In order to do so, we use the parameter µ defined earlier for the distributed-cache to store in each distributed cache a block of size µ × µ of C, a fraction of line (of size µ) of B and one element of A. Contrarily to the previous algorithm, the block of C will be totally computed before being written back to the shared cache and the distributed memory.

All p cores will work on different blocks of C. Thanks to constraint on the size of caches (p × C D ≤ C S), we know that the shared cache has the capacity to store all temporary data.

The µ × µ blocks of C are distributed among the distributed-caches in a 2-D cyclic way, because it helps reduce (and balance between A and B) the number of shared-cache misses: in this case, assuming that √ p is an integer, we load a

√
foreach core c = 1 . . . p in parallel do Load C c = C[i + offset i × µ, . . . , i + (offset i + 1) × µ; j + offset j × µ, . . . , j + (offset j + 1) × µ]
in the distributed cache of core c for k = 1 to z do Load a row B[k; j, . . . , j + √ pµ] of B in the shared cache

foreach core c = 1 . . . p in parallel do Load B c = B[k; j + offset j × µ, . . . , j + (offset j + 1) × µ] in the distributed cache of core c for i = i + offset i × µ to i + (offset i + 1) × µ do Load the element a = A[k; i] in

C.1 Shared-cache misses

The number of shared-cache misses is:

M S = mn pµ 2 × pµ 2 + z × 2 √ pµ = mn + 2mnz µ √ p
Hence, the communication-to-computation ratio is:

CCR S = mn + 2mnz µ √ p mnz = 1 z + 2 µ √ p
For very large matrices, where m, n and z are large, the communication-to-computation is asymptotically close to the value:

2 µ √ p = 32 8×
√ pC D . This is far from the lower bound

CCR Sopt = 27 8C S derived earlier since √ pC D ≤ pC D ≤ C S .

C.2 Distributed-caches misses

The number of distributed-cache misses achieved by our algorithm is:

M D = mn pµ 2 × p × µ 2 + z × 2µ p = mn p + 2mnz µ × p
Therefore, the communication-to-computation ratio is:

CCR D = mn p + 2mnz µ×p mnz p = 1 z + 2 µ
For very large matrices, where m, n and z are large, the communication-to-computation is asymptotically close to the value 2 µ = 32 8C D . We can see that this is close from the lower bound CCR Dopt = 27 8C D derived earlier.

D Minimizing data access time

Our two objectives are antagonistic, and in both previous approaches, optimizing the number of cache misses of one type leads to a large number of cache misses of the other type. Indeed, minimizing M S ends up with a number of distributed-cache misses proportional to the common dimension of matrices A and B, and in the case of large matrices this is clearly problematic. On the other hand, focusing on M D only is not efficient since we dramatically under-use the shared cache: a large part of it is not utilized. This motivates us to look for a tradeoff between the latter two solutions. However, both kinds of cache misses have different costs, since bandwidths between each level of our memory architecture are different. Hence we have introduced the overall time for data movement, defined as:

T data = M S σ S + M D σ D
Depending on the ratio between cache speeds, this objective provides a tradeoff between both cache miss numbers.

To derive an algorithm optimizing this tradeoff, we start from algorithm presented for optimizing the shared-cache misses. Looking closer to the downside of this algorithm, which is the fact that the part of M D due to the elements of C is proportional to the common dimension z of matrices A and B, we can see that we can reduce this amount by loading blocks of β columns (resp. of rows) of A (resp. B). This way, square blocks of C could be processed longer by the cores before being unloaded and written back in shared-cache instead of being unloaded after that every element of the column of A residing in shared-cache has been used. However, blocks of C must be smaller than before, and instead of being λ 2 blocks, they are now of size α 2 where α and β are defined under the constraint 2α × β + α 2 ≤ C D .

In this case, the sketch of Algorithm 4 is the following: 1. A block of size α × α of C is loaded in the shared cache. Its size satisfies p × µ 2 ≤ α 2 ≤ λ 2 . Both extreme cases are obtained when one of σ D and σ S is negligible in front of the other. 2. In the shared cache, we also load a block from B, of size β × α , and a block from A of size α × β. Thus, we have 2α

× β + α 2 ≤ C D . 3. The α × α block of C is split into sub-

D.1 Shared-cache misses

The number of shared-cache misses is given by:

M S = mn α 2 × z β α 2 + 2αβ = mn + 2mnz α
The communication-to-computation ratio is therefore:

CCR S = 1 z + 2 α
For very large matrices, where m, n and z are large, the communication-to-computation is asymptotically close to the value

D.2 Distributed-caches misses

In the general case (i.e. α > √ pµ), the number of distributed-cache misses achieved by our new algorithm is:

M D = 1 p × mn α 2 × α 2 µ 2 × µ 2 × z β + z β × 2βµ = mn p × z β + 2mnz pµ
The communication-to-computation ratio is therefore 1 β + 2 µ , which for large matrices is asymptotically close to 1 β + 32 8C D . This is far from the lower bound 27 8C D derived earlier. To optimize this CCR, we could try to increase the value of β. However, increasing the parameter β implies a lower value of α, resulting in more shared-cache misses.

Remark. Note that if we are in the special case α = √ pµ, we only need to load each µ × µ sub-block of C once, since a core is only in charge of one sub-block of C, therefore the number of distributed-caches misses becomes:

M D = 1 p × mn α 2 × α 2 µ 2 × µ 2 × 1 + z β × 2βµ = mn p + 2mnz pµ
In this case, we come back to the distributed-cache optimized case, and the distributed CCR is close to the bound.

D.3 Data access time

With this algorithm, we get an overall data access time of:

T data = M S σ S + M D σ D = mn + 2mnz α σ S + mnz pβ + 2mnz pµ σ D
Together with the constraint 2α × β + α 2 ≤ C D , it allows us to compute the best value for parameters α and β, depending on the ratio σ S /σ D . Since we work under the assumption of large matrices, the first term in mn can be neglected in front of the other terms, so basically, our problem reduces to minimizing the following expression:

2 σ S α + 1 pσ D β + 2 pσ D µ
The constraint 2βα + α 2 ≤ C S enables us to express β as a function of α and C S . As a matter of a fact, we have:

β ≤ C S -α 2 2α
Hence, the objective function becomes:

F (α) = 2 σ S α + 2α pσ D (C S -α 2)
Note that we have removed the term 2 pσ D µ because it only depends on µ and therefore is minimal when µ = C S -3/4 -1/2 , i.e. its largest possible value. The derivative F (α) is:

F (α) = 2(C S + α 2) pσ D (C S -α 2) 2 - 1 σ S α 2
And therefore, the root is

α = C S 1 + 2pσ D σ S - 6pσ D σ S + 1 2 pσ D σ S - 1
.

Altogether, the best parameters values in order to minimize the total data access time in the case of square blocks are:

                     α = min      λ, C S 1 + 2pσ D σ S - 6pσ D σ S + 1 2 pσ D σ S -1      β = C S -α 2 2α

E Related work

In [START_REF] Frigo | Cache-oblivious algorithms[END_REF], the authors introduce the ideal-cache model which is a fundamental building block of our study. They also present the cache-oblivious paradigm, which aims to provide asymptotically optimal "cache-unaware" algorithms, and introduce some of them. However, the introduced model is not adapted to multicore processors, but instead focuses only on single-core processors. They show that in that case, a hierarchy or cache could be could be "clustered" and thus, the memory architecture could be restricted to the ideal cache-model. Nevertheless, this results does not hold for multicore processors since caches are now heterogeneous (private and shared). Another interesting contribution is the proof that the ideal cache-model could be simulated in an efficient way with a LRU replacement policy.

In [START_REF] Blelloch | Provably good multicore cache performance for divide-and-conquer algorithms[END_REF], the authors present a general multicore-cache model aiming at modeling the cache architecture of multicore processors; they study divide-and-conquer algorithms for several problems on this model, and they introduce an online scheduler asymptotically matching the sequential cache complexity for both shared and private (or distributed) caches misses, while offering full parallel speedup. Their asymptotic counting of cache misses proves their algorithms to be very efficient. Contrarily to our study, their assume that algorithms are oblivious of cache sizes.

Moreover, they only focus on a particular set of algorithms that are not in the scope of our study.

In [START_REF] Bader | Swarm: A parallel pro-gramming framework for multicore processors[END_REF], the authors introduce a theoretical model for multicore processors intended to be used to analyze the complexity of algorithms on these new platforms. They also describe a framework called SWARM that aims at providing an open-source library for developing software on multicore architecture. They intend to minimize the dominant term of their model, which is either the time complexity, or the time spent to load data from main memory to shared cache, or the time spent into synchronization between cores. However, they do not explicitly use the notion of cache misses; instead, they focus on the number of blocks transferred between shared cache and main memory to express the memory complexity of studied algorithms: distributedcaches are not considered at all in their analysis.

In [START_REF] Irony | Communication lower bounds for distributed-memory matrix multiplication[END_REF], the authors introduce many lower bounds on communication volume for the standard algorithms for matrix multiplication. The scope of their work ranges from one processor and its main memory to several distributed memory processors. They also provide a lower bound for a processor having a fast cache and a large slow memory. However, this work does not provide any results for multicore processors and their peculiar cache hierarchy.

In [START_REF] Pineau | Matrix product on heterogeneous masterworker platforms[END_REF], the authors introduce the Maximum Re-use Algorithm, which is a matrix product algorithm for a master-slave platform. They extend the lower bound introduced in [START_REF] Irony | Communication lower bounds for distributed-memory matrix multiplication[END_REF] to their context, and show that their Maximum Re-use Algorithm is close from this bound for large matrices. However, they do not consider caches nor multicore processors; instead they focus only on single-core processors communicating with their own memory.

Figure 1 :

 1 Figure 1: Multicore architecture model.

Figure 2 :

 2 Figure 2: Data layout for Algorithm 1.

Algorithm 2 :

 2 Adaptation of the maximum re-use algorithm. for Step = 1 to m×n λ 2 do Load a new block C[i, . . . , i + λ; j, . . . , j + λ] of C in the shared cache for k = 1 to z do Load a row B[k; j, . . . , j + λ] of B in the shared cache foreach core c = 1 . . . p in parallel do Load B c = B k; j + c-1 p × λ, . . . , j + c p × λ in the distributed cache of core c for i = i to i + λ do Load the element a = A[k; i] in the shared cache foreach core c = 1 . . . p in parallel do Load the element a = A[k; i] in the distributed cache of core c Load C c = C i ; j + (c -1) × λ p , . . . , j + c × λ p in the distributed cache of core c Compute the new contribution: C c ← C c + a × B c Update block C c in the shared cache Write back the block of C to the main memory

 the shared cache Load the element a = A[k; i] in the distributed cache of core c Compute the new contribution: C c ← C c + a × B c foreach core c = 1 . . . p in parallel do Update block C c in the shared cache Write back the block of C to the main memory

4 .

 4 blocks of size µ × µ which are processed by the different cores. These sub-blocks of C are cyclicly distributed among every distributedcaches. The same holds for the block-row of B which is split into β × µ block-rows and cyclicly distributed, row by row (i.e. by blocks of size 1 × µ), among every distributedcaches. The contribution of the corresponding β (fractions of) columns of A and β (fractions of) lines of B es added to the block of C. Then, another µ × µ block of C residing in shared cache is distributed among every distributed-caches, going back to step 3. 5. As soon as all elements of A and B have contributed to the α × α block of C, another β columns/lines from A/B are loaded in shared cache, going back to step 2. 6. Once the α × α block of C in shared cache is totally computed, a new one is loaded, going back to step 1.

Figure 3 :Algorithm 4 :

 34 Figure 3: Data distribution of matrices A, B and C: light gray block resides in shared-cache, dark gray blocks are distributed among distributed-caches (α = 8, µ = 2, p = 4)

32 8 1 α

 1 which is less close to our previous shared-cache optimized version since α ≤ λ ≈ √ C S .

 Load a new block C block (of size λ × λ) from C in the shared cache for k = 1 to z do Load a row B row (of size λ) from row z of B in the shared cache Distribute B row to the distributed caches for l = 1 to λ do foreach core c in parallel do Load the element a = A[l, k] in the shared and distributed cache Load a row C row (of size λ/p) from C block in the distributed cache Compute the new contribution: C row ← C row + a × B row Write back C row to the shared cache Write back the block C block to main memory Algorithm 1: Adaptation of the maximum re-use algorithm.

	for Step = 1 to m×n λ 2 do
	block-rows and cyclically distributed, row
	by row (i.e. by blocks of size 1×µ), among
	every distributed-cache.
	4. The contribution of the corresponding β
	(fractions of) columns of A and β (frac-
	tions of) lines of B es added to the block of
	C. Then, another µ×µ block of C residing
	in shared cache is distributed among every
	distributed-cache, going back to step 3.
	5. As soon as all elements of A and B have
	contributed to the α × α block of C,
	another β columns/lines from A/B are
	loaded in shared cache, going back to
	step 2.

loaded in the shared cache. Its size satisfies p×µ 2 ≤ α 2 ≤ λ 2 . Both extreme cases are obtained when one of σ D and σ S is negligible in front of the other. 2. In the shared cache, we also load a block from B, of size β×α, and a block from A of size α×β. Thus, we have 2α×β+α 2 ≤ C D . 3. The α × α block of C is split into subblocks of size µ × µ which are processed by the different cores. These sub-blocks of C are cyclicly distributed among every distributed-caches. The same holds for the block-row of B which is split into β × µ 6. Once the α × α block of C in shared cache is totally computed, a new one is loaded, going back to step 1. With this algorithm, we get:

 Adaptation of the maximum re-use algorithm. offset i = (My Core Num() -1) (mod √ p) offset j = c-1 √ p for Step = 1 to m×n pµ 2 do Load a new block C[i, . . . , i + √ pµ; j, . . . , j + √ pµ] of C in the shared cache

	Algorithm 3:
	pµ × √ p × µ elements from a column of √ pµ block of C in shared √ p non contiguous elements are loaded at each √ pµ elements of B. Then, A are sequentially loaded in the shared cache (cache, together with a row of

step), then distributed among the distributed-caches (cores in the same "row" (resp. "column") accumulate the contribution of the same (resp. different) element of A but of different (resp. the same) √ p × µ fraction of row from B).