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Abstract
To schedule precedence task graphs in a more realistic framework, we
introduce an efficient fault tolerant scheduling algorithm that is both
contention-aware and capable of supporting ε arbitrary fail-silent (fail-
stop) processor failures. The design of the proposed algorithm which we
call Iso-Level CAFT, is motivated by (i) the search for a better load-
balance and (ii) the generation of fewer communications. These goals
are achieved by scheduling a chunk of ready tasks simultaneously, which
enables for a global view of the potential communications. Our goal
is to minimize the total execution time, or latency, while tolerating an
arbitrary number of processor failures. Our approach is based on an
active replication scheme to mask failures, so that there is no need for
detecting and handling such failures. Major achievements include a low
complexity, and a drastic reduction of the number of additional com-
munications induced by the replication mechanism. The experimental
results fully demonstrate the usefulness of Iso-Level CAFT.

Keywords: Communication contention, fault tolerance, multi-criteria scheduling,
heterogeneous systems.
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1 Introduction

With the advent of large-scale heterogeneous platforms such as clusters and grids, resource
failures (processors/links) are more likely to occur and have an adverse effect on the appli-
cations. Consequently, there is an increasing need for developing techniques to achieve fault
tolerance, i.e., to tolerate an arbitrary number of failures during execution. Scheduling for
heterogeneous platforms and fault tolerance are difficult problems in their own, and aiming
at solving them together makes the problem even harder. For instance, the latency of the ap-
plication will increase if we want to tolerate several failures, even if no actual failure happens
during execution.

In this paper, we introduce the Iso-Level Contention-Aware Fault Tolerant (Iso-Level
CAFT) scheduling algorithm (a new version of CAFT [3] that were initially designed to
address both problems of network contention and fault-tolerance scheduling) that aims at
tolerating multiple processor failures without sacrificing the latency. Iso-Level CAFT is based
on an active replication scheme to mask failures, so that there is no need for detecting and
handling such failures. Our choice for the active replication scheme is motivated by two
important advantages. On the one hand, the schedules obtained are static, thus it is easy to
have a guarantee on the latency of the schedule. On the other hand, the deployment of the
system does not require complicated mechanisms for failure detection. Major achievements
include a low complexity, and a drastic reduction of the number of additional communications
induced by the replication mechanism.

We suggest to use the bi-directional one-port architectural model, where each processor
can communicate (send and/or receive) with at most one other processor at a given time-step.
In other words, a given processor can simultaneously send a message, receive another message,
and perform some computation. The bi-directional one-port model seems closer to the actual
capabilities of modern networks (see the discussion of related work in [3, 4]). Indeed, it seems
to fit the performance of some current MPI implementations, which serialize asynchronous
MPI sends as soon as message sizes exceed a few megabytes [3].

The review of related work on fault tolerance scheduling and contention awareness is
provided in the research report [3].

The rest of the paper is organized as follows: Section 2 presents basic definitions and as-
sumptions. Then we describe the principle of the new Iso-Level CAFT algorithm in Section 3.
We experimentally compare Iso-Lvel CAFT with its initial version CAFT in Section 4; the
results assess the very good behavior of the new algorithm. Finally, we conclude in Section 5.

2 Framework

The execution model for a task graph is represented as a weighted Directed Acyclic Graph
(DAG) G = (V,E), where V is the set of nodes corresponding to the tasks, and E is the
set of edges corresponding to the precedence relations between the tasks. In the following
we use the term node or task indifferently; v = |V | is the number of nodes, and e = |E| is
the number of edges. In a DAG, a node without any predecessor is called an entry node,
while a node without any successor is an exit node. For a task t in G, Γ−(t) is the set of
immediate predecessors and Γ+(t) denotes its immediate successors. A task is called ready if
it is unscheduled and all of its predecessors are scheduled. We target a heterogeneous platform
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with m processors P = {P1, P2, . . . , Pm}, fully interconnected. The link between processors
Pk and Ph is denoted by lkh. Note that we do not need to have a physical link between any
processor pair. Instead, we may have a switch, or even a path composed of several physical
links, to interconnect Pk and Ph; in the latter case we would retain the bandwidth of the
slowest link in the path for the bandwidth of lkh. For a given graph G and processor set P,
g(G,P) is the granularity, i.e., the ratio of the sum of slowest computation times of each task,
to the sum of slowest communication times along each edge. H(α) is the head function which
returns the first task from a sorted list α, where the list is sorted according to tasks priorities
(ties are broken randomly). The number of tasks that can be simultaneously ready at each
step in the scheduling process is bounded by the width ω of the task graph (the maximum
number of tasks that are independent in G). This, implies that |α| ≤ ω.

Our goal is to minimize the latency L(G), while tolerating an arbitrary number ε of
processor failures. Our approach is based on an active replication scheme, capable of sup-
porting ε arbitrary fail-silent (a faulty processor does not produce any output) and fail-stop
(no processor recovery) processor failures.

3 The Iso-Level CAFT scheduling algorithm

In the previous version of CAFT algorithm [3], we consider only one ready task (the one with
highest priority) at each step, and we assign all its replicas to the currently best available
resources. Instead of considering a single task, we may deal with a chunk of several ready
tasks, and assign all their replicas in the same decision making procedure. The intuition is
that such a “global” assignment would lead to better load balance processor and link usage.

We introduce a parameter B for the chunk size: B is the maximal number of ready tasks
that will be considered at each step. We select the B tasks with the higher bottom levels b`(t)
(the length of the longest path starting at t to an exit node in the graph) and we allocate
them in the same step. Then, we update the set of ready tasks (indeed some new tasks may
have become ready), and we sort them again, according to bottom levels. Thus, we expect
that the tasks on a critical path will be processed as soon as possible.

The difference between CAFT and the new version, which we call Iso-Level CAFT (or
ILC), is sketched in Algorithm 3.1. With CAFT we take the ready task with highest priority
all allocate all its replicas before proceeding to the next ready task. In contrast, with Iso-Level
CAFT, the second replicas of tasks in the same chunk are allocated only after all first replicas
have been placed. Intuitively, this more global strategy will balance best resources across all
tasks in the chunk, while CAFT may assign the ε + 1 best resources to the current task, at
the risk of sacrificing the next one, even though it may have the same bottom level.

We point out that we face a difficult tradeoff for choosing an appropriate value for B.
On the one hand, if B is large, it will be possible to better balance the load and minimize
communication costs. On the other hand, a small value of B will enable us to process the
tasks on the critical path faster. In the experiments (see Section 4) we observe that choosing
B = m, the number of processors, leads to good results.

Theorem 3.1 The time complexity of Iso-Level CAFT is

O
(
em(ε + 1)2 log(ε + 1) + v log ω

)
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Algorithm 3.1 CAFT vs Iso-Level CAFT (ILC)
1: initialization; U ← V ;
2: while U 6= ∅ do
3: T ← H(α); ILC: repeat B times (*CAFT: |T | = 1 | ILC: |T | = B*)
4: for 1 ≤ i ≤ ε + 1 do
5: for t ∈ T do
6: allocate task-replica t(i) to processor with shortest finish time
7: end for
8: end for

9: end while

Proof: The proof is similar to that of CAFT (see [3]). Note that since ε < m, we can derive
the upper bound O

(
em3 log m + v log ω

)
. �

Notice that, allocating many copies of each task will severely increase the total number of
communications required by the algorithm: we move from e communications (one per edge)
in a mapping with no replication (fault free schedule), to e(ε + 1)2 with replication (fault
tolerant schedule), a quadratic increase. In fact, duplicating each task ε + 1 times is an
absolute requirement to resist to ε failures, but duplicating each precedence edge e(ε + 1)2

times is not mandatory. We can decrease the total number of communications from e(ε + 1)2

down to e(ε + 1) as it was proved in [3]. Unfortunatly, this reduction does not work all the
time. The linear number of communications e(ε + 1) holds only in special cases, typically for
tasks having a unique predecessor, or when every replica of all predecessors are mapped onto
distinct processors or when all the replicas belonging to the same processor communicate with
only the same successor-replica.

The problem becomes more complex when tasks have more than one predecessor and
several replicas of predecessors mapped on the same processor communicate with different
successor-replicas. In the following, we show how to reduce this overhead in the design of
Iso-Level CAFT.

3.1 Reducing communication overhead

When dealing with realistic model platforms, contention should be considered in order to
obtain improved schedules. We account for communication overhead during the mapping
process by removing some of the communications. To do so, we propose the following mapping
scheme.

Let t be the current task to be scheduled. Consider a predecessor tj of t, j ∈ Γ−(t), that
has been replicated on ε+1 distinct processors. We denote by Du the set of replicas assigned
to processor Pu, and ηu = |Du| its cardinality. The maximum cardinality is η = max1≤u≤m ηu.
Also we denote by N the number of processors involved/used by all replicas of tasks in Γ−(t).

We would like to reduce the number of communications from all predecessors tj to t when
possible. The idea is to attempt to place each replica on the non-locked (locked processors
are already either involved in a communication with a replica of t, or processing it) processor
which currently contains the most predecessor replicas. To this purpose, we sort processors
by non increasing order of number of replicas ηu, 1 ≤ u ≤ m, assigned to them. At each
step in the mapping process, we try to take communications from replicas belonging to the
non-locked processors, whenever possible. If not, we insert ε additional communications.

Fig. 1 illustrates this procedure. We set ε = 2 in this example. At step (0), no processor
is blocked. The three predecessors of the current task t, namely t1, t2 and t3, are assigned. At
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(0) (1)

(2) (3)

Figure 1: Iso-Level CAFT Scheduling Steps

(0) (1)

(2) (3)

Figure 2: Iso-Level CAFT Scheduling Steps



Iso-Level CAFT 5

step (1), we place the first replica t(1) on P1, which becomes locked. This is represented in the
figure with a superscript ∗, and the processor is also hatched in the figure. No communication
is added in this case. At step (2), we need to add a communication from P3 to P2, and
thus we have three locked processors. At step (3), we place replica t(3) on the only non-locked
processor which is P3, and we need to add extra communication since all processors are locked.

It may happen that at some step in the scheduling process, if we lock a processor, then
there is no processor left for the mapping of the remaining replicas. In such a case, we add
ε additional communications and release the processors involved in a communication with a
replica of t. This special case is illustrated in Fig. 2, where current task t has four predecessors.
At step (2), instead of locking P4, we add communications from all replicas of task t2 to t(2).
Thus it is possible to place at step (3) replica t(3) on P4.

Theorem 3.2 The schedule generated by Iso-Level CAFT algorithm is valid and resists to ε
failures.

Proof: The proof is similar to that of CAFT (see [3]) �

In the following, we give an analytical expression of the actual number of communications
induced by the Iso-Level CAFT algorithm. First we give an interesting upper bound for
special graphs, and then we derive an upper bound for the general case.

Special graphs
First, we bound the number of communications induced by Iso-Level CAFT for special graphs
like classical kernels representing various types of parallel algorithms [1]. The selected task
graphs are:

(a) LU: LU decomposition

(b) LAPLACE: Laplace equation solver

(c) STENCIL: stencil algorithm

(d) DOOLITTLE: Doolittle reduction

(e) LDMt: LDMt decomposition

Miniature versions of each task graph are given in Fig. 3.

Proposition 3.1 The number of messages generated by Iso-LevelCAFT for the above special
graphs is at most

V2(ε + 1) + V3

(
ε

⌈
(ε + 2)

2

⌉
+ 2

)
,

where V2 ≤ b e
2c is the number of nodes of in-degree 2 and V3 ≤ b e

3c is the number of nodes
of in-degree 3 in the graph.
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(a) LU (b) Laplace (c) Stencil

(d) Doolittle (e) DLMt

Figure 3: Classical kernels of parallel algorithms

Proof: One feature of the special graphs is that the in-degree of every task is at most 3. At
each step when scheduling current task t, we have three cases to consider, depending upon
its in-degree (the cardinal of Γ−(t)). Recall that processors are ordered by non increasing ηu

values, where ηu. is the number of replicas already assigned to Pu, hence which do not need
to be communicated again.

(1) |Γ−(t)| = 1. In this case, in order to pay no communication, we just need to place each
replica of t with a replica of its predecessor.

(2) |Γ−(t)| = 2. The two redecessor tasks of t are denoted t1 and t2. If replicas of t1 and t2

are mapped on the same processor (P(t(z)
1 ) = P(t(z

′)
2 ) = P for some 1 ≤ z, z′ ≤ ε + 1), then

there is no need for any additional communication. Other replicas of t1 and t2 which does
not satisfy the previous property are thus mapped onto singleton processors. We perform
the one-to-one mapping algorithm to allocate the corresponding other replicas of t. For each
replica, at most one communication is added.

(3) |Γ−(t)| = 3. Here we consider the number of replicas allocated to processor Pu, denoted
as ηu.

• We place a replica on each processor with ηu = 3, thus no communication need to be
paid for

• Consider a processor with ηu = 2. When allocating a replica of t on such a processor
Pu, we need to receive data from the third predecessor allocated to Pv 6= Pu. Pv may
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be either a singleton processor (ηv = 1) or it may handle two predecessors (ηv = 2).

- if ηv = 1, then we need only one communication for mapping the replica of t. In this
case Pv communicates only to Pu.

- if ηv = 2, then we may need to add extra communications. For the first
⌈

ε+1
2

⌉
replicas

of t, we add only one communication per replica, and lock processors accordingly. But
for the remaining set

⌊
ε+1
2

⌋
of replicas, we will have to generate ε + 1 communications

for each of these replicas. Overall, the number of communications is at most⌈
ε + 1

2

⌉
+ (ε + 1)

⌊
ε + 1

2

⌋

Let X =
⌈

ε+1
2

⌉
+ (ε + 1)

⌊
ε+1
2

⌋
. Let Y = ε

⌈
(ε+2)

2

⌉
+ 1. If ε = 2k is even, then

X = 2k2 + k + 1 ≤ 2k2 + 2k + 1 = Y . If ε = 2k + 1 is odd, then X = 2k2 + 2k + 1 ≤
2k2 + 3k + 1 = Y . In all cases X ≤ Y , hence the number of communications is at most
Y .

• Now, all remaining processors have at most one replica (η = 1). Thus task t needs its
data from two other replicas. So we have to take at most two communications for each
replicas mapped. Thus for the mapping of ε+1 replicas, we will have at most a number
of communications equal to 2(ε + 1). Note that 2(ε + 1) ≤ Y + 1 = ε

⌈
(ε+2)

2

⌉
+ 2 for all

ε, hence the result.

�

General graphs

Proposition 3.2 For general graphs, the number of messages generated by Iso-Level CAFT
is at most

e

(
ε

⌈
(ε + 2)

2

⌉
+ 1

)
Proof: At each step when scheduling current task t:

(i) For the first
⌈

ε+1
2

⌉
replicas, we generate at most

∑l
(ε+1)

2

m
u=1 (|Γ−(t)| − ηu) communica-

tions (recall that ηu is the number of replicas already assigned to Pu, hence which do not need
to be communicated again). Altogether, we have at most

⌈
(ε+1)

2

⌉
|Γ−(t)| communications for

these replicas.
(ii) We still have to map the remaining

⌊
ε+1
2

⌋
of t replicas. In the worst case, each replica

placed will generate ε + 1 communications (this is because processors may be locked in this
case). Thus for this remaining set of replicas, the number of communications is at most

(ε + 1)
ε+1∑

u=
l

(ε+1)
2

m
+1

(
|Γ−(t)| − ηu

)
≤ (ε + 1)

⌊
ε + 1

2

⌋
|Γ−(t)|

From (i) and (ii), we have a total number of communications of |Γ−(t)|X, where X =⌈
ε+1
2

⌉
+ (ε + 1)

⌊
ε+1
2

⌋
. As in the proof of Proposition 3.1, we knwo that X ≤ Y , where

Y = ε
⌈

(ε+2)
2

⌉
+ 1. Hence the number of communications is at most Y .
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Thus, summing up for all the v tasks in G, the total number of messages is at most

v∑
u=1

|Γ−(t)|
(

ε

⌈
(ε + 2)

2

⌉
+ 1

)
= e

(
ε

⌈
(ε + 2)

2

⌉
+ 1

)
�

The following last proposition deals with disjoint and complementary replica sets. In fact,
the number of communications can be drastically reduced in such a case:

Proposition 3.3 For general graphs, if at each step when scheduling a task t, wee can de-
termine replica sets Du that are both disjoint (Du ∩ Du′ = ∅ if u 6= u′) and complementary
(σm

u=1|Du| = |Γ−(t)|, or in other words ∪1≤u≤mDu contains a replica of each predecessor of
t), then the number of messages is at most e(ε + 1).

Proof: We map a replica on Du and add communications from all complementary sets, which
generates at most |Γ−(t)| − |Du| = | ∪1≤u′≤m,u′ 6=u Du′ | ≤ |Γ−(t)|.

Thus, for the mapping of ε + 1 replicas, and summing up for the set V of tasks in G, the
total number of messages is at most

∑
t∈V |Γ−(t)|(ε + 1) = e(ε + 1). �

Fig. 4 illustrates, for the mapping of the first replica t(1) we have |Γ−(t)| − |D1| = 5− 3 =
2 = |D3|. In addition, both D1 and D3 are mutually complementary/disjoints and they form a
complete instance of all predecessors. Also, for the mapping of the second replica t(2), we have
|Γ−(t)|−|D2| = 5−2 = 3 = |D4∪D5|. Similarly, the condition of complementarity/disjunction
of the sets D2, D4 and D5 holds.

Figure 4: Complementary/disjoint sets of replicas

4 Experimental results

We assess the practical significance and usefulness of the Iso-Level CAFT algorithm through
simulation studies. We compare the performance of Iso-Level CAFT with its initial version
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CAFT algorithm. We use randomly generated graphs, whose parameters are consistent with
those used in the literature [3]. We characterize these random graphs with three parameters:
(i) the number of tasks, chosen uniformly from the range [80, 120]; (ii) the number of incom-
ing/outgoing edges per task, which is set in [1, 3]; and (iii) the granularity of the task graph
g(G). We consider two types of graphs, with a granularity (a) in [0.2, 2.0] and increments
of 0.2, and (b) in [1, 10] and increments of 1. Two types of platforms are considered, first
with 10 processors and ε = 1 or ε = 3, and then with 20 processors and ε = 5. To account
for communication heterogeneity in the system, the unit message delay of the links and the
message volume between two tasks are chosen uniformly from the ranges [0.5, 1] and [50, 150]
respectively. Each point in the figures represents the mean of executions on 60 random graphs.
The metrics which characterize the performance of the algorithms are the latency and the
overhead due to the active replication scheme.

The fault free schedule is defined as the schedule generated without replication, assuming
that the system is completely safe. Recall that the upper bounds of the schedules are computed
as explained in [2]. Each algorithm is evaluated in terms of achieved latency and fault tolerance
overhead CAFT0|Iso-Level CAFT0|CAFTc|Iso-Level CAFTc−Iso-Level CAFT∗

Iso-Level CAFT∗ , where the superscripts ∗, c and
0 respectively denote the latency achieved by the fault free schedule, the latency achieved by
the schedule when processors effectively fail (crash) and the latency achieved with 0 crash. We
have also compared the behavior of each algorithm when processors crash down by computing
the real execution time for a given schedule rather than just bounds (upper bound and latency
with 0 crash).

Comparing the results of Iso-Level CAFT to the results of CAFT, we observe in Fig. 5
and 6 that Iso-Level CAFT gives the best performance. It always improves the latency
significantly in all figures. This is because the Iso-Level CAFT algorithm tries incrementally
to ensure a certain degree of load balancing for processors by scheduling a chunk of ready tasks
before considering their corresponding replicas. This better load balancing also decreases
communications between tasks. Consequently, this leads to minimize the final latency of
the schedule. Similarly, Iso-Level CAFT achieves much better results than CAFT when
considering larger platforms, as shown in Fig. 7.

We also find in Fig. 8, 9 and 10 that the performance difference between CAFT and
Iso-Level CAFT increases when the granularity increases. This interesting result comes from
the fact that larger granularity indicates that we are dealing with intensive computations
applications in heterogeneous platforms. Thus, in order to reduce the latency for such ap-
plications, it is important to better parallelize the application. That is why we changed the
backbone of CAFT to perfectly balance the load of processors at each step of the scheduling
process.

Finally, we readily observe from all figures that we deal with two conflicting objectives.
Indeed, the fault tolerance overhead increases together with the number of supported failures.
We also see that latency increases together with granularity, as expected. In addition, it
is interesting to note that when the number of failures increases, there is not really much
difference in the increase of the latency achieved by CAFT and Iso-Level CAFT, compared to
the schedule length generated with 0 crash. This is explained by the fact that the increase in
the schedule length is already absorbed by the replication done previously, in order to resist
to eventual failures.
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Figure 7: Average normalized latency and overhead comparison between Iso-Level-CAFT and
CAFT (Bound and Crash cases, ε = 5)
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Figure 8: Average normalized latency and overhead comparison between Iso-Level-CAFT and
CAFT (Bound and Crash cases, ε = 1)
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Figure 9: Average normalized latency and overhead comparison between Iso-Level-CAFT and
CAFT (Bound and Crash cases, ε = 3)
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Figure 10: Average normalized latency and overhead comparison between Iso-Level-CAFT
and CAFT (Bound and Crash cases, ε = 5)
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5 Conclusion

In this paper, an efficient fault-tolerant scheduling algorithm (Iso-Level CAFT) for heteor-
geneous systems is studied and analysed. Iso-Level CAFT is based on an active replication
scheme, and is able to drastically reduce the communication overhead induced by task replica-
tion, which turns out a key factor in improving performance when dealing with realistic, com-
munication contention aware, platform models. The design of Iso-Level CAFT is motivated
by (i) the search for a better load-balance and (ii) the generation of fewer communications.
These goals are achieved by scheduling a chunk of ready tasks simultaneously, which enables
for a global view of the potential communications. To assess the performance of Iso-Level
CAFT, simulation studies were conducted to compare it with CAFT, which seems to be its
main direct competitor from the literature. We have shown that Iso-Level CAFT is very
efficient both in terms of computational complexity and quality of the resulting schedule.

An extension of Iso-Level CAFT would be to extend it to the context of pipelined workflows
made up of collections of identical task graphs (rather than dealing with a single graph as
in this paper). We would then need to solve a challenging tri-criteria optimization problem
(latency, throughput and fault-tolerance).
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