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Abstract

This paper presents theoretical results related to mapping and scheduling linear workflows
onto heterogeneous platforms. We use a realistic architectural model with bounded communi-
cation capabilities and full computation/communication overlap. This model is representative
of current multi-threaded systems. In these workflow applications, the goal is often to maximize
throughput or to minimize latency. We present several complexity results related to both these
criteria.

To be precise, we prove that maximizing the throughput is NP-complete even for homo-
geneous platforms and minimizing the latency is NP-complete for heterogeneous platforms.
Moreover, we present an approximation algorithm for throughput maximization for linear chain
applications on homogeneous platforms, and an approximation algorithm for latency minimiza-
tion for linear chain applications on all platforms where communication is homogeneous (the
processor speeds can differ). In addition, we present algorithms for several important special
cases for linear chain applications. Finally, we consider the implications of adding feedback
loops to linear chain applications.

Key words: pipeline graphs, workflow, scheduling, mapping, period, latency, feedback
loop, complexity results.
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1 Introduction

Pipelined workflows are a popular programming paradigm for streaming applications like video and
audio encoding and decoding, DSP applications etc. Streaming applications are becoming increas-
ingly prevalent, and many languages [27, 19, 8, 12] are being continually designed to support these
applications (see [23] for survey of older streaming languages). In these languages, the programmer
expresses its programs by creating a workflow graph , and the system maps this workflow graph
on a target machine.

A workflow graph contains several stages, and these stages are connected to each other using
first-in-first-out channels. Data is input into the graph using input channel(s) and the outputs are
produced on the output channel(s). Since data continually flows through these applications, the
goal of a scheduler is often to increase the throughput and/or decrease the latency . One can think
of these applications as a graph, where stages are the nodes and the channels are the edges. Most
of the problems related to mapping general graphs optimally are rather obviously NP-Complete;
therefore, we consider the special case of linear chains where they may or may not have feedback
edges. In this domain, we provide comprehensive theoretical analysis of the complexity of mapping
these graphs on both homogeneous and heterogeneous distributed memory platforms.

Subhlok and Vondran [24, 25] studied the problem of mapping linear chain graphs on homo-
geneous platforms, and these complexity results were extended for heterogeneous platforms under
the one-port model in [3]. In this model, the processor can either compute, receive an incoming
communication, or send an outgoing communication at a time. This model does a good job of rep-
resenting single-threaded systems. Unfortunately, this model is not suitable for handling general
mappings, or applications which have feedback, and it can deadlock in this case. Therefore, in this
paper, we explore the bounded-multiport model , which allows multiple incoming and outgoing
communications simultaneously, and allows the computation and communication to overlap. To
the best of our knowledge, the bounded-multiport model with overlap has not been explored for
linear chains, and we start to explore its complexity before extending the approach to applications
with feedback.

We consider three kinds of platforms for mapping these applications. Fully Homogeneous plat-
forms are those which have identical processors. That is, all processors run at the same speed, and
communicate with each other using links of the same bandwidth. Communication Homogeneous
platforms are those in which the processors may have different speeds, but they are all connected
by identical communication interconnect. Fully Heterogeneous platforms are those where both
processor speeds and the speed of the interconnect changes from processor to processor.

Here is the summary of our results:

• Finding the mapping with optimal throughput is NP-complete even for Fully Homogeneous
platforms in the bounded multiport model with overlap. Note that this result implies that it
is NP-complete for Communication Homogeneous and Fully Heterogeneous platforms as well.
Finding the mapping with optimal latency is NP-complete for Communication Homogeneous
platforms. The problem of finding the mapping with optimal latency for Fully Homogeneous
platforms is left open. These proofs are given in Section 4.

• Section 5 shows finding the best interval mappings for both throughput and latency can
be done in polynomial time for Fully Homogeneous platforms. These interval mappings are
commonly used since they minimize the communication overhead. However, finding optimal
interval mappings is NP-complete for Communication Homogeneous platforms.
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• Since finding the best mapping is NP-complete, we looked for approximation algorithms. In
Section 6, we show that interval mappings provide a 2-approximation for throughput on Fully
Homogeneous platforms. Since these interval mappings can be found in polynomial time,
we have a 2-approximation algorithm for the throughput. Unfortunately, this approximation
result no longer holds for Communication Homogeneous platform. Mapping all the stages on
the same processor provides a 1.5-approximation for latency on Communication Homogeneous
platforms (hence also for Fully Homogeneous platforms). However, this result does not hold
for Fully Heterogeneous platforms.

• In the special case where an infinite number of processors are available to the application,
interval mappings are optimal for throughput. Similarly, interval mappings are optimal for
throughput if the application is regular — all the stages perform the same amount of compu-
tation and communication. Therefore, for both these special cases, we have polynomial time
algorithms for linear chains on Fully Homogeneous platforms for throughput. These results
are explained in Section 7.

• In Section 8, we show that almost all problems become more difficult when feedback loops
are added. Interval mappings are no longer a good approximation for throughput even for
Fully Homogeneous platforms. However, mapping all stages on the same processor is still a
good approximation for latency for Communication Homogeneous platforms. In addition, we
prove that optimizing throughput is NP-complete even for infinite number of processors when
we have feedback loops.

2 Related Work

This section describes some of the related work that has not been mentioned in Section 1.
An important and representative project in the field of scheduling workflows is the DataCut-

ter [9] project. One goal of this project is to schedule multiple data analysis operations onto clusters
and grids, and to decide where to place and/or replicate various components [4, 5, 21]. A typical
application is a chain of consecutive filtering operations, to be executed on a very large data set.
The task graphs targeted by DataCutter are usually tree-shaped, which makes it easier to design
efficient heuristics to solve the previous placement and replication optimization problems. However,
recent papers [29, 30] target workflows structured as arbitrary DAGs (Directed Acyclic Graphs)
and consider bi-criteria optimization problems on homogeneous platforms. These papers provide
many interesting ideas and several heuristics to solve the general mapping problem.

In [26], Taura and Chien consider applications composed of several copies of the same task
graph, expressed as a DAG. These copies are to be executed in pipeline fashion. Their problem
is shown NP-complete, and they provide an iterative heuristic to determine a good mapping. At
each step, the heuristic refines the current clustering of the DAG. Beaumont et al [2] consider the
same problem as Taura and Chien, i.e., with a general DAG, but they allow a given task type to
be mapped onto several processors, each executing a fraction of the total number of tasks. The
problem remains NP-complete, but becomes polynomial for special classes of DAGs, such as series-
parallel graphs. For such graphs, it is possible to determine the optimal mapping owing to an
approach based upon a linear programming formulation.

Since most problems for general DAG applications are shown to be NP-hard, we focus in this
paper on a limited class of application graphs (linear chains, with and without feedback).

3



3 Framework

In this section we first describe the application model and architectural framework. Then we detail
mapping rules and objectives.

3.1 Application Model

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

Figure 1: Application linear chain.

We consider simple application workflows whose graphs are a pipeline (i.e., a linear chain).
Such graphs are representative of a wide class of applications, and constitute the typical building
blocks upon which to build and execute more complex workflows. A pipeline graph of n stages Sk,
1 ≤ k ≤ n is illustrated on Figure 1. Consecutive data sets are fed into the pipeline and processed
from stage to stage, until they exit the pipeline after the last stage.

Each stage executes a task. More precisely, the k-th stage Sk receives an input from the previous
stage, of size δk−1, performs a number of wk computations, and outputs data of size δk to the next
stage. This operation corresponds to the k-th task and is repeated periodically on each data set.
Communications and computations are done in parallel, thus input for data set i + 1 is received
while computing for data set i and sending result for data set i− 1. The first stage S1 receives an
input of size δ0 from the outside world, while the last stage Sn returns the result, of size δn, to the
outside world.

3.2 Execution Model

3.2.1 Platform graph

We target a heterogeneous platform with p processors Pu, 1 ≤ u ≤ p, fully interconnected as a
(virtual) clique. There is a bidirectional link linku,v : Pu → Pv between any processor pair Pu and
Pv, of bandwidth bu,v. Note that we do not need to have a physical link between any processor pair.
Instead, we may have a switch, or even a path composed of several physical links, to interconnect
Pu and Pv; in the latter case we would retain the bandwidth of the slowest link in the path for
the value of bu,v. In the most general case, we have fully heterogeneous platforms, with different
processors speeds and link capacities. The speed of processor Pu is denoted as su, and it takes
X/su time-units for Pu to execute X floating point operations. We also enforce a linear cost model
for communications, hence it takes X/bu,v time-units to send (resp. receive) a message of size X
to (resp. from) Pv.

Finally, there are additional constraints on the communications: in addition to link bandwidths,
we deal with processor network cards and we bound the total communication capacity of each
computing resource: we denote by Biu (resp. Bou) the capacity of the input (resp. output) network
card of processor Pu. In other words, Pu cannot receive more than 1/Biu data items per time-unit,
and it cannot send more than 1/Bou data items per time-unit.
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We classify below particular cases which are important, both from a theoretical and practical
perspective:

Fully Homogeneous– These platforms have identical processors (su = s) and homogeneous com-
munication devices (bu,v = b for link bandwidths, and Biu = Bi, Bou = Bo for network cards).
They represent typical parallel machines.

Communication Homogeneous– These platforms have different-speed processors (su 6= sv)
but are interconnected with homogeneous communication devices: links and network cards of
same capacities (bu,v = b, Biu = Bi, Bou = Bo). They correspond to networks of workstations
with plain TCP/IP interconnects or other LANs.

Fully Heterogeneous– These are the most general, fully heterogeneous architectures, with su 6=
sv, bu,v 6= bu′,v′ , Biu 6= Biv, Bou 6= Bov. Hierarchical platforms made up with several clusters
interconnected by slower backbone links can be modeled this way.

Finally, we assume that two special additional processors Pin and Pout are devoted to in-
put/output data. Initially, the input data for each task resides on Pin, while all results must
be returned to and stored in Pout. Of course we may have a single processor acting as the interface
for the computations, i.e., Pin = Pout.

3.2.2 Realistic Communication Models

The standard model for DAG scheduling heuristics [31, 17, 28] does a poor job to model physical
limits of interconnection networks. The model assumes an unlimited number of simultaneous sends
and receives, i.e., a network card of infinite capacity, on each processor. A more realistic model is the
one-port model [6, 7]. In this model, a given processor can be involved in a single communication at
any time-step, either a send or a receive. However, independent communications between distinct
processor pairs can take place simultaneously. The one-port model seems to fit the performance of
some current MPI implementations, which serialize asynchronous MPI sends as soon as message
sizes exceed a few megabytes [20].

The one-port model fully accounts for the heterogeneity of the platform, as each link has a
different bandwidth. It generalizes simpler models [1, 18, 15] where communication time only
depends on the sender, not on the receiver. In these models, the communication speed from a
processor to all its neighbors is the same. A study of mapping strategies for linear chain application
graphs under the one-port model has been conducted in [3].

Another realistic model is the bounded multiport model [13]. In this model, the total com-
munication volume outgoing from a given node is bounded (by the capacity of its network card),
but several communications along different links can take place simultaneously (provided that the
link bandwidths are not exceeded either). We point out that recent multi-threaded communication
libraries such as MPICH2 [11, 14] now allow for initiating multiple concurrent send and receive
operations, thereby providing practical realizations of the multiport model.

3.2.3 Computation/Communication Overlap

Another key assumption to define the execution model is to decide whether computation can
overlap with (independent) communication. Most state-of-the-art processors running a threaded
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1→ S1
4→ S2

4→ S3
1→ S4

1→
2 1 3 4

Figure 2: Toy example to explain how period and latency are determined.

operating system are indeed capable of such an overlap (even though it may be at the price of some
degradation in the computing speed [16]).

The main emphasis of this paper is to investigate the complexity of various mapping problems
under the bounded multiport model with computation/communication overlap. These two assump-
tions (multiport and overlap) fit well together because they both require a multi-threaded system.
However, they turn out to have a tremendous impact on the definition of the throughput and of
the latency that can be achieved: we need to drastically change the definitions that are used under
the one-port model without overlap [24, 3]: see the example in Section 3.3.1 below.

3.3 Mapping Strategies

Key metrics for a given workflow are the throughput and the latency. The throughput measures
the aggregate rate of processing of data, and it is the rate at which data sets can enter the system.
Equivalently, the inverse of the throughput, defined as the period, is the time interval required
between the beginning of the execution of two consecutive data sets. The latency is the time
elapsed between the beginning and the end of the execution of a given data set, hence it measures
the response time of the system to process the data set entirely. Note that minimizing the latency
is antagonistic to minimizing the period

The mapping problem consists of assigning application stages to platform processors. Formally,
we search for an allocation function of stages to processors, defined as a : [1..n]→ [1..p]. We always
assume in the following that a(0) = in and a(n+ 1) = out.

There are several mapping strategies. The more restrictive mappings are one-to-one ; in this
case, each stage is assigned a different processor. Then the allocation function a is a one-to-one
function, and there must be at least as many processors as application stages. Another strategy is
very common for linear chains: we may decide to group consecutive stages onto a same processor, in
order to avoid some costly communications. However, a processor is only processing an interval of
consecutive stages. Such a mapping is called an interval-based mapping. Finally, we can consider
general mappings, for which there is no constraint on the allocation function: each processor is
assigned one or several stage intervals.

3.3.1 Working out an Example

Consider the little example of Figure 2 with four stages. Below each stage Si we have indicated
the number of computations wi (expressed in flops) that it requires: w1 = 2, w2 = 1, w3 = 3
and w4 = 4. The value of each δi is indicated at the right of each stage: δ0 = 1, δ1 = δ2 = 4,
δ3 = δ4 = 1. As for the platform, assume that we have a Fully Homogeneous platform with two
identical processors P1 and P2 of speed s = 1 and of network card capacities Bi = Bo = 1, and with
identical links of bandwidth b = 1.

We can achieve a perfect load-balance of the computations if we map stages S1 and S3 on P1, and
stages S2 and S4 on P2. What would be the period and the latency with such a mapping? Under the
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in→ P1 0
P1 1 2 12 13 14
P1 → P2 3 4 5 6 15
P2 → P1 8 9 10 11
P2 7 16 17 18 19
P2 → out 20

Figure 3: Processing the first data set to achieve a latency L = 21 would lead to conflicts for the
next data sets.

bounded multiport model with computation/communication overlap, we achieve a period P = 5.
Indeed, P1 has two incoming communications of size δ0

b + δ2
b = 5, and we have δ0+δ2

Bi = 5, so that all
constraints (link bandwidths and network card capacity) are verified for incoming communications.
Similarly, we check that for outgoing communications δ1

b + δ3
b = δ1+δ3

Bo = 5. Finally, we chose the
mapping so that w1+w3

s = 5. Altogether, the cycle-time of processor P1 is 5, which means that it
can start to process a new data set every 5 time units. We perform the same analysis for P2 and
derive that its cycle-time also is 5. The period is the maximum of the cycle-times of the processors,
hence we derive that P = 5.

Computing the latency is more complicated. At first sight, we might say that the latency is the
longest path in the execution, of length

δ0
b

+
w1

s
+
δ1
b

+
w2

s
+
δ2
b

+
w3

s
+
δ3
b

+
w4

s
= 21

However, this is only possible for the first data sets. See Figure 3: if the first data set ds(0) enters
the platform at time t = 0, then P1 is active at time t = 1 and t = 2 (for stage S1), and then
t = 12, t = 13, and t = 14 (for stage S3). If a new data set enters every five time-units to
achieve a period P = 5, then data set ds(k) enters at time t = 5k and P1 is active for it at time
t = 1 + 5k, 2 + 5k, 12 + 5k, 13 + 5k, 15 + 5k. Because this holds true for all k ≥ 0, we have many
conflicts! For instance the first conflict is at t = 12 for stage S1 of ds(3) and stage S3 of ds(1).
Similarly, we obtain conflicts for P2 and for the communication link from P1 to P2.

In fact, in steady-state we can only achieve a much larger latency: see Figure 4, where the
latency is shown to be L = 45. The idea is simple: when a processor executes some computation
for a data set ds(k), then it simultaneously receives input corresponding to data set ds(k+1) and
performs output corresponding to data set ds(k−1). In turn, the next processor operates on data
set ds(k−2), and so on. This example shows that a key parameter is the number of stage intervals
in the mapping. Here we define an interval as a subset of consecutive stages that is not mapped
onto the same processor as the previous stages (see Section 3.3.3 for a more formal definition). In
our example we have four intervals composed of 1 stage each, because each stage is mapped onto
a different processor than its predecessor, hence K = 4. If there are K intervals, there are K + 1
communication links, hence it takes K + (K + 1) = 2K + 1 periods for a data set to be processed
entirely. We check in Figure 4 that we need 2K + 1 = 9 periods to compute a data set, so that
L = 9× 5 = 45.

Note that computing the latency with a non-overlap model looks very difficult. This is because
each processor would have to decide which of its two incoming communications to execute first,
and which of its two outgoing communications to execute first. Any choice is likely to increase the
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. . . period k period k + 1 period k + 2 . . .

in→ P1 . . . ds(k) ds(k+1) ds(k+2) . . .
P1 . . . ds(k−1), ds(k−5) ds(k), ds(k−4) ds(k+1), ds(k−3) . . .
P1 → P2 . . . ds(k−2), ds(k−6) ds(k−1), ds(k−5) ds(k), ds(k−4) . . .
P2 → P1 . . . ds(k−4) ds(k−3) ds(k−2) . . .
P2 . . . ds(k−3), ds(k−7) ds(k−2), ds(k−6) ds(k−1), ds(k−5) . . .
P2 → out . . . ds(k−8) ds(k−7) ds(k−6) . . .

Figure 4: Achieving a latency L = 9P = 45 in steady state mode.

latency for some data set. The problem is similar for the one-port or the multiport model. Indeed,
with the one-port model, we have no choice and must serialize the two communications. On the
contrary, with the multiport model we can decide to execute both communications in parallel,
but this is not helpful as it only delays the first communication without speeding up the second
one. For both models it is hard to decide which communication to give priority to. A simple
(greedy) algorithm would give priority to the communication involving the least recent data set.
We could easily work out such an algorithm for our little example. However, computing a closed
form expression for the latency in the general case seems untractable. Furthermore, we point out
that without overlap the difficulty comes from the fact that several stage intervals are mapped
onto the same processor, which requires to arbitrate between as many incoming (and outgoing)
communications. If we enforce interval-based mappings (see Section 3.3), then each processor is
assigned a single interval and the computation for the latency is greatly simplified.

Note also that interval-based mappings are interesting for the multiport model as they allow
to decrease the value of K, the number of stage intervals, which never exceeds the number p of
available processors for such mappings. However, general mappings may still be needed to better
balance the work, hence to decrease the period, at the price of a larger value of K. Such trade-offs
are at the heart of the algorithms and complexity proofs that follow. Finally, we point out that
introducing feedback loops in Section 8 will further complicate these issues.

3.3.2 Period

As illustrated in Figure 4, we assume that a new data set arrives every period at a regular pace. Let
P1 be the processor in charge of the first stage. While it is computing for data set k, it simultaneously
receives input corresponding to data set k + 1 and sends output corresponding to data set k − 1.
More precisely, the latter output is related to the first stage Si such that a(i) 6= a(i + 1): for a
given data set, all computations corresponding to stages S1 to Si are performed during the same
period. As in the example of Figure 2, P1 can be assigned other stage intervals, and the period
must be large enough so that the sum of all its computations does not exceed the value of the
period. The same holds true for the sum of its incoming communications, and for the sum of its
outgoing communications.

Formally, under the bounded multiport model with overlap, the cycle-time of processor Pu,
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1 ≤ u ≤ p, is defined as:

P(u) = max



∑
1≤k≤n & a(k)=u

wk
su

(1)

max

 max
1≤v≤p,v 6=u

∑
1≤k≤n

a(k)=u & a(k−1)=v

δk−1

bv,u
,

∑
1≤k≤n

a(k)=u & a(k−1)6=u

δk−1

Bi
u

 (2)

max

 max
1≤v≤p,v 6=u

∑
1≤k≤n

a(k)=u & a(k+1)=v

δk
bu,v

,
∑

1≤k≤n
a(k)=u & a(k+1)6=u

δk
Bo

u

 (3)

Line (1) is bounding the period when the computation step is the longest activity. It expresses
the computation time for processor Pu. Line (2) represents the time for input communications,
which is bounded by the links from incoming processors, and by the network card limit Biu. We
need to consider all stages Sk that are assigned to Pu but whose predecessor Sk−1 is not. We
check that no link bandwidth is exceeded from any other processor Pv and we account for all these
communications together for the network card capacity of Pu. Similarly, line (3) deals with output
communications. Also, notice that for the sake of simplicity, in = 0 and out = n+ 1.

The period of the mapping is then P = max
1≤u≤p

P(u).

3.3.3 Latency

As stated in Section 3.3.1, the latency depends on the number of stage intervals, or equivalently,
of the number of changes from one processor to a different one.

We define K(i, j) as the number of stage intervals between stages Si and Sj , where i < j.
Formally,

K(i, j) =
∑
i≤k<j

a(k)6=a(k+1)

1

The total number of intervals in the pipeline is K = K(1, n + 1). Since we always have
a(n + 1) = out 6= a(n), K ≥ 1 (K = 1 if all stages are mapped onto the same processor Pa(n)).
Again, we point out that K depends on the number of processor changes, and thus it is increased
if a processor is in charge of several distinct stage intervals.

The latency is then defined as 2K + 1 times the period, since a data set traverses the whole
pipeline in 2K + 1 time-steps, and each time-step has a duration of P:

L = (2K + 1)× P

Consider again the toy example of Figure 2. With the mapping that was chosen, we had
P = 5 but K = 9, hence L = 45. The value of the period is optimal because the sum of the four
computation weights is 10, and we have two processors of speed 1. But the value of the latency is
not optimal. For instance if we assign all stages to the same processor, the period becomes P = 10
but now K = 3, hence L = 30. We can also assign the first three stages to P1 and the last one to
P2: then we derive P = 6, K = 5 and L = 30 too.
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4 Complexity Results

This section provides complexity results for period and latency minimization. We first prove that
minimizing period is NP-complete for Fully Homogeneous platforms. Then we provide an example
where a non-interval mapping minimizes the latency on Fully Homogeneous platform. This leads
us to conjecture that latency minimization is also NP-complete for Fully Homogeneous platforms.
Unfortunately, we have not been able to prove this result. However, we do prove that latency
minimization is NP-complete on Communication Homogeneous platforms.

Theorem 1. On Fully Homogeneous platforms, finding the general mapping which minimizes the
period is NP-complete.

Proof. We consider the associated decision problem: given a bound B on the period, is there a
mapping of period less than or equal to B? The problem is obviously in NP: given a period and a
mapping, it is easy to check in polynomial time whether it is valid or not.

To establish the completeness, we use a reduction from 2-PARTITION [10]. We consider an
instance I1 of 2-PARTITION: given m positive integers a1, a2, . . . , am, does there exist a subset
I ⊂ {1, . . . ,m} such that

∑
i∈I ai =

∑
i/∈I ai. Let S =

∑m
i=1 ai.

We build the following instance I2 of our problem: the workflow is a linear chain composed of m
stages Si with wi = ai (1 ≤ i ≤ m), and p = 2 processors of speed 1. There are no communications.
We ask whether it is possible to realize a period less than or equal to B = S/2. Clearly, the size of
I2 is polynomial (and even linear) in the size of I1. We now show that instance I1 has a solution
if and only if instance I2 does.

Suppose first that I1 has a solution, I. Since there are no communications, the period of a
mapping is only determined by the size of stages allocated to each processor. We assign stages
Si, i ∈ I to processor 1, and the remaining stages to the other processor. The period of both
processors is thus S/2.

On the other hand, if I2 has a solution, then we define I as the set of indices of stages allocated
to processor 1. By definition of the period, and since the speed is equal to 1,

∑
i∈I ai ≤ B = S/2,

and the period on processor 2 imposes that
∑

i/∈I ai ≤ S/2. Since
∑m

i=1 ai = S, both previous sums
equal S/2, and we found a solution to I1.

Like the period minimization problem, we believe that latency minimization is also NP-complete.
In Section 5, we shall see that optimal interval mappings can be found in polynomial time. However,
unfortunately, interval mappings are not guaranteed to be optimal for latency either. The following
example shows that interval mappings are not optimal for latency for Fully Homogeneous platforms.
Consider 150 homogeneous processors with speeds all equal to 1. The application pipeline contains
300 stages as shown below, and there are no communications.

99 1 100 1︸ ︷︷ ︸ 101 1

×148

In other words, the first stage has work 99, the second stage has work 1. The third and the
fourth stages have work 100 and 1 respectively. These third and fourth stages are repeated 148
times (the fifth stage has work 100, sixth stage 1, and so on). The 299-th stage has work 101 and
the last stage has work 1 again.
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The best schedule is perfectly load balanced but not interval-based: put stages 1,2, and 300
on one processor, all pairs of 100 and 1 on distinct 148 processors, and then stage 299 with work
101 on the last processor. The period of this mapping is 101 and the latency is 30603. The best
interval-based schedule uses 75 intervals with period 203, and latency 30653 (we used the dynamic
programming algorithm of Section 5 to obtain this result).

Since minimum latency mapping may not be an interval-based mapping, it appears as though
latency minimization is in fact NP-complete for Fully Homogeneous platforms. However, the proof
has not been forthcoming, and this problem is left open. The next theorem shows that minimizing
latency is NP-complete for Communication Homogeneous platforms.

Theorem 2. On Communication Homogeneous platforms, finding the general mapping which min-
imizes the latency is NP-complete.

Proof. Recall that the latency for a general mapping is defined as

L = (2q + 1)Pq,

where q is the number of intervals in the mapping, and Pq the period, i.e., the maximum cycle-
time of any processor involved in the execution. If a given processor is assigned several (non-
consecutive) intervals, its cycle-time is the maximum of the three following costs: (i) sum of its
incoming communications (one per interval); (ii) sum of its outgoing communications (one per
interval); and (iii) sum of its computations (all its assigned stages).

Let Latency-Dec denote the decision problem: given an application pipeline with n stages,
a Communication Homogeneous platform with p processors, and a bound L, does there exist a
mapping whose latency is not greater than L? The Latency-Dec problem clearly belongs to the
class NP: given a mapping of the stages onto p, it is easy to compute which intervals are mapped
on the same processor, and to compute the maximum cycle-time Pq of all the p processors and to
check that (2q + 1)Pq ≤ L.

To establish the completeness, we use a reduction from NUMERICAL MATCHING WITH
TARGET SUMS (NMWTS), which is NP-complete in the strong sense [10]. We consider an
instance I1 of NMWTS: given 3m numbers x1, x2, . . . , xm, y1, y2, . . . , ym and z1, z2, . . . , zm, does
there exist two permutations σ1 and σ2 of {1, 2, . . . ,m}, such that xi+yσ1(i) = zσ2(i) for 1 ≤ i ≤ m?
Because NMWTS is NP-complete in the strong sense, we can encode the 3m numbers in unary
and assume that the size of I1 is O(m + M), where M = maxi{xi, yi, zi}. We also assume that∑m

i=1 xi +
∑m

i=1 yi =
∑m

i=1 zi, otherwise I1 cannot have a solution.
We build the following instance I2 of Latency-Dec:
• We define n = (M + 3)m stages, whose computation weights wi are outlined below:

A1 111...1︸ ︷︷ ︸ C D | A2 111...1︸ ︷︷ ︸ C D | . . . | Am 111...1︸ ︷︷ ︸ C D

M M M

here, we introduce U = 72m2 (see below where this value comes from) and we let B =
(U + 2)M , C = B + 3M , D = B + 5M , and Ai = B + xi for 1 ≤ i ≤ m. To define the wi
formally for 1 ≤ i ≤ n, let N = M + 3. We have for 1 ≤ i ≤ m:

w(i−1)N+1 = Ai = B + xi
w(i−1)N+j = 1 for 2 ≤ j ≤M + 1
wiN−1 = C, wiN = D

11



• For the communication weights, we let δi = 1 for all the n stages
• We define a platform with p = 3m processors and homogeneous links of bandwidth b = 1, As

for the speeds, we let si be the speed of processor Pi where, for 1 ≤ i ≤ m:

si = B + zi, sm+i = C +M − yi, s2m+i = D

Finally, we ask whether there exists a solution matching the bound L = 6m + 1. Clearly, the size
of I2 is polynomial in the size of I1. We now show that instance I1 has a solution if and only if
instance I2 does.

Suppose first that I1 has a solution, with permutations σ1 and σ2 such that xi + yσ1(i) = zσ2(i).
For 1 ≤ i ≤ m:
• We map each stage Ai and the following yσ1(i) stages of weight 1 onto processor Pσ2(i).
• We map the following M − yσ1(i) stages of weight 1 and the next stage, of weight C, onto

processor Pm+σ1(i).
• We map the next stage, of weight D, onto processor P2m+i.

We have a partition of all the stages into p = 3m intervals. For 1 ≤ i ≤ m, the load and speed of
the processors are indeed equal:
• The load of Pσ2(i) is Ai + yσ1(i) = B + xi + yσ1(i) and its speed is B + zσ2(i).
• The load of Pm+σ1(i) is M − yσ1(i) + C, which is equal to its speed.
• The load and speed of P2m+i are both D.

Each processor is assigned a single interval, hence the cost of its incoming and outgoing commu-
nications is equal to 1. The mapping achieves a period Pp = 1, and a latency L = (2p + 1)Pp =
6m+ 1 = L, hence a solution to I2.

Suppose now that I2 has a solution, i.e., a mapping matching the latency bound L = 6m + 1.
We first observe that all the p processors must be enrolled in the execution. Indeed, if only q < p
processors participate, the period Pq verifies

Pq ≥
Wtotal

qsmax

Here, Wtotal =
∑n

i=1wi = m(3U + 15)M +
∑m

i=1 xi is the sum of all stage weights, and smax = D is
the largest processor speed. For the latency, we derive that

L = (2q + 1)Pq ≥ m
2q + 1
q

3U + 15
U + 7

≥ 3m
(

2 +
1

3m− 1

)
U + 5
U + 7

We rewrite this expression as

L ≥ 6m+ 1 +
1

3m− 1
−
(

6m+ 1 +
1

3m− 1

)
2

U + 7

and finally

L ≥ 6m+ 1 +
1

6m− 2
> L

for U = 72m2 (hence this mysterious value of U). Now we have p processors and therefore at least
p intervals. But if we had more than p intervals, one processor would be responsible for at least
two intervals, and its cycle-time would be at least 2 because of incoming communications. As a
consequence, the latency would be at least

L ≥ (2p+ 3).2 > L
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Hence we have p intervals in the mapping, one per processor. We derive that the period Pp does
not exceed 1 (because L = (2p+ 1)Pp).

Next we observe that si < sm+j < s2m+k = D for 1 ≤ i, j, k ≤ m. Indeed si = B + zi ≤
B + M = (U + 3M), (U + 5)M ≤ sm+j = C + M − yj ≤ (U + 6)M and D = (U + 7)M . Hence
each of the m stages of weight D must be assigned to a processor of speed D, and it is the only
stage assigned to this processor. These m singleton assignments divide the set of stages into m
intervals, namely the set of stages before the first stage of weight D, and the m− 1 sets of stages
lying between two consecutive stages of weight D. The total weight of each of these m intervals is
Ai +M +C > B+M +C = (2U + 8)M , while the largest speed of the 2m remaining processors is
at most U + 6M . Therefore each of them must be assigned to at least 2 processors each. However,
there remains only 2m available processors, hence each interval is assigned exactly 2 processors.

Consider such an interval Ai 111...1 C with M stages of weight 1, and let Pi1 and Pi2 be the
two processors assigned to this interval. Stages Ai and C are not assigned to the same processor
(otherwise the whole interval would). So Pi1 receives stage Ai and hi stages of weight 1 while Pi2
receives M − hi stages of weight 1 and stage C. The weight of Pi2 is M − hi +C ≥ C = (U + 5)M
while si ≤ (U + 3)M for 1 ≤ i ≤ m. Hence Pi1 must be some Pi, 1 ≤ i ≤ m while Pi2 must be
some Pm+j , 1 ≤ j ≤ m. Because this holds true on each interval, this defines two permutations
σ2(i) and σ1(i) such that Pi1 = Pσ2(i) and Pi2 = Pσ1(i). Because Pp ≤ 1, we have:
• Ai + hi = B + xi + hi ≤ B + zσ2(i)

• M − hi + C ≤ C +M − yσ1(i)

Therefore yσ1(i) ≤ hi and xi + hi ≤ zσ2(i). But by hypothesis,
∑m

i=1 xi +
∑m

i=1 yi =
∑m

i=1 zi,
hence all these inequalities are tight: we have yσ1(i) = hi and xi+yσ1(i) = zσ2(i) for all i. Altogether,
we have found a solution for I1, which concludes the proof.

Corollary 1. On Communication Homogeneous platforms, finding an interval mapping which min-
imizes the latency is NP-complete.

Proof. See the proof for Theorem 2.

5 Algorithms for Interval-Based Mappings

This section gives a polynomial time algorithm returning the best interval-based mapping, both for
period and latency minimization problems on a Fully Homogeneous platform.

Theorem 3. On a Fully Homogeneous platform, finding the interval-based mapping which mini-
mizes the period or the latency can be constructed in polynomial time.

Proof. We provide a dynamic programming to build an interval-based mapping which minimizes
the period or the latency. Let P (i, u) be the best period that can be achieved by mapping stages
S1 to Si onto at most u processors. The recurrence writes as follows:

P (i, u) = min
0≤j<i

{
max

{
P (j, u− 1),

∑i
k=j+1wk

s
,
δi
b

}}
with the initializations, for u ≥ 0 and i > 0:

P (0, u) =
δ0
b

and P (i, 0) = +∞.
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In fact, we either map all the stages onto the same processor (j = 0 in the min), or we cut the
stages at an arbitrary place (0 < j < i) and allocate stages j + 1 to i to a single processor. The
period is then the maximum between computations (

∑
wk) and communications (output δi/b).

The input communication is taken into account in the term P (j, u − 1), since the output from
stage j is identical to the input to stage j+1. The first input communication is counted as P (0, u).
If there are not enough processors and we still have stages to process, we reach the case P (i, 0)
with i > 0 which is not feasible, thus leading to a period of +∞.

For the period minimization problem, we compute P (n, p), as any solution uses at most p
processors.

For the latency minimization problem, we need to compute min1≤K≤p(2K + 1).P (n,K). The
latency depends on the number of cuts, so it may be better to use less processors to decrease the
2K + 1 value. Notice that if the solution returned by P (n,K) uses strictly less than K processors,
the result will be reproduced with a smaller K, leading to a better latency, and thus the first
solution will not be taken into account.

6 Approximation Algorithms for Period and Latency

This section describes approximation algorithms to minimize the period and latency of a linear
chain application. Theorem 4 proves that some interval-based mapping provides a 2-approximation
of the best general mapping for the period of a pipeline. Theorem 5 proves that mapping all the
stages on the fastest processor provides a 1.5-approximation for optimal latency for Communication
Homogeneous platforms.

Theorem 4. Some interval-based mapping provides a 2-approximation for the optimal period for
Fully Homogeneous platforms.

Proof. In this proof, given an optimal mapping, we generate an interval-based mapping that has
at most twice the period.

Consider the best general mapping with k intervals. If the best mapping has fewer than p
intervals, then we are done, since there is an equivalent interval-based mapping which returns the
optimal period. In fact, we cannot increase the period by giving each processor a distinct interval,
and we have enough processors to do so.

Hence let us consider the case where k > p. Let the period of this optimal mapping be Po.
For every interval i, where 1 ≤ i ≤ k, let ∆i be the incoming communication, and Σi be the
computation requirements of interval i (∆i+1 is the outgoing communication for stage i). Without
loss of generality, assume that for all processors u, we have su = Biu = Bou = 1, and for all processor
pairs u, v, bu,v = 1. Therefore, for all i, we have ∆i ≤ Po, and Σi ≤ Po. In addition, we know that∑k

i=1 Σi ≤ pPo, since that is the maximum amount of computation p processors can perform in Po
time.

Now, we generate an interval-based mapping. We merge the consecutive intervals of the general
mapping into larger intervals, called partitions. If a partition r contains intervals j to interval l,
then

∑l−1
i=j Σi < Po and

∑l
i=j Σi ≥ Po. The first partition starts at interval 1, and the last one ends

at interval k. There are at most p partitions, since the total computation is
∑k

i=1 Σi ≤ pPo and
each partition does at least Po computation.

Since we know that all intervals i have Σi ≤ Po, we know that for any partition r that contains
intervals j to l, we have

∑l
i=j Σi ≤ 2Po. In addition, the incoming communication for partition r
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is ∆r = ∆j ≤ Po and the outgoing communication for partition r is ∆r+1 = ∆l+1 ≤ Po. Therefore,
for every partition r, we have Σr ≤ 2Po, ∆r ≤ Po and ∆r+1 ≤ Po. Therefore, each of these
partitions can be mapped on different processors, to get an interval-based mapping with period at
most 2Po.

Corollary 2. Some interval-based mapping provides a 2-approximation for the optimal latency for
Fully Homogeneous platforms.

Proof. This corollary is a direct consequence of Theorem 4, but we shall not prove it since we
provide a better approximation algorithm for latency in Theorem 5.

Unfortunately, interval mappings are not a constant-approximation for the period on Com-
munication Homogeneous platforms. Here is an example to demonstrate this fact. Consider a
Communication Homogeneous platform with n+ 1 processors; processor 1 has speed s1 = 2K and
the other n processors have speed 1, and n > K2. Now consider an application as follows:

K 1︸︷︷︸ K

×n

In other words, the first and the last stages have a computation of K, and there are n interme-
diate stages which have a computation of 1. In this example, a non-interval schedule would map
the first and the last stages to processor 1, and the remaining stages (one each) to the n processors
with speed 1, generating a period of 1. Unfortunately, any interval schedule has a period of at least
K since n > K2. Therefore, the interval schedule can be as bad as a K-approximation at best for
the period.

Theorem 5. A mapping which puts all the stages on the fastest processor provides a 1.5-approximation
for optimal latency on Communication Homogeneous platforms.

Proof. Consider the optimal mapping, which uses k processors. Say that the latency with this
mapping is Lo, and the period with this mapping is Po. Since there are at least k intervals in this
mapping, we have Lo ≥ (2k+1)Po. Now let the latency and period when all the stages are mapped
on one processor be L1 and P1 respectively. We know that P1 ≤ kPo. Since L1 = 3P1, we have
L1 = 3P1 ≤ 3kPo ≤ 3kLo/(2k + 1) ≤ 1.5Lo.

Unfortunately, mapping all stages on the fastest processor does not provide a constant approx-
imation for optimum latency for Fully Heterogeneous platforms, see Figure 5 for counterexample.
If we map both stages on either processor, then the period of this processor is 100 due to the slow
communication link connecting it to either Pin or Pout. Therefore, the latency is 300. However, if
we map S1 on P1 and S2 on P2, then the period of both processors is 2, and the latency is 10.

7 Special Cases: Infinite Number of Processors and Uniform Ap-
plications

Since both period and latency minimization appear to be NP-complete even on Fully Homogeneous
platforms, we consider some special cases where one can in fact find polynomial time algorithms.
The two special cases we consider are are when there is an infinite number of processors, and when
the application is uniform.
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Figure 5: Example where mapping all stages on the fastest processor does not provide a 1.5-
approximation for latency.

7.1 Infinite Number of Processors

We start with a preliminary lemma which shows that there is an optimal interval-based mapping
when considering an infinity of homogeneous processors.

Lemma 1. With an infinite number of processors on a Fully Homogeneous platform, there is an
optimal interval-based mapping for both problems, (i) minimizing the period, and (ii) minimizing
the latency.

Proof. This can be proved easily with an exchange argument. If processor Pu is not handling a
single interval of stages, since we have an infinite number of processors, we can give each interval of
stages processed by Pu to a new processor. Both the period and the latency can only decrease, since
the new processors have less computation to perform than Pu, communications have not changed,
and the number of distinct intervals in the mapping K is still the same.

The following theorem proves that both optimal period and latency can be found in polynomial
time with an infinite number of processors.

Theorem 6. With an infinite number of processors on a Fully Homogeneous platform, finding the
general mapping which minimizes the period or the latency can be done in polynomial time.

Proof. This theorem is a direct consequence from Lemma 1 and Theorem 3. Indeed, Theorem 3
provides the best interval-based mapping, and Lemma 1 ensures that this interval-based mapping
is better than any general mapping.

Also we notice that with a fixed number of processors, still on Fully Homogeneous platforms,
Lemma 1 is not true anymore. Indeed, we can build an example in which the best latency is
obtained with a general mapping which is not interval-based. Please refer to Section 4 for such an
example.

7.2 Uniform Applications

Now, let us consider a regular application, i.e., ∀1 ≤ i ≤ n, wi = w and δi = δ, on a Communication
Homogeneous platform. In this particular case, we have a lemma similar to Lemma 1: there is
always an optimal mapping for latency which is interval-based.
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Lemma 2. For a regular application on a Communication Homogeneous platform, there is an
optimal interval-based mapping for both problems, (i) minimizing the period, and (ii) minimizing
the latency.

Proof. This can be easily proved using an exchange argument: if the optimal mapping is not
interval-based, we can keep the same computational workload to each processor, but grouped on a
single interval. The period can only decrease (we reduce potentially the amount of communications),
and K can only decrease, since we reduce the number of cuts. Thus, the latency can also only
decrease.

Building on this Lemma, we can write a dynamic programming algorithm to find the optimal
period and latency in polynomial time.

Theorem 7. For a regular application on a Communication Homogeneous platform, finding the
interval-based mapping which minimizes the period or the latency can be done in polynomial time.

Proof. We provide a dynamic programming to build an interval-based mapping which minimizes
the period or the latency. Let P (i, u) be the best period that can be achieved by mapping stages
S1 to Si onto at most u processors. Processors are renumbered by increasing speeds, thus su ≥
su−1 ≥ ... ≥ s1. Of course, if u < p, we keep only the u fastest processors. The recurrence writes
as follows:

P (i, u) = min
0≤j<i

{
max

{
P (j, u− 1), (i− j). w

su
,
δ

b

}}
with the initializations, for u ≥ 0 and i > 0:

P (0, u) =
δ

b
and P (i, 0) = +∞.

The recurrence is similar to that of Theorem 3, except the computation time is now (i − j)
times a single computation on the fastest processor, since all stages are identical.

For the period minimization problem, we compute P (n, p), as any solution uses at most p
processors. For the latency minimization problem, we need to compute min1≤K≤p(2K+1).P (n,K),
as in Theorem 3.

8 Additional Complexity of Feedback Loops

Most of previous problems are already NP-hard, except some particular cases. Some of these special
polynomial cases become NP-difficult when adding the extra complexity of feedback loops, as for
instance the period minimization problem with an infinite number of processors. Also, some of the
approximation results do not hold anymore.

Before revisiting previous complexity results, we formalize the feedback loops model and explain
how period and latency should be computed so as to take feedback loops into account.
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Figure 6: Feedback loops.

8.1 Model for Feedback Loops

There might be some dependencies between data sets for different stages, represented as feedback
loops, see Figure 6 for an example with two feedback loops. An arrow going from stage Sk′ to
stage Sk, where k′ > k, and labeled with a positive integer `k′,k, means that Sk needs the output
from Sk′ of data set i − `k′,k to compute data set i. The size of data to be transferred along this
feedback arrow is denoted as δk′,k. Such an arrow generates a loop in the application graph.

For each feedback loop, the feedback data must arrive on time so that it is possible to perform
the desired computation on the next data. A mapping will thus be valid only if there are not too
many stage intervals (or processor changes) inside a loop.

Assume that there is a loop labeled with `j,i, going from Sj to Si (with j > i). As discussed
in Section 3.3, processor a(i) is processing data set ds(k) while sending data set ds(k−1) to the next
processor in the line, which in the meantime processes data set ds(k−2) and sends data set ds(k−3),
and so on. Thus, in order to get the data set on time, we need to ensure that 2.(K(i, j) − 1 +
∆a(i) 6=a(j)) ≤ `j,i, where ∆a(i)6=a(j) = 1 if a(i) 6= a(j), and 0 otherwise.

For instance, consider the feedback loop from S3 to S1 in Figure 6. If stages S1 and S2 are
mapped onto, say, processor P1 while S3 is mapped onto P2, then K = 2, a(1) = 1 6= a(3) = 2,
and the formula states that we must have 4 ≤ `3,1. Indeed, when P1 operates on data set ds(k), P2

operates on ds(k−2) and sends data corresponding to ds(k−3) back to P1, just in time if `3,1 = 4 for
P1 to compute ds(k+1) during the next period.

Note that if the whole interval from Si to Sj is mapped onto the same processor, then K = 1
and ∆a(i) 6=a(j) = 0, hence we derive the constraint 0 ≤ `j,i, which is fine because data is available
on site for the next period.

Feedback loops not only impose constraints on the mapping. We also need to revisit the expres-
sion for the period that was given in Section 3.3.2 to account for the additional communications
induced by the feedback loops. Rather than going on formally, we just illustrate this with the
previous example: with the same mapping, the feedback loop from S3 to S1 induces an additional
input communication that must be added to the other incoming communications of P1, and an
additional output communication that must be added to the other outgoing communications of P1.

The generalization of interval-based mappings when considering feedback loops are connected-
subgraph mappings, in which each processor is assigned a connected subgraph instead of an interval.
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Thus, two stages linked with a feedback loop can be mapped on the same processor, so that the
feedback communication is done locally.

8.2 Infinite Number of Processors

Theorem 8. On Fully Homogeneous platforms with an infinite number of processors, finding the
general mapping which minimizes the period for a linear chain application graph with feedback loops
is NP-complete.

Proof. We consider the associated decision problem: given a period P , is there a mapping of
period less than P? The problem is obviously in NP: given a period and a mapping, it is easy to
check in polynomial time whether it is valid or not.

To establish the completeness, we use a reduction from 2-PARTITION [10]. We consider an
instance I1 of 2-PARTITION: given n positive integers a1, a2, . . . , an, does there exist a subset
I ⊂ {1, . . . , n} such that

∑
i∈I ai =

∑
i/∈I ai. Let S =

∑n
i=1 ai.

We build the following instance I2 of our problem: the workflow is a linear chain composed
of n + 1 stages Si with w1 = 1 and wi = ai−1 (2 ≤ i ≤ n + 1). All communications between
pipeline stages are identical: δi = 1 for 0 ≤ i ≤ n + 1. Then we add one feedback loop per stage
Si, i > 1, going back to S1. The communication costs for feedback loops are defined as δi,1 = ai−1

for 2 ≤ i ≤ n+ 1, and the labels on the loop are not constraining the period: `i,1 = 3n. Processor
speeds, bandwidths and network card capacities are identical: s = b = Bi = Bo = 1. Figure 7
illustrates this application.

δn+1 = 1...S2S1

δ1 = 1
S3

δ0 = 1
Sn+1

δn+1,1 = an

`n+1,1 = 3n

w1 = 1 w2 = a1 w3 = a2 wn+1 = an

`3,1 = 3n
δ3,1 = a2

`2,1 = 3n
δ2,1 = a1

Figure 7: Application used in the reduction for the period with an infinite number of processors
with feedback loops.

Then we ask whether it is possible to realize a period of S/2 + 1. Clearly, the size of I2 is
polynomial (and even linear) in the size of I1. We now show that instance I1 has a solution if and
only if instance I2 does.

Suppose first that I1 has a solution, I. We assign stages Si+1, i ∈ I and S1 to the same
processor, P1 and all remaining stages to distinct processors Pi+1, i /∈ I. The only source of
incoming communications for processor Pi+1 is the previous stage, thus a total of 1 ≤ S/2 + 1.
Its computation time is ai ≤ S/2 + 1, and output communication 1 + ai ≤ S/2 + 1, including the
output to next stage and output through the feedback loop. For processor P1, the total output
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communication is only 1, but its input is 1 +
∑

i/∈I ai = S/2 + 1 since it must receive the feedback
data from all stages not mapped onto the same processor. Its computation is 1+

∑
i∈I ai = S/2+1,

adding computations of all stages mapped onto P1. Thus the achieved period is S/2 + 1.
On the other hand, if I2 has a solution, let P1 be the processor on which S1 is mapped. P1 may

handle other stages; I is the set of indices of stages allocated to P1. If we consider the computation
done by P1, we must have 1 +

∑
i∈I ai−1 ≤ 1 + S/2, and thus

∑
i∈I ai−1 ≤ S/2. The incoming

communications to P1 should not exceed the period either, thus 1 +
∑

i/∈I ai−1 ≤ 1 + S/2, and∑
i/∈I ai−1 ≤ S/2. Since

∑
2≤i≤n+1 ai−1 = S, both equations can be satisfied only if

∑
i∈I ai−1 =∑

i/∈I ai−1 = S/2. Therefore we found a solution to I1.

Like period, interval mappings are not optimal for latency on infinite number of processors when
the application has feedback loops. It seems unlikely that the mapping with minimum latency
can be found in polynomial time, since this problem appears to be as difficult as the problem of
minimizing latency while mapping on a finite number of processors. We have, however, not been
able to prove that this problem is indeed NP-complete.

8.3 Approximation Results

Also, the approximation result for period on Fully Homogeneous platforms (Theorem 4) does not
hold when adding feedback loops. Here we give a counterexample that shows that interval mapping
cannot provide any constant-approximation for pipeline workflows with feedback loops.

Consider a long pipeline with n stages, where each stage i has wi = 1. The last stage has a
feedback loop back to the first stage, as shown in Figure 8. All the communication requirements
between stages (except on the feedback link) are 1. On the other hand, the feedback link has a
communication requirement of X. Given a platform with n−1 identical processors (with processor
speeds and bandwidths of 1), a non-interval mapping will map the first and the last stage on the
same processor, giving a period of 2, and all the other stages on distinct processors. Any interval
mapping that maps the first and the last stage on different processors has a period of X. Similarly,
if n > X, then the period is greater than X if all the stages are mapped on the same processor.
Therefore, interval mappings are not constant-competitive for Fully Homogeneous platforms when
the application has feedback loops.

δn = 1... SnS2S1

δn,1 = X
`n,1 = 3n

S3

wn = 1w1 = 1 w2 = 1

δ0 = 1 δ1 = 1

Figure 8: Counter example that shows that interval mappings are not constant-competitive for
period when the application contains feedback loops.

The approximation result for latency on Communication Homogeneous platforms still holds for
applications with feedback loops using the same proof given in Theorem 5 in Section 6.
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9 Conclusion

This work presents complexity results for mapping linear workflows with computation/communication
overlap, under the bounded multiport model. We provide a formal definition of period and latency
optimization problems for such linear workflows and prove several major results; in particular
the NP-completeness of the period minimization problem even on Fully Homogeneous platforms.
Latency becomes NP-complete as soon as platforms are Communication Homogeneous, and the
complexity remains open for Fully Homogeneous platforms. We provide a 2-approximation algo-
rithm for the period on Fully Homogeneous platforms and a 1.5-approximation algorithm for the
latency on Communication Homogeneous platforms. For some special mapping rules (restricting
to interval-based mappings) and special cases (infinite number of identical processors, regular ap-
plications), we succeed in deriving polynomial algorithms for Fully Homogeneous platforms. Also,
we introduce the concept of feedback loops to provide control to linear workflows. Such feedbacks
add a level of complexity to most previous problems, since some special cases become NP-complete,
and approximation results for the period do not hold anymore.

We believe that this exhaustive study of complexity results provides a solid theoretical founda-
tion for the study of linear workflow mappings, with or without feedback loops, under the bounded
multiport model with overlap. As future work, we plan to design some efficient polynomial-time
heuristics to solve the many combinatorial instances of the problem, and to assess their perfor-
mance through extensive simulations. This can become challenging in the presence of feedback
loops. Finally, it would be interesting to study workflows in a different context (like web-service
applications [22]) where each stage Si has a selectivity σi parameter which is the ratio between its
input and output data δi−1/δi. In these problems, the application dag is not fixed, and the aim is
to generate the dag and schedule it so as to decrease the period and/or latency. There may be some
constraints on what types of dags are permissible. For instance, given two stages S1 and S2 with
selectivities σ1 < σ2, on a homogeneous platform, it is better to create a dag where S1 precedes S2

to minimize the period. We plan to generalize our results for these kinds of applications.
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