N

N

Automatic middleware deployment planning on
heterogeneous platforms
Eddy Caron, Pushinder Kaur Chouhan, Frédéric Desprez

» To cite this version:

Eddy Caron, Pushinder Kaur Chouhan, Frédéric Desprez. Automatic middleware deployment plan-
ning on heterogeneous platforms. [Research Report] LIP RR-2008-23, Laboratoire de I'informatique
du parallélisme. 2008, 2+14p. hal-02102782

HAL Id: hal-02102782
https://hal-lara.archives-ouvertes.fr /hal-02102782
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lara.archives-ouvertes.fr/hal-02102782
https://hal.archives-ouvertes.fr

Laboratoire de I'Informatique du Parallélisme

&l ? : Ecole Normale Supérieure de Lyon

Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL 6668

Automatic Middleware Deployment Planning on
Heterogeneous Platforms

Eddy Caron,
Pushpinder Kaur Chouhan, Juin 2008
Fredéric Desprez

Research Report?N\2008-23

Ecole Normale Supérieure de Lyon
46 Allée d'ltalie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électroniquel ;i p@ns-1yon. fr

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Automatic Middleware Deployment Planning on
Heterogeneous Platforms

Eddy Caron, Pushpinder Kaur Chouhan, Frédéric Desprez
Juin 2008

Abstract

The use of many distributed, heterogeneous resources ageadallective platform
offers great potential. A key issue for these grid platfoimmiddleware scalability
and how middleware services can be mapped on the availamenaes. Optimizing
deployment is a difficult problem with no existing generalusions. In this paper,
we address the following problem: how to perform out an aethpeployment for a
hierarchy of servers and resource brokers on a heterogesgstem?

Our objective is to generate a best platform from the avilalbdes so as to fulfill
the clients demands. However, finding the best deploymemtgnhneterogeneous
resources is a hard problem since it is close to find the beatoest tree in a general
graph, which is known to be NP-complete.

Thus, in this paper, we present a heuristic for middlewaygdayenent on heteroge-
neous resources. We apply our heuristic to automaticapjoglea distributed Problem
Solving Environment on a large scale grid. We present expiris comparing the au-
tomatically generated deployment against a number of etfzesonable deployments.

Keywords: Deployment, Grid computing, Network Enabled Server, Saliad,
Resource localization and selection.

Résumé
L'utilisation de nombreuses ressources hétérogenes tebdi&es comme une plate-
forme collaborative a large échelle offre un grand poténtie point clef de ces
plates-formes de grille est I'extensibilité des intergisiet comment associer les ser-
vices de l'intergiciel aux ressources disponibles. L'opsiation du déploiement est
un probléme difficile qui ne dispose pas de solution générifpans ce rapport, nous
nous intéressons au probleme suivant : comment réalise¢ploidment adapté pour
une hiérarchie de serveurs et d’ordonnanceurs sur un sy$térérogéne ?
Notre objectif est de générer la meilleure plate-forme dipdiune ensemble de
noeuds disponibles pour répondre aux demandes des clggpendant, trouver le
meilleur déploiement parmi des ressources hétérogénesneptobleme difficile
proche de celui de trouver le meilleur arbre de diffusionrpougraphe général qui
est un probleme NP-difficile.
Dans ce rapport, nous présentons alors une heuristiquecgacadre précis. Nous
appliquons notre heuristique pour un déploiement aut@uati’un environnement de
résolution de problémes a large échelle. Des expérienoésemées afin de comparer
le déploiement généré par I'heuristique avec d’autresaiéplents probables.

Mots-clés: Déploiement, Grille de calcul, Ordonnancement en régimmpaent,
Localisation et découverte de ressources

Automatic middleware deployment planning on heterogesg@datforms 1

1 Introduction

Due to the scale of grid platforms, as well as the geograpbgtion of resources, middleware should be
distributed to provide scalability and adaptability. Mugbrk has focused on the design and implementa-
tion of distributed middlewareg] 14, 28, 29, 32]. To benefit most from such approaches, an appropriate
mapping of middleware components to the distributed resoanvironment is needed. However, while
middleware designers often note that this problem of deplayt planning is an important problem, few
solutions for efficient and automatic deployment exists.otlmer words, questions such asich (and
how many) resources should be usedndshould the fastest and best-connected resource be used for
middleware or as a computational resourceemain difficult to answer for heterogeneous resources.

Software engineering processes for deployment and coafigar(software deployment) of distributed
system service-level functionality have been extensivedearchedl] 21, 24], however very little work
has been done around system deployme>d2]. To the best of our knowledge, no deployment algorithm
or model has been given for arranging the components of dgarosolving environment (PSE) in such a
way as to maximize the number of requests that can be treagtime unit on heterogeneous resources.
More related work is given in Sectich

The goal of this paper is to provide an automated approacédlmgment planning that provides a good
deployment for client-server frameworks on heterogenetatforms. We consider that a good deployment
is the one that maximizes the throughput of the system in rumixclient requests. We define deployment
planning as the process of assigning resources to midddea@nponents with the goal of optimizing
throughput. In this paper the terms “deployment plannisgifien shortened to “deployment”.

We use a distributed Problem Solving Environment calledD(Bistributed Interactive Engineering
Toolbox) [8] as a test case for our approach. It uses a hierarchicalgamaent of agentsand serversto
provide scalable, high-throughput scheduling and apiadingorovision services clients Figure1 gives
the execution scheme of a computation request. A hieraschgimple and effective distribution approach
and has been chosen by a variety of middleware environmeritsea primary distribution approach,

17, 30].

- client @ agent @® server

5) Scheduling response_, _~
(reference of selected server) — 4’1) Scheduling request N
6) Service,
request .

1
I

|
| 18) Service response
/

3) Request prediction

4) Response sorted .- & response generation

& forwarded up

7) Run application
& generate response

Scheduling Phase Service Phase

Figure 1: Platform deployment architecture and executitamsps.

We describe a hierarchy as follows. A servee S has exactly one parent that is always an agent
a € A. Aroot agentu € A has one or more child agents and/or servers and no parentsraddbagents
a € A have exactly one parent and two or more child agents andfeerse The arrangement of these
elements is shown in Figure We don’t share resources between agents and servers. thofeckse, it's
important for application to be run alone without disruptidloreover this model is close to real platform,
thus a lot of batch scheduler are deployed on a gateway teatceomputational servers.

1Agents select potential servers from a list of servers miathin the database by frequent monitoring and maps clienestg
to one of the servers.

2Servers receive requests from clients and execute agplisatr services on their behalf.

SUsers that require computations.

2 E. Caron, P.K. Chouhan , F. Desprez

To apply our approach to DIET, we have developed performamaeels for DIET components. We
present real-world experiments demonstrating that théogleyent chosen by our approach performs well
when compared to other reasonable deployments.

The rest of this paper is organized as follows. SecHgresents some related work around deploy-
ment and scheduling. Secti@first presents the request performance modeling and thestéhdy-state
throughput modeling of our problem. A deployment heurifticheterogeneous platforms is presented in
Section4. Section5 presents the experimental results to test the ability oigdes deployment heuris-
tic and models to predict the good real-world deploymenisally, Section6 concludes the article and
presents the future work.

2 Related work

A deployment is the mapping of a platform and middleware s€rmany resources. Deployment can be
broadly divided in two categories: software deployment aystem deploymentSoftware deployment
maps and distributes a collection of software componenis set of resources and can include activities
such as configuring, installing, updating, and adaptingitavaoe system. Examples of tools that automate
software deployment include SmartFrab] and Distributed Ant 16]. System deploymeirivolves as-
sembling physical hardware as well as organizing and namimge nodes and assigning activities such
as master and slave. Examples of tools that facilitate tloisgss include the Deployment Toolki1] and
Kadeploy R7].

ADAGE [25, 26] aims at automating applications deployments on a Gridrenment. ADAGE relies
on a generic description model for the applications: GADestFthe user describes in its own formalism
(the specific description) his/her application(s) he/stet® to deploy. Then, using a plugin ADAGE
converts the specific description into the generic desonpBADe in XML (the plugin is related to the
specific description, therefore it is the user’s job to witje Then, using the XML files containing the
available resources description, the deployment conardmeters (submission methatsh orr sh, the
scheduler, the placement constraints. ..) ADAGE computiespboyment plan containing the mapping of
each process on resources (the schedulers are also pegimse can bring its own, currently only round-
robin is implemented). Finally, ADAGE transfers the neesgdiles (usingscp or r cp), and launches
the applications. While it offers a generic description middethe applications, which allows to use it for
a wide variety of deployments. It does not have efficient @lgms to create the deployment plan (only
round-robin), but its modular architecture allows to exté@s possibilities.

Jade {] is a middleware which purpose is to deploy and dynamicalinage applications. The idea
is to have a system which deals with the maintenance and reareag operations, instead of a physical
person. Each application to deploy has first to be encapsliata Fractdl component which defines the
incoming and outgoing interfaces, as well as controllecetdrol the behavior of the components (suspend,
resume, or change its attributes). The user defines thecafiph architecture in an XML file using an
ADL (Architecture Description LanguayeThis file contains the components description, theirtiehe,
the number of instances for the components, ...Jb#ware Installation Serviceomponent is in charge
of installing the components on the cluster’s nodes, thelCthster Managemaps the applications on the
nodes. Theautonomic manageexecutes and manages the components: it monitors the systewe and
reacts according to the values given by a set of sensorsxX&nge it can add or remove instances of a
particular component in order to adapt to the system loadjder to keep the system in a stable state. Jade
is more a dynamic autonomic management software than aytepid software, it takes into account the
environment thanks to sensors within the components. esless, it still has an application deployment
system based on an encapsulation in Fractal componentge3berces selection is done among a group
of available nodes on a cluster.

Although these toolkits can automate many of the tasks &sdcwith deployment, they do not au-
tomate the decision process of finding an appropriate mgpgfispecialized middleware components to
resources so that the best performance can be achievedHeosygtem.

To the best of our knowledge, no deployment algorithm or rhbds been given for arranging the
components of a PSE in such a way as to maximize the numbeqoésts that can be treated in a time

4http://fractal.objectweb. org/

http://fractal.objectweb.org/

Automatic middleware deployment planning on heterogesg@datforms 3

unit. In [23], software components based on the CORBA component moele@lldomatically deployed on
the computational Grid. The CORBA component model contaideployment model that specifies how
a particular component can be installed, configured ancttaohon a machine. The authors note a strong
need for deployment planning algorithms, but to date thexeHacused on other aspects of the system.
Our work is thus complementary.

In [7] we presented a heuristic approach for improving deploysehhierarchical NES systems in
heterogeneous Grid environments. The approach is iterdtiveach iteration, mathematical models are
used to analyze the existing deployment, identify the pryniettleneck, and remove the bottleneck by
adding resources in the appropriate area of the system.etheigues given in7] are heuristic and iter-
ative in nature and can only be used to improve the througbipatdeployment that has been defined by
other means; the current work provides an optimal solutioa iore limited case and does not require a
predefined deployment as input. &,[we presented a decision builder tool to analyze existieganchi-
cal deployments, used mathematical models to identifydretk nodes, and removed the bottleneck by
adding resources in the appropriate part of the system. dloéian presented was iterative and heuristic
in nature. In [LO] we presented an approach for automatically determinirtigr@b deployment for hier-
archically distributed services on heterogeneous clsistééfe proved that a complete spanning d-ary tree
provides an optimal deployment and presented an algorithcorstruct this optimal tree.

Optimizing deployment is an evolving field. 169, the authors propose an algorithm called Sikitei to
address the Component Placement Problem (CPP). This waetalges existing Al planning techniques
and the specific characteristics of CPP.26][the Sikitei approach is extended to allow optimizationef r
source consumption and consideration of plan costs. TheBipproach focuses on satisfying component
constraints for effective placement, but does not congi@ésiled but sometimes important performance
issues such as the effect of the number of connections on par@nt’s performance.

The Pegasus Systerd] frames workflow planning for the Grid as a planning problé@rhe approach is
interesting for overall planning when one can consider itidividual elements can communicate with no
performance impact. Our work is more narrowly focused orezi$i style of assembly and interaction be-
tween components and has a correspondingly more accuesteo¥performance to guide the deployment
decision process.

Finally, this work is also somehow related to the design &tienht broadcast trees in gridg,[13].
However, the big difference is that in our case, nodes alsgpete and this cost is taken into account.

3 Steady-state throughput modeling

In order to apply the heuristic presented in Sectiadiw DIET, we require models for the scheduling and
service throughput in DIET. Variables used in the formatdmperformance models to estimate the time
required for various phases of request treatment are tluviog.

p is the throughput of the platformp,.,.q,, the scheduling request throughput of resourge.,ice,
the service request throughpit,.,, the size of incoming requests,.,,, the size of the replyy;, the com-
puting power of resourcg d;n the children supported by resouricél,,.,, the amount of computation of
resource to merge the replies froms; children,W,,,;,, the amount of computation of resouriceeeded to
process the servers replié§y;,,, a fixed cost to process the server repl,,,, the amount of computa-
tion needed by resouréeo process one incoming reques,,,, , the amount of computation needed by a
server; to complete a service request fgppservice,B, the bandwidth of the link between resources, and
N, the number of requests completed by all the servers in agteye In our communication model, we
assume that communication links are homogeneous, whitle isase of our target platform.

Agent communication model: To treat a request, an agarteiveshe request from its parergends
the request to each of its childremceivesa reply from each of its children, ars&ndsone reply to its
parent. The time in seconds required by an agdot receiving all messages associated with a request
from its parent and; children is given by:

Sreq + dz : Srep

= o

agent_receive_time =

Similarly, the time in seconds required by an agent for segdil messages associated with a request

4 E. Caron, P.K. Chouhan , F. Desprez

to its d; children and parent is given by:

di . Sreq + Srep

. @

agent_send_time =

Server communication model: Servers have only one parent and no children, so the timeconsis
required by a server for receiving messages associatecwitheduling request is given by:

, , Sre
server_receive_time = qu (3)

The time in seconds required by a server for sending messagesiated with a request to its parent is
given by:
S,
server_send_time = % (4)
Agent computation model: Agents perform two activities involving computation: thepessing of
incoming requests and the selection of the best server sshtrgreplies returned by the agent’s children.
There are two activities in the treatment of replies: a fixest&/;;,, in MFlops and a cosktV,,;, that is

the amount of computation in MFlops needed to process thesegplies, and select the best server by
agenti. Thus, the computation associated with the treatment dieejs given by

Wrepi (dz) = szml + Wseli . dz
The time in seconds required by the agent for the two aa#wvis given by the following equation.

Wreqi + Wrem (di)

wj

agent_comp_time = (5)
Server computation model: Servers also perform two activities involving computatiperformance
prediction as part of the scheduling phase and provisiopjgli@ation services as part of the service phase.
We suppose that a deployment with a set of serS&@mpletesV requests in a given time step. Then each

serveri will complete N; requests, a fraction of N such that:

ZNZ- =N (6)

On average each serviedo prediction of NV requests and complef€; service requests in a time step.
For example, the servers as a group reqiileconds to completd requests, then

Wprei -N + Wapp,; : Nz

wj

T(N) = (7

From Equatiorv, we can calculate the requests completed by each seager

CTew; — Wype, - N

N; 8
' Wa,ppi ()
From Equation® and8, we get time taken by the servers to procAssequests as
Wore,
1+ I,
T—nN. == Wami. 9)
ZN w;
i=1 Wapp,
so, time taken by the servers to process one request is
14 ZN X Whre,
i=1 Weapp.
server_comp_time = ———— i (10)

N
1=1 Wapp,

Automatic middleware deployment planning on heterogesg@datforms 5

Now we use these constraints to calculate the throughpuwtatf phase of the middleware deployment.
We use a model with no internal parallelisit,(r, s, w), [9] for the capability of a computing resource to
do computation and communication. In this model, a compgutasource has no capability for parallelism.
It can either send a message, receive a message, or compiite €ihgle port is assumed. Messages must
be sent and received serially.

Servicing throughput of serveiis then:

N;
Pservice; — (11)
T+ SreqtSrep | N

So according to Equatiorsand11, servicing throughput of platform is given by:

N

N;
Pservice — l (12)
servic ;T_FW.N
1
_ 13
1+EN Wpre; 13)

i=1 "Vapp7 + Ts'q“’sre’p

i= 1 Wa,,p1

The scheduling throughput,...q in requests per second is given by the minimum of the throughp
provided by the servers for prediction and by the agentsdioeduling as shown below.

(14)

. 1 1
Psched = 1MW | 7 mq w’ Wreqi + Wreps (di) | Speqtd;-S
+ + Sreatd

di-Sreq+Srep
w; w; B

rep +

In the servicing phase, only the server participate, astrébe p,.,... iS calculated from server’s
computation constraint as shown below.

) 1
Pservice = MMM, Wpre; (15)
Sreq 15’]7 +ZL 1 Wapp;

i=1 Wapp,

The completed request throughpudf a deployment is given by the minimum of the scheduling estju
throughputps.r.q and the service request throughput,.;.. [10]. Thus using Equationd4 and 15, we
generate the following equation that calculate the thrpugbf the platform.

. 1 1
= Minv;
p vi (Wp,el o Seeq m}’ Wreq; *Wrep,(d) | Sreqtdi-Srep | di-SreqtSrep’
B ws B B
1
ZN W, (16)
Sreq + 791) i=1 Wapp;
B wE

i Wapp;

We use this formula to calculate the throughput of the h@gnain our experiments.

4 Heuristic for middleware deployment

Our objective is tdind a deployment that provides the maximum throughpubf completed requests per
second A completed requess one that has completed both the scheduling and serviceseghases and

6 E. Caron, P.K. Chouhan , F. Desprez

cal c_hi er_ser_pow | is a function to calculate the servicing power provided by the hierarchy
when load is equally divided among the servers of the hierarchy.

cal c_sch_pow is a function to calculate the scheduling power of a node according to
the computing power of the node and number of its children.

pl ot _hi erarchy is a function to fill the adjacency matrix. Adjacency matrix is filled according
to the number of children that each agent (from agent array) cgosup

shi ft _nodes is a function to shift up the node id in the server array if any server is
converted as an agent.

sort _nodes is a function to sort the available nodes according to there scheduling powe
calculated by functiocal c_sch_pow.

write xm is a function to generate an XML file according to the adjacency matrix, that is
given as an input to deployment tool to deploy the hierarchical platform.

Table 1: Procedures used in Heuristic

diff store minimum throughput amongsch.cd, pservice Which is calculated
in previous step, and client demand

min_ser_cv store minimum values among servicing throughput of hierarchy
and client demand

n_nodes total nodes available for hierarchy construction

throughput_diff store minimum throughput amongscred, Pservice, and client demand

vir_max_sch_pow | scheduling power of top node in sorted_nodes array
vir_max_ser_pow | servicing power of the hierarchy

sorted_nodes array to store the id of sorted nodes
supported_childrer number of child nodes supported by an agent

Table 2: Variables used in Heuristlc

for which a response has been returned to the client. When @ix@mam throughput can be achieved by
multiple distinct deployments, the preferred deploymsrihe one using the least resources.

The platform architecture that we target is composed ofrbgeneous resources that have homoge-
neous connectivity. The working phases of the architedtusbown in Figurel.

The throughput of the deployment platform is dependent ensttheduling throughpup{.;.q) of
each node and servicing throughpgi.(.:c.) of the deployment. Scheduling throughput and servicing
throughput, as well as placement of the nodes in the hieyadelpend on the computing power of the
nodes. It is very difficult to consider heterogeneity of cauipg resource and communication at the same
time. In this primary work we focus on heterogeneous conmgutesource and consider homogeneous
communication. In case of cluster it is not so far from thdityaut the results will be different when we
consider communications between clusters. We plan to déalheterogeneous communication in future
works.

For sake of simplicity we have defined some procedures (TEbfer the middleware deployment
heuristicl. Variables used in the heuristicare presented in TabR The heuristic is based on the exact
calculation of number of children supported by each nodeseheduling power of any agent is limited by
the number of children that it can support, to select a nogecidin act as agent, we calculate the scheduling
power of each node with a number of children equal to the ablEInodesy_nodes. Actually, it is not
only the number of children that effects the scheduling povighe parent node but also the computing
power of its children (that means the computing power depeaylis taken into account). At this point we
ignore which node will be agent, so as to remove from the taidks, thus, initially we take children equal
ton_nodes — 1.

First, we sort the nodes according to scheduling power withodes children in descending order
(Step 1 and 2). Top node in the sorted list is most suitabletarbagent. Now we calculate the scheduling
power of each node only with one child, so as to calculate thgimum scheduling power possible by
the node (Step 3). Step 6 checks if the scheduling power ofidlde is less than the client demand then
one level hierarchy is deployed with one agent and one sé¢meitwo nodes of the sorted list), because
if more servers are added to the node, scheduling power adllehse. But if scheduling power is higher

Automatic middleware deployment planning on heterogesg@datforms 7

Algorithm 1 Pseudo-code describing heuristic to find the best hierarchy

1: Compute calc_sch_pow() for each node with n_nodes-1refnild

2: Compute sorted_nodes[] by using sort_nodes()

3: Compute vir_max_sch_pow by using calc_sch_pow() witresbmodes[0] as an agent

4: Compute vir_max_ser_pow by using calc_hier_ser_powf) sotrted_nodes[1] as a server
5: Compute min_ser_cv
6
7
8
9

¢ if (vir_max_sch_pow< min_ser_cvthen
Deployment is just 1 agent and 1 server
. else
: Compute throughput_diff and diff is a maximum arbitrary ealu
10: while (diff >throughput_diff)do

11: diff=throughput_diff;

12: Compute vir_max_sch_pow with supported_children equal t

13: Select next node from sorted_nodes[] as server

14: Compute vir_max_ser_pow and throughput_diff

15: while (3 unused nodes andr_max_sch_pow > vir_max_ser_pow) do

16: if the number of children supported by the current server netighen

17: Change server to agent using shift_nodes() and add adgtfrom the sorted_nodes|[] as a child to this new converted
agent

18: while the number of childrerc supported_children by the node

19: Compute vir_max_ser_pow with one extra child

20: if ((vir_max_ser_powclient_volume)&&E unused nodes)&&(vir_max_ser_pewir_max_sch_pow))hen

21: Take next node from sorted_nodes[] as a server

22: Compute vir_max_ser_pow

23: end if

24: end while

25: end if

26: Compute new throughput_diff

27: end while

28: if (vir_max_sch_powvir_max_ser_pow)hen

29: if (diff <throughput_diff)then

30: Remove 1 child from the last agent

31: else

32: diff = throughput_diff

33: end if

34: end if

35: if (supported_children == n_nodesihgn

36: diff=throughput_diff;

37: end if

38: end while

39: end if

40: plot_hierarchy();
41: write_xml();

8 E. Caron, P.K. Chouhan , F. Desprez

than client demand, then servicing power is increased bingdtew nodes. For this new agents could be
added.

In Step 14, we calculate the scheduling throughput of thentmte in the sorted list by incrementing
number of its children. If any other node can support more thae child, then that node is added in the
hierarchy with the children that the node can support. Agaivicing power is calculated considering the
total number of servers in the hierarchy. Steps 15 to 39 gqeated until all the nodes are used or client
demand is fulfilled or throughput of the hierarchy startsrdasing.

Then the connection between the nodes is presented in theofaxdjacency matrix in Step 40. In Step
41 hierarchy is represented written in an XML file which isdibg the deployment tool.

5 Experimental Results

In this section we present our experiments to test the wlofibur deployment model to correctly identify
good real-world deployments. The deployment method desdiin section focuses on maximizing steady-
state throughput, as a result, we focus our experiments simgethe maximum sustained throughput
provided by different deployments.

5.1 Experimental Environment

DIET 2.0 is used for all deployed agents and servers; GoDHVérsion 2.0.0 is used to perform the
actual software deployment. In general, at the time of depént, one can know neither the exact job mix
nor the order in which jobs will arrive. Instead, one has &uase a particular job mix, define a deployment,
and eventually correct the deployment after launch if it waswell-chosen. For these tests, we use the
DGEMM application, a simple matrix multiplication provides part of the level 3 BLAS packag#l].

Measuring the maximum throughput of a system is non-trivititoo little load is introduced the
maximum performance may not be achieved, if too much loaatieduced the performance may suffer as
well. A unit of load is introduced via a script that runs a $tgequest at a time in a continual loop. We
then introduce load gradually by launching one client $@igery second. We introduce new clients until
the throughput of the platform stops improving; we thenhetplatform run with no addition of clients for
10 minutes.

Table3 presents the parameter values we used for DIET in the modeheBsure message sizgs,
andS,.,, we deployed an agent and a singleEmMm server on the Lyon cluster and then launched 100
clients serially from the same cluster. We collected allnoek traffic between the agent and the server
machines using cpdunp and analyzed the traffic to measure message sizes usingheee&l Network
Protocol analyzér This approach provides a measurement of the entire messagmcluding headers.
Using the same agent-server deployment, 100 client regetjtand the statistics collection functionality
in DIET. Detailed measurements of the time required to pps@ach message at the agent and server level
was also recorded. The paramel&y., depends on the number of children attached to an agent. We
measured the time required to process responses for ayafistar deployments including an agent and
different numbers of servers. A linear data fit provided ay\eccurate model for the time required to
process responses versus the degree of the agent with &tiorreoefficient of 0.97. Thus, this linear
model is used for the paramet@f,.,. Finally, we measured the capacity of our test machines itop&
using a mini-benchmark extracted from Linpack and this #atuused to convert all measured times to
estimates of the MFlops required.

DlET Wreq Wrep Wpre S’r‘ep Sreq
elements| (MFlop) (MFlop) (MFlop) (Mb) (Mb)

Agent [1.7x10° ! | 4.0x1073 +5.4x1073d - 54x1073 | 5.3x1073

Server - - 6.4x1073 | 6.4x10~° | 5.3x107°

Table 3: Parameter values for middleware deployment on Isjterof Grid’5000

Shttp://ww. et hereal . com

http://www.ethereal.com

Automatic middleware deployment planning on heterogesg@datforms 9

5.2 Deployment approach validation on homogeneous platfan

The usefulness of our deployment heuristic depends heanithie performance model of the middleware.
This section presents experiments designed to show theatoess of the performance model presented in
previous section.

300

280} [T e
//
[l
/i
260 /
[
°
< ;
3 240 /
@ /1
3
E i
2 |
g /
g 2201/,
3 /
['4
W
[l
200—// :
/) ——1seD
f — — 2SeDs
180

160 I I I I I I I I I I}
0 20 40 60 80 100 120 140 160 180 200
Number of clients

Figure 2: Star hierarchies with one or two serversdaeEMM 10x10 requests. Measured throughput for
different load levels.

mm - ‘ 1460
L , 2SeDs
i) 1052
= -_—— -
[=} |
8 I
£ I
2 I
%] I
Q
3 I
o I
E |
5 |
E 205 !
3 283 !
.‘E - |
I I
I I
I I
I I
I I
1 1 .
Measured Predicted

Figure 3: Star hierarchies with one or two serversdaEMM 10x10 requests. Comparison of predicted
and measured maximum throughput.

Experimental results shown in Figur@sand 3 uses a workload obGEMM 10x10 to compare the
performance of two hierarchies: an agent with one servesugean agent with two servers. The model
correctly predicts that both deployments are limited bynagerformance and that the addition of the
second server will in fact hurt performance. More imporiarthe correct prediction by our model to judge
the effect of adding servers than to correctly predict theughput of the platform (which is tough using a
small computation grain for which cache effects improvdqgenance).

Experimental results shown in Figurdsand5 use a workload obGEmM 200x200 to compare the
performance of the same one and two servers hierarchiesislisd¢enario, the model predicts that both

10 E. Caron, P.K. Chouhan , F. Desprez

100
90~ e
80

70

Requests/second

60

1SeD
— —-2SeDs
50

40 i i i i i
0 50 100 150 200 250 300
Number of clients

Figure 4: Star hierarchies with one or two serversdfaemm 200x200 requests. Measured throughput for
different load levels.

hierarchies are limited by server performance and thegefeerformance will roughly double with the
addition of the second server. The model correctly preditis the two-server deployment will be the
better choice.

In summary, our deployment performance model is able torately predict the impact of adding
servers to a server-limited or agent-limited deployment.

To verify our heuristic we compared the predicted deploynggren by the heuristic with the experi-
mental results presented in(]. Table4 presents the comparison by reporting the percentage ahapti
throughput achieved by the deployments selected by diffeneans.

DGEMM | Total | Opt. | Homo. | Heur. | Heur.
Size | Nodes| Deg.| Deg. | Deg. | Perf.
10 21 1 1 1 100.0%
100 25 2 2 2 100.0%
310 45 15 22 33 89.0%
1000 21 20 20 20 | 100.0%

Table 4: A summary of the percentage of optimal achieved bydéployment selected by our heteroge-
neous heuristic, optimal homogeneous model, and optintgkde

5.3 Heuristic validation on heterogeneous cluster

To validate our heuristic we did experiments using two sitgen and Orsay of the french experimental
Grid called Grid’5000, a set of distributed computatioresaurces deployed in France. We used 200 nodes
of Orsay for the deployment of middleware elements and 3@sad Lyon for submitting the requests to
the deployed platform.

To convert the homogeneous cluster into heterogeneoutegluge changed the workload of the re-
served nodes by launching different size of matrix multiglion as the background program on some
of the nodes. After launching the matrix program in the basckgd on the machines we used Linpack
mini-benchmark to measure the capacity of the nodes in M¥lop

We compared two different deployments with the automdyigenerated deployment by our heuristic.
The first deployment is a simple star type, where one nodeasctn agent and all the rest are directly
connected to the agent node (and these act as servers).dadted deployment, we deployed a balanced

Automatic middleware deployment planning on heterogesg@datforms 11

| ' 2seDs
— 90
2 P
Q | |
g v
3 70 ‘ !
a) | I
4 | I ! |
Q I
=} I | I
o | | ! |
g | | ! |
= I ! I
£ o IR
Ei 35 | |
9 I |
IE | |
I I
I I
I I
I I
I I
1 1
Predicted Measured

Figure 5: Star hierarchies with one or two serversdfigGemM 200x200 requests. Comparison of predicted
and measured maximum throughput.

graph, one top agent connected to 14 agents and each ageettemhto 14 servers with the exception of
one agent with only 3 servers.

Clients submitted>GeMM problems of two different sizes. First we tested the deplayts with
DGEMM using 310x310 matrices. The heuristic generated deployosad only 156 nodes and deploy-
ment is organized as: top agent connected with 9 agents @hdagant again connected to 9 agents. Two
agents are connected with 9 servers, 6 agents are conneitted servers and one with 5 servers. Au-
tomatically generated deployment performed better thantwio compared deployments. Results of the
experimental results are shown in Figére

Second experiment is done witlcEMM with matrices of size 1000x1000. Heuristic generated a star
deployment for this problem size. Results in Figiirehows that star performed better than the second
compared deployment.

6 Conclusion and Future Work

We presented a deployment heuristic that accurately peettie maximum throughput that can be achieved
by the use of available nodes. The heuristic predicts a geptbgment hierarchies for both homogeneous
and heterogeneous resources. A comparison is made toedsetiistic for homogeneous resources and
the heuristic performed up to 90% as compared to the homogsraptimal algorithm presented ih(].

To validate the heuristic, experiments are performed orGiti@’5000 platform. Experiments have shown
that automatically generated deployment by the heurigiifopms better than some intuitive deployments
for heterogeneous platforms.

In the near future one of our principal objectives is to inmpémt the theoretical deployment planning
techniques as Automatic Deployment Planning Tool (ADeRTill be interesting to validate our theoret-
ical concept of deployment planning by further experimgatawith other hierarchical middlewares. We
would also like to implement deployment planning &bitrary arrangement®f distributed resources.

In this model we consider that we have a function to know thecetion time but we should study
another approach with statistical mathematical functmifiorecast the execution time. Finally, we are
interested to find a modelization to deploy several middiewand/or applications on grid.

References

[1] A. Akkerman, A. Totok, and V. Karamcheti. Infrastrucgufior automatic dynamic deployment of j2ee
applications in distributed environments. @omponent Deploymemages 17-32, 2005.

12

E. Caron, P.K. Chouhan , F. Desprez

200~

Star
— - — - Balanced
— — — Automatic

150 bl

Requests/second

50 I I I I I I I}
0 100 200 300 400 500 600 700

Number of clients

Figure 6: Comparison of automatically-generated hierafehDGEMM 310x310 with intuitive alternative
hierarchies.

[2]

O. Beaumont, L. Marchal, and Y. Robert. Broadcast treesheterogeneous platforms. IRDPS
'05: Proceedings of the 19th IEEE International ParallelcaDistributed Processing Symposium
(IPDPS’05) - Paperspage 80.2, Washington, DC, USA, 2005. IEEE Computer Spciet

[3] J.Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal Neehta, and K. Vahi. The role of planning

[4]

[5]

[6]

[8]

[9]

[10]

[11]

in grid computing. InThe International Conference on Automated Planning & Salied, June 2003.

Sara Bouchenak, Noél De Palma, Daniel Hagimont, andsBiphe Taton. Autonomic Manage-
ment of Clustered ApplicationdEEE International Conference on Cluster Computipgges 1-11,
September 25th-28th 2006.

E. Caron, P. K. Chouhan, and H. Dail. GoDIET: A Deploym&abl for Distributed Middleware on
Grid 5000. InEXPEGRID workshop at HPDC200PBaris, June 2006.

E. Caron, P. K. Chouhan, and A. Legrand. Automatic Deplewt for Hierarchical Network Enabled
Server. InThe 13th Heterogeneous Computing Workshop (HCW 2@&4jta Fe. New Mexico, April
2004.

E. Caron, P.K. Chouhan, and A. Legrand. Automatic deplemt for hierarchical network enabled
server. InThe 13th Heterogeneous Computing Workshg. 2004.

E. Caron and F. Desprez. DIET: A Scalable Toolbox to BNktwork Enabled Servers on the Grid.
International Journal of High Performance Computing Apglions 20(3):335-352, 2006.

P. K. Chouhan.Automatic Deployment for Application Service Provider iistvments PhD thesis,
Ecole Normale Supérieure de Lyon, Sept 2006.

P. K. Chouhan, H. Dail, E. Caron, and F. Vivien. Autonaatiiddleware deployment planning on clus-
ters.International Journal of High Performance Computing Apglions 20(4):517-530, November
2006.

A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfatil &. Van de Geijn. Parallel implementation
of BLAS: General techniques for level 3 BLAS. Technical Re@5-TR-95-40, University of Texas,
Austin, Oct. 1995.

Automatic middleware deployment planning on heterogesg@datforms 13

30

Automatic/Star
— - — Balanced

25

n
o
T

Requests/second
=
(%))
T

10+

5 I I I I I I I I I I}
0 50 100 150 200 250 300 350 400 450 500

Number of clients

Figure 7: Comparison of automatically-generated hiesafohbGEMM 1000* 1000 with intuitive alterna-
tive hierarchy.

[12] S. Dandamudi and S. Ayachi. Performance of Hierardicacessor Scheduling in Shared-Memory
Multiprocessor System3EEE Trans. on Computerg8(11):1202—-1213, 1999.

[13] Mathijs den Burger and Thilo Kielmann. Mob: zero-configtion high-throughput multicasting
for grid applications. INHPDC ’'07: Proceedings of the 16th international symposiumHigh
performance distributed computingages 159-168, New York, NY, USA, 2007. ACM.

[14] I. Foster and C. Kesselman. Globus: A metacomputingagtfucture toolkit. The International
Journal of Supercomputer Applications and High Performa@omputing11(2):115-128, Summer
1997.

[15] P. Goldsack and P. Toft. Smartfrog: a framework for ogunfation. In
Large Scale System Configuration Workshoplational e-Science Centre UK, 2001.
http://ww. hpl . hp. conl research/ smartfrog/.

[16] W. Goscinski and D. Abramson. Distributed Ant: A systemsupport application deployment in the
Grid. InProceedings of the Fifth IEEE/ACM International WorkshopGrid ComputingNov. 2004.

[17] A.W. Halderen, B.J. Overeinder, and P.M.A. Sloot. liehical Resource Management in the Polder
Metacomputing Initiative Parallel Computing24:1807-1825, 1998.

[18] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrainedr@ponent Deployment in Wide-Area Net-
works Using Al Planning Techniques. IRDPS 2003.

[19] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrainezhgponent deployment in wide area networks
using Al planning techniques. International Parallel and Distributed Processing Symipog Apr.
2003.

[20] T. Kichkaylo and V. Karamcheti. Optimal resource awdeployment planning for component based
distributed applications. Ifihe 13th High Performance Distributed Computidgne 2004.

[21] G. Kirby, S. Walker, S. Norcross, and A. Dearle. A metblogyy for developing and deploying
distributed applications. I@omponent Deploymemiages 37-51, 2005.

http://www.hpl.hp.com/research/smartfrog/

14 E. Caron, P.K. Chouhan , F. Desprez

[22] S. Lacour, C. Pérez, and T. Priol. Deploying corba congmis on a computational grid: General
principles and early experiments using the globus toolkitComponent Deploymemntages 35-49,
2004.

[23] S. Lacour, C. Pérez, and T. Priol. Deploying CORBA comguats on a Computational Grid: General
principles and early experiments using the Globus Toolki2nd International Working Conference
on Component Deploymemiiay 2004.

[24] S. Lacour, C. Perez, and T. Priol. Generic applicatiesatdiption model: Toward automatic de-
ployment of applications on computational grids. GRRID '05: Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computingages 284—-287, Washington, DC, USA, 2005. IEEE
Computer Society.

[25] Sébastien Lacour, Christian Pérez, and Thierry PAatetwork topology description model for grid
application deployment. In Rajkumar Buyya, edit®rpceedings of the 5th IEEE/ACM International
Workshop on Grid Computing (GRID 2004)ages 61-68, Pittsburgh, PA, USA, November 2004.
Held in conjunction with Supercomputing 2004 (SC2004).

[26] Sébastien Lacour, Christian Pérez, and Thierry Prideneric application description model: To-
ward automatic deployment of applications on computatigrids. In6th IEEE/ACM International
Workshop on Grid Computing (Grid20Q5eattle, WA, USA, November 2005. Springer-Verlag.

[27] C. Martin and O. Richard. Parallel launcher for clugiePC. InParallel Computing, Proceedings of
the International Conferen¢c&ep. 2001.

[28] J. P. Morrison, B. Clayton, D. A. Power, and A. Patil. WWem-G: grid enabled metacomputing.
Neural, Parallel Sci. Compuyt12(3):419-438, 2004.

[29] H. Nakada, M. Sato, and S. Sekiguchi. Design and impteai®ns of NNF: towards a global
computing infrastructure-uture Gener. Comput. Syst5(5-6):649-658, 1999.

[30] J. Santoso, G.D. van Albada, B.A.A. Nazief, and P.M.kdb Simulation of Hierarchical Job Man-
agement for Meta-Computing Systenhst. Journal of Foundations of Computer Scient2(5):629—
643, 2001.

[31] Dell Power Solutions. Simplifying system deploymesing the Dell OpenManage Deployment
Toolkit, October 2004.

[32] D. Thain, T. Tannenbaum, and M. Livny. Condor and thedGin Fran Berman, Geoffrey Fox, and
Tony Hey, editorsGrid Computing: Making the Global Infrastructure a Realigphn Wiley & Sons
Inc., December 2002.

	1 Introduction
	2 Related work
	3 Steady-state throughput modeling
	4 Heuristic for middleware deployment
	5 Experimental Results
	5.1 Experimental Environment
	5.2 Deployment approach validation on homogeneous platform
	5.3 Heuristic validation on heterogeneous cluster

	6 Conclusion and Future Work

