
HAL Id: hal-02102826
https://hal-lara.archives-ouvertes.fr/hal-02102826v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity analysis of matrix products on multicore
architectures

Mathias Jacquelin, Loris Marchal, Yves Robert

To cite this version:
Mathias Jacquelin, Loris Marchal, Yves Robert. Complexity analysis of matrix products on multicore
architectures. [Research Report] LIP RR-2008-41, Laboratoire de l’informatique du parallélisme. 2008,
16p. �hal-02102826�

https://hal-lara.archives-ouvertes.fr/hal-02102826v1
https://hal.archives-ouvertes.fr

Complexity analysis of matrix product on multicore architectures

Mathias Jacquelin, Loris Marchal and Yves Robert

École Normale Supérieure de Lyon, France
{Mathias.Jacquelin|Loris.Marchal|Yves.Robert}@ens-lyon.fr

LIP Research Report RR2008-41

Abstract

The multicore revolution is underway. Classi-
cal algorithms have to be revisited in order to
take hierarchical memory layout into account.
In this paper, we aim at minimizing the num-
ber of cache misses paid during the execution
of the matrix product kernel on a multicore
processor, and we show how to achieve the
best possible trade-off between shared and dis-
tributed caches.

1 Introduction

Dense linear algebra kernels are the key to
performance for many scientific applications.
Some of these kernels, like matrix multiplica-
tion, have extensively been studied on par-
allel architectures. Two well-known paral-
lel versions are Cannon’s algorithm [4] and
the ScaLAPACK outer product algorithm [2].
Typically, parallel implementations work well
on 2D processor grids: input matrices are sliced
horizontally and vertically into square blocks;
there is a one-to-mapping of blocks onto physi-
cal resources; several communications can take
place in parallel, both horizontally and verti-
cally. Even better, most of these communi-
cations can be overlapped with (independent)
computations. All these characteristics render
the matrix product kernel quite amenable to
an efficient parallel implementation on 2D pro-
cessor grids.

However, algorithms based on a 2D grid (vir-
tual) topology are not well suited for multi-
core architectures. In particular, in a multi-
core architecture, memory is shared, and data

accesses are performed through a hierarchy
of caches, from shared caches to distributed
caches. We need to take further advantage of
data locality, in order to minimize data move-
ment. This hierarchical framework resembles
that of out-of-core algorithms [6] (the shared
cache being the disk) and that of master-slave
implementations with limited memory [8] (the
shared cache being the master’s memory). The
latter paper presents the Maximum Re-use Al-
gorithm which aims at minimizing the commu-
nication volume from the master to the slaves.
Here, we adapt this study to multicore archi-
tectures, by taking both cache levels into ac-
count. Due to lack of space, the review of re-
lated work is provided in the companion re-
search report [7].

2 Problem statement

2.1 Modeling multicore architec-
tures

A major difficulty of this study is to come up
with a realistic but still tractable model of a
multicore processor. We assume that such a
processor is composed of p cores, and that each
core has the same computing speed. The pro-
cessor is connected to a memory, which is sup-
posed to be large enough to contain all neces-
sary data (we do not deal with out-of-core exe-
cution here). The data path from the memory
to a computing core goes through two levels
of caches. The first level of cache is shared
among all cores, and has size CS , while the
second level of cache is distributed: each core
has its own private cache, of size CD. Caches

1

CS

σS

Main Memory

σDσDσD

CD . . .

. . .Core1 . . .Corei

CD . . . CD

Corep Processing cores

Shared cache

Distributed caches

Figure 1: Multicore architecture model.

are supposed to be inclusive, which in our case
means that the shared cache contains at least
all the data stored in every distributed cache.
Therefore, this cache must be larger than the
union of all distributed caches: CS ≥ p × CD.
Our caches are also “fully associative”, and
can therefore store any data from main mem-
ory. Figure 1 depicts the multicore architecture
model.

The hierarchy of caches is used as follows.
When a data is needed in a computing core, it
is first sought in the distributed cache of this
core. If the data is not present in this cache,
a distributed-cache miss occurs, and the data
is then sought in the shared cache. If it is
not present in the shared cache either, then
a shared-cache miss occurs, and the data is
loaded from the memory in the shared cache
and afterward in the distributed cache. When
a core tries to write to an address that is not
in the caches, the same mechanism applies.
Rather than trying to model this complex be-
havior, we will assume in the following that
we have an ideal cache model [5]: we suppose
that we are able to totally control the behavior
of each cache, and that we can load any data
into any cache (shared of distributed), with the
constraint that a data has to be first loaded in
the shared cache before it could be loaded in
the distributed cache. Although somewhat un-
realistic, this simplified model has been proven
not too far from reality: it is shown in [5] that
an algorithm causing N cache misses with an
ideal cache of size L will not cause more than
2N cache misses with a cache of size 2L and
implementing a classical LRU replacement pol-
icy.

In the following, our objective is twofold: (i)

minimize the number of cache misses during
the computation a matrix product, and (ii)
minimize the predicted data access time of the
algorithm. To this end, we need to model the
time needed for a data to be loaded in both
caches. To get a simple and yet tractable
model, we consider that cache speed is char-
acterized by its bandwidth. The shared cache
has bandwidth σS , thus a block of size S needs
S/σS time-unit to be loaded from the mem-
ory in the shared cache, while each distributed
cache has bandwidth σD. Moreover, we assume
that concurrent loads to several distributed
caches are possible without contention.

Finally, the purpose of the algorithms de-
scribed below is to compute the classical ma-
trix product C = A × B. In the following,
we assume that A has size m × z, B has size
z × n, and C has size m× n. We use a block-
oriented approach, to harness the power of
BLAS routines [2]. Thus, the atomic elements
that we manipulate are not matrix coefficients
but rather square blocks of coefficients of size
q × q. Typically, q = 80 or 100 on most plat-
forms.

2.2 Minimizing communication vol-
ume

The key point to performance in a multicore
architecture is an efficient use of the data. A
simple way to assess data locality is to count
and to minimize the number of cache misses,
that is the number of times each data has to be
loaded in a cache. Since we have two types of
caches in our model, we try to minimize both
the number of misses in the shared cache and
the number of misses in the distributed caches.

2

We denote by MS the number of cache misses
in the shared cache. As for distributed caches,
since accesses from different caches are concur-
rent, we denote by MD the maximum of all
distributed caches misses: if M (c)

D is the num-
ber of cache misses for the distributed cache of
core c, MD = maxcM

(c)
D .

In a second step, since the former two objec-
tives are conflicting, we aim at minimizing the
overall time Tdata required for data movement.
With the previously introduced bandwidth, it
can be expressed as:

Tdata =
MS

σS
+
MD

σD

Depending on the ratio between cache speeds,
this objective provides a tradeoff between both
cache miss quantities.

2.3 Lower bound on communication

In [6], Irony, Toledo and Tiskin propose a
lower bound on the number of communications
needed to perform a matrix product. Their
study focuses on a system with a memory of
size M and concludes that the communication-
to-computation ratio of a matrix product is

lower-bounded by
√

27
8M . We have extended

this study to our hierarchical cache architec-
ture (see details in [7]). In our case, the
communication-to-computation is the ratio be-
tween the number of cache misses and the num-
ber of operations. With comp(c) being amount
of computation done by core c, we can define
this ratio for both type of caches: CCRS =
MS/(

∑
c comp(c)) is the CCR for the shared

cache, and CCRD = 1
p

∑p
c=1(MD/comp(c)) is

the CCR for the distributed cache (averaged
over all cores c).

The overall amount of computation for the
matrix product is mnz, and in all our algo-
rithms, this amount is equally balanced among
cores, so that comp(c) = mnz/p for all cores.
In both case, we have been able to extend the
previous bound:

CCRS ≥
√

27
8CS

and CCRD ≥
√

27
8CD

.

3 Maximum re-use algorithm
for multicore architectures

In the analysis of [6], lower bounds are ob-
tained when the three matrices A, B and C
are equally accessed throughout time. This
naturally leads to allocating one third of the
available memory space to each matrix. In-
deed, the authors of [6] proves that, un-
der some conditions, this framework leads
to a communication-to-computation ratio of
O
(
mnz√
M

)
, of the same order as the lower

bound. However, we point out that all three
matrices do not have the same influence on
the communications; in particular, elements of
C are modified during the computation. This
leads to trying to re-use elements of C as much
as possible, which is the basis of the algorithm
presented in [8]. It proposes to split the avail-
able memory into 1 + µ + µ2 blocks, so as
to store a square block Ci1...i2,j1...j2 of size µ2

of matrix C, a row Bi1...i2,j of size µ of ma-
trix B and one element Ai,j of matrix A (with
i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2). This allows
to computes Ci1...i2,j1...j2+ = Ai,j × Bi1...i2,j .
Then, with the same block of C, other com-
putations can be accumulated by considering
other elements of A and B. The block of
C is stored back only when it has been pro-
cessed entirely, thus avoiding any future need
of reading this block to accumulate other con-
tributions. Using this framework, we can reach
a communication-to-computation ratio of 2√

M
for a memory of size M , for large matrices.

To adapt the maximum re-use algorithm
to multicore architectures, we must take into
account both cache levels. Depending on
our objective, we adapt the previous data
allocation scheme so as to fit with the shared
cache, with the distributed caches, or with
both. We define two parameters that are
derived from the maximum re-use algorithm,
and that will prove helpful to compute the size
of the block of C that should be loaded in the
shared cache or in a distributed cache:
• λ is the largest integer with 1 +λ+λ2 ≤ CS ;
• µ is the largest integer with 1+µ+µ2 ≤ CD.

3

k

k

l

A C

λ

B

λ

Brow

a

Cblock

Crow

in core c

Figure 2: Data layout for Algorithm 1.

In the following, we assume that λ is a mul-
tiple of µ, so that a block of size λ2 that fits in
the shared cache can be easily divided in blocks
of size µ2 that fit in the distributed caches.

3.1 Minimizing the number of
shared-cache misses

In this section, we study the first objective pre-
sented in Section 2.2, namely the minimization
of the number of shared-cache misses. This
can be directly done by adapting the maxi-
mum re-use algorithm with parameter λ. As in
the maximum re-use algorithm, a square block
Cblock of size λ2 of C is allocated in the shared
cache, together with a row of λ elements of
B and one element of A. Then, the rows of
Cblock is distributed and computed by the dif-
ferent cores. This is described in details in Al-
gorithm 1, and the memory layout is depicted
in Figure 2.

In this algorithm, the whole matrix C is
loaded in the shared cache, thus resulting in
mn cache misses. For the computation of each
block of size λ2, z rows of size λ are loaded from
B, and z×λ elements of A are accessed. Since
there are mn/λ2 steps, this amounts to a total
of MS = mn + 2mnz/λ shared-cache misses.
For large matrices, this leads to a shared-cache
CCR of 2/λ, which is close to the lower bound.

3.2 Minimizing the number of
distributed-cache misses

Our next objective is to minimize the number
of distributed-cache misses. To this end, we
use the parameter µ defined earlier to store in
each distributed cache a square block of size

µ2 of C, a fraction of row (of size µ) of B and
one element of A. Contrarily to the previous
algorithm, the block of C will be totally com-
puted before being written back to the shared
cache. All p cores work on different blocks of C.
Thanks to the constraint on the size of caches
(p×CD ≤ CS), we know that the shared cache
has the capacity to store all necessary data.
The overall number of distributed cache misses
on a core will then be MD = 1

p(mn+ 2mnz/µ)
(see [7] for details). For large matrices, this
leads to a distributed-cache CCR of 2/µ, which
is close to the lower bound.

3.3 Minimizing data access time

To get a tradeoff between minimizing the
number of shared-cache and distributed-cache
misses, we now aim at minimizing Tdata =
MS
σS

+ MD
σD

. In this case, the sketch of the algo-
rithm, detailed in [7], is the following:

1. A block from C of size α × α is loaded in
the shared cache. Its size satisfies p×µ2 ≤
α2 ≤ λ2. Both extreme cases are obtained
when one of σD and σS is negligible in
front of the other.

2. In the shared cache, we also load a block
from B, of size β×α, and a block from A of
size α×β. Thus, we have 2α×β+α2 ≤ CD.

3. The α × α block of C is split into sub-
blocks of size µ × µ which are processed
by the different cores. These sub-blocks
of C are cyclicly distributed among every
distributed-caches. The same holds for the
block-row of B which is split into β × µ
block-rows and cyclically distributed, row
by row (i.e. by blocks of size 1×µ), among
every distributed-cache.

4. The contribution of the corresponding β
(fractions of) columns of A and β (frac-
tions of) lines of B es added to the block of
C. Then, another µ×µ block of C residing
in shared cache is distributed among every
distributed-cache, going back to step 3.

5. As soon as all elements of A and B have
contributed to the α × α block of C,
another β columns/lines from A/B are
loaded in shared cache, going back to
step 2.

4

for Step = 1 to m×n
λ2 do

Load a new block Cblock (of size λ× λ) from C in the shared cache
for k = 1 to z do

Load a row Brow (of size λ) from row z of B in the shared cache
Distribute Brow to the distributed caches
for l = 1 to λ do

foreach core c in parallel do
Load the element a = A[l, k] in the shared and distributed cache
Load a row Crow (of size λ/p) from Cblock in the distributed cache
Compute the new contribution: Crow ← Crow + a×Brow

Write back Crow to the shared cache

Write back the block Cblock to main memory

Algorithm 1: Adaptation of the maximum re-use algorithm.

6. Once the α×α block of C in shared cache
is totally computed, a new one is loaded,
going back to step 1.

With this algorithm, we get: Tdata = 1
σS

(mn+
2mnz
α) + 1

σD
(mnzpβ + 2mnz

pµ). Together with the
constraint 2α×β+α2 ≤ CD, it allows to com-
pute the best value for parameters α and β,
depending on the ratio σS/σD (again, see de-
tails in [7]).

4 Conclusion

In this short paper, we proposed cache-aware
algorithms for multicore processors. We have
proposed a model for multicore memory layout.
Using this model, we have extended a lower
bound on cache misses, and proposed cache-
aware algorithms. For both types of caches,
our algorithms reach a CCR which is close to
the lower bound for large matrices. We also
propose an algorithm for minimizing the over-
all data access time, which realizes a tradeoff
between shared and distributed cache misses.
This work will be extended to more complex
operations, like LU factorization, and is to be
validated through simulations or real experi-
ments.

References

[1] David A. Bader, Varun Kanade, and
Kamesh Madduri. Swarm: A parallel pro-

gramming framework for multicore proces-
sors. In IPDPS, pages 1–8, 2007.

[2] L. S. Blackford, J. Choi, A. Cleary,
E. D’Azeuedo, J. Demmel, I. Dhillon,
S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Wha-
ley. ScaLAPACK user’s guide. Society
for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1997.

[3] Guy E. Blelloch, Rezaul A. Chowdhury,
Phillip B. Gibbons, Vijaya Ramachandran,
Shimin Chen, and Michael Kozuch. Prov-
ably good multicore cache performance for
divide-and-conquer algorithms. In SODA
’08: Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algo-
rithms, pages 501–510, Philadelphia, PA,
USA, 2008. Society for Industrial and Ap-
plied Mathematics.

[4] Lynn Elliot Cannon. A cellular com-
puter to implement the Kalman filter algo-
rithm. PhD thesis, Montana State Univer-
sity, 1969.

[5] Matteo Frigo, Charles E. Leiserson, Har-
ald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In FOCS,
pages 285–298, 1999.

[6] Dror Irony, Sivan Toledo, and Alexandre
Tiskin. Communication lower bounds for

5

distributed-memory matrix multiplication.
J. Parallel Distrib. Comput., 64(9):1017–
1026, 2004.

[7] Mathias Jacquelin, Loris Marchal, and
Yves Robert. Complexity analysis of ma-
trix product on multicore architectures.
Research report, LIP, December 2008.

[8] Jean-François Pineau, Yves Robert,
Frédéric Vivien, and Jack Dongarra.
Matrix product on heterogeneous master-
worker platforms. 13th ACM SIGPLAN
Symposium on Principles and Practice
of Parallel Programming, February 20-23
2008.

6

A Toledo’s lower bound on communications

In this section, we derive a lower bound on the number of cache misses. Our analysis is based
on the work in [6]. We consider a computing system (which consists of one or several computing
cores) using a cache of size Z. We estimate the number of computations that can be performed
owing to Z consecutive cache misses, that is owing to Z consecutive load operations. We recall
that each matrix element is in fact a matrix block of size q× q. We use the following notations
:

• Let ηold, νold, and ξold be the number of blocks in the cache used by blocks of A, B and C
just before the beginning of the Z cache misses.

• Let ηread, νread, and ξread be the number of blocks of A, B and C read in the main memory
during these Z cache misses.

Before the beginning of the Z cache misses, the cache holds at most Z blocks of data, therefore,
after Z cache misses, we have: {

ηold + νold + ξold ≤ Z
ηread + νread + ξread = Z

(1)

A.1 Loomis-Whitney’s inequality

The following lemma, given in [6] and based on Loomis-Whitney inequality, is valid for any
conventional matrix multiplication algorithm C = AB, where A is m × z, B is z × n and C
is m × n. A processor that contributes to NC elements of C and accesses NA elements of A
and NB elements of B can perform at most

√
NANBNC elementary multiplications. According

to this lemma, if we let K denote the number of elementary multiplications performed by the
computing system, we have:

K ≤
√
NANBNC

No more than (ηold + ηread)q2 elements of A are accessed, hence NA = (ηold + ηread)q2. The
same holds for B and C: NB = (νold + νread)q2 and NC = (ξold + ξread)q2. Let us simplify the
notations using the following variables:

ηold + ηread = η × Z
νold + νread = ν × Z
ξold + ξread = ξ × Z

(2)

Then the following equation is obtained:

K =
√
ηνξ × Z

√
Z × q3 (3)

Writing K = km
√
mq3, we obtain the following system of equation:

MAXIMIZE k SUCH THAT{
k ≤
√
ηνξ

η + ν + ξ ≤ 2

Note that the second inequality comes from Equation (1). This system admits a solution which

is η = ν = ξ =
2
3

and k =
√

8
27 . This gives us a lower bound on the communication-to-

computation ratio (in terms of blocks) for any matrix multiplication algorithm:

CCRopt =
Z

k × Z
√
Z

=

√
27
8Z

7

A.2 Bound on shared-cache misses

We will first use the previously obtained lower bound to the study of shared-cache misses,
considering everything above this cache level as a single processor and the main memory as a
master which sends and receives data. Therefore, with Z = CS , we have a lower bound on the
communication-to-computation ratio for shared-cache misses:

CCRSopt =
CS
K

=
√

27
8CS

A.3 Bound on distributed-caches misses

In the case of the distributed caches, we first apply the previous result, on a single core c, with
cache size CD. We thus have

CCRc ≤
√

27
8CD

We have define the overall distributed CCR as the average of all CCRc, so this result also holds
for the CCRD:

CCRD ≤
√

27
8CD

Indeed, we could even have a stronger result, on the minimum of all CCRc.

A.4 Bound on overall data access time

The previous bound on the CCR can be extended to the data access time, as it is defined as a
linear combination of both MS and MD:

Tdata =
MS

σS
+
MD

σD

We can bound MS using the bound on the CCR:

MS = CCRS ×mnz ≤ mnz ×
√

27
8CS

As for distributed-cache misses, it is more complex, since MD is the maximum of all misses
on distributed caches, and CCRD is the average CCR among all cores. In order to get a
tight bound, we consider only algorithms where both computation and cache misses are equally
distributed among all cores (this applies to all algorithms developed in this paper). In this case,
we have

MD = max
c
M

(c)
D = M

(0)
D =

mnz

p
× CCR0 ≤

mnz

p
×
√

27
8CD

Thus, we get the following bound on the overall data access time:

Tdata ≤ mnz ×
(

1
σS
×
√

27
8CS

+
1
pσD

×
√

27
8CD

)
.

8

B Minimizing the number of shared-cache misses

In this section, we study the first objective presented in section 2.2, namely the minimization
of the number of shared-cache misses. Indeed, since there are two types of cache misses with
different costs, giving priority to the minimization of the mose expensive kind of cache miss is
a potential way to improve performances. We therefore introduce an algorithm which aims at
minimizing MS and then optimizes MD accordingly.

This can be directly done by adapting the maximum re-use algorithm with parameter λ.
Remember that λ is the largest possible integer such that 1 + λ+ λ2 ≤ CS .

As in the maximum re-use algorithm, a block of size λ2 of C is allocated in the shared cache,
together with a row of λ elements of B and one element of A. Then, the block of C is divided
into sub-blocks of size 1 × λ

p broadcast among every distributed-caches. A row of λ
p of B and

one element of A are also loaded. The small rows of C are then processed by the cores and
written back in shared-cache. Once this is done, another element of A is loaded in shared cache
and another row of C could be updated following the same process. This is described in details
in Algorithm 2.

Note that the space required in each distributed-cache to process λ
p elements of C is 1+ λ

p + λ
p .

For now, we have no assumption on the minimal size of distributed caches. We thus need to
make an additional assumption on the distributed cache sizes, CD ≥ φ +

√
CS where φ is a

constant satisfying φ ≥ 1, to ensure that data fits into distributed-caches, that is to enforce
that 1 + 2λ

p ≤ CD.
As a matter of a fact, we have p ≥ 2 (since we work on multi-cores), and λ ≥ 1 (at least one

block of each matrices fits in shared cache). From this we notice that:

1 +
2λ
p
≤ 1 + λ ≤ φ+ λ ≤ φ+

√
1 + λ+ λ2 ≤ φ+

√
CS ≤ CD

Therefore with this assumption on cache sizes, we are sure that distributed caches are large
enough to perform the required computations.

Algorithm 2: Adaptation of the maximum re-use algorithm.
for Step = 1 to m×n

λ2 do
Load a new block C[i, . . . , i+ λ; j, . . . , j + λ] of C in the shared cache
for k = 1 to z do

Load a row B[k; j, . . . , j + λ] of B in the shared cache
foreach core c = 1 . . . p in parallel do

Load Bc = B
[
k; j + c−1

p × λ, . . . , j + c
p × λ

]
in the distributed cache of core c

for i′ = i to i+ λ do
Load the element a = A[k; i′] in the shared cache
foreach core c = 1 . . . p in parallel do

Load the element a = A[k; i′] in the distributed cache of core c
Load Cc = C

[
i′; j + (c− 1)× λ

p , . . . , j + c× λ
p

]
in the distributed cache of

core c
Compute the new contribution: Cc ← Cc + a×Bc
Update block Cc in the shared cache

Write back the block of C to the main memory

9

B.1 Shared-cache misses

The number of shared-cache misses is:

MS =
mn

λ2
× z ×

(
λ+ λ+ λ2

)
= mn+

2mnz
λ

In terms of block operations, the communication-to-computation ratio is therefore:

CCRS =
mn+ 2mnz

λ

mnz
=

1
z

+
2
λ

For very large matrices, where m, n and z are large, the communication-to-computation is
asymptotically close to the value 2√

CS
=
√

32
8CS

, which is close from the lower bound CCRSopt =√
27

8CS
derived earlier.

B.2 Distributed-caches misses

The number of distributed-cache misses achieved by our algorithm is:

MD =
mn
λ2 × z × λ× p×

(
1 + λ

p + λ
p

)
p

=
mnz

p
+
mnz

p
+
mnz

λ

In terms of block operations, the communication-to-computation ratio is therefore:

CCRD =
mnz
p + mnz

p + mnz
λ

mnz
p

= 2 +
p

λ

This communication-to-computation does not depend upon the dimensions of the matrices,
and therefore is the same for very large matrices. Hence, we can see that this is far from the
lower bound derived earlier, which is CCRDopt =

√
27

8CD
.

C Minimizing the number of distributed-cache misses

In this section, we will focus on our second objective which consists to minimize the number
of distributed-cache misses. In order to do so, we use the parameter µ defined earlier for the
distributed-cache to store in each distributed cache a block of size µ× µ of C, a fraction of line
(of size µ) of B and one element of A. Contrarily to the previous algorithm, the block of C will
be totally computed before being written back to the shared cache and the distributed memory.

All p cores will work on different blocks of C. Thanks to constraint on the size of caches
(p× CD ≤ CS), we know that the shared cache has the capacity to store all temporary data.

The µ × µ blocks of C are distributed among the distributed-caches in a 2-D cyclic way,
because it helps reduce (and balance between A and B) the number of shared-cache misses:
in this case, assuming that

√
p is an integer, we load a

√
pµ × √pµ block of C in shared

cache, together with a row of
√
pµ elements of B. Then,

√
p × µ elements from a column of

A are sequentially loaded in the shared cache (
√
p non contiguous elements are loaded at each

step), then distributed among the distributed-caches (cores in the same “row” (resp. “column”)
accumulate the contribution of the same (resp. different) element of A but of different (resp.
the same)

√
p× µ fraction of row from B).

10

Algorithm 3: Adaptation of the maximum re-use algorithm.
offseti = (My Core Num()− 1) (mod

√
p)

offsetj = b c−1√
p c

for Step = 1 to m×n
pµ2 do

Load a new block C[i, . . . , i+
√
pµ; j, . . . , j +

√
pµ] of C in the shared cache

foreach core c = 1 . . . p in parallel do
Load
Cc = C[i+offseti ×µ, . . . , i+(offseti +1)×µ; j+offsetj ×µ, . . . , j+(offsetj +1)×µ]
in the distributed cache of core c

for k = 1 to z do
Load a row B[k; j, . . . , j +

√
pµ] of B in the shared cache

foreach core c = 1 . . . p in parallel do
Load Bc = B[k; j + offsetj × µ, . . . , j + (offsetj + 1)× µ] in the distributed cache
of core c
for i′ = i+ offseti × µ to i+ (offseti + 1)× µ do

Load the element a = A[k; i′] in the shared cache
Load the element a = A[k; i′] in the distributed cache of core c
Compute the new contribution: Cc ← Cc + a×Bc

foreach core c = 1 . . . p in parallel do
Update block Cc in the shared cache

Write back the block of C to the main memory

C.1 Shared-cache misses

The number of shared-cache misses is:

MS =
mn

pµ2
×
(
pµ2 + z × 2

√
pµ
)

= mn+
2mnz
µ
√
p

Hence, the communication-to-computation ratio is:

CCRS =
mn+ 2mnz

µ
√
p

mnz
=

1
z

+
2

µ
√
p

For very large matrices, where m, n and z are large, the communication-to-computation
is asymptotically close to the value: 2

µ
√
p =

√
32

8×√pCD
. This is far from the lower bound

CCRSopt =
√

27
8CS

derived earlier since
√
pCD ≤ pCD ≤ CS .

C.2 Distributed-caches misses

The number of distributed-cache misses achieved by our algorithm is:

MD =
mn
pµ2 × p×

(
µ2 + z × 2µ

)
p

=
mn

p
+

2mnz
µ× p

Therefore, the communication-to-computation ratio is:

CCRD =
mn
p + 2mnz

µ×p
mnz
p

=
1
z

+
2
µ

11

For very large matrices, where m, n and z are large, the communication-to-computation is
asymptotically close to the value 2

µ =
√

32
8CD

. We can see that this is close from the lower bound

CCRDopt =
√

27
8CD

derived earlier.

D Minimizing data access time

Our two objectives are antagonistic, and in both previous approaches, optimizing the number
of cache misses of one type leads to a large number of cache misses of the other type. Indeed,
minimizing MS ends up with a number of distributed-cache misses proportional to the common
dimension of matrices A and B, and in the case of large matrices this is clearly problematic.
On the other hand, focusing on MD only is not efficient since we dramatically under-use the
shared cache: a large part of it is not utilized.

This motivates us to look for a tradeoff between the latter two solutions. However, both
kinds of cache misses have different costs, since bandwidths between each level of our memory
architecture are different. Hence we have introduced the overall time for data movement, defined
as:

Tdata =
MS

σS
+
MD

σD

Depending on the ratio between cache speeds, this objective provides a tradeoff between both
cache miss numbers.

To derive an algorithm optimizing this tradeoff, we start from algorithm presented for opti-
mizing the shared-cache misses. Looking closer to the downside of this algorithm, which is the
fact that the part of MD due to the elements of C is proportional to the common dimension z
of matrices A and B, we can see that we can reduce this amount by loading blocks of β columns
(resp. of rows) of A (resp. B). This way, square blocks of C could be processed longer by the
cores before being unloaded and written back in shared-cache instead of being unloaded after
that every element of the column of A residing in shared-cache has been used. However, blocks
of C must be smaller than before, and instead of being λ2 blocks, they are now of size α2 where
α and β are defined under the constraint 2α× β + α2 ≤ CD.

In this case, the sketch of Algorithm 4 is the following:
1. A block of size α×α of C is loaded in the shared cache. Its size satisfies p×µ2 ≤ α2 ≤ λ2.

Both extreme cases are obtained when one of σD and σS is negligible in front of the other.
2. In the shared cache, we also load a block from B, of size β×α , and a block from A of size
α× β. Thus, we have 2α× β + α2 ≤ CD.

3. The α × α block of C is split into sub-blocks of size µ × µ which are processed by the
different cores. These sub-blocks of C are cyclicly distributed among every distributed-
caches. The same holds for the block-row of B which is split into β × µ block-rows and
cyclicly distributed, row by row (i.e. by blocks of size 1 × µ), among every distributed-
caches.

4. The contribution of the corresponding β (fractions of) columns of A and β (fractions of)
lines of B es added to the block of C. Then, another µ × µ block of C residing in shared
cache is distributed among every distributed-caches, going back to step 3.

5. As soon as all elements of A and B have contributed to the α × α block of C, another β
columns/lines from A/B are loaded in shared cache, going back to step 2.

6. Once the α× α block of C in shared cache is totally computed, a new one is loaded, going
back to step 1.

12

A11

A51

β

z

A

B12B11 B16B15

zβ

B

C12

α

Core4Core2

µ
C11

C21 C22

µ

Core3Core1

α

α√
p

C

α√
p

Figure 3: Data distribution of matrices A, B and C: light gray block resides in shared-cache,
dark gray blocks are distributed among distributed-caches (α = 8, µ = 2, p = 4)

Algorithm 4: Adaptation of the maximum re-use algorithm.
offseti = (My Core Num()− 1) (mod

√
p)

offsetj = b c−1√
p c

for Step = 1 to m×n
α2 do

Load a new block C[i, . . . , i+ α; j, . . . , j + α] of C in the shared cache
foreach core c = 1 . . . p in parallel do

Load
Cc = C[i+offseti× α√

p , . . . , i+(offseti+1)× α√
p ; j+offsetj× α√

p , . . . , j+(offsetj +1)× α√
p]

in the distributed cache of core c
for Substep = 1 to z

β do
k = 1 + (Substep− 1)× β
Load a new block row B[k, . . . , k + β; j, . . . , j + α] of B in the shared cache
Load a new block column A[i, . . . , i+ α; 1 + (k − 1)× β, . . . , 1 + k × β] of A in the
shared cache
foreach core c = 1 . . . p in parallel do

for k′ = k to k′ = k + β do
Load Bc = B[k′; j + offsetj × α√

p , . . . , j + (offsetj + 1)× α√
p] in the

distributed cache of core c
for i′ = i+ offseti × α√

p to i+ (offseti + 1)× α√
p do

Load the element a = A[i′, k′] in the distributed cache of core c
Compute the new contribution: Cc ← Cc + a×Bc

Update block Cc in the shared cache

Write back the block of C to the main memory

13

D.1 Shared-cache misses

The number of shared-cache misses is given by:

MS =
mn

α2
× z

β

(
α2 + 2αβ

)
= mn+

2mnz
α

The communication-to-computation ratio is therefore:

CCRS =
1
z

+
2
α

For very large matrices, where m, n and z are large, the communication-to-computation

is asymptotically close to the value
√

32
8

1
α which is less close to our previous shared-cache

optimized version since α ≤ λ ≈
√
CS .

D.2 Distributed-caches misses

In the general case (i.e. α >
√
pµ), the number of distributed-cache misses achieved by our new

algorithm is:

MD =
1
p
× mn

α2
×
[
α2

µ2
×
(
µ2 × z

β
+
z

β
× 2βµ

)]
=
mn

p
× z

β
+

2mnz
pµ

The communication-to-computation ratio is therefore 1
β+ 2

µ , which for large matrices is asymp-

totically close to 1
β +
√

32
8CD

. This is far from the lower bound
√

27
8CD

derived earlier. To optimize
this CCR, we could try to increase the value of β. However, increasing the parameter β implies
a lower value of α, resulting in more shared-cache misses.

Remark. Note that if we are in the special case α =
√
pµ, we only need to load each µ × µ

sub-block of C once, since a core is only in charge of one sub-block of C, therefore the number
of distributed-caches misses becomes:

MD =
1
p
× mn

α2
×
[
α2

µ2
×
(
µ2 × 1 +

z

β
× 2βµ

)]
=
mn

p
+

2mnz
pµ

In this case, we come back to the distributed-cache optimized case, and the distributed CCR is
close to the bound.

D.3 Data access time

With this algorithm, we get an overall data access time of:

Tdata =
MS

σS
+
MD

σD
=
mn+ 2mnz

α

σS
+

mnz
pβ + 2mnz

pµ

σD

Together with the constraint 2α × β + α2 ≤ CD, it allows us to compute the best value for
parameters α and β, depending on the ratio σS/σD. Since we work under the assumption of
large matrices, the first term in mn can be neglected in front of the other terms, so basically,
our problem reduces to minimizing the following expression:

2
σSα

+
1

pσDβ
+

2
pσDµ

14

The constraint 2βα+α2 ≤ CS enables us to express β as a function of α and CS . As a matter
of a fact, we have:

β ≤ CS − α2

2α
Hence, the objective function becomes:

F (α) =
2
σSα

+
2α

pσD(CS − α2)

Note that we have removed the term 2
pσDµ

because it only depends on µ and therefore is minimal
when µ = b

√
CS − 3/4− 1/2c, i.e. its largest possible value.

The derivative F ′(α) is:

F ′(α) =
2(CS + α2)

pσD(CS − α2)2
− 1
σSα2

And therefore, the root is

α =

√√√√√√√CS

1 +
2pσD
σS

−
√

6pσD
σS

+ 1

2
(
pσD
σS
− 1
) .

Altogether, the best parameters values in order to minimize the total data access time in the
case of square blocks are:

α = min

λ,
√√√√√√√CS

1 +
2pσD
σS

−
√

6pσD
σS

+ 1

2
(
pσD
σS
− 1
)

β =
⌊
CS − α2

2α

⌋

E Related work

In [5], the authors introduce the ideal-cache model which is a fundamental building block of our
study. They also present the cache-oblivious paradigm, which aims to provide asymptotically
optimal “cache-unaware” algorithms, and introduce some of them. However, the introduced
model is not adapted to multicore processors, but instead focuses only on single-core processors.
They show that in that case, a hierarchy or cache could be could be “clustered” and thus, the
memory architecture could be restricted to the ideal cache-model. Nevertheless, this results
does not hold for multicore processors since caches are now heterogeneous (private and shared).
Another interesting contribution is the proof that the ideal cache-model could be simulated in
an efficient way with a LRU replacement policy.

In [3], the authors present a general multicore-cache model aiming at modeling the cache archi-
tecture of multicore processors; they study divide-and-conquer algorithms for several problems
on this model, and they introduce an online scheduler asymptotically matching the sequential
cache complexity for both shared and private (or distributed) caches misses, while offering full
parallel speedup. Their asymptotic counting of cache misses proves their algorithms to be very
efficient. Contrarily to our study, their assume that algorithms are oblivious of cache sizes.

15

Moreover, they only focus on a particular set of algorithms that are not in the scope of our
study.

In [1], the authors introduce a theoretical model for multicore processors intended to be
used to analyze the complexity of algorithms on these new platforms. They also describe a
framework called SWARM that aims at providing an open-source library for developing software
on multicore architecture. They intend to minimize the dominant term of their model, which is
either the time complexity, or the time spent to load data from main memory to shared cache,
or the time spent into synchronization between cores. However, they do not explicitly use the
notion of cache misses; instead, they focus on the number of blocks transferred between shared
cache and main memory to express the memory complexity of studied algorithms: distributed-
caches are not considered at all in their analysis.

In [6], the authors introduce many lower bounds on communication volume for the standard
algorithms for matrix multiplication. The scope of their work ranges from one processor and its
main memory to several distributed memory processors. They also provide a lower bound for
a processor having a fast cache and a large slow memory. However, this work does not provide
any results for multicore processors and their peculiar cache hierarchy.

In [8], the authors introduce the Maximum Re-use Algorithm, which is a matrix product
algorithm for a master-slave platform. They extend the lower bound introduced in [6] to their
context, and show that their Maximum Re-use Algorithm is close from this bound for large
matrices. However, they do not consider caches nor multicore processors; instead they focus
only on single-core processors communicating with their own memory.

16

