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Abstract

This position paper advocates the need for schedul-
ing. Even if resources at our disposal would become
abundant and cheap, not to say unlimited and free
(a perspective that is not granted), we would still
need to assign the right task to the right device. We
give several simple examples of such situations where
resource selection and allocation is mandatory. Fi-
nally we expose our views on the important algorith-
mic challenges that need be addressed in the future.

1 Introduction

Already in the former century, scheduling was some-
times considered as a minor, and more or less use-
less, activity. Young colleagues and talented students
could hear through the grapevine that “Scheduling is
this thing that people in academia like to think about
but that people who do real stuff sort of ignore”. Most
of them were discouraged and went into bad topics
like programming languages, operating systems and
networks. Some bravely stayed in the field of algo-
rithm design and scheduling techniques. At least we
did.

Today the question is raised much stronger. With
so many billions of (mostly idle) computers in the
world, all interconnected by these (mostly empty)
network pipes, the resources at our disposal become
abundant and cheap, not to say unlimited and free.
Well, at least there is a chance for this dream to
become true. Who would then need a complicated
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scheduling algorithm while a greedy resource allo-
cation is likely to do the job? Demand-driven ap-
proaches like first-come first-serve or round-robin will
perform extremely well in most situations. In short,
who needs a scheduler with infinite resources handy
and ready? Should the scheduling community in
general, and ourselves in particular, do something
else, more useful, and more trendy, like, say, cloud
computing with energy-aware self-programming mul-
ticores?

Usually this questioning does not last long. The
first reason is that after some time spent with sys-
tolic arrays, SIMD and MIMD machines, hypercube
algorithms, task graphs and pipelined workflows, you
get to like the mathematical beauty of the art of giv-
ing complicated solutions to simple problems (as op-
posed to giving simple solutions to complicated prob-
lems, the dominant activity in the afore-mentioned
bad topics). The second reason is that we see a bright
future for scheduling. This position paper is going to
explain why (but expect no more jokes, only technical
statements, from now on).

The rest of the paper is organized as follows. First
we tentatively define the activity of scheduling in
Section 2. Next in Section 3, we explain why the
classical macro-dataflow model should be replaced by
more realistic communication models such as the one-
port and bounded multi-port ones. In Section 4 we
present a simple case-study, that of bag-of-tasks ap-
plications, in order to mathematically assess the im-
portance of resource selection and load assignment
strategies. Then we address more realistic (and also
more complicated) problems in Section 5. Finally we
state some final remarks in Section 6.
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2 Scheduling / demand-driven?

The word scheduling has different meanings. In
this paper we deal with what is usually called static
scheduling, an activity which starts with a set of tasks
(organized as a precedence graph, or DAG), and with
a target computing platform, as input, and consists
in mapping the former on the latter with the goal to
optimize some objective function (often the total ex-
ecution time, or makespan). Static schedulers need a
reasonably good knowledge of the application param-
eters. More precisely, the structure of the DAG, and
estimations of node and edge weights (which corre-
spond to computation costs and communication vol-
umes respectively) are fed into the scheduler.

This is different from dynamic scheduling, or better
demand-driven resource allocation, which consists in
mapping jobs onto shared computational resources.
Typically, very little is known about the jobs, maybe
rough estimates of their execution times in some
cases, and nothing is known in advance about their
incoming rate. In such situations, there is not much
else to do than assigning new loads to currently idle
resources, satisfying requests with a simple FIFO pol-
icy.

The terms static and dynamic are misleading, be-
cause a scheduler can (dynamically) take new deci-
sions on the fly, based upon newly acquired infor-
mation on application and platform parameters. We
refer to scheduling as the activity of designing algo-
rithms and heuristics (e.g., a list schedule) in order to
deploy an application onto a platform. On the con-
trary, a demand-driven approach is a system-oriented
approach where resources are allocated upon demand
to incoming requests. Of course this is an overly sim-
plified classification and there is a continuum. When
several applications (rather than one) are simultane-
ously deployed by a single user on a platform shared
by many other users (rather than on a dedicated plat-
form), the difference between both approaches nar-
rows. To our view, the difference goes beyond off-
line versus on-line, or compile-time versus run-time.
Basically, the more we know about what we need to
schedule, and the more refined the decisions that the
scheduler can take.

Maybe it was only a rhetorical question, or a
“philosophical” debate, but we wanted to clarify the
context!

3 Kill the bad model

Distributed-memory parallel computing platforms
pose many challenges to the algorithm designer and
the programmer. An obvious factor contributing to
this complexity is the need for network communica-
tion, whose performance is difficult to model in a way
that is both precise and conducive to understanding
the performance of algorithms. Older parallel com-
puters used a store-and-forward approach to commu-
nicate messages, which was not efficient but simple
to understand and to model. Essentially, the time
for sending a message from a processor p to a proces-
sor p′ is c(p, p′) = dist(p, p′) × (L + s/b), where s is
the length of the message, dist(p, p′) is the distance
between p and p′ in number of hops, L is the commu-
nication start-up cost, and b is the steady-state band-
width. In modern computers, messages are split into
packets that are dynamically routed between proces-
sors, possibly using different paths. Messages can
be routed efficiently if there are no contentions on
the communication links (or “hot spots”). The dis-
tance between communicating processors is no longer
the single most important factor for communication
performance. In fact, if several processors are to ex-
change data simultaneously, then the more structured
the communication patterns, the more efficient they
are, making the role of locality on performance at
best indirect.

In light of the complexity of performance model-
ing for network communications, the vast majority
of scheduling works and results are for a very simple
model, which is as follows. If a task T communicates
data to a successor task T ′, the cost is modeled as

cost(T, T ′) =
{

0 if alloc(T ) = alloc(T ′)
c(T, T ′) otherwise,

where alloc(T ) denotes the processor that executes
task T , and c(T, T ′) is defined by the application
specification. The above model states that the time
for communication between two tasks running on the
same processor is negligible. The model also as-
sumes that the processors are part of a fully con-
nected clique. This so-called macro-dataflow model
makes two main assumptions: (i) communication can
occur as soon as data are available; and (ii) there is no
contention for network links. Assumption (i) is rea-
sonable as communications can overlap with compu-
tations in most modern computers. Assumption (ii)
is much more questionable. Indeed, there is no phys-
ical device capable of sending, say, 1, 000 messages
to 1, 000 distinct processors, at the same speed as if

2



there were a single message. In the worst case, it
would take 1, 000 times longer (serializing all mes-
sages). In the best case, the output bandwidth of
the network card of the sender would be a limiting
factor. In other words, assumption (ii) amounts to as-
suming infinite network resources! Nevertheless, this
assumption is omnipresent in the traditional schedul-
ing literature. Perhaps it was the price to pay to
derive tractable mathematical results on makespan
minimization?

Our conviction is that we need to turn to more re-
alistic communication models when modeling concur-
rent communications. We outline two such models,
that account for the interference between concurrent
communications.

Bounded multi-port – Assuming an application
that runs threads on, say, a node that uses multicore
technology, the network link could be shared by sev-
eral incoming and outgoing communications. There-
fore, the sum of the bandwidths allotted by the oper-
ating system to all communications cannot exceed the
bandwidth of the network card. The bounded multi-
port model proposed by Hong and Prasanna [16]
assesses that an unbounded number of communica-
tions can thus take place simultaneously, provided
that they share the total available bandwidth. We
point out that recent multi-threaded communication
libraries such as MPICH2 [17] now allow for initiat-
ing multiple concurrent send and receive operations,
thereby providing practical realizations of the multi-
port model.

One-port – To avoid unrealistically optimistic re-
sults obtained with the multi-port model, a radical
option is simply to forbid concurrent communications
at a node. In the one-port model, a node can either
send data or receive data, but not simultaneously.
This model is thus very pessimistic as real-world plat-
forms can achieve some concurrency of communica-
tion. On the other hand, it is straightforward to de-
sign algorithms that follow this model and thus to
determine their performance a priori.

The one-port model fully accounts for the hetero-
geneity of the platform, as each link has a differ-
ent bandwidth. It is used by Bhat et al. [8, 9] for
fixed-sized messages. They advocate its use because
“current hardware and software do not easily enable
multiple messages to be transmitted simultaneously.”
Even if non-blocking multi-threaded communication
libraries allow for initiating multiple send and re-

ceive operations, they claim that all these operations
“are eventually serialized by the single hardware port
to the network.” Experimental evidence of this fact
has recently been related by Saif and Parashar [21],
who report that asynchronous sends become serial-
ized as soon as message sizes exceed a few megabytes.
Their results hold for two popular implementations of
the MPI message-passing standard, MPICH on Linux
clusters and IBM MPI on the SP2.

There are more complicated models such as those
that deal with bandwidth sharing protocols [19, 18].
Such models are very interesting for performance
evaluation purposes, but they almost always prove
too complicated for algorithm design purposes. For
this reason, we prefer to deal with the bounded multi-
port or the one-port model. We believe that these
models represent a good trade-off between realism
and tractability.

4 Case study: bags-of-tasks

In this section we study the deployment of BOINC-
like applications [11] under the previous one-port and
bounded multi-port models. We start with the sim-
plest problem, that of scheduling a single bag-of-tasks
made up of a large number of same-size tasks onto a
master-worker platform. Next we proceed with sev-
eral bag-of-tasks applications onto the same simple
master-worker platform. Finally we briefly discuss
both problems on general platforms.

4.1 Steady-sate scheduling

An idea to circumvent the difficulty of makespan min-
imization is to lower the ambition of the scheduling
objective. Instead of aiming at the absolute min-
imization of the execution time, why not consider
asymptotic optimality? Often, the motivation for de-
ploying an application on a parallel platform is that
the number of tasks is very large. In this case, the op-
timal execution time with the optimal schedule may
be very large and a small deviation from it is likely
acceptable. To state this informally: if there is a
nice (e.g., polynomial) way to derive, say, a schedule
whose length is two hours and three minutes, as op-
posed to an optimal schedule that would run for only
two hours, we would be satisfied.

This approach has been pioneered by Bertsimas
and Gamarnik [7]. Steady-state scheduling allows one
to relax the scheduling problem in many ways. The
costs of the initialization and clean-up phases are ne-
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Figure 1: Star-shaped master-worker platform.

glected. The initial integer formulation is replaced
by a continuous or rational formulation. The pre-
cise scheduling of computations and communications
is not required, or at least not before the optimal
schedule is outlined. The main idea is to characterize
the activity of each resource during each time unit:
which (rational) fraction of time is spent computing,
which is spent receiving or sending to which neigh-
bor. Such activity variables are gathered into a linear
program, which includes conservation laws that char-
acterize the global behavior of the system. The actual
schedule then arises naturally from these quantities.

4.2 One bag-of-tasks

In this section, we target simple heterogeneous star-
shaped platforms. The master M initially holds a
large collection of atomic tasks. Refer to Figure 1 for
notations:

• The master M sends tasks to workers sequen-
tially, and without preemption (one-port model).

• There is full computation/communication over-
lap at each worker.

• A task consists of an input file of size δ
(in Bytes), and a computation job of size w
(in Flops).

• Worker Pi has a communication bandwidth bi:
it receives a task in δ/bi time units.

• Worker Pi has a computation speed si: it pro-
cesses a task in w/si time units.

• The master M does not compute any task (but
a master with computation speed s0 can be sim-
ulated as a worker with the same computation
speed and infinite bandwidth).

When dealing with a single bag-of-tasks applica-
tion, we assume that δ = w = 1 without loss of
generality (processor speeds and bandwidths can be
scaled).

The optimal steady-state is defined as follows: for
each worker, determine the fraction of time spent
computing tasks, and the fraction of time spent re-
ceiving tasks; for the master, determine the fraction
of time spent communicating along each communica-
tion link. The objective is to maximize the (average)
number of tasks processed per time unit. Formally,
after a start-up phase, we want the resources to oper-
ate in a periodic mode, with worker Pi executing αi

tasks per time unit. We point out that αi is a rational
number, not an integer, so that there remains some
work to reconstruct a feasible schedule, i.e., with an
integer number of tasks.

One-port – First we express the constraints for
computations: Pi must compute αi tasks within one
time unit, thus we must have si ≥ αi, and

αi/si ≤ 1 . (1)

As for communications, the master M sends tasks
sequentially to the workers, and it must send αi tasks
per time unit along the link to Pi. Thus, by summing
all communication times we obtain

p∑
i=1

αi/bi ≤ 1 . (2)

Finally, the objective is to maximize the through-
put, namely,

ρ =
p∑

i=1

αi .

Altogether, we have a linear programming problem
with rational unknowns:

Maximize ρ,
subject to

ρ =
∑p

i=1 αi (i)∑p
i=1 αi/bi ≤ 1 (ii)

∀i, αi/si ≤ 1 (iii)
∀i, αi ≥ 0 (iv)

(LP)

It turns out that the linear program is so simple
that it can be solved analytically. Indeed it is a frac-
tional knapsack problem [12] with value-to-cost ra-
tio bi. We should start with the “item” (worker) of
the largest ratio, i.e., the largest bi, and take (assign)
as many tasks as we can, i.e., min (bi, si). Here is the
detailed procedure:

1. Sort the workers by increasing communication
times. Re-number them so that b1 ≥ b2 . . . ≥ bk.
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2. Let q be the largest index so that
∑q

i=1
si

bi
≤ 1.

Workers P1 to Pq will be fully active (and each
of them will execute si tasks per time unit). If
q < p, let ε = 1 −

∑q
i=1

si

bi
, otherwise let ε = 0.

Worker Pq+1 (if it exists) will be only partially
active, and will execute min(ε · bq+1, sq+1) tasks
per time unit.

3. Workers Pq+2 to Pp (if they exist) are discarded;
they will not participate in the computation.

4. The optimal throughput is then

ρ =
q∑

i=1

si + min(ε · bq+1, sq+1) .

When q = p the result is expected. It basically
says that workers can be fed with tasks fast enough so
that they are all kept computing steadily. However, if
q < p, the result is surprising. Indeed, if the commu-
nication bandwidth is limited, some workers will par-
tially starve. In the optimal solution these partially
starved workers are those with slow communication
rates, regardless of their processing speeds. In other
words, a slow processor with a fast communication
link is to be preferred to a fast processor with a slow
communication link. This optimal strategy is often
called bandwidth-centric because it delegates work to
the fastest communicating workers, regardless of their
computing speeds. Of course, slow workers will not
contribute much to the overall throughput.

M

DiscardedFully active

                     

20
10 4 2

1

P5P4P3P2P1
7 4 10 20 20

(a) Platform with bandwidths and speeds.

Tasks Communication Computation
7 tasks to P1 7/b1 = 7/20 7/s1 = 1
4 tasks to P2 4/b2 = 8/20 4/s2 = 1
1 tasks to P3 1/b3 = 5/20 1/s3 = 1/10
(b) Achieved throughput for the bandwidth-centric strategy

Figure 2: Example under the one-port model.

Consider the example shown in Figure 2. Work-
ers are sorted by non-increasing bi. We see that
s1
b1

+ s2
b2

= 15
20 < 1 and that s1

b1
+ s2

b2
+ s3

b3
= 65

20 ≥ 1,
so that q = 2 and ε = 1

4 in the previous for-
mula. Therefore, P1 and P2 will be fully active, con-
tributing α1 + α2 = s1 + s2 = 11 tasks per time

unit. P3 will only be partially active, contributing
α3 = min(ε · bq+1, sq+1 = min(1, 10) = 1. P4 and
P5 will be discarded. The optimal throughput is
ρ = 7 + 4 + 1 = 12. Figure 2(b) shows that 12 tasks
are computed every time unit.

It is important to point out that if we had used
a purely greedy (demand-driven) strategy, we would
have reached a much lower throughput. Indeed,
the master would serve the workers in round-robin
fashion, and we would execute only 5 tasks every
1
20 + 1

10 + 1
4 + 1

2 +1 = 19
10 time units, therefore achiev-

ing a throughput of only ρ = 10/19 ≈ 0.53. The
conclusion is that even when resources are cheap and
abundant, resource selection is key to performance.

The good news is that the actual periodic sched-
ule can easily be constructed from the linear pro-
gram, and that this schedule is asymptotically op-
timal. See [4] for details.

Bounded multi-port – How can we solve the
same problem using the bounded multi-port model
instead of the one-port model? Refer to the one-port
linear program again. Because messages can now be
sent in parallel, we replace Equation (ii) by

∀i, αi

bi
≤ 1 , (ii-a)

which states that the bandwidth of the link from M to
Pi is not exceeded. We also have to enforce a global
bound related to the bandwidth B of the master’s
network card: ∑p

i=1 αi

B
≤ 1 . (ii-b)

Replacing Equation (ii) by both Equations (ii-a)
and (ii-b) is all that is needed to change to the
bounded multi-port model.

However, this modification has a dramatic im-
pact on the solution and on the scheduler. Re-
source selection is not needed any longer. If we
enroll all (or sufficiently many) available resources
and feed each of them using a pure demand-driven
basis (thereby enforcing that αi ≤ min(si, bi)), we
end up reaching the maximum throughput ρopt =
min (B,

∑n
i=1 min(si, bi)) dictated by the master’s

outgoing communication capacity.
This is quite contradictory with our initial claim. Is

the complexity an artifact of the one-port model? Is
it enough to change the communication model for the
algorithmician and his static scheduler to disappear?
We will see in the following that even in the “sim-
ple” multi-port model, static knowledge is required
to efficiently schedule several applications.
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4.3 Several bags-of-tasks

We now consider that a single scheduler has to cope
with tasks belonging to several applications. There
are K application (A1, . . . , AK), and each application
consists of a large number of same-size tasks, to be
executed on the same master-worker platform. Some
new notations are needed:

• δk is the size (in Bytes) of an input file for ap-
plication Ak; processor Pi receives a task of Ak

in δk

bi
time units.

• wk is the size (in Flops) of a task for application
Ak; processor Pi executes a task of Ak in wk

si
time

units.

When dealing with several applications in steady
state mode, αk

i denotes the local throughput of ap-
plication Ak on processor Pi. In other words, pro-
cessor Pi executes αk

i tasks of applications Ak during
one time unit. As previously, αk

i might be a rational
number. The total throughput ρk of an application
Ak is then given by ρk =

∑p
i=1 αk

i .
Since we have several applications to schedule on

the same platform, we have to modify the objective
to take all applications into account. We assume that
some applications may be more important than oth-
ers. Each application Ak is provided with a priority
πk, so that if πk = 2πk′ , the throughput of Ak must
be twice the throughput of Ak′ . Our objective is then
to maximize mink

{
ρk

πk

}
.

One-port – We extend the linear program (LP) to
several applications. For the one-port model, we get
the following formulation:

Maximize min
k

{
ρk

πk

}
subject to

ρk =
p∑

i=1

αk
i (M-i)

p∑
i=1

K∑
k=1

αk
i

δk

bi
≤ 1 (M-ii)

∀i,
K∑

k=1

αk
i

wk

si
≤ 1 (M-iii)

∀i,∀k αk
i ≥ 0 (M-iv)

(M-LP)

We characterize each application Ak by its
communication-to-computation ratio (CCR) δk/wk:

the larger the CCR, the more communication-
intensive the application. This parameter has a crit-
ical influence on the shape of the solution. In an op-
timal solution, applications with larger CCR should
be allocated to processors with larger bandwidth. Re-
sources are split in ordered “slices”, each slice being
devoted to the processing of application Ak. Fig-
ure 3 illustrates the affinity property [5]: if appli-
cations are sorted in non-increasing order of CCR
( δ1

w1
≥ δ2

w2
≥ · · · ≥ δK

wK
) and processors are sorted

in non-increasing bandwidth (b1 ≥ b2 ≥ · · · ≥ bp),
then there exists indices a0, a1, . . . aK such that only
processors Pu, u ∈ [ak−1, ak] execute tasks of type k
in the optimal solution.

increasing CCR

A2 A3A1

A1 A2 A3

M

                                           

increasing bandwidth

Figure 3: Shape of the optimal one-port solution.

In [5] we have experimentally compared the follow-
ing three simple algorithms:

• A pure demand-driven strategy, where the sched-
uler sends a task of any application to the first
worker posting a request

• A coarse-grain strategy: we assemble all ap-
plications into a single big one and use the
bandwidth-centric algorithm explained above.
For example, consider two applications with pri-
orities π1 = 3 and π2 = 1. We gather the tasks
into bundles where each bundle contains three
tasks of application A1 and one task of applica-
tion A2. We now have reduced the problem to a
single, coarse-grain application to schedule.

• An affinity-based strategy, which relies on the
above affinity property to pair application tasks
and computation/communication resources.

The third strategy dramatically outperformed the
first two. We expected the result for the first strategy.
But it is insightful that the second strategy, although
optimal for a single bag-of-tasks, was not “clever”
enough for several ones.
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Bounded multi-port – We now move to the
multi-port model. As for one application, we can
easily adapt the linear program in order to cope with
this model. Constraint (M-ii) is replaced by two con-
straints, one bounding the capacity of each edge:

∀i,
K∑

k=1

αk
i

δk

bi
≤ 1, (M-ii-a)

and one bounding the network capacity of the master:

p∑
i=1

K∑
k=1

αk
i

δk

B
≤ 1. (M-ii-b)

Although the affinity between applications and pro-
cessors does not result in a slicing property as in the
one-port model, it still has a big impact on the opti-
mal solution.

M

10 1

Pu Pv

(B = ∞)

1 10

A1 A2

δ1 = 1 δ2 = 10
w1 = 10 δ2 = 1
π1 = 1 π2 = 1

(a) Platform and applications.

throughput for A1 for A2 objective
on Pu on Pv on Pu on Pv

optimal 0 1 1 0 1
coarse-grain 1/11 1/11 1/11 1/11 1/11

(b) Throughput achieved by both strategies.

Figure 4: Example of multiple applications with
multi-port model.

Consider the simple problem described in Fig-
ure 4(a), with two processors and two applications of
same priority. Processor P1 has a large computation
speed but a small bandwidth, while it is the oppo-
site for P2. Application A1 is computation-intensive
with CCR 1/10, while A2 is communication-intensive,
with CCR 10. In the optimal solution as given by
the linear program, tasks of application A2 are ex-
ecuted only by processor P1, while processors P2 is
in charge of all tasks of application A1. This results
in a throughput of one task per time unit for each
application.

If we gather both applications into a coarse-grain
application, we get tasks composed of one task of A1

and one task of A2. The parameters of the coarse-
grain application are δCG = 11 and wCG = 11. Each
processor is only able to process 1/11 tasks during
each time unit, and the throughput is dramatically

decreased. Note that in this toy example, we have
not bounded the network capacity of the master.

How would a pure demand-driven scheduler behave
on this example? This is hard to predict, as it de-
pends on the initial tasks sent to each processor: if
by chance, the scheduler sends a task of A2 to P1, and
one of A1 to P2, then both tasks will be completed
simultaneously and both processors will request some
more work. If the scheduler repeats its initial choice,
then it will reach the optimal throughput. On the
contrary, if it makes the opposite choice (sending A1

to P1 and A2 to P2), then the processing of both
tasks will be slowed down, leading to a throughput of
1/100.

Why take the risk? In a multi-application set-
ting, demand-driven scheduling can be very unsta-
ble. Its seems reasonable to approximate its average
performance by considering the coarse-grain sched-
uler, which represents the case where the fraction of
each application sent to a processor does not depend
on the target processor. In the multi-port model, the
demand-driven strategy gives the best throughput for
a single application, so we could expect a good per-
formance with the resulting coarse-grain application.
However, we have shown that its performance can be
significantly reduced because it does not consider the
affinity between processors and applications.

For the one-port model, the demand-driven strat-
egy performs poorly even with a single application.
Due to the high complexity of the one-port model,
one could argue that the problems come from the
limited capacity of the master, and that it would be
sufficient to enhance its network capacity, or even to
duplicate the server in charge of sending tasks for the
scheduling complexity to disappear. However, the
example of Figure 4 shows that even with unlimited
network resources on the master and with the sim-
ple multi-port model, executing multiple applications
with a demand-driven strategy leads to sub-optimal
performance.

4.4 Platform selection

We have just shown the usefulness of a scheduler that
performs resource selection, and assigns the best-
suited application load to each enrolled resource: the
throughput achieved for one or several bags-of-tasks
is higher (and by an arbitrary factor) than that pro-
vided by demand-driven strategies. This observation
holds true for the simplest possible platform, a single-
level tree.
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In practice the problem is more complicated. Ei-
ther the platform is given, most likely in the form of
a (hierarchical) multi-level tree, where each partici-
pating node has enrolled some neighboring resources.
Or the platform is to be built out of, say, widely scat-
tered and distributed resources (a cluster here, a su-
percomputer there, and a large network of worksta-
tions elsewhere). In the latter case, the user needs:

• either to extract the most efficient tree out of the
general platform graph, which looks difficult be-
cause of the huge combinatorial set of possibilites
to explore;

• or to deploy its application using the whole plat-
form, which looks difficult too because the user
will face in this case the complexity induced by
cycles in the platform graph.

No need to go into technical details here, the reader
will be easily convinced that every problem is indeed
difficult. For a single bag-of-tasks, the throughput
achieved by the best tree can be arbitrarily bad com-
pared to that of the general platform [4]. With sev-
eral bags-of-tasks on a fixed tree, complex algorithms
must be used to achieve a good throughput [5].

5 Multi-criteria scheduling

So far we focused on maximizing the throughput, i.e.,
the number of tasks processed per time unit. How-
ever, even for simple BOINC-like applications, several
other important optimization criteria should be con-
sidered to fulfill users expectations. In the following,
we start by introducing workflow applications, which
consist of pipelined DAGs (rather than independent
tasks). Then we list many possible objectives for
these applications, and we discuss how schedulers can
deal with several (usually conflicting) objectives si-
multaneously.

5.1 Structured workflows

A bag-of-tasks application (Section 4) is a collec-
tion of identical independent tasks. A workflow is
a collection of identical task graphs, or DAGs (hence
a single bag-of-tasks is a workflow whose DAG re-
duces to a single node). Workflows naturally arise
in many frameworks. Take the example of a JPEG
encoder. You cannot apply the Fast Discrete Co-
sine Transformation [23] on your JPEG encoder (see
http://www.jpeg.org/) before some pre-processing on

the image: scaling, color space conversion, and so on.
As a consequence, the application graph of the JPEG
encoder is a linear chain, to be executed successively
on each incoming image. Of course, rather than just
chains, we can have fork or fork-join graphs, or series-
parallel graphs, or even arbitrary DAGs.

Classical scheduling aims at minimizing the
makespan of a single DAG: a single data set goes
through the application graph. With workflows we
have pipelined DAGs, because we operate on a collec-
tion of data sets that are executed in a pipeline fash-
ion. Each data set is input to the application graph
and traverses it until its processing is complete. Sev-
eral data sets can be processed concurrently. Map-
ping and/or scheduling consists in assigning tasks to
resources, so as to minimize one or several objectives.
Again, a task (also called a stage) is in fact a collec-
tion of identical tasks to be executed for each data
set (think of the images entering the JPEG encoder).

5.2 Objective functions

For workflow applications, the first objective that
comes to mind is throughput maximization: the goal
is to process as many data sets per time unit as pos-
sible. However, looking back at classical scheduling,
makespan minimization was an important objective
too. This remains true for workflows, and in partic-
ular for real-time applications. The definition must
be adapted, and we talk of latency rather than of
makespan, in order to avoid confusion. The latency
is the time elapsed between the beginning and the end
of the execution of a given data set, hence it measures
the response time of the system to process the data
set entirely. Note that it may well be the case that
different data sets have different latencies (because
they are mapped onto different processor sets), hence
the latency is defined as the maximum response time
over all data sets. Note also that minimizing the la-
tency is antagonistic to maximizing the throughput.
For a linear chain application, latency is minimized
by assigning the whole application to a single pro-
cessor, thus working in a fully sequential way: no
communication is paid. However throughput can be
increased by distributing tasks over processors and
working in a pipelined manner. Already we guess
that trade-offs will have to be found between these
criteria. Indeed, several work dealt with both these
criteria, for instance see [22, 6].

With the advent of large-scale heterogeneous plat-
forms, resources may be cheap and abundant, but
resource failures (processors/links) are more likely to
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occur and have an adverse effect on the applications.
Not only every user is quite likely to face unrecov-
erable hardware failures when deploying applications
on clusters or grids [14, 15, 1, 13], but unrecover-
able interruptions can also take place in other impor-
tant frameworks, such as loaned/rented computers
being suddenly reclaimed by their owners, as dur-
ing an episode of cycle-stealing [2, 10, 20]. Conse-
quently, there is an increasing need for developing
reliable schedules. One more optimization criterion
that should be maximized is the reliability of the
schedule, given a failure model for the resources.

Another trendy objective emerges for current plat-
forms, namely the energy minimization objective.
Green scheduling aims at minimizing energy con-
sumption, by running processors at lower frequen-
cies [3], or by reducing the number of processors en-
rolled. Of course being green often involves running
at a slower pace, thereby reducing the application
throughput.

Finally, even more objectives will appear in a
multi-application setting. It was easy with several
bags-of-tasks, because we assumed fixed priority fac-
tors (Section 4.3). More generally, some form of fair-
ness must be guaranteed between all the applications.
Typical measures are the maximum stretch of an ap-
plication or the sum of all application stretches. The
stretch of an application is the slowdown factor in-
curred by its execution time when sharing resources
with the other applications. Add different release
dates and deadlines for each application, and con-
template the difficulty of this scheduling problem!

5.3 Dealing with multi-criteria

How to deal with so many objective functions? In tra-
ditional approaches, one would form a linear combi-
nation of the different objectives and treat the result
as the new objective to optimize for. But is it natural
for the user to maximize the quantity 0.7T + 0.3R,
where T is the throughput and R the reliability?
What about adding latency and energy parameters
into the story? Obviously, the problem here is that
we mix apples and bananas: the criteria are very dif-
ferent in nature and it does not make much sense for
a user to make a linear combination of them.

Users are more likely to ask questions like ”I want
a frame rate T and a response time L for my JPEG
encoder, what is the least amount of energy that I
will consume?”. Thus we advocate the use of multi-
criteria with thresholds. To give another example,
we would aim at maximizing the throughput of the

application, but accepting only schedules whose relia-
bility is at least 99%. Now, each criteria combination
can be handled in a natural and meaningful way: one
single criterion is optimized, under the condition that
a threshold is enforced for all other criteria.

Several interesting trade-offs appear when dealing
with multi-criteria optimizations. Let us illustrate
one of them with a little case study: the application
graph is a linear chain, and we target throughput and
reliability objectives. In order to increase reliability, a
solution consists in replicating a task, or set of tasks,
onto several resources. Then each data set is entirely
processed by several resources, and if some of the re-
sources fail during execution, the processing is not in-
terrupted. In the extreme case, we could replicate the
whole chain onto each resource, and even if all pro-
cessors but one fail, we still get the result. However,
the throughput would be very low for such a highly
reliable schedule. For throughput maximization, we
would rather split the chain and assign each task to a
different processor, in order to process different data
sets in parallel. Moreover, we can also replicate each
task onto several processors, but this time to increase
the throughput: for instance if we replicate a task
on two processors, the first one would process even-
numbered data sets, while the second processor would
process odd-numbered data sets. If this task was the
bottleneck of the application, then the throughput
can be doubled. Of course this is much less reliable
because a single failure stops the whole application.

In such situations, some knowledge of the applica-
tion and platform parameters may help the scheduler
decide which tasks to group onto the same proces-
sor set, and for each set, which processors are doing
replication for reliability and which ones are doing
replication for throughput. Needless to say, the story
becomes even more complex when adding more ob-
jectives, and when tackling applications whose graph
is an arbitrary DAG. Demand-driven strategies are
quite likely to fail, even with an infinity of resources.

6 Conclusion

In this position paper, we have explained what
scheduling means to us, and why we do believe that
it is a mandatory activity. But first we must for-
get the macro-dataflow model of the scheduling lit-
erature, and use the one-port or bounded multi-port
models instead.

We started with a glance at BOINC-like applica-
tions, introducing steady-state scheduling. Through
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this case study, we advocated the importance of going
divisible (using non-integer number of tasks). Sched-
ules can then be expressed in a compact periodic
manner, as opposed to the full-length schedule de-
scriptions of classical scheduling. Despite the sim-
plicity of the problem, we have shown the importance
of resource selection, even if resources are abundant
and cheap.

Then, the story got more complicated with the
introduction of multi-criteria scheduling: makespan
minimization is not relevant enough in most situa-
tions. Users also care about throughput, reliability,
energy, fairness, and so on. However, rather than lin-
ear combinations, it makes much more sense to op-
timize only one criterion, given that a threshold is
enforced for the others. Often the criteria are antag-
onistic, which leads to many algorithmic challenges
to tackle.

Altogether we gave several examples for which the
design of a good scheduling algorithm was a “sine-
qua-non” to obtain good performances. Of course,
problems are even more complicated in real life, and
the scheduler gets even more useful. Further tech-
niques can be developed if the knowledge of the plat-
form and/or of the application is only partial or not
fully accurate. One can schedule pipelined appli-
cations by phases and re-inject currently acquired
knowledge for the next phase, thereby exploiting up-
to-date parameters. Otherwise, if the platform pa-
rameters are subject to variations (not to speak of
unrecoverable interruptions), we can design robust
algorithms able to react to these variations, through
the use of stochastic models.

With the advent of multicores, and more impor-
tantly of clusters of multicores, additional problems
will arise. Schedulers will have to cope with new lo-
cality rules, and to trade-off between (fast but scarce)
memory accesses and (slower but unlimited) network
communications. Most likely, yet another level of hi-
erarchy (outermost tiling) will be needed. We intend
to address these forthcoming algorithmic challenges.
As claimed in the beginning, we do view a bright fu-
ture for schedulers!
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