
HAL Id: hal-02102784
https://hal-lara.archives-ouvertes.fr/hal-02102784v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

All in one graphical tool for the management of DIET
and GridRPC middleware

Eddy Caron, Frédéric Desprez, David Loureiro

To cite this version:
Eddy Caron, Frédéric Desprez, David Loureiro. All in one graphical tool for the management of
DIET and GridRPC middleware. [Research Report] LIP RR-2008-24, Laboratoire de l’informatique
du parallélisme. 2008, 2+14p. �hal-02102784�

https://hal-lara.archives-ouvertes.fr/hal-02102784v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

All in one Graphical Tool for the

management of DIET a GridRPC

Middleware

Eddy Caron ,

Frédéric Desprez ,

David Loureiro

July 1, 2008

Research Report No 2008-24

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

All in one Graphical Tool for the management of DIET a

GridRPC Middleware

Eddy Caron , Frédéric Desprez , David Loureiro

July 1, 2008

Abstract

Grid Middleware are the link between large scale (and distributed) platforms
and applications. Managing such a software system and the Grid environment
itself can be a hard task when no dedicated (and integrated) tool exist. Some
can be used through nice graphical interfaces, but they are usually dedicated to
one or some limited tasks. They do not fulfill all the needs of a Grid end-user
who wants to deploy Grid applications easily and rapidly.
The aim of this paper is to present the case study of an all-in-one software
system, designed for the management of a Grid Middleware and gathering
user-friendly graphical interfaces answering to the various needs of end-users.
Moreover the software system eases the use of the Grid by avoiding the scripting
layer under a nice GUI enabling the user a faster and more efficient use of the
Grid environment. By this means we demonstrate how the DIET Dashboard
fulfills all the needs of a unified tool for Grid management. This paper gives
a comparison with existing and well-known tools dedicated to some specific
tasks such as Grid resources management, Grid monitoring, or Middleware
management.

Keywords: Grid Middleware, Grid management, Grid monitoring, Deployment, Workflow
management

Résumé

Les intergiciels de grille sont le lien entre les ressources des plates-formes à large
échelle (et distribuées) et les applications. Gérer un tel système et l’environne-
ment de grille en lui-même est une tâche compliquée lorsqu’aucun outil dédié
est mis à disposition. Des outils avec des interfaces graphiques ergonomiques
ont été conçus mais ils sont le plus souvent dédiés à une ou quelques tâches
précises, ce qui limite la portée de tel outil. L’ensemble des besoins d’un utilisa-
teur d’un environnement grille ne sont pas couverts pour offrir un déploiement
des applications portées sur la grille de façon simple et efficace. L’objectif de ce
rapport est de présenter une étude de cas d’un logiciel tout-en-un conçu pour la
gestion d’un intergiciel de grille comprenant des interfaces graphiques dédiées
aux utilisateurs. De plus ce logiciel facilite l’utilisation de la grille en rendant
transparente la couche de scripts sous une interface apportant à l’utilisateur
un usage plus efficace et rapide de l’environnement. Nous décrivons de quelle
façon le DIETDashbord remplit les conditions d’un outil unifié. Ce rapport
offre également une comparaison avec des outils existants et reconnus dédiés à
certaines tâches spécifiques telles que la gestion des ressources, la surveillance
de la plate-forme ou la gestion de l’intergiciel.

Mots-clés: Intergiciel de grille, Gestion de grille, Monitoring de grille, Déploiement, Gestion
de workflow

All-in-one Graphical Tool for the management of DIET a GridRPC Middleware 1

1 Introduction

Large problems ranging from huge numerical simulations to large scale data processing can now
be solved through the Internet using Grid Middleware software systems. Several approaches exist
for porting applications to Grid platforms. Examples include classical message-passing, batch
processing, web portals, and GridRPC systems. This last approach implements a Grid version of
the classical Remote Procedure Call (RPC) model. A more sophisticated extension of this includes
high level scheduling mechanisms and data management. Thus clients spread over the Internet
submit computation requests to a scheduler that locates one or more servers available on the Grid
using some performance measure.

The aim of the DIET 1 (Distributed Interactive Engineering Toolbox) project is to develop
a set of tools to build, deploy, and execute computational server daemons. It focuses on the
development of scalable Middleware with initial efforts concentrated on distributing the scheduling
problem across multiple agents. DIET consists of a set of elements that can be used together to
build applications using the GridRPC paradigm. This Middleware is able to find an appropriate
server according to the information given in the client’s request (e.g. problem to be solved,
size of the data involved), the performance of the target platform (e.g. server load, available
memory, communication performance) and the local availability of data stored during previous
computations. The scheduler is distributed using several collaborating hierarchies connected either
statically or dynamically (in a peer-to-peer fashion). Data management is provided to allow
persistent data to stay within the system for future re-use. This feature avoids unnecessary
communications when dependencies exist between different requests.

In a Grid environment, we need several complex tools for the management of resources, Grid
Middlewares, and client/server applications. Most Grid software systems use command-line in-
terfaces without any Graphical User Interface (GUI). For the creation of a tool dedicated to the
management of Grid Middleware and Grid environments, different functions are mandatory. We
can consider three main graphical interfaces for such framework: one for resource management,
one for Grid monitoring, and one for the management of the Grid Middleware. DIET Dashboard
2 answers to the need of an unified set of tools providing the user with a complete, modular,
portable, and powerful way to manage Grid resources of the applications that run on it.

The goal of this paper is to show the various aspects to be taken into account for the design
of a graphical tool for Grid Middleware management and how it can ease the interaction with a
Grid by avoiding the scripting layer. Thus we designed a tool to make the Grid as user-friendly
as possible, in order to simplify its use. Many GUI tools dedicated to Grid management exist but
they are all targeting one or two tasks. The aim of the DIET Dashboard is to provide an all-in-
one and flexible software that gathers these tools in an efficient manner. We give a comparison
with existing tools dedicated to some specific tasks such as Grid resources management, Grid
monitoring, or Middleware management. By this way we demonstrate how the DIET Dashboard
fulfilled all the needs of an unified tool making it easy to manage a Grid Middleware on Grid
platforms.

The rest of the paper is organized as follows. In Section 2, we briefly review existing works
on graphical tools for the Grid. Sections 3 and 4 describes the architectures of DIET and DIET
Dashboard. Section 4.1 presents the features related to the Grid resources management of DIET
Dashboard. Section 4.2 presents the features of DIET Dashboard related to Grid monitoring.
Section 4.3 describes how it can manage the DIET Grid Middleware. To illustrate the use the
DIET Dashboard, we present an experiment in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

In this paper we focus on graphical tools designed for Grid environments. Here we will give a
description of the three main families of tools dedicated to Grid Middleware software systems and

1http://graal.ens-lyon.fr/DIET
2http://graal.ens-lyon.fr/DIET/dietdashboard.html

http://graal.ens-lyon.fr/DIET
http://graal.ens-lyon.fr/DIET/dietdashboard.html

2 E. Caron, F. Desprez , D. Loureiro

Grid environments.

The first family concerns graphical tools for cluster resource management. They provide a
Graphical User Interface (GUI) to check all information from batch schedulers. For example,
QMON [16], the GUI designed for N1 Grid Engine from SUN, can examine the properties of any
queue on the Grid (running, disabled, suspended, etc.). A second graphical menu provides a job
submission interface with all the options available. A third interface monitors the jobs status
(running, suspended, deleted, pending, etc.).

To illustrate the second family, we can consider Ganglia [12], the graphical tool designed for
Grid monitoring. Based on a protocol using announces, this tool monitors a cluster or a set of
clusters using XML, XDR and RRDtool to represent, retrieve and display the data. For each
node Ganglia provides instantaneous information and history about the load, memory, I/O, etc.
through a web interface.

The third family concerns tools designed for Grid Middleware software systems. Many tools
exist for the visual specification and execution of scientific workflows as Kepler [1], Taverna [14],
SGSDesigner [10], ScyFlow [13], or GridNexus [4]. For example, GridNexus is a graphical system
for the creation and the execution of scientific workflows in a Grid environment. The user can
assemble complex processes involving data retrieval, analysis and visualization by building a di-
rected acyclic graph in a visual environment. Future works talk about the use of GridNexus to help
creating and deploying new Grid services in addition to scripting existing services. This project
plans to develop a generic module to provide interactive feedback while executing a workflow.

Graphical tools mentioned here are all designed with a specific aim. DIET Dashboard com-
bines workflow management, resources reservation, resources mapping, automatic configuration,
visualization, and deployment tools in one integrated graphical application.

3 DIET Architecture

The DIET component architecture is structured hierarchically for an improved scalability. Such
an architecture is flexible and can be adapted to diverse environments including arbitrary hetero-
geneous computing platforms. The DIET toolkit [7] is implemented in CORBA and thus benefits
from the many standardized, stable services provided by freely-available and high performance
CORBA implementations. CORBA systems provide a remote method invocation facility with a
high level of transparency. This transparency should not affect the performance substantially,
as the communication layers in most CORBA implementations are highly optimized [8]. These
factors motivate their decision to use CORBA as the communication and remote invocation fabric
in DIET.

The DIET framework comprises several components. A Client is an application that uses
the DIET infrastructure to solve problems using an RPC approach. Clients access DIET through
various interfaces: web portals or programs using C, C++, or Java APIs. A SeD, or server daemon,
acts as the service provider, exporting a functionality through a standardized computational service
interface. A single SeD can offer any number of computational services (depending on the capacity
of the machine). A SeD can also serve as the interface and execution mechanism for either a stand-
alone interactive machine or a parallel supercomputer (or cluster) using an interface with a batch
scheduler. The third component of the DIET architecture, agents, facilitate the service location
and invocation interactions between clients and SeDs. Collectively, a hierarchy of agents provides
higher-level services such as scheduling and data management. These services are made scalable
by distributing them across a hierarchy of agents composed of a single Master Agent (MA) and
several Local Agents (LA). Figure 1 shows an example of a DIET hierarchy.

4 DIET Dashboard

When the goal is to monitor a Grid, or deploy a Grid Middleware on it, several tasks are involved.

All-in-one Graphical Tool for the management of DIET a GridRPC Middleware 3

DIET or JXTA connection

Data transfert

DIET connection

Request DIET

Client

 MA

 MA

MA MA

SED

LA

Client

Client

Client

SED

SED

SED

SED

SED

LA

SED

SED

LA

LA

SED

SED

SED

MA

MA

LA

SED

LA

SED
SED

SED

Figure 1: DIET hierarchical organization.

• Managing the resources of a Grid: allocating resources, deploying nodes with several oper-
ating systems, etc.

• Monitoring the Grid: getting the status of the clusters (number of available nodes in each
state, number and main properties of each job, Gantt chart of the jobs history), the status
of the jobs (number, status, owner, walltime, scheduled start, Ganglia information of the
nodes) running on the platform, etc.

• Managing the Grid Middleware software system within a Grid environment: designing hi-
erarchies (manually or automatically by matching resources on patterns), deploying them
directly or through workflows of applications, etc.

The DIET Dashboard provides tools trying to answer these needs with an environment dedi-
cated to the DIET GridRPC Middleware. It consists of a set of graphical tools that can be used
separately or together. These tools can be divided in three categories:

1. Workflow tools: including workflow designer and workflow log service.

2. DIET tools: including tools to design and deploy DIET applications.

3. Grid tools (aka GRUDU 3): these tools are used to manage, monitor and access user Grid
resources.

4.1 Grid Resources Management

When deploying an application over a Grid a user should be able to allocate resources for computa-
tion tasks by specifying the number of nodes needed, the duration of the jobs (also called walltime),
the date when each job will start, their priority, etc. But they should have the possibility to choose
between the default environment of the node and a user-defined one if the parallel implementation
or even the default operating system provided (for example) does not fit the application needs.
This management should be easy to realize in order to improve the Grid usage.

The following sections present how the Grid resources management was designed in the DIET
Dashboard and an existing software dedicated to Sun Grid Engine called QMON.

3http://graal.ens-lyon.fr/GRUDU

http://graal.ens-lyon.fr/GRUDU

4 E. Caron, F. Desprez , D. Loureiro

4.1.1 DIET Dashboard functionalities

The Grid resources management is realized inside GRUDU, the Grid resources module of DIET
Dashboard. GRUDU can be easily configured to use different batch schedulers, or different Grids.
GRUDU can be used inside DIET Dashboard, but also in a standalone mode for users that just
want to monitor, manage, or realize reservations on the Grid.

Grid’5000 4 [3] project aims at building a highly reconfigurable, controlable and monitorable
experimental Grid platform gathering 9 sites geographically distributed in France featuring a total
of 5000 processors. The main purpose of this platform is to serve as an experimental testbed for
research in Grid Computing.

To allocate resources on Grid’5000, the resource tool offers a user-friendly interface allowing
the selection of the number of nodes needed at each site, and the definition of the date, walltime of
reservation and the queue where the job will be started. The user can select a job type (for example,
deploy if you plan to change the operating system) for the reservation itself and launch a script on
the reserved resources (see Figure 2). Concerning the clusters, the OAR batch scheduler5 [5] uses
properties for the reservations (for example, to select nodes with Myrinet interfaces) and the
allocation tool provides an interface for the definition of these properties.

Figure 2: Resources allocation

To manage resources, the user can deploy images on nodes with the operating system needed
for the computations. The resources tool also provides a GUI for the deployment of images over
Grid’5000 clusters through Kadeploy6 [9]. (The deployment through Kadeploy allows the user to
have its own operating system that he/she can tune and configure as he/she wants.) The nodes
and the images (if the user plans to deploy on different clusters, one image per cluster) needed for
the experiment (see Figure 3).

4.1.2 Comparison with QMON

QMON is the GUI to the N1 Sun Grid Engine (SGE) [16]. It provides an interface for the job
submission and the resources management of a Grid and the SGE batch scheduler.

4https://www.grid5000.fr
5http://oar.imag.fr/
6http://kadeploy.imag.fr/

https://www.grid5000.fr
http://oar.imag.fr/
http://kadeploy.imag.fr/

All-in-one Graphical Tool for the management of DIET a GridRPC Middleware 5

Figure 3: Image deployment through KaDeploy.

QMON allows the user to submit either simple or parallel jobs on queues7 that are run in a
passive and non interactive mode. The users can then monitor the jobs and the Grid status. But
QMON does not provide an access to the computation nodes for interactive work, and a specific
system can not deployed to get a user-defined system for the duration of the reservation. Moreover,
to use different queues, the user must use a parallel job with a defined parallel environment such
as MPI or PVM, whereas different nodes can be used on different clusters without the mandatory
use of some parallel environment with OAR and the DIET Dashboard.

4.2 Grid Monitoring

Grid monitoring is important for a default user before he reserved resources, but also after he
has reserved resources. Before submitting any job to a Grid, the user should be aware of the
available nodes considering their states (free/already used/dead). Whenever there is not not
enough resources, the user should be able to know when these will available for computation.
After having successfully submitted some jobs, the user should have some interface to get the
information about his jobs but also the other jobs running on the Grid. Even if sometimes more
information could be interesting for expert users, too lower level information could be unusable
for the default user who only wants to perform computations on some resources for a given period
of time.

The following sections will present how the Grid monitoring is implemented within the DIET
Dashboard and an existing software dealing with the monitoring called Ganglia.

4.2.1 Functionalities of DIET Dashboard

Thanks to the resource tool we can monitor the state of the platform with charts presenting the
load of the different clusters, the state of all clusters and all the users’ jobs on the Grid (see
Figure 4).

We are also able to monitor the status of a particular cluster with charts summarizing the
nodes states and a table composed of the jobs (running or waiting) on that cluster. A Gantt chart
is also available helping the user to define when he can reserve some resources.

7A QMON queue corresponds to a cluster in the DIET Dashboard for the batch scheduler OAR.

6 E. Caron, F. Desprez , D. Loureiro

The resource tool also provides the user with all necessary information about every job that
are present on a cluster, with, among others, the job Name, the job State, the job hosts, etc.

Finally a plugin generates instantaneous data and history concerning the main metrics (the
CPU load, the disk/memory/swap used, the in/out bytes, etc.) of the user reserved nodes with
information taken from the Ganglia data.

Figure 4: Grid’5000 Grid status.

4.2.2 Comparison with Ganglia

Ganglia is a scalable distributed monitoring system for high-performance computing systems such
as clusters and Grids. Ganglia provides resources usage metrics (memory, CPU, jobs...) for
individual sites or whole Grids. These are low level and can be used to monitor the hardware of
sites of whole Grids.

But Ganglia does not provide information of higher level such as the node states, the available
resources of clusters or the information about the jobs existing in the clusters. From an user
point of view that needs to reserve resources and realize some computations on that nodes, the
information about the jobs and the clusters in DIET Dashboard can be sufficient, whereas the ones
from Ganglia can be useless because of a too lower level for a standard use. These informations
are to be considered as a complement to the monitoring part of the DIET Dashboard (and it is
moreover the purpose of a plugin as described in Section 4.2.1).

4.3 Grid Middleware Management

When using a tool managing Grids and Grid Middleware such as DIET, a user expects features
such as the design a hierarchy of Middleware elements, the remote deployment of locally created
hierarchies, or the discovery of online existing and usable services for further use in workflows.

All-in-one Graphical Tool for the management of DIET a GridRPC Middleware 7

Others functionalities can also be offered like log service or real-time execution for running work-
flows, or resources dependent generation of hierarchies according to predefined existing models.
The following sections present how the Grid Middleware management is implemented in the DIET
Dashboard as well as an existing software with monitoring features called GridNexus.

4.3.1 Workflow tools

Workflow designer A large number of scientific applications are represented by graphs of tasks
which are connected based on their control and data dependencies. The workflow paradigm
on Grids is well adapted for representing such applications and the development of several
workflow engines [2, 11, 15] illustrates significant and growing interest in workflow man-
agement within the Grid community. The success of this paradigm in complex scientific
applications can be explained by the ability to describe such applications in high levels of
abstraction and in a way that makes it easy to understand, change, and execute them.

Several techniques have been established in the Grid community to define workflows. The
most commonly used model is the graph and especially the Directed Acyclic Graph (DAG).
Since there is no standard language to describe scientific workflows, the description language
is environment dependent and usually XML based, though some environments use scripts.
In order to support workflow applications in the DIET environment, we have developed and
integrated a workflow engine. Our approach has a simple and a high level API, the ability
to use different advanced scheduling algorithms, and it should allow the management of
multi-workflows sent concurrently to the DIET platform.

In this context, a workflow designer was developed to help users to design workflow appli-
cations but also to execute them. Figure 5(a) shows an overview of this tool, where they
can have a description of the available services (discovered with online mode) and design a
workflow by a drag and drop mechanism. The user does not need to know details about the
requested services neither to define them. Once the workflow designed, one can either save
it to an XML format supported by the DIET workflow engine or execute it directly. In the
second case, the workflow input must be defined.

The XML representation of designed workflows describes required tasks and data dependen-
cies. A task is a DIET service and a data dependency is a link between two parameters. The
workflow designer checks and guarantees data type compatibility between source and target
ports of each created link.

The workflow description level used here is known as “abstract description”. This level
of description does not include any runtime information but is sufficient for the workflow
execution. DIET hierarchy and workflow engine manage automatically and transparently
the user tasks scheduling and execution.

(a) Workflow designer (b) Workflow log service

Figure 5: Workflow tools.

8 E. Caron, F. Desprez , D. Loureiro

Workflow log service To improve workflow monitoring, we propose a tool dedicated to work-
flow monitoring that displays the real-time execution processes of different workflows. This
graphical tool has two major roles: first it is a central event service that receives and handles
the events related to tasks execution progression. Secondly it provides a graphical represen-
tation of workflow state. This tool, shown in Figure 5(b), displays the different workflows
after they start their execution. Each node of the workflow can be in one of the following
states: “waiting”, “running”, or “done”.

4.3.2 DIET tools

A DIET platform can be represented by a hierarchy of agents and servers. Designing and deploying
such a hierarchy of distributed and heterogeneous elements can be a hard task for the end user. In
our previous works [6], we have defined a XML format to describe DIET platforms. This format
describes a DIET hierarchy but also the information about used resources and environments.

Figure 6: DIET designer.

To deploy DIET hierarchies on a Grid environment the DIET Dashboard provides two methods:

In two steps: First the user creates by hand his DIET hierarchy with the DIET designer. Instead
of manipulating complex XML files, the user simply adds Local Agents or Server Daemons
to the Master Agent or already added Local Agents. Concerning the Server Daemons you
can define the binary to launch, the input parameters etc. This level describes only the
application level, and the obtained application description can be extended with runtime
information. The main frame of the DIET designer is presented in Figure 6.

To extend this application level hierarchy the user should use the DIET mapping tool (see
Figure 7). This tool allows the user to map the allocated Grid’5000 resources to a DIET
application. For each Grid’5000 site, the nodes (or hosts) are used in a homogeneous manner
but the user can select a particular host if needed.

in one step: The XMLGoDIETGenerator builds a GoDIET XML file that can be used with the
DIET deployment tool from a compact description and a reservation directory. For large
experiments, writing the GoDIET file by hand is time consuming and if the user should redo
this experiment with a different set of machines, the GoDIET file will be generated according
to the available resources.

All-in-one Graphical Tool for the management of DIET a GridRPC Middleware 9

The way hierarchies are described (through a framework from which their are created ac-
cording to the available resources) have also to be the most flexible to let the user write
all possible hierarchies. One should notice that the XMLGoDIETGenerator is “resources
driven” because the final hierarchy will directly depend on the available resources provided,
whereas the ones created with the DIET designer and mapping tools will not change if there
is more or less available resources.

Figure 7: DIET mapping Tool.

When the DIET hierarchies are generated the user can deploy these hierarchies on the Grid
thanks to the DIET deploy tool (see Figure 8). This tool is a graphical interface to GoDIET. It
provides the basic GoDIET operations: open, launch, stop, and also a monitoring mechanism to
check if DIET application elements are still alive (the states are the same as for the workflow log
service). As the workflow log service, the DIET deployment tool can be used in a local or a remote
mode.

4.3.3 Comparison with GridNexus

GridNexus provides a GUI for the workflow construction and execution. This interface is a “Drag
and Drop” environment that can be used to build workflows from generic Grid and web services.
The output is XML-based and easy to modify or use from specialized tools around GridNexus. The
user designs the workflow by linking elements as for the workflow designer of DIET Dashboard.
After having designed the workflow it can be run and the user can see the results of the workflow
or get the corresponding script of the workflow. The workflows can be abstracted to simplify the
workflow design. These “composites” can then be used as elements of other workflows. GridNexus
comes with a library of pre-defined elements that can be used from the GUI, but we can also
generate workflows from URL of WSDL that define services.

However GridNexus does not show the evolution of the workflow execution, and it does not
provide some log functions in order to prevent from services failures or anything else. Moreover
GridNexus does not discover online services but the user should provide him the services which
could be complicated for the end-user that might not know where those services are located.
Finally GridNexus only manages workflows of tasks, and does not allow the user to design and
execute her/his own hierarchies of elements, in order to later execute clients (the ones that are not
workflows of executions) on computations nodes.

10 E. Caron, F. Desprez , D. Loureiro

Figure 8: DIET deployment tool.

5 Experiments

An experiment has been realized to test the capabilities of DIET and DIET Dashboard for a large
number of machines. This experiment has been realized on Grid’5000, and the chosen application
was cosmological computations. For this experiment, the entire Grid’5000 platform was reserved 8

which gave us 12 clusters used on 7 sites for a duration of 48 hours. Finally 979 machines were used
with an user-defined environment containing all the needed software for the experiment. Figure 9
gives a bar chart representing the occupation of the cluster with the jobs for the experiment, taken
from the resources tool of the DIET Dashboard.

The aim of the experiment was also to start the largest machines reservation over the Grid, for
the deployment of the largest DIET hierarchy in order to execute the maximum number of cosmo-
logical application jobs. The MPI code executed by the DIET servers called RAMSES9 [17] was
developed in Saclay (DAPNIA/CEA) to study large scale structures and galaxies formation. This
code is a Grid-based hydro solver with adaptive mesh refinement.

Thanks to GRUDU, reservations were done at the Grid level and not on each cluster in 20
seconds. To get an user-defined environment on each machine, GRUDU was able to realize the
deployment of every machines of the 12 clusters involved at the same time in roughly 25 minutes.
Finally the DIET hierarchy was created through the use of the XMLGoDIETGenerator in 5 seconds
and deployed through the DIET Deploy tool and GoDIET in 23 seconds.

If theses tasks would have been done without GRUDU:

• the reservation would have been realized with oargridsub (a non-graphical utility dedicated
to OAR) by hand by reserving every nodes of each cluster at a time.

Here is a dummy example of oargridsub command:

oargridsub
cluster1:rdef="nodes=2",cluster2:rdef"nodes=1",cluster3:rdef="nodes=1",
cluster4:rdef="nodes=2",cluster5:rdef"nodes=1",cluster6:rdef="nodes=1",
cluster7:rdef="nodes=2",cluster8:rdef"nodes=1",cluster9:rdef="nodes=1",

8among the uncrashed nodes.
9http://irfu.cea.fr/Projets/COAST/ramses.htm

http://irfu.cea.fr/Projets/COAST/ramses.htm

All-in-one Graphical Tool for the management of DIET a GridRPC Middleware 11

Figure 9: Chart representing the occupation of the different clusters and the node repartition
between the different job states (Free/Job/Dead/Absent).

cluster10:rdef="nodes=2",cluster11:rdef"nodes=1",cluster12:rdef="nodes=1",
-s ’2007-09-07 16:00:00’
-w ’0:10:00’
-p ~/runhpl/runhpl

• The use of an user-defined environment would have been impossible without KaDeploy,
it would have taken the same amount of time per cluster and not for all of them, and the
configuration of the deployment would have been more difficult because of several conditional
choices.

• The DIET hierarchy would have been written by hand and not easily readable because of
the resources-dependency of the hierarchy description file avoided by the pattern-matching
realized by the XMLGoDIETGenerator.

The DIET platform deployed was composed of one Master Agent, 12 Local Agents, and 29
Server Daemons. One job can be executed on each SeD at a given time. 816 nodes were used
for the application jobs. As far as the different clusters do not provide the same compilation
environment, an image of an environment specially created has been deployed on every reserved
nodes.

During the experiments, the main difficulties came from the hardware limitations (typically
the disk space which was not large enough to backup data, or some no well defined permissions
of /tmp directories on some clusters), and not from DIET or the DIET Dashboard that allowed
a good dispatching of the Middleware requests and the fast and efficient management of these
hardware problems.

6 Conclusion

With the development of Grid technologies and the availability of large scale platforms, it becomes
mandatory to manage Grid applications efficiently and easily. In this paper, they have presented
the DIET Dashboard environment which is a complete, modular, portable, and powerful set of tools
dedicated to a Grid Middleware. With this tool, a non-expert user can manage Grid resources,
monitor the Grid itself and manage the Grid Middleware by designing its Grid applications or
using workflows and then deploying these Grid applications over the Grid platform.

12 E. Caron, F. Desprez , D. Loureiro

Figure 10: DIET hierarchy deployed during the experiment.

The DIET Dashboard offers a large number of modules, created to answer the different needs
of tools appearing in a Grid context. The software architecture design of DIET Dashboard makes
its extensible (modules can easily be added to the core of the application).

The performance of the DIET Dashboard and GRUDU (the tool dedicated to the Grid man-
agement) have been tested through the experiment realized on Grid’5000. This experiment showed
that the resources tool is able to monitor the entire Grid, and reserve resources on a large number
of sites and clusters.

GRUDU is one answer to the need of an efficient tool for the management of both hardware
and software part of the Grid. GRUDU abstracts the scripting part of the management of a Grid,
in order to provide to the user a easy-to-use GUI where all the necessary operations are available.
Users do not need to write obscure and complex command lines for the management of their
resources anymore, which is often one of the main barriers in the use of Grid environments.

All these elements prove that the DIET Dashboard is as stable and efficient tool that unifies
different tools into one single modular graphical application.

7 Acknowledgments

DIET was developed with financial support from the French Ministry of Research (RNTL GASP
and ACI ASP) and the ANR (Agence Nationale de la Recherche) through the LEGO project
referenced ANR-05-CIGC-11 and Gwendia project (ANR-06-MDCA-009). All experiments were
done over the Grid’5000 platform.

We would like to thank the developers of the DIET Middleware and in particular Abdelkader
Amar for his work around DIET Dashboard.

All-in-one Graphical Tool for the management of DIET a GridRPC Middleware 13

References

[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Kepler: An extensible
system for design and execution of scientific workflows. In Proceedings of the 16th Intl.
Conference on Scientific and Statistical Database Management(SSDBM), Santorini Island,
Greece, June 2004.

[2] K. Amin, G. von Laszewski, M. Hategan, N.J. Zaluzec, S. Hampton, and A. Rossi. GridAnt:
A Client-Controllable Grid Workflow System. hicss, 07:70210c, 2004.

[3] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S. Lanteri,
J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier, O. Richard, E. Talbi, and
I. Touché. Grid’5000: a large scale and highly reconfigurable experimental grid testbed. In-
ternational Journal of High Performance Computing Applications, 20(4):481–494, November
2006.

[4] J.L. Brown, C.S. Ferner, T.C. Hudson, A.E. Stapleton, R.J. Vetter, T. Carland, A. Martin,
J. Martin, A. Rawls, W. J. Shipman, and M. Wood. Gridnexus: A grid services scientific
workflow system. International Journal of Computer Information Science (IJCIS), 6(2):77–
82, June 2005.

[5] Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille Martin, Gré-
gory Mounié, Pierre Neyron, and Olivier Richard. A batch scheduler with high level compo-
nents. In Cluster computing and Grid 2005 (CCGrid05), 2005.

[6] E. Caron, P.K. Chouhan, and H. Dail. GoDIET: A deployment tool for distributed middleware
on grid’5000. In IEEE, editor, EXPGRID workshop. Experimental Grid Testbeds for the
Assessment of Large-Scale Distributed Apllications and Tools. In conjunction with HPDC-
15., pages 1–8, Paris, France, June 19th 2006.

[7] E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build Network Enabled Servers on
the Grid. International Journal of High Performance Computing Applications, 20(3):335–352,
2006.

[8] A. Denis, C. Perez, and T. Priol. Towards high performance CORBA and MPI middlewares
for grid computing. In Craig A. Lee, editor, Proc. of the 2nd International Workshop on Grid
Computing, number 2242 in LNCS, pages 14–25, Denver, Colorado, USA, November 2001.
Springer-Verlag.

[9] Y. Georgiou, J. Leduc, B. Videau, J. Peyrard, and O. Richard. A tool for environment
deployment in clusters and light grids. In Second Workshop on System Management Tools
for Large-Scale Parallel Systems (SMTPS’06), Rhodes Island, Greece, 4 2006.

[10] A. Gómez-Pérez and R. González-Cabero. SGSdesigner: a graphical interface for annotating
and designing semantic grid services. In WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 867–868, New York, NY, USA, 2006. ACM Press.

[11] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn. Taverna: a
tool for building and running workflows of services. Nucleic Acids Res, 34(Web Server issue),
July 2006.

[12] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed monitoring system:
design, implementation, and experience. Parallel Computing, 30(7):817–840, July 2004.

[13] K.M. McCann, M. Yarrow, A. De Vivo, and Piyush Mehrotra. Scyflow: an environment for
the visual specification and execution of scientific workflows. Concurrency and Computation:
Practice and Experience, 18(10):1155–1167, 2006.

14 E. Caron, F. Desprez , D. Loureiro

[14] T.M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood, T. Carver,
K. Glover, M.R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

[15] Gurmeet Singh, Ewa Deelman, Gaurang Mehta, Karan Vahi, Mei-Hui Su, Bruce G. Berriman,
John Good, Joseph C. Jacob, Daniel S. Katz, Albert Lazzarini, Kent Blackburn, and Scott
Koranda. The pegasus portal: web based grid computing. In SAC ’05: Proceedings of the
2005 ACM symposium on Applied computing, pages 680–686, New York, NY, USA, 2005.
ACM Press.

[16] Sun Microsystems. Sun Grid Engine — Administration and User’s guide, 2002. Version 5.3.

[17] Romain Teyssier. Cosmological hydrodynamics with adaptive mesh refinement: a new high
resolution code called ramses, 2001.

	1 Introduction
	2 Related Work
	3 DIET Architecture
	4 DIET Dashboard
	4.1 Grid Resources Management
	4.1.1 DIET Dashboard functionalities
	4.1.2 Comparison with QMON

	4.2 Grid Monitoring
	4.2.1 Functionalities of DIET Dashboard
	4.2.2 Comparison with Ganglia

	4.3 Grid Middleware Management
	4.3.1 Workflow tools
	4.3.2 DIET tools
	4.3.3 Comparison with GridNexus

	5 Experiments
	6 Conclusion
	7 Acknowledgments

