
HAL Id: hal-02102806
https://hal-lara.archives-ouvertes.fr/hal-02102806

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Complexity of Mapping Linear Chain
Applications onto Heterogeneous Platforms

Anne Benoit, Yves Robert, Eric Thierry

To cite this version:
Anne Benoit, Yves Robert, Eric Thierry. On the Complexity of Mapping Linear Chain Applications
onto Heterogeneous Platforms. [Research Report] LIP RR-2008-32, Laboratoire de l’informatique du
parallélisme. 2008, 12p. �hal-02102806�

https://hal-lara.archives-ouvertes.fr/hal-02102806
https://hal.archives-ouvertes.fr

On the Complexity of Mapping Linear Chain Applications

onto Heterogeneous Platforms

Anne Benoit, Yves Robert and Eric Thierry

LIP, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
UMR 5668 - Université de Lyon - CNRS - ENS Lyon - UCB Lyon - INRIA

{Anne.Benoit|Yves.Robert|Eric.Thierry}@ens-lyon.fr

October 2008

LIP Research Report RR-2008-32

Abstract

In this paper, we explore the problem of mapping simple application patterns onto large-scale
heterogeneous platforms. An important optimization criteria that should be considered in such a
framework is the latency, or makespan, which measures the response time of the system in order
to process one single data set entirely. We focus in this work on linear chain applications, which
are representative of a broad class of real-life applications. For such applications, we can consider
one-to-one mappings, in which each stage is mapped onto a single processor. However, in order
to reduce the communication cost, it seems natural to group stages into intervals. The interval
mapping problem can be solved in a straightforward way if the platform has homogeneous
communications: the whole chain is grouped into a single interval, which in turn is mapped onto
the fastest processor. But the problem becomes harder when considering a fully heterogeneous
platform. Indeed, we prove the NP-completeness of this problem. Furthermore, we prove
that neither the interval mapping problem nor the similar one-to-one mapping problem can be
approximated by any constant factor (unless P=NP).

Key words: pipeline graphs, interval mappings, latency, makespan, complexity results, NP-
hardness, approximation.

1

1 Introduction

Mapping applications onto parallel platforms is a difficult challenge. Several scheduling and load-
balancing techniques have been developed for homogeneous architectures (see [8] for a survey) but
the advent of heterogeneous clusters has rendered the mapping problem even more difficult.

In this context, a structured programming approach rules out many of the problems which
the low-level parallel application developer is usually confronted to, such as deadlocks or process
starvation. Moreover, many real applications draw from a range of well-known solution paradigms,
such as pipelined or farmed computations. High-level approaches based on algorithmic skeletons [4,
6] identify such patterns and seek to make it easy for an application developer to tailor such a
paradigm to a specific problem. A library of skeletons is provided to the programmer, who can rely
on these already coded patterns to express the communication scheme within its own application.
Moreover, the use of a particular skeleton carries with it considerable information about implied
scheduling dependencies, which we believe can help address the complex problem of mapping a
distributed application onto a heterogeneous platform.

In this paper, we consider applications that can be expressed as pipeline graphs. Typical appli-
cations include digital image processing, where images have to be processed in steady-state mode. A
well known pipeline application of this type is for example JPEG encoding (http://www.jpeg.org/).
In such workflow applications, a series of data sets (tasks) enter the input stage and progress from
stage to stage until the final result is computed. Each stage has its own communication and compu-
tation requirements: it reads an input file from the previous stage, processes the data and outputs
a result to the next stage. For each data set, initial data is input to the first stage, and final results
are output from the last stage. One of the key metrics for such applications is the latency, i.e.,
the time elapsed between the beginning and the end of the execution of a given data set. Hence it
measures the response time of the system to process the data set entirely.

Due to the possible local memory accesses, the rule of the game is always to map a given stage
onto a single processor: we cannot process half of the tasks on a processor and the remaining
tasks on another without exchanging intra-stage information, which might be costly and difficult
to implement. In other words, a processor that is assigned a set of stages will execute the operations
required by these stages (input, computation and output) for all the tasks fed into the pipeline.
Communications are paid only if two consecutive stages are not mapped onto the same processor,
and the latency is the sum of computation and communication costs over the whole pipeline.

The optimization problem can be stated informally as follows: which stage to assign to which
processor in order to minimize the latency? There are several mapping strategies. The more
restrictive mappings are one-to-one; in this case, each stage is assigned a different processor. Then
the allocation function which assigns a processor to each stage is a one-to-one function, and there
must be at least as many processors as application stages. Another strategy is very common for
linear chains: we may decide to group consecutive stages onto a same processor, in order to avoid
some costly communications. However, a processor is only processing an interval of consecutive
stages. Such a mapping is called an interval mapping. Finally, we can consider general mappings,
for which there is no constraint on the allocation function: each processor is assigned one or several
stage intervals.

The problem of mapping pipeline skeletons onto parallel platforms has received some attention.
In particular, Subhlok and Vondran [9, 10] have dealt with this problem on homogeneous platforms.
In this paper, we extend their work and target heterogeneous platforms. Our main goal is to assess
the additional complexity induced by the heterogeneity of processors and of communication links.

2

The rest of the paper is organized as follows. Section 2 is devoted to the presentation of
the target optimization problems. Next in Section 3 we proceed to the complexity results, and
in particular we prove the NP-completeness of the interval mapping problem. Furthermore, we
prove that both this problem and the one-to-one mapping problem cannot be approximated by any
constant factor (unless P=NP). Finally, we state some concluding remarks in Section 4.

2 Framework

2.1 Application Model

The application is expressed as a pipeline graph of n stages Sk, 1 ≤ k ≤ n, as illustrated on Figure 1.
Consecutive data sets are fed into the pipeline and processed from stage to stage, until they exit
the pipeline after the last stage. Each stage executes a task. More precisely, the k-th stage Sk
receives an input from the previous stage, of size δk−1, performs a number of wk computations,
and outputs data of size δk to the next stage. This operation corresponds to the k-th task and
is repeated periodically on each data set. The first stage S1 receives an input of size δ0 from the
outside world, while the last stage Sn returns the result, of size δn, to the outside world.

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

Figure 1: The application pipeline.

bin,u

Pv

PoutPin

sv

Pu

su

bv,out

bu,v

sin sout

Figure 2: The target platform.

2.2 Platform Model

We target a platform (see Figure 2), with m processors Pu, 1 ≤ u ≤ p, fully interconnected as a
(virtual) clique. There is a bidirectional link linku,v : Pu → Pv between any processor pair Pu and
Pv, of bandwidth bu,v. Note that we do not need to have a physical link between any processor pair.
Instead, we may have a switch, or even a path composed of several physical links, to interconnect
Pu and Pv; in the latter case we would retain the bandwidth of the slowest link in the path for
the value of bu,v. The speed of processor Pu is denoted as su, and it takes X/su time-units for Pu
to execute X floating point operations. We also enforce a linear cost model for communications,
hence it takes X/bu,v time-units to send (or receive) a message of size X from Pu to Pv.

3

Communication contention is taken care of by enforcing the one-port model [2, 3]. In this
model, a given processor can be involved in a single communication at any time-step, either a
send or a receive. However, independent communications between distinct processor pairs can
take place simultaneously. The one-port model seems to fit the performance of some current MPI
implementations, which serialize asynchronous MPI sends as soon as message sizes exceed a few
megabytes [7].

Finally, we assume that two special additional processors Pin and Pout are devoted to in-
put/output data. Initially, the input data for each task resides on Pin, while all results must
be returned to and stored in Pout.

2.3 Mapping Problem

The general mapping problem consists in assigning application stages to platform processors. For
simplicity, we could assume that each stage Si of the application pipeline is mapped onto a distinct
processor (which is possible only if n ≤ p). However, such one-to-one mappings may be unduly
restrictive, and a natural extension is to search for interval mappings, i.e., allocation functions where
each participating processor is assigned an interval of consecutive stages. Intuitively, assigning
several consecutive tasks to the same processor will increase its computational load, but may well
dramatically decrease communication requirements. In fact, the best interval mapping may turn
out to be a one-to-one mapping, or instead may enroll only a very small number of fast computing
processors interconnected by high-speed links. Interval mappings constitute a natural and useful
generalization of one-to-one mappings (not to speak of situations where m < n, where interval
mappings are mandatory), and such mappings have been studied by Subhlock et al. [9, 10].

Formally, we search for a partition of [1..n] into m ≤ p intervals Ij = [dj , ej] such that dj ≤ ej
for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for 1 ≤ j ≤ m− 1 and em = n. The allocation function a(j)
returns the index of the processor on which interval Ij is mapped. The optimization problem is to
determine the mapping with the minimum latency, over all possible partitions into intervals, and
over all processor assignments.

We assume that a(0) = in and a(m+1) = out, where Pin is a special processor holding the initial
data, and Pout is receiving the results. The latency is then obtained by summing all communication
and computation costs for a given allocation of intervals to processors:

L =
δ0

bin,a(1)
+

∑
1≤j≤m

{∑ej

i=dj
wi

sa(j)
+

δej

ba(j),a(j+1)

}
(1)

With no constraint on the allocation function, the mapping is general (or arbitrary): a processor
is allowed to process several non consecutive intervals. In order to restrict to interval mappings,
we request the allocation function to be one-to-one, so that all intervals are mapped on distinct
processors:

∀1 ≤ j1, j2 ≤ m a(j1) = a(j2) =⇒ j1 = j2 (2)

For one-to-one mappings, we add the additional constraint that each interval is reduced to
exactly one stage (dj = ej for 1 ≤ j ≤ m).

4

3 Complexity Results

In this section, we summarize complexity results for the latency minimization problem, with the dif-
ferent mapping rules. We start by recalling results for platforms with homogeneous communication
links (but different-speed processors), before tackling fully heterogeneous platforms.

3.1 Homogeneous Communications

When the target platform has identical communication links, i.e., bu,v = b for 1 ≤ u, v ≤ p, then
latency can be minimized by grouping all application stages into a single interval, and mapping
this interval onto the fastest processor, Pu. This is clearly an optimal mapping:
- according to Equation (1), all computation costs are minimized thanks to the use of Pu;
- the only communications are δ0/b and δn/b, and these are included in any mapping.

For one-to-one mappings, all communication costs always are included, with a total cost
Pn

i=0 δi
b .

Thus we need to minimize the total computation cost. This can be done greedily by assigning the
stage with the largest computation cost to the fastest processor, and so on. A simple exchange
argument proves the optimality of this mapping. Thus we have the following theorem:

Theorem 1. Minimizing the latency is polynomial on communication homogeneous platforms for
one-to-one, interval and general mappings.

However, this line of reasoning does not hold anymore when communications become heteroge-
neous: indeed, the communication cost can hugely differ from one mapping to another, as shown
in the next Section.

3.2 Heterogeneous Platforms

3.2.1 Motivating Example

Consider the problem of mapping the pipeline of Figure 3(a) on the heterogeneous platform of
Figure 3(b). The pipeline consists of two stages, both needing the same amount of computation
(w = 2), and the same amount of communications (δ = 100). In this example, a mapping which
minimizes the latency must map each stage on a different processor, thus splitting the stages into
two intervals. In fact, if we map the whole pipeline on a single processor, we achieve a latency of
100/100 + (2 + 2)/1 + 100/1 = 105, either if we choose P1 or P2 as target processor. Splitting the
pipeline and hence mapping the first stage on P1 and the second stage on P2 requires to pay the
communication between P1 and P2 but drastically decreases the latency: 100/100+2/1+100/100+
2/1 + 100/100 = 1 + 2 + 1 + 2 + 1 = 7. This little example explains why minimizing the latency
cannot be longer achieved by mapping all stages onto the fastest resource.

3.2.2 About One-to-One and General Mappings

Theorem 2. Minimizing the latency is NP-hard on heterogeneous platforms for one-to-one map-
pings.

This problem can be reduced from the Traveling Salesman Problem (TSP), which is NP-
complete [5]. The proof can be found in [1].

5

100 100

w2 = 2w1 = 2

100
S1 S2

(a) Example optimal with 2 intervals.

100

1

1

100

100

s1 = 1

s2 = 1

Pin

P1

Pout

P2

(b) The pipeline has to be split into intervals
to achieve an optimal latency on this platform.

Figure 3: Motivating Example.

Theorem 3. Minimizing the latency is polynomial on heterogeneous platforms for general map-
pings.

General mappings are less constrained since several stages can be arbitrarily grouped onto a
same processor. In this case, the problem can be reduced to finding a shortest path in a graph, or
solved by using dynamic programming. The proof using shortest paths can be found in [1], and we
provide here a dynamic program to solve this problem.

Let L(i, u) be the minimum latency that can be achieved by mapping stage Si onto processor Pu.
Then the recurrence can be written as:

L(i, u) = min
v 6=u

{
L(i− 1, u) + wi

su
(1)

L(i− 1, v) + δi−1

bv,u
+ wi

su
(2)

Line (1) corresponds to the case in which stage i−1 is mapped on the same processor as stage i,
thus only the computation cost of Si is added to the latency. Line (2) tries all other processors
Pv 6= Pu and adds to the latency the corresponding communication cost (plus the computation cost
for Si).

The initialization must ensure that the correct communication cost will be paid as an input
to S1. This can be done by forcing the virtual stage S0 to be mapped onto Pin:

L(0, u) =
{

0 if Pu = Pin
+∞ otherwise

Finally, we need to compute

min
1≤u≤p

L(n, u) +
δn
bu,out

The complexity of this algorithm is O(n.p2). The result mapping is general because nothing
prevents to map non-consecutive stages onto a same processor. If we look for an interval mapping,
we can modify the algorithm in order to keep track of the processors already used, for instance
by marking processor Pu as “used” when switching to processor Pv in line (2) of the recurrence.
However, such an information cannot be handled without having an algorithm of exponential com-
plexity. Indeed, we prove below that the interval mapping problem is NP-hard.

6

3.2.3 NP-Completeness for Interval Mappings

Definition 1. Latency-Int-Het-Dec– Given a pipeline application, a target platform and a
bound L, does there exist an interval mapping of the pipeline on the platform with a latency which
does not exceed L?

Theorem 4. Latency-Int-Het-Dec is NP-complete.

Proof. The problem clearly belongs to NP: given a mapping, we can check that constraint (2) is
fulfilled (hence we do have an interval mapping), compute its latency using Equation (1), and then
check that the bound L is respected, all of this in polynomial time.

To prove the completeness of the problem, we use a reduction from DISJOINT-CONNECTING-
PATH (DCP), which is NP-complete [5]. Consider an arbitrary instance I1 of DCP, i.e., a graph
G = (V,E) and a collection of k+ 1 disjoint vertex pairs (x1, y1), (x2, y2), ..., (xk+1, yk+1) ∈ V 2. We
ask whether G contains k + 1 mutually vertex-disjoint paths, one connecting xi and yi for each i,
1 ≤ i ≤ k + 1. The number of nodes in the graph is n = |V |, and we have k ≤ n.

We build the following instance I2 of the latency minimization problem.
• The application consists in n(k + 1) stages, whose computation costs are outlined below:

wk...wk︸ ︷︷ ︸ w2k εk wk−1...wk−1︸ ︷︷ ︸ w2k−1 εk−1 . . . w...w︸ ︷︷ ︸ wk+1 ε 1...1︸︷︷︸
n− 2 n− 2 n− 2 n

Formally, for 0 ≤ i ≤ k − 1, the n − 2 stages in + 1 to in + n − 2 have a computation cost
wk−i, stage in+n− 1 has a computation cost w2k−i, and stage in+n has a computation cost εk−i.
Finally, the n last stages have a computation cost 1. The value of ε is small, it is fixed to ensure
that some slow processors can only process the stages of cost εi, for 1 ≤ i ≤ k. Thus, ε = 1

L+1 ,
where L is the target latency which will be defined later. On the other hand, w is large: we fix
w = n3. All communication costs δi are identical: δi = δ = 1

n+k+1 .
• The target platform is composed of n + k processors, one corresponding to each vertex of the
initial graph of DCP, and k additional processors zi, 1 ≤ i ≤ k.

Processor speeds are all equal to 1 except for processors zi, 1 ≤ i ≤ k, which are “fast” processors
of speed wk−i+1, and processors xi, 2 ≤ i ≤ k + 1, which are “slow” processors of speed εk−i+2.

The bandwidth between two processors (ni, nj) ∈ V 2 equals 1 if (ni, nj) ∈ E, and δ
L otherwise

(where L is the target latency). Thus, using a communication link which does not correspond to an
edge in the entry graph G leads to a latency greater than L. The entry processor Pin is connected
to x1 with a link of bandwidth 1, and all other links connecting Pin have a bandwidth δ

L . Similarly,
the link from yk+1 to Pout has a bandwidth 1, and Pout cannot communicate with another processor
without exceeding the bound on the latency, L. Finally, the additional processors zi are linked with
a bandwidth 1 to two processors, yi and xi+1, and with a bandwidth δ

L to all remaining processors.
Figure 4 illustrates this platform.

• Finally we ask whether we can achieve a latency of L = 2n2wk.

First, notice that the size of I2 is polynomial in the size of I1, since both n and k need to be
encoded in unary in I1, and the number of stages and processors in I2 is polynomial in n and k.
The values are exponential, since the value of the parameters is bounded by w2k and w = n3,
thus the parameters are bounded by n6k. However, n6k can be encoded in binary in I2, thus in

7

...

Pin Pout

z1 z2 zk

x1

y1 x2 y2 x3 yk xk+1

yk+1

wk

1

1 1

wk−1 w

εk εk−1 ε11

Figure 4: Target platform for the proof.

O(k log n), and it remains polynomial in the size of I1. The same reasoning holds for the encoding
of the εk.

Suppose first that I1 has a solution. We derive a mapping of latency smaller than L for I2.
We denote by `i the number of vertices in the path going from xi to yi in the solution of I1. All
paths are disjoint, and they cannot include xj or yj with j 6= i, so we have 2 ≤ `i ≤ n − 2k, for
1 ≤ i ≤ k + 1, and

∑k+1
i=1 `i ≤ n.

We start by mapping the n− 2 first stages of the pipeline on the processors of the path from x1

to y1, assigning one stage per processor, and all the remaining ones to processor y1. This is possible
since there are more stages than processors in the path. The computation time required to traverse
these stages is (n − 2).wk. Then, stage of cost w2k is mapped on z1 with a computation time of
w2k

wk = wk. Finally, we map the following stage of cost εk on processor x2, with a computation
time of εk

εk
= 1. The total computation time for stages up to the one of cost εk is thus less

than (n−2).wk+wk+1 ≤ n.wk. Only fast communication links are used, since we start by x1 which
is connected to Pin and we evolve through edges of the original graph. The fast communication
links are also used to access z1, entering from y1 and exiting through x2.

Then we keep a similar mapping, for 2 ≤ i ≤ k:
- the n − 2 first stages of cost wk−i+1 are mapped on the path between xi and yi (excluding xi),
with a total cost (n− 2).wk−i+1 ≤ (n− 2).wk;
- the stage of cost w2k−i is mapped on processor zi, with a cost w2k−i+1

wk−i+1 = wk;
- the stage of cost εk−i+1 is mapped on processor xi+1, thus achieving a cost of 1.
The total cost for these n stages is thus less than n.wk.

Finally, the remaining n stages of cost 1 are mapped on the path between xk+1 and yk+1, thus
allowing to reach the output processor Pout with a good communication link. The cost for these
stages is bounded by n.

The total number of communications does not exceed n+k+ 1, since the platform is composed
of n + k processors and the mapping is interval-based. Moreover, only fast communicating links
(bandwidth 1) are used, and the cost of a single communication is thus 1

n+k+1 . Thus the cost
induced by communication is bounded by 1.

8

The latency of this mapping is then:

Lmapping ≤
∑k

i=1 n.w
k + n︸︷︷︸ + 1︸︷︷︸

last stages communications

≤ kn.wk + n+ 1
≤ 2n2wk ≤ L

Indeed, k ≤ n and since n ≥ 2, n+ 1 ≤ n2wk.
The previous mapping is interval-based since we use the solution of I1: the paths are disjoints

so we do not reuse a processor after it has been handling an interval of stages. Thus, we found a
valid solution to I2.

Reciprocally, if I2 has a solution, let us show that I1 also has a solution. We prove that the
mapping of I2 has to be of a similar form than the mapping described above, and thus that there
exists a disjoint path between xi and yi, for 1 ≤ i ≤ k + 1.

First let us prove that the mapping must use processor z1 to compute the stage of cost w2k.
Indeed, if this stage is not processed on z1, the best we can do is to process it on the fastest
remaining processor z2, and the corresponding cost is

w2k

wk−1
= wk+1 = n3.wk > L

(we can assume n > 2).
Since we must use z1 and the mapping is interval-based, z1 must have distinct predecessor and

successor processors in the mapping. However, there are only two communication links that can
be used in the mapping since the latency does not exceed L. Thus, both processors y1 and x2 are
used. The only stage that can be handled by x2 is εk, because all other stages have a computation
cost greater than εk−1 and thus would lead to a cost εk−1

εk
= 1

ε = L + 1. Therefore, since z1 must
process the stage of cost w2k which is before the stage εk in the mapping, x2 is necessarily the
successor of z1 in the mapping.

In a similar way, we prove recursively, for i ≥ 2, that each processor zi is used in the mapping
to compute the stage of cost w2k−i+1, and that xi+1 is its successor and it processes the stage of
cost εk−i+1.

Let us suppose that this property is true for j < i. By hypothesis, z1, ..., zi−1 are already used
to process stages preceding εk−i+2, and the mapping is interval-based, thus we cannot use these
processors anymore. Thus, if processor zi is not used for stage of cost w2k−i+1, the best we can do
is to process this stage on the fastest remaining processor, which is zi+1. This leads to a cost of

w2k−i+1

wk−i
= wk+1 = n3.wk > L

Therefore, zi is used to compute this stage. Thus, the mapping must use processor xi+1. The
remaining stage with the lower computation cost is εk−i+1, since the smaller ones have already been
assigned to xj , j < i+ 1 (by hypothesis). This one produces a cost of exactly 1, while the second
smaller is εk−i and leads to a cost greater than L. Thus the property is true for i.

In order to ensure the latency of L, the mapping is using only fast communicating links. Thus,
processors x1 and yk+1 are used in the mapping. All others yi and xi+1, for 1 ≤ i ≤ k, are used

9

because we must go through zi. Therefore, processors must be visited in the following order:

x1, y1, z1, x2, ..., yk, zk, xk+1, yk+1.

Since it is an interval-based mapping, the processors used between xi and yi are all distinct, and
they must be connected by edges in the graph by construction of I2, thus we found disjoint paths
and a solution to I1.

3.2.4 Non-Approximability Results

Theorem 5. Given any constant λ > 0, there exists no λ-approximation to the Latency-Int-Het
problem, unless P = NP .

Proof. Given λ, assume that there exists a λ-approximation to the Latency-Int-Het problem.
Let I1 be an instance of DCP (see proof of Theorem 4). We build the same instance I2 as in the
previous proof, except for:

• The speed of the fast processors zi, 1 ≤ i ≤ k. These are set to (λw)k−i+1 instead of wk−i+1.

• The speed of the slow processors xi, 2 ≤ i ≤ k + 1. These are set to λ−(k−i+2)εk−i+2 instead
of εk−i+2.

• The computation cost of each stage of cost w2k−i+1, 1 ≤ i ≤ k. Each of these costs are
transformed to (λw)k−i+1wk.

• The computation cost of each stage of cost εi, 1 ≤ i ≤ k. Each of these costs are transformed
to λ−iεi.

We use the λ-approximation algorithm to solve this new instance I2 of our problem, which
returns a mapping scheme of latency Lalg. We thus have Lalg ≤ λLopt, where Lopt is the optimal
latency. Then we prove that we can solve DCP in polynomial time.

Let L = 2n2wk be the bound on the latency used in the proof of Theorem 4.

• If Lalg > λL, then Lopt > L and there is no solution to DCP; otherwise, we could achieve a
mapping of latency equal to L with a mapping similar to the one described in the proof of
Theorem 4.

• If Lalg ≤ λL, let us prove that DCP has a solution, by ensuring that the mapping has a
similar structure than in the proof of Theorem 4.
First, we must map the stage of cost w2k on processor z1; otherwise, the best we can do is
to process it on the fastest remaining processor z2, and the corresponding cost is (λw)kwk

(λw)k−1 =

λwk+1 > λL ≥ Lalg. Then, we show that the only stage handled by x2 is the stage of
cost λ−kεk. Other stages have a computation cost greater than λ−(k−1)εk−1 and would lead
to a cost λ−(k−1)εk−1

λ−kεk
= λ

ε = λ(L+ 1) > λL ≥ Lalg.
This line of reasoning can be kept recursively, similarly as in the proof of Theorem 4, thanks
to the introduction of λ in the costs. Therefore, the mapping is similar to the one described
in the proof of Theorem 4, and we conclude that DCP has a solution.

10

Therefore, given a λ-approximation algorithm for Latency-Int-Het, we can answer to DCP
in polynomial time, thus proving that P = NP . This contradicts our hypothesis and proves the
non-approximability result.

We define by Latency-One-to-One-Het the problem of finding the one-to-one mapping
which minimizes latency on a heterogeneous platform. We can also prove a non-approximability
result for this problem.

Theorem 6. Given any constant λ > 0, there exists no λ-approximation to the Latency-One-
to-One-Het problem, unless P = NP .

Proof. Given λ, assume that there exists a λ-approximation to the Latency-One-to-One-Het
problem. Consider an arbitrary instance I1 of the Hamiltonian Path problem HP, i.e., a complete
graphG = (V,E): is there an Hamiltonian path inG? This problem is known to be NP-complete [5].
We aim at showing that we can solve it in polynomial time by using the λ-approximation algorithm
of Latency-One-to-One-Het.

We build the following instance I2 of Latency-One-to-One-Het: we consider an application
with n = |V | identical stages. All application costs are unit costs: wi = δi = 1 for all i. For the
platform, in addition to Pin and Pout we use n identical processors of unit speed: si = 1 for all i.
We simply write i for the processor Pi that corresponds to vertex vi ∈ V . We only play with the
link bandwidths: we interconnect Pin and Pout to all other processors with links of bandwidth 1.
Also, if (i, j) ∈ E, then we interconnect i and j with a link of bandwidth 1. All the other links
are slow: their bandwidth is set to 1

λ(2n+2) . We ask whether we can achieve a latency not greater
than L = 2n + 1. This transformation can clearly be done in polynomial time, and the size of I2
is linear in the size of I1.

Now we use the λ-approximation algorithm to solve this new instance I2 of our problem, which
returns a mapping scheme of latency Lalg. We thus have Lalg ≤ λLopt, where Lopt is the optimal
latency. Then we prove that we can solve HP in polynomial time.

• If Lalg > λL, then Lopt > L and there is no solution to HP. Otherwise, let v1, ..., vn be the
hamiltonian path in G. If we map stage Si onto processor i, for all i, then we obtain a
mapping of cost 2n+ 1 = L. Indeed, the total cost for computations is n, and only edges of
the original graph, of bandwidth 1, are used in the mapping, thus adding a cost of n+ 1 for
communications. This contradicts the fact that Lopt > L. Therefore, HP has no solution.

• If Lalg ≤ λL, let us prove that HP has a solution. The mapping is not using any slow link,
otherwise it would induce a cost λ(2n+2) = λ(L+1) > λL, which contradicts our hypothesis.
Since the mapping is one-to-one, all n nodes must be used in the mapping, and it defines a
hamiltonian path.

Thus, depending on the result of the algorithm, we can answer the HP problem, which proves
that P=NP. This completes the proof.

11

4 Conclusion

In this paper, we have studied the problem of mapping linear chain applications onto large-scale
heterogeneous platforms, focusing onto latency minimization. The latency measures the response
time of the system in order to process one single data set entirely, and it is a key parameter for the
user. When the platform has homogeneous communications, it is straightforward to provide the
optimal mapping, be it one-to-one, interval-based or general.

When moving to fully heterogeneous platforms, the situation changes dramatically. Only the
general mapping problem remains polynomial (and we provided a new proof of this result). While
the one-to-one mapping problem was known to become NP-hard, that of the interval mapping
problem was left open. The main result of this paper is to fill the gap and to prove its NP-hardness
through quite an involved reduction. Furthermore, we prove that neither the interval mapping
problem nor the one-to-one mapping problem can be approximated by any constant factor (unless
P=NP). All these results constitute an important step in assessing the difficulty of the various
mapping strategies that have been studied in the literature.

References

[1] Anne Benoit, Veronika Rehn-Sonigo, and Yves Robert. Optimizing latency and reliability of pipeline
workflow applications. In HCW’2008, the 17th International Heterogeneity in Computing Workshop.
IEEE Computer Society Press, 2008.

[2] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication in distributed
heterogeneous systems. In ICDCS’99 19th International Conference on Distributed Computing Systems,
pages 15–24. IEEE Computer Society Press, 1999.

[3] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication in distributed
heterogeneous systems. Journal of Parallel and Distributed Computing, 63:251–263, 2003.

[4] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel Program-
ming. Parallel Computing, 30(3):389–406, 2004.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, 1979.

[6] F.A. Rabhi and S. Gorlatch. Patterns and Skeletons for Parallel and Distributed Computing. Springer
Verlag, 2002.

[7] T. Saif and M. Parashar. Understanding the behavior and performance of non-blocking communications
in MPI. In Proceedings of Euro-Par 2004: Parallel Processing, LNCS 3149, pages 173–182. Springer,
2004.

[8] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in parallel and distributed
systems. IEEE Computer Science Press, 1995.

[9] Jaspal Subhlok and Gary Vondran. Optimal mapping of sequences of data parallel tasks. In Proc. 5th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP’95, pages
134–143. ACM Press, 1995.

[10] Jaspal Subhlok and Gary Vondran. Optimal latency-throughput tradeoffs for data parallel pipelines. In
ACM Symposium on Parallel Algorithms and Architectures SPAA’96, pages 62–71. ACM Press, 1996.

12

