
HAL Id: hal-02102770
https://hal-lara.archives-ouvertes.fr/hal-02102770

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource allocation strategies for in-network stream
processing

Anne Benoit, Henri Casanova, Veronika Rehn-Sonigo, Yves Robert

To cite this version:
Anne Benoit, Henri Casanova, Veronika Rehn-Sonigo, Yves Robert. Resource allocation strategies for
in-network stream processing. [Research Report] LIP RR-2008-20, Laboratoire de l’informatique du
parallélisme. 2008, 2+23p. �hal-02102770�

https://hal-lara.archives-ouvertes.fr/hal-02102770
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Resource Allocation Strategies for
In-Network Stream Processing

Anne Benoit ,
Henri Casanova ,
Veronika Rehn-Sonigo ,
Yves Robert

June 2008

Research Report No 2008-20

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Resource Allocation Strategies for

In-Network Stream Processing

Anne Benoit , Henri Casanova , Veronika Rehn-Sonigo , Yves Robert

June 2008

Abstract

In this paper we consider the operator mapping problem for in-network
stream processing applications. In-network stream processing consists in
applying a tree of operators in steady-state to multiple data objects that
are continually updated at various locations on a network. Examples of
in-network stream processing include the processing of data in a sensor
network, or of continuous queries on distributed relational databases.
We study the operator mapping problem in a“constructive”scenario, i.e.,
a scenario in which one builds a platform dedicated to the application
buy purchasing processing servers with various costs and capabilities.
The objective is to minimize the cost of the platform while ensuring
that the application achieves a minimum steady-state throughput.
The first contribution of this paper is the formalization of a set of rele-
vant operator-placement problems as linear programs, and a proof that
even simple versions of the problem are NP-complete. Our second con-
tribution is the design of several polynomial time heuristics, which are
evaluated via extensive simulations and compared to theoretical bounds
for optimal solutions.

Keywords: in-network stream processing, trees of operators, operator mapping,
optimization, complexity results, polynomial heuristics.

Résumé

Dans ce travail nous nous intéressons au problème de placement des ap-
plications de traitement de flux en réseau. Ce problème consiste à appli-
quer en régime permanent un arbre d’opérateurs à des données multiples
qui sont mise à jour en permanence dans les différents emplacements du
réseau. Le traitement de données dans les réseaux de détecteurs ou le
traitement de requêtes dans les bases de données relationnelles sont des
exemples d’application. Nous étudions le placement des opérateurs dans
un scénario“constructif”, i.e., un scénario dans lequel la plate-forme pour
l’application est construite au fur et à mesure en achetant des serveurs
de calcul ayant un vaste choix de coûts et de capacités. L’objectif est la
minimisation du coût de la plate-forme en garantissant que l’application
atteint un débit minimal en régime permanent.
La première contribution de cet article est la formalisation d’un ensemble
pertinent de problèmes opérateur-placement sous forme d’un programme
linéaire ainsi qu’une preuve que même les instances simples du problème
sont NP-complètes. La deuxième contribution est la conception de plu-
sieures heuristiques polynomiales qui sont évaluées a l’aide de simula-
tions extensives et comparées aux bornes théoriques pour des solutions
optimales.

Mots-clés: traitement de flux en réseau, arbres d’opérateurs, placement d’opérateurs,
optimisation, résultats de complexité, heuristiques polynomiales.

2

In-Network Stream Processing 1

1 Introduction

In this paper we consider the execution of applications structured as trees of operators. The
leaves of the tree correspond to basic data objects that are spread over different servers in a
distributed network. Each internal node in the tree denotes the aggregation and combination
of the data from its children, which in turn generate new data that is used by the node’s
parent. The computation is complete when all operators have been applied up to the root
node, thereby producing a final result. We consider the scenario in which the basic data
objects are constantly being updated, meaning that the tree of operators must be applied
continuously. The goal is to produce final results at some desired rate.

The above problem, which is called stream processing [1], arises in several domains. An
important domain of application is the acquisition and refinement of data from a set of
sensors [2, 3, 4]. For instance, [2] outlines a video surveillance application in which the
sensors are cameras located in different locations over a geographical area. The goal of the
application could be to show an operator monitored area in which there is significant motion
between frames, particular lighting conditions, and correlations between the monitored areas.
This can be achieved by applying several operators (filters, image processing algorithms) to
the raw images, which are produced/updated periodically. Another example arises in the
area of network monitoring [5, 6, 7]. In this case the sources of data are routers that produce
streams of data pertaining to packets forwarded by the routers. One can often view stream
processing as the execution of one of more “continuous queries” in the relational database
sense of the term (e.g., a tree of join and select operators). A continuous query is applied
continuously, i.e., at a reasonably fast rate, and returns results based on recent data generated
by the data streams. Many authors have studies the execution of continuous queries on data
streams [8, 9, 10, 11, 12].

In practice, the execution of the operators on the data streams must be distributed over
the network. In some cases, for instance in the aforementioned video surveillance application,
the cameras that produce the basic objects do not have the computational capability to
apply any operator effectively. Even if the servers responsible for the basic objects have
sufficient capabilities, these objects must be combined across devices, thus requiring network
communication. A simple solution is to send all basic objects to a central compute server,
but it proves unscalable for many applications due to network bottlenecks. Also, this central
server may not be able to meet the desired target rate for producing results due to the
sheer amount of computation involved. The alternative is then to distribute the execution
by mapping each node in the operator tree to one or more compute servers in the network
(which may be distinct or co-located with the devices that produce/store and update the
basic objects). One then talks of in-network stream processing. Several in-network stream
processing systems have been developed [13, 14, 15, 16, 17, 6, 18, 19]. These systems all face
the same question: to which servers should one map which operators?

In this paper we address the operator-mapping problem for in-network stream processing.
This problem was studied in [2, 20, 21]. The work in [20] studied the problem for an ad-hoc
objective function that trades off application delay and network bandwidth consumption. In
this paper we study a more general objective function. We first enforce the constraint that
the rate at which final results are produced, or throughput, is above a given threshold. This
corresponds to a Quality of Service (QoS) requirement of the application, which is almost
always desirable in practice (e.g., up-to-date results of continuous queries must be available
at a given frequency). Our objective is to meet this constraint while minimizing the “overall

2 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

cost”, that is the amount of resources used to achieve the throughput. For instance, the cost
could be simply the total number of compute servers, in the case when all servers are identical
and network bandwidth is assumed to be free.

We study several variations of the operator-mapping problem. Note that in all cases
basic objects may be replicated at multiple locations, i.e., available and updated at these
locations. In terms of the computing platform one can consider two main scenarios. In the
first scenario, which we term“constructive”, the user can build the platform from scratch using
off-the-shelf components, with the goal of minimizing monetary cost while ensuring that the
desired throughput is achieved. In the second scenario, which we term“non-constructive”, the
platform already exists and the goal is to use the smallest amount of resources in this platform
while achieving the desired throughput. In this case we consider platforms that are either
fully homogeneous, or with a homogeneous network but heterogeneous compute servers, or
fully heterogeneous. In terms of the tree of operators, we consider general binary trees and
discuss relevant special cases (e.g., left-deep trees [22, 23, 24]).

Our main contributions are the following:

• we formalize a set of relevant operator-placement problems;

• we establish complexity results (all problems turn out to be NP-complete);

• we derive an integer linear programming formulation of the problem;

• we propose several heuristics for the constructive scenario; and

• we compare heuristics through extended simulations, and assess their absolute perfor-
mance with respect to the optimal solution returned by the linear program.

In Section 2 we outline our application and platform models for in-network stream pro-
cessing. Section 3 defines several relevant resource allocation problems, which are shown to
be NP-complete in Section 4. Section 5 derives an integer linear programming formulation of
the resource allocation problems. We present several heuristics for solving one of our resource
allocation problems in Section 6. These heuristics are evaluated in Section 7. Finally, we
conclude the paper in Section 8 with a brief summary of our results and future directions for
research.

2 Models

2.1 Application model

We consider an application that can be represented as a set of operators, N . These operators
are organized as a binary tree, as shown in Figure 1. Operations are initially performed on
basic objects, which are made available and continuously updated at given locations in a
distributed network. We denote the set of basic objects O = {o1, o2, o3, . . .}. The leaves of
the tree are thus the basic objects, and several leaves may correspond to the same object, as
illustrated in the figure. Internal nodes (labeled n1, n2, n3, . . .) represent operator computa-
tions. We call those operators that have at least one basic object as a child in the tree an
al-operator (for “almost leaf”). For an operator ni we define:

• Leaf (i): the index set of the basic objects that are needed for the computation of ni, if
any;

In-Network Stream Processing 3

n4

n5

o1

n2

n1

o1 o2 o2 o3

n3

(a) Standard tree.

n4

n3

n2

n1

o1

o1

o3

o2

o2

(b) Left-deep tree.

Figure 1: Examples of applications structured as a binary tree of operators.

• Child(i): the index set of the node’s children in N , if any;
• Parent(i): the index of the node’s parent in N , if it exists.

We have the constraint that |Leaf (i)| + |Child(i)| ≤ 2 since our tree is binary. All functions
above are extended to sets of nodes: f(I) = ∪i∈If(i), where I is an index set and f is Leaf ,
Child or Parent .

The application must be executed so that it produces final results, where each result is
generated by executing the whole operator tree once, at a target rate. We call this rate the
application throughput ρ and the specification of the target throughput is a QoS requirement
for the application. Each operator ni ∈ N must compute (intermediate) results at a rate
at least as high as the target application throughput. Conceptually, a server executing an
operator consists of two concurrent threads that run in steady-state:

• One thread periodically downloads the most recent copies of the basic objects corre-
sponding to the operator’s leaf children, if any. For our example tree in Figure 1(a),
n1 needs to download o1 and o2 while n2 downloads only o1 and n5 does not download
any basic object. Note that these downloads may simply amount to constant streaming
of data from sources that generate data streams. Each download has a prescribed cost
in terms of bandwidth based on application QoS requirements (e.g., so that computa-
tions are performed using sufficiently up-to-date data). A basic object ok has a size
δk (in bytes) and needs to be downloaded by the processors that use it with frequency
fk. Therefore, these basic object downloads consume an amount of bandwidth equal to
ratek = δk × fk on each network link and network card through which this object is
communicated.

• Another thread receives data from the operator’s non-leaf children, if any, and performs
some computation using downloaded basic objects and/or data received from other
operators. The operator produces some output that needs to be passed to its parent

4 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

operator. The computation of operator ni (to evaluate the operator once) requires wi

operations, and produces an output of size δi.

In this paper we sometimes consider left-deep trees, i.e., binary trees in which the right
child of an operator is always a leaf. These trees arise in practical settings [22, 23, 24] and we
show an example of left-deep tree in Figure 1(b). Here Child(i) and Leaf (i) have cardinal 1
for every operator ni but for the bottom-most operator, nj , for which Child(j) has cardinal
0, and Leaf (j) has cardinal 1 or 2 depending on the application.

2.2 Platform model

The target distributed network is a fully connected graph (i.e., a clique) interconnecting a
set of resources R = P ∪ S, where P denotes compute servers, or processors for short, and
S denotes data servers, or servers for short. Servers hold and update basic objects, while
processors apply operators of the application tree. Each server Sl ∈ S (resp. processor
Pu ∈ P) is interconnected to the network via a network card with maximum bandwidth
Bsl (resp. Bpu). The network link from a server Sl to a processor Pu has bandwidth bsl,u;
on such links the server sends data and the processor receives it. The link between two
distinct processors Pu and Pv is bidirectional and it has bandwidth bpu,v(= bpv,u) shared by
communications in both directions. In addition, each processor Pu ∈ P is characterized by a
compute speed su.

Resources operate under the full-overlap, bounded multi-port model [25]. In this model, a
resource Ru can be involved in computing, sending data, and receiving data simultaneously.
Note that servers only send data, while processors engage in all three activities. A resource R,
which is either a server or a processor, can be connected to multiple network links (since we
assume a clique network). The “multi-port” assumption states that R can send/receive data
simultaneously on multiple network links. The “bounded” assumption states that the total
transfer rate of data sent/received by resource R is bounded by its network card bandwidth
(Bsl for server Sl, or Bpu for processor Pu).

2.3 Mapping Model and Constraints

Our objective is to map operators, i.e., internal nodes of the application tree, onto processors.
As explained in Section 2.1, if a tree node has leaf children it must continuously download up-
to-date basic objects, which consumes bandwidth on its processor’s network card. Each used
processor is in charge of one or several operators. If there is only one operator on processor
Pu, while the processor computes for the t-th final result it sends to its parent (if any) the
data corresponding to intermediate results for the (t− 1)-th final result. It also receives data
from its non-leaf children (if any) for computing the (t+1)-th final result. All three activities
are concurrent (see Section 2.2). Note however that different operators can be assigned to
the same processor. In this case, the same overlap happens, but possibly on different result
instances (an operator may be applied for computing the t1-th result while another is being
applied for computing the t2-th). The time required by each activity must be summed for all
operators to determine the processor’s computation time.

We assume that a basic object can be duplicated, and thus be available and updated at
multiple servers. We assume that duplication of basic objects is achieved in some out-of-
band manner specific to the target application. For instance, this could be achieved via the
use of a distributed database infrastructure that enforces consistent data replication. In this

In-Network Stream Processing 5

case, a processor can choose among multiple data sources when downloading a basic object.
Conversely, if two operators have the same basic object as a leaf child and are mapped
to different processors, they must both continuously download that object (and incur the
corresponding network overheads).

We denote the mapping of the operators in N onto the processors in P using an allocation
function a: a(i) = u if operator ni is assigned to processor Pu. Conversely, ā(u) is the index
set of operators mapped on Pu: ā(u) = {i|a(i) = u}.

We also introduce new notations to describe the location of basic objects. Processor Pu

may need to download some basic objects from some servers. We use download(u) to denote
the set of (k, l) couples where object ok is downloaded by processor Pu from server Sl.

Given these notations we can now express the constraints for the required application
throughput, ρ. Essentially, each processor has to communicate and compute fast enough to
achieve this throughput, which is expressed via a set of constraints. Note that a communica-
tion occurs only when a child or the parent of a given tree node and this node are mapped
on different processors. In other terms, we neglect intra-processor communications.

• Each processor Pu cannot exceed its computation capability:

∀Pu ∈ P,
∑

i∈ā(u)

ρ · wi

su
≤ 1 (1)

• Pu must have enough bandwidth capacity to perform all its basic object downloads and
all communication with other processors. This is expressed by the following constraint,
in which the first term corresponds to basic object downloads, the second term corre-
sponds to inter-node communications when a tree node is assigned to Pu and its parent
node is assigned to another processor, and the third term corresponds to inter-node
communications when a node is assigned to Pu and some of its children nodes are as-
signed to another processor:
∀Pu ∈ P,∑
(k,l)∈download(u)

ratek +
∑

j∈Child(ā(u))\ā(u)

ρ.δj +
∑

j∈Parent(ā(u))\ā(u)

∑
i∈Child(j)∩ā(u)

ρ.δi ≤ Bpu

(2)

• Server Sl must have enough bandwidth capacity to support all the downloads of the
basic objects it holds at their required rates:

∀Sl ∈ S,
∑

Pu∈P

∑
(k,l)∈download(u)

ratek ≤ Bsl (3)

• The link between server Sl and processor Pu must have enough bandwidth capacity to
support all possible object downloads from Sl to Pu at the required rate:

∀Pu ∈ P,∀Sl ∈ S,
∑

(k,l)∈download(u)

ratek ≤ bsl,u (4)

• The link between processor Pu and processor Pv must have enough bandwidth capacity
to support all possible communications between the tree nodes mapped on both proces-
sors. This constraint can be written similarly to constraint (2) above, but without the

6 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

cost of basic object downloads, and with specifying that Pu communicates with Pv:

∀Pu, Pv ∈ P,
∑

j∈Child(ā(u))∩ā(v)

ρ.δj +
∑

j∈Parent(ā(u))∩ā(v)

∑
i∈Child(j)∩ā(u)

ρ.δi ≤ bpu,v (5)

3 Problem Definitions

The overall objective of the operator-mapping problem is to ensure that a prescribed through-
put is achieved while minimizing a cost function. We consider two broad cases. In the first
case, the user must buy processors (with various computing speed and network card band-
width specifications) and build the distributed network dedicated to the application. For this
“constructive”problem, which we call Constr, the cost function is simply the actual monetary
cost of the purchased processors. This problem is relevant to, for instance, the surveillance
application mentioned in Section 1. The second case, which we call Non-Constr, targets
an existing platform. The goal is then to use a subset of this platform so that the prescribed
throughput is achieved while minimizing a cost function. Several cost functions can be envi-
sioned, including the compute capacity or the bandwidth capacity used by the application in
steady state, or a combination of the two. In the following, we consider a cost function that
accounts solely for processors. This function be based on a processor’s processing speed and
on the bandwidth of its network card.

Different platform types may be considered for both the Constr and the Non-Constr
problems depending on the heterogeneity of the resources. In the Constr case, we assume
that some standard interconnect technology is used to connect all the processors together
(bpu,v = bp). We also assume that the same interconnect technology is used to connect
each server to processors (bsl,u = bsl). We consider the case in which the processors are
homogeneous because only one type of CPUs and network cards can be purchased (Bpu = Bp
and su = s). We term the corresponding problem Constr-Hom. We also consider the
case in which the processors are heterogeneous with various compute speeds and network
card bandwidth, which we term Constr-LAN. In the Non-Constr case we consider the
case in which the platform is fully homogeneous, which we term Non-Constr-Hom. We
then consider the case in which the processors are heterogeneous but the network links are
homogeneous (bpu,v = bp and bsl,u = bsl), which we term Non-Constr-LAN. Finally we
consider the fully heterogeneous case in which network links can have various bandwidths,
which we term Non-Constr-Het.

Homogeneity in the platform as described above applies only to processors and not to
servers. Servers are always fixed for a given application, together with the objects they
hold. We sometimes consider variants of the problem in which the servers and application
tree have particular characteristics. We denote by HomS the case then all servers have
identical network capability (Bsl = Bs) and communication links to processors (bsl,u = bs).
We can also consider the mapping of particular trees, such as left-deep trees (LDTree)
and/or homogeneous trees with identical object rates ratek = rate and computing costs
wi = w (HomA). Also, we can consider application trees with no communication cost (δi = 0,
NoComA). All these variants correspond to simplifications of the problem, and we simply
append HomS, LDTree, HomA, and/or NoComA to the problem name to denote these
simplifications.

In-Network Stream Processing 7

4 Complexity

Without surprise, most problem instances are NP-hard, because downloading objects with
different rates on two identical servers is the same problem as 2-Partition [26]. But from a
theoretical point of view, it is important to assess the complexity of the simplest instance of
the problem, i.e., mapping a fully homogeneous left-deep tree application with objects placed
on a fully homogeneous set of servers, onto a fully homogeneous set of processors: Constr-
Hom-HomS-LDTree-HomA-NoComA (or C-LDT-Hom for short). It turns out that even
this problem is difficult, due to the combinatorial space induced by the mapping of basic
objects that are shared by several operators. Note that the corresponding non-constructive
problem is exactly the same, since it aims at minimizing the number of selected processors
given a pool of identical processors. This complexity result thus holds for both classes of
problems.

Definition 1. The problem C-LDT-Hom (Constr-Hom-HomS-LDTree-HomA-NoComA)
consists in minimizing the number of processors used in the application execution. K is the
prescribed throughput that should not be violated. C-LDT-Hom-Dec is the associated decision
problem: given a number of processors N , is there a mapping that achieves throughput K?

Theorem 1. C-LDT-Hom-Dec is NP-complete.

Proof. First, C-LDT-Hom-Dec belongs to NP. Given an allocation of operators to processors
and the download list download(u) for each processor Pu, we can check in polynomial time
that we use no more than N processors, that the throughput of each enrolled processor
respects K:

K × |ā(u)| w
s
≤ 1 ,

and that bandwidth constraints are respected.
To establish the completeness, we use a reduction from 3-Partition, which is NP-complete

in the strong sense [26]. We consider an arbitrary instance I1 of 3-Partition: given 3n positive
integer numbers {a1, a2, . . . , a3n} and a bound R, assuming that R

4 < ai < R
2 for all i and

that
∑3n

i=1 ai = nR, is there a partition of these numbers into n subsets I1, I2, . . . , In of sum
R? In other words, are there n subsets I1, I2, . . . , In such that I1∪ I2 . . .∪ In = {1, 2, . . . , 3n},
Ii ∩ Ij = ∅ if i 6= j, and

∑
j∈Ii

aj = R for all i (and |Ii| = 3 for all i). Because 3-Partition is
NP-complete in the strong sense, we can encode the 3n numbers in unary and assume that
the size of I1 is O(n + M), where M = maxi{ai}.

We build the following instance I2 of C-LDT-Hom-Dec :

• The object set is O = {o1, ..., o3n}, and there are 3n servers each holding an object, thus
oi is available on server Si. The rate of oi is rate = 1 , and the bandwidth limit of the
servers is set to Bs = 1.

• The left-deep tree consists of |N | = nR operators with w = 1. Each object oi appears
ai times in the tree (the exact location does not matter), so that there are |N | leaves in
the tree, each associated to a single operator of the tree.

• The platform consists of n processors of speed s = 1 and bandwidth Bp = 3. All the
link bandwidths interconnecting servers and processors are equal to bs = bp = 1.

8 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

• Finally we ask whether there exists a solution matching the bounds 1/K = R and
N = n.

The size of I2 is clearly polynomial in the size of I1, since the size of the tree is bounded
by 3nM . We now show that instance I1 has a solution if and only if instance I2 does.

Suppose first that I1 has a solution. We map all operators corresponding to occurrences
of object oj , j ∈ Ii, onto processor Pi. Each processor receives three distinct objects, each
coming from a different server, hence bandwidths constraints are satisfied. Moreover, the
number of operators computed by Pi is equal to

∑
j∈Ii

ai = R, and the required throughput
it achieved because KR ≤ 1. We have thus built a solution to I2.

Suppose now that I2 has a solution, i.e., a mapping matching the bound 1/K = R with
n processors. Due to bandwidth constraints, each of the n processors is assigned at most three
distinct objects. Conversely, each object must be assigned to at least one processor and there
are 3n objects, so each processor is assigned exactly 3 objects in the solution, and no object is
sent to two distinct processors. Hence, a processor must compute all operators corresponding
to the objects it needs to download, which directly leads to a solution of I1 and concludes
the proof.

Note that problem C-LDT-Hom-Dec becomes polynomial if one adds the additional
restriction that no basic object is used by more than one operator in the tree. In this case,
one can simply assign operators to d|N |×w/se arbitrary processors in a round-robin fashion.

5 Linear Programming Formulations

In this section, we formulate the Constr optimization problem as an integer linear program
(ILP). We deal with the most general instance of the problem Constr-LAN. Then we explain
how to transform this integer linear program to formulate the Non-Constr-Het problem.

5.1 ILP for Constr

Constants – We first define the set of constant values that define our problem. The
application tree is defined via parameters par and leaf , and the location of objects on servers is
defined via parameter obj. Other parameters are defined with the same notations as previously
introduced: δi, wi for operators, ratek for object download rates, and Bsl for server network
card bandwidths. More formally:

• par(i, j) is a boolean variable equal to 1 if operator ni is the parent of nj in the appli-
cation tree, and 0 otherwise.

• leaf(i, k) is a boolean variable equal to 1 if operator ni requires object ok for computa-
tion, i.e., ok is a children of ni in the tree. Otherwise leaf(i, k) = 0.

• obj(k, l) is a boolean variable equal to 1 if server Sl holds a copy of object ok.

• δi, wi, ratek, Bsl are rational numbers.

The platform can be built using different types of processors. More formally, we consider a
set C of processor specifications, which we call “classes”. We can acquire as many processors of

In-Network Stream Processing 9

a class c ∈ C as needed, although no more than N processors are necessary overall. We denote
the cost of a processor in class c by costc. Each processor of class c has computing speed
sc and network card bandwidth Bpc. The link bandwidth between processors is a constant
bp, while the link between a server Sl and a processor is bsl. For each class, processors are
numbered from 1 to |N |, and Pc,u refers to the uth processor of class c. Finally, ρ is the
throughput that must be achieved by the application:

• costc, sc, Bpc, bp, bsl are rational numbers;

• ρ is a rational number.

Variables – Now that we have defined the constants that define our problem we define
unknown variables to be computed:

• xi,c,u is a boolean variable equal to 1 if operator ni is mapped on Pc,u, and 0 other-
wise. There are |N |2.|C| such variables, where |C| is the number of different classes of
processors.

• dc,u,k,l is a boolean variable equal to 1 if processor Pc,u downloads object ok from
server Sl, and 0 otherwise. The number of such variables is |C|.|N |.|O|.|S|.

• yi,c,u,i′,c′,u′ is a boolean variable equal to 1 if ni is mapped on Pc,u, ni′ is mapped on Pc′,u′ ,
and ni is the parent of ni′ in the application tree. There are |N |4.|C|2 such variables.

• usedc,u is a boolean variable equal to 1 if processor Pc,u is used in the final mapping,
i.e., there is at least one operator mapped on this processor, and 0 otherwise. There are
|C|.|N | such variables.

Constraints – Finally, we must write all constraints involving our constants and variables.
In the following, unless stated otherwise, i, i′, u and u′ span set N ; c and c′ span set C; k
spans set O; and l spans set S. First we need constraints to guarantee that the allocation of
operators to processors is a valid allocation, and that all required downloads of objects are
done from a server that holds the corresponding object.

• ∀i
∑

c,u xi,c,u = 1: each operator is placed on exactly one processor;

• ∀c, u, k, l dc,u,k,l ≤ obj(k, l): object ok can be downloaded from Sl only if Sl holds ok;

• ∀c, u, k, l dc,u,k,l ≤
∑

i xi,c,u.leaf(i, k): if there is no operaotr assigned to Pc,u that
requires object k, then Pc,u does not need to download object k and dc,u,k,l = 0 for all
server Sl.

• ∀i, k, c, u 1 ≥
∑

l dc,u,k,l ≥ xi,c,u.leaf(i, k): processor Pc,u must download object ok from
exactly one server if there is an operator ni mapped on this processor that requires ok

for computation.

The next set of constraints aim at properly constraining variable yi,c,u,i′,c′,u′ . Note that a
straightforward definition would be yi,c,u,i′,c′,u′ = par(i, j).xi,c,u.xi′,c′,u′ , i.e., a logical conjunc-
tion between three conditions. Unfortunately, this definition makes our program non-linear
as two of the conditions are variables. Instead, for all i, c, u, i′, c′, u′, we write:

10 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

• yi,c,u,i′,c′,u′ ≤ par(i, j); yi,c,u,i′,c′,u′ ≤ xi,c,u; yi,c,u,i′,c′,u′ ≤ xi′,c′,u′ : y is forced to 0 if one
of the conditions does not hold.

• yi,c,u,i′,c′,u′ ≥ par(i, j).
(
xi,c,u + xi′,c′,u′ − 1

)
: y is forced to be 1 only if the three condi-

tions are true (otherwise the right term is less than or equal to 0).

The following constraints ensure that usedc,u is properly defined:

• ∀c, u usedc,u ≤
∑

i xi,c,u: processor Pc,u is not used if no operator is mapped on it;

• ∀c, u, i usedc,u ≥ xi,c,u: processor Pc,u is used if at least one operator ni is mapped to
it.

Finally, we have to ensure that the required throughput is achieved and that the various
bandwidth capacities are not exceeded, following equations (1)-(5).

• ∀c, u
∑

i xi,c,u.ρwi
sc
≤ 1: the computation of each processor must be fast enough so that

the throughput is at least equal to ρ;

• ∀c, u
∑

k,l dc,u,k,l.ratek +
∑

i,i′,(c′,u′) 6=(c,u) yi,c,u,i′,c′,u′ .ρ.δi′+
∑

i,i′,(c′,u′) 6=(c,u) yi′,c′,u′,i,c,u.ρ.δi ≤
Bpc: bandwidth constraint for the processor network cards;

• ∀l
∑

c,u,k dc,u,k,l.ratek ≤ Bsl: bandwidth constraint for the server network cards;

• ∀l, c, u
∑

k dc,u,k,l.ratek ≤ bsl: bandwidth constraint for links between servers and
processors;

• ∀c, u, c′, u′ with (c, u) 6= (c′, u′)
∑

i,i′ yi,c,u,i′,c′,u′ .ρ.δi′ +
∑

i,i′ yi′,c′,u′,i,c,u.ρ.δi ≤ bp: band-
width constraint for links between processors.

Objective function.
We aim at minimizing the cost of used processors, thus the objective function is

min
(∑

c,u usedc,u.costc

)
.

5.2 ILP for Non-Constr

The linear program for the Non-Constr problem is very similar to the Constr one, except
that the platform is known a-priori. Furthermore, we no longer consider processor classes.
However, we can simply assume that there is only one processor of each class, and define |C| =
|P|, the set of processors of the platform. The number of processors of class c is then limited
to 1. As a result, all indices u in the previous linear program are removed, and we obtain a
linear program formulation of the Non-Constr-LAN problem. The number of variables and
constraints is reduced from |N | to 1 when appropriate. We can further generalize the linear
program to Non-Constr-Het, by adding links of different bandwidths between processors.
We just need to replace bp by bpc,c′ and bsl by bsl,c every time they appear in the linear program
in the previous section. Altogether, we have provided integer linear program formulations for
all our constructive and non-constructive problems.

In-Network Stream Processing 11

6 Heuristics

In this section we propose several heuristics to solve the Constr operator-placement problem.
Due to lack of space, we leave the development of heuristics for the Non-Constr problem
outside the scope of this paper. We choose to focus on constructive scenarios because such
scenarios are relevant to practice and, to the best of our knowledge, have not been studied
extensively in the literature. We say that the heuristics can then “purchase” processors, or
“sell back” processors, until a final set of needed processors is determined.

We consider two types of heuristics: (i) operator placement heuristics and (ii) object
download heuristics. In a first step, an operator placement heuristic is used to determine the
number of processors that should be purchased, and to decide which operators are assigned
to which processors. Note that all our heuristics fail if a single operator cannot be treated
by the most expensive processor with the desired throughput. In a second step, an object
download heuristic is used to decide from which server each processor downloads the basic
objects that are needed for the operators assigned to this processor. In the next two sections
we propose several candidate heuristics both for operator placement and object download.

6.1 Operator Placement Heuristics

6.1.1 Random

While there are some unassigned operators, the Random heuristic picks one of these unas-
signed operators randomly, called op. It then purchases the cheapest possible processor that
is able to handle op while achieving the required application throughput. If there is no such
processor, then the heuristic considers op along with one of its children operators or with its
parent operator. This second operator is chosen so that it has the most demanding communi-
cation requirements with op (the intuition is that we try to reduce communication overhead).
If no processor can be acquired that can handle both the operators together, then the heuris-
tic fails. If the additional operator had already been assigned to another processor, this last
processor is sold back.

6.1.2 Comp-Greedy

The Comp-Greedy heuristic first sorts operators in non-increasing order of wi, i.e., most com-
putationally demanding operators first. While there are unassigned operators, the heuristic
purchases the most expensive processor available and assigns the most computationally de-
manding unassigned operator to it. If this operator cannot be processed on this processor so
that the required throughput is achieved, then the heuristic uses a grouping technique similar
to that used by the Random heuristic (i.e., trying to group the operator with its child or
parent operator with which it has the most demanding communication requirement). If after
this step some capacity is left on the processor, then the heuristic tries to assign other opera-
tors to it. These operators are picked in non-increasing order of wi, i.e., trying to first assign
to this processor the most computationally demanding operators. Once no more operators
can be assigned to the processor, the heuristic attempts to “downgrade” the processor. This
downgrading consists in, if possible, replacing the current processor by the cheapest processor
available that can still handle all the operators assigned on the current processor.

12 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

6.1.3 Comm-Greedy

The Comm-Greedy heuristic attempts to group operators to reduce communication costs. It
picks the two operators that have the largest communication requirements. These two oper-
ators are grouped and assigned to the same processor, thus saving the costly communication
between both processors. There are three cases to consider for this assignment: (i) both op-
erators were unassigned, in which case the heuristic simply purchases the cheapest processor
that can handle both operators; if no such processor is available then the heuristic purchases
the most expensive processor for each operator; (ii) one of the operators was already assigned
to a processor, in which case the heuristic attempts to accommodate the other operator as
well; if this is not possible then the heuristic purchases the most expensive processor for
the other operator; (iii) both operators were already assigned on two different processors,
in which case the heuristic attempts to accommodate both operators on one processor and
sell the other processor; if this is not possible then the current operator assignment is not
changed.

6.1.4 Object-Greedy

The Object-Greedy heuristic attempts to group operators that need the same basic objects.
Recall that an al-operator is an operator that requires at least one basic object. The heuristic
sorts all al-operators by the maximum required download frequency of the basic objects they
require, i.e., in non-increasing order of maximum ratej values (and wi in case of equality).
The heuristic then purchases the most expensive processor and assigns the first such operators
to it. Once again, if the most expensive processor cannot handle this operator, the heuristic
attempts to group the operator with one of its unassigned parent or child operators. If this
is not possible, then the heuristic fails. Then, in a greedy fashion, this processor is filled first
with al-operators and then with other operators as much as possible.

6.1.5 Subtree-Bottom-Up

The Subtree-Bottom-Up heuristic first purchases as many most expensive processors as there
are al-operators and assigns each al-operator to a distinct processor. The heuristic then tries
to merge the operators with their father on a single machine, in a bottom-up fashion (possibly
leading to the selling back of some processors). Consider a processor on which a number of
operators have been assigned. The heuristic first tries to allocate as many parent operators
of the currently assigned operators to this processor. If some parent operators cannot be
assigned to this processor, then one or more new processors are purchased. This mechanism
is used until all operators have been assigned to processors.

6.1.6 Object-Grouping

For each basic object, this heuristic counts how many operators need this basic object. This
count is called the “popularity” of the basic object. The al-operators are then sorted by
non-increasing sum of the popularities of the basic object they need. The heuristic starts
by purchasing the most expensive processor and assigning to it the first al-operator. The
heuristic then attempts to assign as many other al-operators that require the same basic
objects as the first al-operator, taken in order of non-increasing popularity, and then as many
non al-operators as possible. This process is repeated until all operators have been assigned.

In-Network Stream Processing 13

6.1.7 Object-Availability

This heuristic takes into account the distribution of basic objects on the servers. For each
object k the number avk of servers handling object ok is calculated. Al-operators in turn are
treated in increasing order of avk of the basic objects they need to download. The heuristic
tries to assign as many al-operators downloading object k as possible on a most expensive
processor. The remaining internal operators are assigned in the same mechanism as Comp-
Greedy proceeds, i.e., in decreasing order of wi of the operators.

6.2 Object Download Heuristics

Once an operator placement heuristic has been executed, each al-operator is mapped on a
processor, which needs to download basic objects required by the operator. Thus, we need
to specify from which server this download should occur. Two server selection heuristics are
proposed in order to define, for each processor, the server from which required basic objects
are downloaded.

6.2.1 Server-Selection-Random

This heuristic is only used in combination with Random. Once Random has decided about
the mapping of operators onto processors, Server-Selection-Random associates randomly a
server to each basic object a processor has to download.

6.2.2 Server-Selection-Intelligent

This server selection heuristic is more sophisticated and is used in combination with all oper-
ator placement heuristics except Random. Server-Selection-Intelligent uses three loops: the
first loop assigns objects that are held in exclusivity, i.e., objects that have to be down-
loaded from a specific server. If not all downloads can be guaranteed, the heuristic fails.
The second loop associates as many downloads as possible to servers that provide only one
basic object type. The last loop finally tries to assign the remaining basic objects that have
to be downloaded. For this purpose objects are treated in decreasing order of interested-
Procs/numPossibleServers, where interestedProcs is the remaining number of processors that
need to download the object and numPossibleServers is the number of servers where the ob-
ject still can be downloaded. In the decision process servers are considered in decreasing order
of min(remainingBW, linkBW), where remainingBW is the remaining capacity of the servers
network card and linkBW is the bandwidth of the communication link.

Once the server association process is done, a processor downgrade procedure is called.
All processors are replaced by the less expensive model that fulfills the CPU and network
card requirements of the allocation.

7 Simulation Results

7.1 Resource Cost Model

In order to instantiate our simulations with realistic models for resource costs, we use infor-
mation available from the Dell Inc. Web site. More specifically, we use the prices for config-
urations of Intel’s latest, high-end, rack-mountable server (PowerEdge R900), as advertised

14 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

Table 1: Incremental costs for increases in processor performance or network card bandwidth
relative to a $7,548 base configuration (based on data from the Dell Inc. web site, as of early
March 2008).

Processor Network Card
Performance Cost Ratio Bandwidth Cost Ratio

(GHz) ($) (GHz/$) (Gbps) ($) (Gbps/$)
11.72 7,548 + 0 1.55 ×10−3 1 7,548 + 0 1.32 ×10−4

19.20 7,548 + 1,550 1.93 ×10−3 2 7,548 + 399 2.51 ×10−4

25.60 7,548 + 2,399 2.38 ×10−3 4 7,548 + 1,197 4.57 ×10−4

38.40 7,548 + 3,949 3.12 ×10−3 10 7,548 + 2,800 9.66 ×10−4

46.88 7,548 + 5,299 3.43 ×10−3 20 7,548 + 5,999 14.76 ×10−4

on the Web site as of early March 2008. Due to the large number of available configurations,
we only consider processor cores with 8MB L1 caches (so that their performances are more
directly comparable), and with optical Gigabit Ethernet (GbE) network cards manufactured
by Intel Inc. For simplicity, we assume that the effective bandwidth of a network card is
equal to its peak performance. In reality, we know that, say, a 10GbE network card delivers a
bandwidth lower than 10Gbps due to various software and hardware overheads. We also make
the assumption that the performance of a multi-processor multi-core server is proportional to
the sum of the clock rates of all its cores. This assumption generally does not hold in practice
due, e.g., to parallelization overhead and cache sharing. It is outside the scope of this work
to develop (likely elusive) generic performance models for network cards and multi-processor
multi-core servers, but we argue that the above assumptions still lead to a reasonable resource
cost model. The configuration prices are show in Table 1, relative to the base configuration,
whose cost is $7,548. Note that we do not consider configurations designed for low power
consumption, which achieve possibly lower performance at higher costs.

7.2 Simulation Methodology

All our simulations use randomly generated binary operator trees with at most N operators,
which can be specified. All leaves correspond to basic objects, and each basic object is chosen
randomly among 15 different types. For each of these 15 basic object types, we randomly
choose a fixed size. In simulations with small objects, the object sizes are in the range 5-
30MB, whereas big objects have data sizes in the range 450-530MB. The download frequency
for basic objects is either fixed to 1/50s or 1/2s. The computation amount wn for an operator
n (a non-leaf node in the tree), depends on its children l and r: wn = (δl + δr)α, where α
is a constant fixed for each simulation run. The same principle is used for the output size
of each operator, using a constant β = 1.0 for all simulations. The application throughput ρ
is fixed to 1.0 for all simulations. Throughout the whole set of simulations we use the same
server architecture: we dispose of 6 servers, each of them is equipped with a 10 GB network
card. Objects of our 15 types are randomly distributed over the 6 servers. We assume that
servers and processors are all interconnected by a 1GB link. The mapping operator problem is
defined by many parameters, an we argue that our simulation methodology, in which several
parameters are fixed, is sufficient to compare our various heuristics.

In-Network Stream Processing 15

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 20 40 60 80 100 120 140

co
st

number of nodes

Alpha 0.9

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(a) α = 0.9.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 20 40 60 80 100 120 140

co
st

number of nodes

Alpha 1.7

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(b) α = 1.7.

Figure 2: Simulation with small basic objects and big download rates, increasing number of
operators.

7.3 Results

We present hereafter results for several sets of experiments. Due to lack of space we will only
present the most significant figures, but the entire set of figures can be found on the web [27].

High download rates - small object sizes In a first set of simulations, we study the
behavior of the heuristics when download rates are high and object sizes small (5-30MB).
Figure 2 shows the results, when the number of nodes N in the tree varies, but the computation
factor α is fixed. As expected, Random performs poorly and the platform chosen for an
application with around 100 operators or more exceeds a cost of $400,000 (cf. Figure 2(a)),
when α = 0.5). Subtree-bottom-up achieves the best costs, and for an application with
100 operators it finds a platform for the price of $8,745. All Greedy heuristics exhibit similar
performance, slightly poorer than Subtree-bottom-up, but still withing acceptable costs under
$50,000. Perhaps surprisingly, the heuristics that pay special attention for basic objects,
Object-Grouping and Object-Availability, perform poorly.

With a larger value of α (cf. Figure 2(b)) the operator tree size becomes a more limiting
factor. For trees with more than 80 operators, almost no feasible mapping can be found.
However, the relative performance of our heuristics remains almost the same, with two notable
features: a) Object-Grouping still finds some mappings for operator trees bigger up to 120
operators, with costs between $200,000 and $275,000; b) Comp-Greedy and Object-Greedy
perform as well at at times better than Subtree-bottom-up when the number of operator
increases.

Figure 3 shows the comparison of the heuristics when N is fixed and the computation
factor α increases. This experiment uses the same parameters as the previous one. Up to a
threshold the α parameter has no influence on the heuristics’ performance and the solution
cost is linear. When α reaches the threshold, the solution cost of each heuristic increases
until α exceeds a second threshold and no solution can be found anymore. Depending on
the number of operators both thresholds have lower or higher values. In the case of small
operator trees with only 20 nodes (see Figure 3(a)), the first threshold is for α = 1.7 and
the second at α = 2.2 (vs. α = 1.6 and α = 1.8 for operator trees of size 60, as seen in
Figure 3(b)). Subtree-bottom-up behaves in both cases the best, whereas Random performs

16 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.5 1 1.5 2 2.5

co
st

alpha

N20

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(a) N = 20.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.5 1 1.5 2 2.5

co
st

alpha

N60

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(b) N = 60.

Figure 3: Simulation with small basic objects and big download rates, increasing α.

the poorest. Object-Grouping and Object-Availability change their position in the ranking:
for small trees Object-Grouping behaves better, while for bigger trees it is outperformed by
Object-Availability. The Greedy heuristics are between Subtree-bottom-up and the object
sensitive heuristics. When α is larger, they at times outperform Subtree-bottom-up.

High download rates - big object sizes The second set of experiments analyzes the
heuristics’ performance under high download rates and big object sizes (450-530MB). As
for small object sizes, we plot two types of figures. Figure 4 shows results for a fixed α
and increasing number of operators. We see that for trees bigger than 45 nodes, almost no
feasible solution can be found, both for α smaller than 1 and higher than 1. In general,
Subtree-bottom-up still achieves the best costs, but at times it is outperformed by Comm-
Greedy. Subtree-bottom-up even fails in two cases in which other heuristics find a solution:
see Figure 4(a), N=41 and N=42. This behavior can be explained as follows. The Subtree-
bottom-up routine achieves the best result in terms of processors that have to be purchased.
But unfortunately this operator-processor-mapping fails during the server allocation process.
(Often the bandwidth of 1 GB between processor and server is not sufficient).

Comm-Greedy achieves in this experiment the best costs among the Greedy heuristics,
whereas Random, Object-Availability and Object-Grouping still perform the poorest.

When N is fixed we observe a behavior similar as that for small object sizes. The rank-
ing (Subtree-bottom-up, Greedy, object sensitive, and finally Random) remains unchanged.
When N = 20, Comp-Greedy outperforms Object-Greedy and Comm-Greedy finds a fea-
sible solution only once (see Figure 5(a)). Object-Availability achieves better results than
Object-Grouping.

In the case of N = 40 (see Figure 5(b)), the ranking is unchanged but for the fact that
Object-Availability and Object-Grouping are swapped. Also, in this case, Object-Greedy
never succeeds to find a feasible solution, whereas Comm-Greedy achieves the second best
results.

Note that the failure of Object-Greedy depends on the tree structure, and thus our results
do not mean that Object-Greedy fails for all tree sizes higher than 20. Here once again, the
solution found by the heuristic for the operator mapping leads to the failure in the server
association process.

In-Network Stream Processing 17

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 20 40 60 80 100 120 140

co
st

number of nodes

Alpha 0.9

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(a) α = 0.9.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 20 40 60 80 100 120 140

co
st

number of nodes

Alpha 1.1

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(b) α = 1.1.

Figure 4: Simulation with big basic objects and high download rates, increasing number of
operators.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.5 1 1.5 2 2.5

co
st

alpha

N20

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(a) N = 20.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.5 1 1.5 2 2.5

co
st

alpha

N40

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(b) N = 40.

Figure 5: Simulation with big basic objects and high download rates, increasing α.

18 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

Table 2: Influence of the download rate on the platform cost, in $, when object sizes are
small.

small object sizes big object sizes
N Comm-Greedy Obj-Greedy Subtree-b-up Comm-Greedy Obj-Greedy Subtree-b-up

115 7947 13547 8745 7548 13547 8745
116 15495 13547 7947 15096 13547 7548
117 7947 13547 7947 7548 13547 7548
118 15495 13547 7548 15096 13547 7548
119 15495 13547 8745 15096 13547 8745

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 20 40 60 80 100 120 140

co
st

number of nodes

Alpha 0.9

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(a) frequency = 1/50s.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 20 40 60 80 100 120 140

co
st

number of nodes

Alpha 0.9

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(b) frequency = 1/2s.

Figure 6: Comparison between the simulations with big basic objects and different download
rates, α = 0.9.

Low download rates - small object sizes The behavior of the heuristics when download
rates are low, i.e., frequency = 1/50s, is almost the same as for high download rates. In
general the heuristics lead to the same operator mapping, but in some cases the purchased
processors have less powerful network cards (Cf. Table 2).

Low download rates - big object sizes In this case, low download rates slightly improve
the success rate of the heuristics (see Figure 6). Indeed, because of the lower download rates
the links between servers and processors are less congested, and hence the server association
is feasible in more scenarios.

Influence of download rates (frequency) on the solution The third set of experiments
studies the influence of download rates on the solution. Remember the download rate of a
basic object k is computed by ratek = frequency × δk. A first results is that frequencies
smaller than 1/10s has no further influence on the solution. All heuristics will find the same
solutions for a fixed operator tree, as seen in Figure 7. For frequencies between 1/2s and 1/10s,
the solution cost changes. In general the cost decreases, but for N = 160 the cost for the
Object-Grouping heuristic increases. Furthermore, the heuristic ranking remains: Subtree-
bottom-up, followed by the Greedy family, followed by the object sensitive ones, and Random

In-Network Stream Processing 19

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 10 20 30 40 50

co
st

1/frequency

N140

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(a) N = 140.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 10 20 30 40 50

co
st

1/frequency

N160

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(b) N = 160.

Figure 7: Simulation to evaluate the influence of the frequency that determines download
rates.

forms the bottom of the league. Interestingly, the costs of Object-Availability decrease with
the number of operators. In this case the number of operators that need to download a basic
object increases, and hence the privileged treatment of basic objects in order of availability
on servers becomes more important (compare Figure 7 and Figure 8(a)).

We also tested the importance of the number of basic object replications on the servers.
Initially we ran experiments also on different server configurations, with basic objects either
not replicated are replicated on all servers. However, we did not observe a significant difference
in the results across different server configurations. We thus present results only for are default
server configuration. Figure 7 shows results for decreasing frequencies, when each basic object
is available only on a single server. Comparing this plot to Figure 8(b), for which each
basic object is available on 50% of the servers, one notices no significant difference. Focusing
solely on frequencies between 1/2s and 1/10s, we see that Subtree-bottom-up, Comm-Greedy,
Object-Grouping, and Object-Greedy find more solutions, at frequencies for which they failed
before (Figure 8(a)). We conclude that the level of replication of basic objects on servers may
matter for application trees with specific structures and download frequencies, but that in
general we can consider that this parameter has little or no effect on the performance of the
heuristics.

Comparison of the heuristics to a LP solution on a homogeneous platform This
last set of experiments is dedicated to the evaluation of our heuristics via a lower bound
given by the solution of our integer linear program. We use Cplex 11 to solve our linear
program. Unfortunately, the LP is so enormous that, even when using only 5 possible groups
of processors and using tress with 30 operators, the LP file could not be opened in Cplex. For
trees with 20 operators, Cplex produces the optimal solution, which consists in all cases in
buying a single processor. So we opted for evaluating our heuristics vs. the optimal solution
under homogeneous conditions, i.e., when there is a single processor type. In this case we skip
the downgrade step after the server allocation. When α is less than 1, Subtree-bottom-up
almost always finds the optimal solution (see Figure 9(a)). Note that once again, in two cases
this heuristic is not able to find a feasible solution, while the others succeed (N ∈ {34, 35, 36}).
This is again due to the fact that Subtree-bottom-up maps all operators onto a single processor
and then the server association process fails. The other heuristics buy more processors from

20 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 10 20 30 40 50

co
st

1/frequency

N100

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(a) Each basic object available only on one server.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 10 20 30 40 50

co
st

1/frequency

N100

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability

(b) Each basic object available on 50% of the
servers.

Figure 8: Simulation to evaluate the influence of the availability of the basic objects.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 5 10 15 20 25 30 35 40

co
st

number of nodes

Alpha 0.9

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability
LP

(a) α = 0.9.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 5 10 15 20 25 30 35 40

co
st

number of nodes

Alpha 1.1

Random
Comp-Greedy
Comm-Greedy
Object-Greedy

Subtree-bottom-up
Object-Grouping

Object-Availability
LP

(b) α = 1.1.

Figure 9: Simulation to compare the heuristics’ performances to the LP performance on
homogeneous platforms.

the onset, and are later able to find a feasible processor-server association.
Even with homogeneous conditions, we observe the same ranking of our heuristics as

before: Subtree-bottom up, the Greedy family, followed by Object-Grouping, then Object-
Availability and finally Random. Focusing on the Greedy family, we observe that with in-
creasing operator trees, Comp-Greedy outperforms Object-Greedy, and in most cases Comm-
Greedy achieves the best costs of the three.

Summary Our results show that all our more sophisticated heuristics perform better than
the simple random approach. Unfortunately, the object sensitive heuristics, Object-Grouping
and Object-Availability, do not show the desired performance. We think that in some situa-
tions these heuristics could lead to good performance, but this is not observed on our set of
random application configurations. We had found that Subtree-bottom-up outperforms other
heuristics in most situations and also produces results very close to the optimal (for the cases
in which we were able to determine the optimal). There are some configurations for which
Subtree-bottom-up fails, our results suggest that on should use one of our Greedy heuristics,
which perform reasonably well.

In-Network Stream Processing 21

8 Conclusion

In this paper we have studied the problem of resource allocation for in-network stream process-
ing. We formalized several operator-placement problems. We have focused more particularly
on a “constructive” scenario in which one aims at minimizing the cost of a platform that satis-
fies an application throughput requirement. The complexity analysis showed that all problems
are NP-complete, even for the simpler cases. We have derived an integer linear programming
formulation of the various problems, and we have proposed several polynomial time heuristics
for the constructive scenario. We compared these heuristics through simulation, allowing us
to identify one heuristic that is almost always better than the others, Subtree-bottom-up.
Finally, we assessed the absolute performance of our heuristics with respect to the optimal
solution of the linear program for homogeneous platforms and small problem instances. It
turns out that the Subtree-bottom-up heuristic almost always produces optimal results.

An interesting direction for future work is the study of the case when multiple applica-
tions must be executed simultaneously so that a given throughput must be achieved for each
application. In this case a clear opportunity for higher performance with a reduced cost is
the reuse of common sub-expression between trees [28, 29]. Another direction is the study of
applications that are mutable, i.e., whose operators can be rearranged based on operator as-
sociativity and commutativity rules. Such situations arise for instance in relational database
applications [10].

References

[1] B. Badcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in data
stream systems,” in Proceedings of the Intl. Conf. on Very Large Data Bases, 2004, pp.
456–467.

[2] U. Srivastava, K. Munagala, and J. Widom, “Operator Placement for In-Network Stream
Query Processing,” in Proceedings of the 24th Intl. Conf. on Principles of Database Sys-
tems, 2005, pp. 250–258.

[3] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “The design of an acquisitional
query processor for sensor networks,” in Proceedings of the 2003 ACM SIGMOD Intl.
Conf. on Management of Data, 2003, pp. 491–502.

[4] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards sensor database systems,” in Proceedings
of the Conference on Mobile Data Management, 2001.

[5] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck, “Gigascope: high-
performance network monitoring with an SQL interface,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2002, pp. 623–633.

[6] R. van Rennesse, K. Birman, D. Dumitriu, and W. Vogels, “Scalable Management and
Data Mining Using Astrolabe,” in Proceedings from the First International Workshop on
Peer-to-Peer Systems, 2002, pp. 280–294.

[7] E. Cooke, R. Mortier, A. Donnelly, P. Barham, and R. Isaacs, “Reclaiming Network-
wide Visibility Using Ubiquitous End System Monitors,” in Proceedings of the USENIX
Annual Technical Conference, 2006.

22 A. Benoit, H. Casanova , V. Rehn-Sonigo, Y. Robert

[8] S. Babu and J. Widom, “Continuous Queries over Data Streams,” SIGMOD Record,
vol. 30, no. 3, 2001.

[9] L. Liu, C. Pu, and W. Tang, “Continual Queries for Internet Scale Event-Driven Informa-
tion Delivery,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, no. 4,
pp. 610–628, 1999.

[10] J. Chen, D. J. DeWitt, and J. F. Naughton, “Design and Evaluation of Alternative
Selection Placement Strategies in Optimizing Continuous Queries,” in ICDE, 2002.
[Online]. Available: citeseer.ist.psu.edu/article/chen02design.html

[11] B. Plale and K. Schwan, “Dynamic Querying of Streaming Data with the dQUOB Sys-
tem,” IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 4, pp. 422–432,
2003.

[12] J. Kräme and B. Seeger, “A Temporal Foundation for Continuous Queries over Data
streams,” in Proceedings of the Intl. Conf. on Management of Data, 2005, pp. 70–82.

[13] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik,
“The Design of the Borealis Stream Processing Engine,” in Second Biennial Conference
on Innovative Data Systems Research (CIDR 2005), Asilomar, CA, January 2005.

[14] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and
S. Zdonik, “Scalable distributed stream processing,” in Proc. of the CIDR Conf., January
2003.

[15] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo, S. Shenker, and I. Stoica,
“Querying the Internet with PIER,” Sept. 2003. [Online]. Available: citeseer.ist.psu.
edu/huebsch03querying.html

[16] L. Chen, K. Reddy, and G. Agrawal, “GATES: a grid-based middleware for processing
distributed data streams,” High performance Distributed Computing, 2004. Proceedings.
13th IEEE International Symposium on, pp. 192–201, 4-6 June 2004.

[17] S. Nath, A. Deshpande, Y. Ke, P. B. Gibbons, B. Karp, and S. Seshan,
“IrisNet: An Architecture for Internet-scale Sensing Services.” [Online]. Available:
citeseer.ist.psu.edu/nath03irisnet.html

[18] J. Chen, D. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A scalable continuous query
system for internet databases,” in Proceedings of the SIGMOD Intl. Conf. on Management
of Data, 2000, pp. 379–390.

[19] D. Logothetis and K. Yocum, “Wide-Scale Data Stream Management,” in Proceedings of
the USENIX Annual Technical Conference, 2008.

[20] P. Pietzuch, J. Leflie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer,
“Network-Aware Operator Placement for Stream-Processing Systems,” in Proceedings
of the 22nd International Conference on Data Engineering (ICDE’06), 2006, pp. 49–60.

citeseer.ist.psu.edu/article/chen02design.html
citeseer.ist.psu.edu/huebsch03querying.html
citeseer.ist.psu.edu/huebsch03querying.html
citeseer.ist.psu.edu/nath03irisnet.html

In-Network Stream Processing 23

[21] Y. Ahmad and U. Cetintemel, “Network aware query processing for stream-based appli-
cations,” in Proceedings of the International Conference on Very Large Data Bases, 2004,
pp. 456–467.

[22] Y. E. Ioannidis, “Query optimization,” ACM Computing Surveys, vol. 28, no. 1, pp.
121–123, 1996. [Online]. Available: citeseer.ist.psu.edu/article/ioannidis96query.html

[23] S. Chaudhuri, “An Overview of Query Optimization in Relational Systems,” in Proc. 17th
ACM symposium on Principles of Database Systems, 1998, pp. 34–43.

[24] A. Deshpande, Z. G. Ives, and V. Raman, “Adaptive query processing,”Foundations and
Trends in Databases, vol. 1, no. 1, pp. 1–140, 2007.

[25] B. Hong and V. K. Prasanna, “Adaptive allocation of independent tasks to maximize
throughput,” IEEE Trans. Parallel Distributed Systems, vol. 18, no. 10, pp. 1420–1435,
2007.

[26] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[27] “Source Code for the Heuristics.” [Online]. Available: http://graal.ens-lyon.fr/˜vsonigo/
code/query-streaming/

[28] V. Pandit and H. Ji, “Efficient in-network evaluation of multiple queries,” in HiPC, 2006,
pp. 205–216.

[29] K. Munagala, U. Srivastava, and J. Widom, “Optimization of continuous queries with
shared expensive filters,” in PODS ’07: Proceedings of the twenty-sixth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. New York, NY, USA:
ACM, 2007, pp. 215–224.

citeseer.ist.psu.edu/article/ioannidis96query.html
http://graal.ens-lyon.fr/~vsonigo/code/query-streaming/
http://graal.ens-lyon.fr/~vsonigo/code/query-streaming/

	1 Introduction
	2 Models
	2.1 Application model
	2.2 Platform model
	2.3 Mapping Model and Constraints

	3 Problem Definitions
	4 Complexity
	5 Linear Programming Formulations
	5.1 ILP for Constr
	5.2 ILP for Non-Constr

	6 Heuristics
	6.1 Operator Placement Heuristics
	6.1.1 Random
	6.1.2 Comp-Greedy
	6.1.3 Comm-Greedy
	6.1.4 Object-Greedy
	6.1.5 Subtree-Bottom-Up
	6.1.6 Object-Grouping
	6.1.7 Object-Availability

	6.2 Object Download Heuristics
	6.2.1 Server-Selection-Random
	6.2.2 Server-Selection-Intelligent

	7 Simulation Results
	7.1 Resource Cost Model
	7.2 Simulation Methodology
	7.3 Results

	8 Conclusion

