
HAL Id: hal-02102782
https://hal-lara.archives-ouvertes.fr/hal-02102782v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic middleware deployment planning on
heterogeneous platforms

Eddy Caron, Pushinder Kaur Chouhan, Frédéric Desprez

To cite this version:
Eddy Caron, Pushinder Kaur Chouhan, Frédéric Desprez. Automatic middleware deployment plan-
ning on heterogeneous platforms. [Research Report] LIP RR-2008-23, Laboratoire de l’informatique
du parallélisme. 2008, 2+14p. �hal-02102782�

https://hal-lara.archives-ouvertes.fr/hal-02102782v1
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Automatic Middleware Deployment Planning on
Heterogeneous Platforms

Eddy Caron,
Pushpinder Kaur Chouhan,
Frédéric Desprez

Juin 2008

Research Report No 2008-23

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr



Automatic Middleware Deployment Planning on
Heterogeneous Platforms

Eddy Caron, Pushpinder Kaur Chouhan, Frédéric Desprez

Juin 2008

Abstract
The use of many distributed, heterogeneous resources as a large collective platform
offers great potential. A key issue for these grid platformsis middleware scalability
and how middleware services can be mapped on the available resources. Optimizing
deployment is a difficult problem with no existing general solutions. In this paper,
we address the following problem: how to perform out an adapted deployment for a
hierarchy of servers and resource brokers on a heterogeneous system?
Our objective is to generate a best platform from the available nodes so as to fulfill
the clients demands. However, finding the best deployment among heterogeneous
resources is a hard problem since it is close to find the best broadcast tree in a general
graph, which is known to be NP-complete.
Thus, in this paper, we present a heuristic for middleware deployment on heteroge-
neous resources. We apply our heuristic to automatically deploy a distributed Problem
Solving Environment on a large scale grid. We present experiments comparing the au-
tomatically generated deployment against a number of otherreasonable deployments.

Keywords: Deployment, Grid computing, Network Enabled Server, Scheduling,
Resource localization and selection.

Résumé
L’utilisation de nombreuses ressources hétérogènes et distribuées comme une plate-
forme collaborative à large échelle offre un grand potentiel. Un point clef de ces
plates-formes de grille est l’extensibilité des intergiciels et comment associer les ser-
vices de l’intergiciel aux ressources disponibles. L’optimisation du déploiement est
un problème difficile qui ne dispose pas de solution générique. Dans ce rapport, nous
nous intéressons au problème suivant : comment réaliser un déploiement adapté pour
une hiérarchie de serveurs et d’ordonnanceurs sur un système hétérogène ?
Notre objectif est de générer la meilleure plate-forme à partir d’une ensemble de
noeuds disponibles pour répondre aux demandes des clients.Cependant, trouver le
meilleur déploiement parmi des ressources hétérogènes estun problème difficile
proche de celui de trouver le meilleur arbre de diffusion pour un graphe général qui
est un problème NP-difficile.
Dans ce rapport, nous présentons alors une heuristique dansce cadre précis. Nous
appliquons notre heuristique pour un déploiement automatique d’un environnement de
résolution de problèmes à large échelle. Des expériences sont menées afin de comparer
le déploiement généré par l’heuristique avec d’autres déploiements probables.

Mots-clés: Déploiement, Grille de calcul, Ordonnancement en régime permanent,
Localisation et découverte de ressources



Automatic middleware deployment planning on heterogeneous platforms 1

1 Introduction

Due to the scale of grid platforms, as well as the geography location of resources, middleware should be
distributed to provide scalability and adaptability. Muchwork has focused on the design and implementa-
tion of distributed middleware [8, 14, 28, 29, 32]. To benefit most from such approaches, an appropriate
mapping of middleware components to the distributed resource environment is needed. However, while
middleware designers often note that this problem of deployment planning is an important problem, few
solutions for efficient and automatic deployment exists. Inother words, questions such aswhich (and
how many) resources should be usedandshould the fastest and best-connected resource be used for
middleware or as a computational resourceremain difficult to answer for heterogeneous resources.

Software engineering processes for deployment and configuration (software deployment) of distributed
system service-level functionality have been extensivelyresearched [1, 21, 24], however very little work
has been done around system deployment [18, 22]. To the best of our knowledge, no deployment algorithm
or model has been given for arranging the components of a problem solving environment (PSE) in such a
way as to maximize the number of requests that can be treated in a time unit on heterogeneous resources.
More related work is given in Section2.

The goal of this paper is to provide an automated approach to deployment planning that provides a good
deployment for client-server frameworks on heterogeneousplatforms. We consider that a good deployment
is the one that maximizes the throughput of the system in number of client requests. We define deployment
planning as the process of assigning resources to middleware components with the goal of optimizing
throughput. In this paper the terms “deployment planning” is often shortened to “deployment”.

We use a distributed Problem Solving Environment called DIET (Distributed Interactive Engineering
Toolbox) [8] as a test case for our approach. It uses a hierarchical arrangement of agents1 and servers2 to
provide scalable, high-throughput scheduling and application provision services clients3. Figure1 gives
the execution scheme of a computation request. A hierarchy is a simple and effective distribution approach
and has been chosen by a variety of middleware environments as their primary distribution approach [12,
17, 30].

Scheduling Phase Service Phase

8) Service response

7) Run application
& generate response

5) Scheduling response
(reference of selected server)

4) Response sorted
& forwarded up

3) Request prediction
& response generation

2) Forward request down

agentclient server

1) Scheduling request

ss s s

sa

a

aa

a

a a

c

c

c

6) Service
request

Figure 1: Platform deployment architecture and execution phases.

We describe a hierarchy as follows. A servers ∈ S has exactly one parent that is always an agent
a ∈ A. A root agenta ∈ A has one or more child agents and/or servers and no parents. Non-root agents
a ∈ A have exactly one parent and two or more child agents and/or servers. The arrangement of these
elements is shown in Figure1. We don’t share resources between agents and servers. In a lot of case, it’s
important for application to be run alone without disruption. Moreover this model is close to real platform,
thus a lot of batch scheduler are deployed on a gateway to access to computational servers.

1Agents select potential servers from a list of servers maintained in the database by frequent monitoring and maps client requests
to one of the servers.

2Servers receive requests from clients and execute applications or services on their behalf.
3Users that require computations.



2 E. Caron , P.K. Chouhan , F. Desprez

To apply our approach to DIET, we have developed performancemodels for DIET components. We
present real-world experiments demonstrating that the deployment chosen by our approach performs well
when compared to other reasonable deployments.

The rest of this paper is organized as follows. Section2 presents some related work around deploy-
ment and scheduling. Section3 first presents the request performance modeling and then thesteady-state
throughput modeling of our problem. A deployment heuristicfor heterogeneous platforms is presented in
Section4. Section5 presents the experimental results to test the ability of designed deployment heuris-
tic and models to predict the good real-world deployments. Finally, Section6 concludes the article and
presents the future work.

2 Related work

A deployment is the mapping of a platform and middleware across many resources. Deployment can be
broadly divided in two categories: software deployment andsystem deployment.Software deployment
maps and distributes a collection of software components ona set of resources and can include activities
such as configuring, installing, updating, and adapting a software system. Examples of tools that automate
software deployment include SmartFrog [15] and Distributed Ant [16]. System deploymentinvolves as-
sembling physical hardware as well as organizing and namingwhole nodes and assigning activities such
as master and slave. Examples of tools that facilitate this process include the Deployment Toolkit [31] and
Kadeploy [27].

ADAGE [25, 26] aims at automating applications deployments on a Grid environment. ADAGE relies
on a generic description model for the applications: GADe. First, the user describes in its own formalism
(the specific description) his/her application(s) he/she wants to deploy. Then, using a plugin ADAGE
converts the specific description into the generic description GADe in XML (the plugin is related to the
specific description, therefore it is the user’s job to writeit). Then, using the XML files containing the
available resources description, the deployment control parameters (submission method:ssh or rsh, the
scheduler, the placement constraints. . . ) ADAGE computes adeployment plan containing the mapping of
each process on resources (the schedulers are also plugins,so one can bring its own, currently only round-
robin is implemented). Finally, ADAGE transfers the necessary files (usingscp or rcp), and launches
the applications. While it offers a generic description model for the applications, which allows to use it for
a wide variety of deployments. It does not have efficient algorithms to create the deployment plan (only
round-robin), but its modular architecture allows to extend its possibilities.

Jade [4] is a middleware which purpose is to deploy and dynamically manage applications. The idea
is to have a system which deals with the maintenance and management operations, instead of a physical
person. Each application to deploy has first to be encapsulated in a Fractal4 component which defines the
incoming and outgoing interfaces, as well as controllers tocontrol the behavior of the components (suspend,
resume, or change its attributes). The user defines the application architecture in an XML file using an
ADL (Architecture Description Language). This file contains the components description, their relations,
the number of instances for the components, . . . TheSoftware Installation Servicecomponent is in charge
of installing the components on the cluster’s nodes, then theCluster Managermaps the applications on the
nodes. Theautonomic managerexecutes and manages the components: it monitors the system’s state and
reacts according to the values given by a set of sensors (for example it can add or remove instances of a
particular component in order to adapt to the system load) inorder to keep the system in a stable state. Jade
is more a dynamic autonomic management software than a deployment software, it takes into account the
environment thanks to sensors within the components. Nevertheless, it still has an application deployment
system based on an encapsulation in Fractal components. Theresources selection is done among a group
of available nodes on a cluster.

Although these toolkits can automate many of the tasks associated with deployment, they do not au-
tomate the decision process of finding an appropriate mapping of specialized middleware components to
resources so that the best performance can be achieved from the system.

To the best of our knowledge, no deployment algorithm or model has been given for arranging the
components of a PSE in such a way as to maximize the number of requests that can be treated in a time

4http://fractal.objectweb.org/

http://fractal.objectweb.org/


Automatic middleware deployment planning on heterogeneous platforms 3

unit. In [23], software components based on the CORBA component model are automatically deployed on
the computational Grid. The CORBA component model containsa deployment model that specifies how
a particular component can be installed, configured and launched on a machine. The authors note a strong
need for deployment planning algorithms, but to date they have focused on other aspects of the system.
Our work is thus complementary.

In [7] we presented a heuristic approach for improving deployments of hierarchical NES systems in
heterogeneous Grid environments. The approach is iterative; in each iteration, mathematical models are
used to analyze the existing deployment, identify the primary bottleneck, and remove the bottleneck by
adding resources in the appropriate area of the system. The techniques given in [7] are heuristic and iter-
ative in nature and can only be used to improve the throughputof a deployment that has been defined by
other means; the current work provides an optimal solution to a more limited case and does not require a
predefined deployment as input. In [6], we presented a decision builder tool to analyze existing hierarchi-
cal deployments, used mathematical models to identify bottleneck nodes, and removed the bottleneck by
adding resources in the appropriate part of the system. The solution presented was iterative and heuristic
in nature. In [10] we presented an approach for automatically determining optimal deployment for hier-
archically distributed services on heterogeneous clusters. We proved that a complete spanning d-ary tree
provides an optimal deployment and presented an algorithm to construct this optimal tree.

Optimizing deployment is an evolving field. In [19], the authors propose an algorithm called Sikitei to
address the Component Placement Problem (CPP). This work leverages existing AI planning techniques
and the specific characteristics of CPP. In [20] the Sikitei approach is extended to allow optimization of re-
source consumption and consideration of plan costs. The Sikitei approach focuses on satisfying component
constraints for effective placement, but does not considerdetailed but sometimes important performance
issues such as the effect of the number of connections on a component’s performance.

The Pegasus System [3] frames workflow planning for the Grid as a planning problem.The approach is
interesting for overall planning when one can consider thatindividual elements can communicate with no
performance impact. Our work is more narrowly focused on a specific style of assembly and interaction be-
tween components and has a correspondingly more accurate view of performance to guide the deployment
decision process.

Finally, this work is also somehow related to the design of efficient broadcast trees in grids [2, 13].
However, the big difference is that in our case, nodes also compute and this cost is taken into account.

3 Steady-state throughput modeling

In order to apply the heuristic presented in Section4 to DIET, we require models for the scheduling and
service throughput in DIET. Variables used in the formationof performance models to estimate the time
required for various phases of request treatment are the following.

ρ is the throughput of the platform,ρschedi
, the scheduling request throughput of resourcei, ρservice,

the service request throughput,Sreq, the size of incoming requests,Srep, the size of the reply,wi, the com-
puting power of resourcei, din the children supported by resourcei, Wprei

, the amount of computation of
resourcei to merge the replies fromdi children,Wseli , the amount of computation of resourcei needed to
process the servers replies,Wfixi

, a fixed cost to process the server reply,Wreqi
, the amount of computa-

tion needed by resourcei to process one incoming request,Wappi
, the amount of computation needed by a

serveri to complete a service request forappservice,B, the bandwidth of the link between resources, and
N , the number of requests completed by all the servers in a timestep. In our communication model, we
assume that communication links are homogeneous, which is the case of our target platform.

Agent communication model:To treat a request, an agentreceivesthe request from its parent,sends
the request to each of its children,receivesa reply from each of its children, andsendsone reply to its
parent. The time in seconds required by an agenti for receiving all messages associated with a request
from its parent anddi children is given by:

agent_receive_time =
Sreq + di · Srep

B
(1)

Similarly, the time in seconds required by an agent for sending all messages associated with a request



4 E. Caron , P.K. Chouhan , F. Desprez

to itsdi children and parent is given by:

agent_send_time =
di · Sreq + Srep

B
(2)

Server communication model:Servers have only one parent and no children, so the time in seconds
required by a server for receiving messages associated witha scheduling request is given by:

server_receive_time =
Sreq

B
(3)

The time in seconds required by a server for sending messagesassociated with a request to its parent is
given by:

server_send_time =
Srep

B
(4)

Agent computation model: Agents perform two activities involving computation: the processing of
incoming requests and the selection of the best server amongst the replies returned by the agent’s children.
There are two activities in the treatment of replies: a fixed costWfixi

in MFlops and a costWseli that is
the amount of computation in MFlops needed to process the server replies, and select the best server by
agenti. Thus, the computation associated with the treatment of replies is given by

Wrepi
(di) = Wfixi

+ Wseli · di

The time in seconds required by the agent for the two activities is given by the following equation.

agent_comp_time =
Wreqi

+ Wrepi
(di)

wi

(5)

Server computation model:Servers also perform two activities involving computation: performance
prediction as part of the scheduling phase and provision of application services as part of the service phase.
We suppose that a deployment with a set of serversS completesN requests in a given time step. Then each
serveri will completeNi requests, a fraction of N such that:

N
∑

i=1

Ni = N (6)

On average each serveri do prediction ofN requests and completeNi service requests in a time step.
For example, the servers as a group requireT seconds to completeN requests, then

T (N) =
Wprei

· N + Wappi
· Ni

wi

(7)

From Equation7, we can calculate the requests completed by each serveri as:

Ni =
T · wi − Wprei

· N

Wappi

(8)

From Equations6 and8, we get time taken by the servers to processN requests as

T = N ·

1 +
∑N

i=1
Wprei

Wappi
∑N

i=1
wi

Wappi

(9)

so, time taken by the servers to process one request is

server_comp_time =
1 +

∑N

i=1
Wprei

Wappi
∑N

i=1
wi

Wappi

(10)



Automatic middleware deployment planning on heterogeneous platforms 5

Now we use these constraints to calculate the throughput of each phase of the middleware deployment.
We use a model with no internal parallelism,M(r, s, w), [9] for the capability of a computing resource to
do computation and communication. In this model, a computing resource has no capability for parallelism.
It can either send a message, receive a message, or compute. Only a single port is assumed. Messages must
be sent and received serially.

Servicing throughput of serveri is then:

ρservicei
=

Ni

T +
Sreq+Srep

B
· N

(11)

So according to Equations6 and11, servicing throughput of platform is given by:

ρservice =

N
∑

i=1

Ni

T +
Sreq+Srep

B
· N

(12)

=
1

1+
P

N
i=1

Wprei
Wappi

P

N
i=1

wi
Wappi

+
Sreq+Srep

B

(13)

The scheduling throughputρsched in requests per second is given by the minimum of the throughput
provided by the servers for prediction and by the agents for scheduling as shown below.

ρsched = min∀i

(

1
Wprei

wi
+

Sreq

B
+

Srep

B

,
1

Wreqi
+Wrepi

(di)

wi
+

Sreq+di·Srep

B
+

di·Sreq+Srep

B



 (14)

In the servicing phase, only the server participate, as a result, theρservice is calculated from server’s
computation constraint as shown below.

ρservice = min∀i











1

Sreq

B
+

Srep

B
+

1+
P

N
i=1

Wprei
Wappi

P

N
i=1

wi
Wappi











(15)

The completed request throughputρ of a deployment is given by the minimum of the scheduling request
throughputρsched and the service request throughputρservice [10]. Thus using Equations14 and 15, we
generate the following equation that calculate the throughput of the platform.

ρ = min∀i

(

1
Wprei

wi
+

Sreq

B
+

Srep

B

,
1

Wreqi
+Wrepi

(di)

wi
+

Sreq+di·Srep

B
+

di·Sreq+Srep

B

,

1

Sreq

B
+

Srep

B
+

1+
P

N
i=1

Wprei
Wappi

P

N
i=1

wi
Wappi











(16)

We use this formula to calculate the throughput of the hierarchy in our experiments.

4 Heuristic for middleware deployment

Our objective is tofind a deployment that provides the maximum throughput (ρ) of completed requests per
second. A completed requestis one that has completed both the scheduling and service request phases and



6 E. Caron , P.K. Chouhan , F. Desprez

calc_hier_ser_pow is a function to calculate the servicing power provided by the hierarchy
when load is equally divided among the servers of the hierarchy.

calc_sch_pow is a function to calculate the scheduling power of a node according to
the computing power of the node and number of its children.

plot_hierarchy is a function to fill the adjacency matrix. Adjacency matrix is filled according
to the number of children that each agent (from agent array) can support.

shift_nodes is a function to shift up the node id in the server array if any server is
converted as an agent.

sort_nodes is a function to sort the available nodes according to there scheduling power
calculated by functioncalc_sch_pow.

write_xml is a function to generate an XML file according to the adjacency matrix, that is
given as an input to deployment tool to deploy the hierarchical platform.

Table 1: Procedures used in Heuristic1.

diff store minimum throughput among,ρsched, ρservice which is calculated
in previous step, and client demand

min_ser_cv store minimum values among servicing throughput of hierarchy
and client demand

n_nodes total nodes available for hierarchy construction
throughput_diff store minimum throughput among,ρsched, ρservice, and client demand
vir_max_sch_pow scheduling power of top node in sorted_nodes array
vir_max_ser_pow servicing power of the hierarchy
sorted_nodes array to store the id of sorted nodes
supported_children number of child nodes supported by an agent

Table 2: Variables used in Heuristic1.

for which a response has been returned to the client. When the maximum throughput can be achieved by
multiple distinct deployments, the preferred deployment is the one using the least resources.

The platform architecture that we target is composed of heterogeneous resources that have homoge-
neous connectivity. The working phases of the architectureis shown in Figure1.

The throughput of the deployment platform is dependent on the scheduling throughput (ρsched) of
each node and servicing throughput (ρservice) of the deployment. Scheduling throughput and servicing
throughput, as well as placement of the nodes in the hierarchy depend on the computing power of the
nodes. It is very difficult to consider heterogeneity of computing resource and communication at the same
time. In this primary work we focus on heterogeneous computing resource and consider homogeneous
communication. In case of cluster it is not so far from the reality but the results will be different when we
consider communications between clusters. We plan to deal with heterogeneous communication in future
works.

For sake of simplicity we have defined some procedures (Table1) for the middleware deployment
heuristic1. Variables used in the heuristic1 are presented in Table2. The heuristic is based on the exact
calculation of number of children supported by each node. Asscheduling power of any agent is limited by
the number of children that it can support, to select a node that can act as agent, we calculate the scheduling
power of each node with a number of children equal to the available nodes,n_nodes. Actually, it is not
only the number of children that effects the scheduling power of the parent node but also the computing
power of its children (that means the computing power dependency is taken into account). At this point we
ignore which node will be agent, so as to remove from the totalnodes, thus, initially we take children equal
to n_nodes − 1.

First, we sort the nodes according to scheduling power withn_nodes children in descending order
(Step 1 and 2). Top node in the sorted list is most suitable to be an agent. Now we calculate the scheduling
power of each node only with one child, so as to calculate the maximum scheduling power possible by
the node (Step 3). Step 6 checks if the scheduling power of thenode is less than the client demand then
one level hierarchy is deployed with one agent and one server(top two nodes of the sorted list), because
if more servers are added to the node, scheduling power will decrease. But if scheduling power is higher



Automatic middleware deployment planning on heterogeneous platforms 7

Algorithm 1 Pseudo-code describing heuristic to find the best hierarchy
1: Compute calc_sch_pow() for each node with n_nodes-1 children
2: Compute sorted_nodes[] by using sort_nodes()
3: Compute vir_max_sch_pow by using calc_sch_pow() with sorted_nodes[0] as an agent
4: Compute vir_max_ser_pow by using calc_hier_ser_pow() with sorted_nodes[1] as a server
5: Compute min_ser_cv
6: if (vir_max_sch_pow< min_ser_cv)then
7: Deployment is just 1 agent and 1 server
8: else
9: Compute throughput_diff and diff is a maximum arbitrary value

10: while (diff>throughput_diff)do
11: diff=throughput_diff;
12: Compute vir_max_sch_pow with supported_children equal to 2
13: Select next node from sorted_nodes[] as server
14: Compute vir_max_ser_pow and throughput_diff
15: while (∃ unused nodes andvir_max_sch_pow > vir_max_ser_pow) do
16: if the number of children supported by the current server node>1) then
17: Change server to agent using shift_nodes() and add next node from the sorted_nodes[] as a child to this new converted

agent
18: while the number of children< supported_children by the nodedo
19: Compute vir_max_ser_pow with one extra child
20: if ((vir_max_ser_pow<client_volume)&&(∃ unused nodes)&&(vir_max_ser_pow<vir_max_sch_pow))then
21: Take next node from sorted_nodes[] as a server
22: Compute vir_max_ser_pow
23: end if
24: end while
25: end if
26: Compute new throughput_diff
27: end while
28: if (vir_max_sch_pow<vir_max_ser_pow)then
29: if (diff<throughput_diff)then
30: Remove 1 child from the last agent
31: else
32: diff = throughput_diff
33: end if
34: end if
35: if (supported_children == n_nodes-1)then
36: diff=throughput_diff;
37: end if
38: end while
39: end if
40: plot_hierarchy();
41: write_xml();



8 E. Caron , P.K. Chouhan , F. Desprez

than client demand, then servicing power is increased by adding new nodes. For this new agents could be
added.

In Step 14, we calculate the scheduling throughput of the topnode in the sorted list by incrementing
number of its children. If any other node can support more than one child, then that node is added in the
hierarchy with the children that the node can support. Againservicing power is calculated considering the
total number of servers in the hierarchy. Steps 15 to 39 are repeated until all the nodes are used or client
demand is fulfilled or throughput of the hierarchy starts decreasing.

Then the connection between the nodes is presented in the form of adjacency matrix in Step 40. In Step
41 hierarchy is represented written in an XML file which is used by the deployment tool.

5 Experimental Results

In this section we present our experiments to test the ability of our deployment model to correctly identify
good real-world deployments. The deployment method described in section focuses on maximizing steady-
state throughput, as a result, we focus our experiments on testing the maximum sustained throughput
provided by different deployments.

5.1 Experimental Environment

DIET 2.0 is used for all deployed agents and servers; GoDIET [5] version 2.0.0 is used to perform the
actual software deployment. In general, at the time of deployment, one can know neither the exact job mix
nor the order in which jobs will arrive. Instead, one has to assume a particular job mix, define a deployment,
and eventually correct the deployment after launch if it wasnot well-chosen. For these tests, we use the
DGEMM application, a simple matrix multiplication provided as part of the level 3 BLAS package [11].

Measuring the maximum throughput of a system is non-trivial: if too little load is introduced the
maximum performance may not be achieved, if too much load is introduced the performance may suffer as
well. A unit of load is introduced via a script that runs a single request at a time in a continual loop. We
then introduce load gradually by launching one client script every second. We introduce new clients until
the throughput of the platform stops improving; we then let the platform run with no addition of clients for
10 minutes.

Table3 presents the parameter values we used for DIET in the model. To measure message sizesSreq

andSrep, we deployed an agent and a singleDGEMM server on the Lyon cluster and then launched 100
clients serially from the same cluster. We collected all network traffic between the agent and the server
machines usingtcpdump and analyzed the traffic to measure message sizes using the Ethereal Network
Protocol analyzer5. This approach provides a measurement of the entire messagesize including headers.
Using the same agent-server deployment, 100 client repetitions, and the statistics collection functionality
in DIET. Detailed measurements of the time required to process each message at the agent and server level
was also recorded. The parameterWrep depends on the number of children attached to an agent. We
measured the time required to process responses for a variety of star deployments including an agent and
different numbers of servers. A linear data fit provided a very accurate model for the time required to
process responses versus the degree of the agent with a correlation coefficient of 0.97. Thus, this linear
model is used for the parameterWrep. Finally, we measured the capacity of our test machines in MFlops
using a mini-benchmark extracted from Linpack and this value is used to convert all measured times to
estimates of the MFlops required.

DIET Wreq Wrep Wpre Srep Sreq

elements (MFlop) (MFlop) (MFlop) (Mb) (Mb)
Agent 1.7×10−1 4.0×10−3 + 5.4×10−3

·d - 5.4×10−3 5.3×10−3

Server - - 6.4×10−3 6.4×10−5 5.3×10−5

Table 3: Parameter values for middleware deployment on Lyonsite of Grid’5000

5http://www.ethereal.com

http://www.ethereal.com


Automatic middleware deployment planning on heterogeneous platforms 9

5.2 Deployment approach validation on homogeneous platform

The usefulness of our deployment heuristic depends heavilyon the performance model of the middleware.
This section presents experiments designed to show the correctness of the performance model presented in
previous section.

0 20 40 60 80 100 120 140 160 180 200
160

180

200

220

240

260

280

300

Number of clients

R
eq

ue
st

s/
se

co
nd

1 SeD

2 SeDs

Figure 2: Star hierarchies with one or two servers forDGEMM 10x10 requests. Measured throughput for
different load levels.

1052

T
hr

ou
gh

pt
 (

re
qu

es
ts

/s
ec

on
d)

1 SeD

2 SeDs

Measured Predicted

295

1460

283

Figure 3: Star hierarchies with one or two servers forDGEMM 10x10 requests. Comparison of predicted
and measured maximum throughput.

Experimental results shown in Figures2 and 3 uses a workload ofDGEMM 10x10 to compare the
performance of two hierarchies: an agent with one server versus an agent with two servers. The model
correctly predicts that both deployments are limited by agent performance and that the addition of the
second server will in fact hurt performance. More importantis the correct prediction by our model to judge
the effect of adding servers than to correctly predict the throughput of the platform (which is tough using a
small computation grain for which cache effects improve performance).

Experimental results shown in Figures4 and5 use a workload ofDGEMM 200x200 to compare the
performance of the same one and two servers hierarchies. In this scenario, the model predicts that both



10 E. Caron , P.K. Chouhan , F. Desprez

0 50 100 150 200 250 300
40

50

60

70

80

90

100

Number of clients

R
eq

ue
st

s/
se

co
nd

1 SeD

2 SeDs

Figure 4: Star hierarchies with one or two servers forDGEMM 200x200 requests. Measured throughput for
different load levels.

hierarchies are limited by server performance and therefore, performance will roughly double with the
addition of the second server. The model correctly predictsthat the two-server deployment will be the
better choice.

In summary, our deployment performance model is able to accurately predict the impact of adding
servers to a server-limited or agent-limited deployment.

To verify our heuristic we compared the predicted deployment given by the heuristic with the experi-
mental results presented in [10]. Table4 presents the comparison by reporting the percentage of optimal
throughput achieved by the deployments selected by different means.

DGEMM Total Opt. Homo. Heur. Heur.
Size Nodes Deg. Deg. Deg. Perf.
10 21 1 1 1 100.0%
100 25 2 2 2 100.0%
310 45 15 22 33 89.0%
1000 21 20 20 20 100.0%

Table 4: A summary of the percentage of optimal achieved by the deployment selected by our heteroge-
neous heuristic, optimal homogeneous model, and optimal degree.

5.3 Heuristic validation on heterogeneous cluster

To validate our heuristic we did experiments using two sites, Lyon and Orsay of the french experimental
Grid called Grid’5000, a set of distributed computational resources deployed in France. We used 200 nodes
of Orsay for the deployment of middleware elements and 30 nodes of Lyon for submitting the requests to
the deployed platform.

To convert the homogeneous cluster into heterogeneous cluster, we changed the workload of the re-
served nodes by launching different size of matrix multiplication as the background program on some
of the nodes. After launching the matrix program in the background on the machines we used Linpack
mini-benchmark to measure the capacity of the nodes in MFlops.

We compared two different deployments with the automatically generated deployment by our heuristic.
The first deployment is a simple star type, where one node actsas an agent and all the rest are directly
connected to the agent node (and these act as servers). In thesecond deployment, we deployed a balanced



Automatic middleware deployment planning on heterogeneous platforms 11

45

MeasuredPredicted
T

hr
ou

gh
pt

 (
re

qu
es

ts
/s

ec
on

d)

1 SeD

2 SeDs

35

70

90

Figure 5: Star hierarchies with one or two servers forDGEMM 200x200 requests. Comparison of predicted
and measured maximum throughput.

graph, one top agent connected to 14 agents and each agent connected to 14 servers with the exception of
one agent with only 3 servers.

Clients submittedDGEMM problems of two different sizes. First we tested the deployments with
DGEMM using 310x310 matrices. The heuristic generated deployment used only 156 nodes and deploy-
ment is organized as: top agent connected with 9 agents and each agent again connected to 9 agents. Two
agents are connected with 9 servers, 6 agents are connected with 7 servers and one with 5 servers. Au-
tomatically generated deployment performed better than the two compared deployments. Results of the
experimental results are shown in Figure6.

Second experiment is done withDGEMM with matrices of size 1000x1000. Heuristic generated a star
deployment for this problem size. Results in Figure7 shows that star performed better than the second
compared deployment.

6 Conclusion and Future Work

We presented a deployment heuristic that accurately predicts the maximum throughput that can be achieved
by the use of available nodes. The heuristic predicts a good deployment hierarchies for both homogeneous
and heterogeneous resources. A comparison is made to test the heuristic for homogeneous resources and
the heuristic performed up to 90% as compared to the homogeneous optimal algorithm presented in [10].
To validate the heuristic, experiments are performed on theGrid’5000 platform. Experiments have shown
that automatically generated deployment by the heuristic performs better than some intuitive deployments
for heterogeneous platforms.

In the near future one of our principal objectives is to implement the theoretical deployment planning
techniques as Automatic Deployment Planning Tool (ADePT).It will be interesting to validate our theoret-
ical concept of deployment planning by further experimentation with other hierarchical middlewares. We
would also like to implement deployment planning forarbitrary arrangementsof distributed resources.

In this model we consider that we have a function to know the execution time but we should study
another approach with statistical mathematical function to forecast the execution time. Finally, we are
interested to find a modelization to deploy several middlewares and/or applications on grid.

References

[1] A. Akkerman, A. Totok, and V. Karamcheti. Infrastructure for automatic dynamic deployment of j2ee
applications in distributed environments. InComponent Deployment, pages 17–32, 2005.



12 E. Caron , P.K. Chouhan , F. Desprez

0 100 200 300 400 500 600 700
50

100

150

200

Number of clients

R
eq

ue
st

s/
se

co
nd

Star

Balanced

Automatic

Figure 6: Comparison of automatically-generated hierarchy for DGEMM 310x310 with intuitive alternative
hierarchies.

[2] O. Beaumont, L. Marchal, and Y. Robert. Broadcast trees for heterogeneous platforms. InIPDPS
’05: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Papers, page 80.2, Washington, DC, USA, 2005. IEEE Computer Society.

[3] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, G. Mehta, and K. Vahi. The role of planning
in grid computing. InThe International Conference on Automated Planning & Scheduling, June 2003.

[4] Sara Bouchenak, Noël De Palma, Daniel Hagimont, and Christophe Taton. Autonomic Manage-
ment of Clustered Applications.IEEE International Conference on Cluster Computing, pages 1–11,
September 25th-28th 2006.

[5] E. Caron, P. K. Chouhan, and H. Dail. GoDIET: A DeploymentTool for Distributed Middleware on
Grid 5000. InEXPEGRID workshop at HPDC2006, Paris, June 2006.

[6] E. Caron, P. K. Chouhan, and A. Legrand. Automatic Deployment for Hierarchical Network Enabled
Server. InThe 13th Heterogeneous Computing Workshop (HCW 2004), Santa Fe. New Mexico, April
2004.

[7] E. Caron, P.K. Chouhan, and A. Legrand. Automatic deployment for hierarchical network enabled
server. InThe 13th Heterogeneous Computing Workshop, Apr. 2004.

[8] E. Caron and F. Desprez. DIET: A Scalable Toolbox to BuildNetwork Enabled Servers on the Grid.
International Journal of High Performance Computing Applications, 20(3):335–352, 2006.

[9] P. K. Chouhan.Automatic Deployment for Application Service Provider Environments. PhD thesis,
Ecole Normale Supérieure de Lyon, Sept 2006.

[10] P. K. Chouhan, H. Dail, E. Caron, and F. Vivien. Automatic middleware deployment planning on clus-
ters.International Journal of High Performance Computing Applications, 20(4):517–530, November
2006.

[11] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and R. Van de Geijn. Parallel implementation
of BLAS: General techniques for level 3 BLAS. Technical Report CS-TR-95-40, University of Texas,
Austin, Oct. 1995.



Automatic middleware deployment planning on heterogeneous platforms 13

0 50 100 150 200 250 300 350 400 450 500
5

10

15

20

25

30

Number of clients

R
eq

ue
st

s/
se

co
nd

Automatic/Star
Balanced

Figure 7: Comparison of automatically-generated hierarchy for DGEMM 1000* 1000 with intuitive alterna-
tive hierarchy.

[12] S. Dandamudi and S. Ayachi. Performance of Hierarchical Processor Scheduling in Shared-Memory
Multiprocessor Systems.IEEE Trans. on Computers, 48(11):1202–1213, 1999.

[13] Mathijs den Burger and Thilo Kielmann. Mob: zero-configuration high-throughput multicasting
for grid applications. InHPDC ’07: Proceedings of the 16th international symposium on High
performance distributed computing, pages 159–168, New York, NY, USA, 2007. ACM.

[14] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The International
Journal of Supercomputer Applications and High Performance Computing, 11(2):115–128, Summer
1997.

[15] P. Goldsack and P. Toft. Smartfrog: a framework for configuration. In
Large Scale System Configuration Workshop. National e-Science Centre UK, 2001.
http://www.hpl.hp.com/research/smartfrog/.

[16] W. Goscinski and D. Abramson. Distributed Ant: A systemto support application deployment in the
Grid. In Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing, Nov. 2004.

[17] A.W. Halderen, B.J. Overeinder, and P.M.A. Sloot. Hierarchical Resource Management in the Polder
Metacomputing Initiative.Parallel Computing, 24:1807–1825, 1998.

[18] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained Component Deployment in Wide-Area Net-
works Using AI Planning Techniques. InIPDPS, 2003.

[19] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained component deployment in wide area networks
using AI planning techniques. InInternational Parallel and Distributed Processing Symposium, Apr.
2003.

[20] T. Kichkaylo and V. Karamcheti. Optimal resource awaredeployment planning for component based
distributed applications. InThe 13th High Performance Distributed Computing, June 2004.

[21] G. Kirby, S. Walker, S. Norcross, and A. Dearle. A methodology for developing and deploying
distributed applications. InComponent Deployment, pages 37–51, 2005.

http://www.hpl.hp.com/research/smartfrog/


14 E. Caron , P.K. Chouhan , F. Desprez

[22] S. Lacour, C. Pérez, and T. Priol. Deploying corba components on a computational grid: General
principles and early experiments using the globus toolkit.In Component Deployment, pages 35–49,
2004.

[23] S. Lacour, C. Pérez, and T. Priol. Deploying CORBA components on a Computational Grid: General
principles and early experiments using the Globus Toolkit.In 2nd International Working Conference
on Component Deployment, May 2004.

[24] S. Lacour, C. Perez, and T. Priol. Generic application description model: Toward automatic de-
ployment of applications on computational grids. InGRID ’05: Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing, pages 284–287, Washington, DC, USA, 2005. IEEE
Computer Society.

[25] Sébastien Lacour, Christian Pérez, and Thierry Priol.A network topology description model for grid
application deployment. In Rajkumar Buyya, editor,Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing (GRID 2004), pages 61–68, Pittsburgh, PA, USA, November 2004.
Held in conjunction with Supercomputing 2004 (SC2004).

[26] Sébastien Lacour, Christian Pérez, and Thierry Priol.Generic application description model: To-
ward automatic deployment of applications on computational grids. In6th IEEE/ACM International
Workshop on Grid Computing (Grid2005), Seattle, WA, USA, November 2005. Springer-Verlag.

[27] C. Martin and O. Richard. Parallel launcher for clusterof PC. InParallel Computing, Proceedings of
the International Conference, Sep. 2001.

[28] J. P. Morrison, B. Clayton, D. A. Power, and A. Patil. Webcom-G: grid enabled metacomputing.
Neural, Parallel Sci. Comput., 12(3):419–438, 2004.

[29] H. Nakada, M. Sato, and S. Sekiguchi. Design and implementations of NINF: towards a global
computing infrastructure.Future Gener. Comput. Syst., 15(5-6):649–658, 1999.

[30] J. Santoso, G.D. van Albada, B.A.A. Nazief, and P.M.A. Sloot. Simulation of Hierarchical Job Man-
agement for Meta-Computing Systems.Int. Journal of Foundations of Computer Science, 12(5):629–
643, 2001.

[31] Dell Power Solutions. Simplifying system deployment using the Dell OpenManage Deployment
Toolkit, October 2004.

[32] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In Fran Berman, Geoffrey Fox, and
Tony Hey, editors,Grid Computing: Making the Global Infrastructure a Reality. John Wiley & Sons
Inc., December 2002.


	1 Introduction
	2 Related work
	3 Steady-state throughput modeling
	4 Heuristic for middleware deployment
	5 Experimental Results
	5.1 Experimental Environment
	5.2 Deployment approach validation on homogeneous platform
	5.3 Heuristic validation on heterogeneous cluster

	6 Conclusion and Future Work

