Georges-Andr Silber

Georges-Andr Nestor

Silber

A programmer's guide for Nestor Version 1

Keywords: Library, program transformations, HPF, parallelization, object oriented Biblioth que, transformation de programmes, HPF, parall lisation, orient objet virtual NstShape Returns NULL 11, 12, 15 method instruction, 5 9 13, 54, 55 method isNstBoolean, 86, 93 method isNstComplex, 86, 94, 95 method isNstComputationUnit, 11, 14, 19 71, 72, 74 method isNstSimpleNullify, 71, 72, 77 method isNstSimpleRealign, 71, 72, 78 method isNstSimpleRedistribute, 71, 72, 79 method isNstSimpleReturn, 71, 72, 75, 76 method isNstSimple, 1 1, 1 3 57, 69 method isNstStatementIf, 56, 60, 61 method isNstStatementLoop, 56, 57, 63, 64 method isNstStatementNestor, 56, 57, 64 method isNstStatementRegion, 56, 57, 62, 63 method isNstStatementRepeat, 5 6, 5 7

This is a programmer's guide for Nestor, a library to easily manipulate Fortran programs through a high level internal representation based on C++ classes. Nestor is a research tool that can be used to quickly implement source to source transformations. The input of the library is Fortran 77, Fortran 90, and HPF 2.0. Its current output supports the same languages plus some dialects such a s P etit, OpenMP, C r a yMP. Nestor is light, ready to use (http://www.ens-lyon.fr/~gsilber/nestor), fully documented and is well suited for Fortran to Fortran transformations.

Nestor can be used by researchers interested by parallelizing compilers, performance analysis tools or more generally by source code optimizers. There are a lot of libraries transforming source code into an intermediate representation (SUIF 4], PIPS 3]), but this intermediate representation is sometimes at a too low l e v el (di cult to handle) or represents a subset of language. For example, SUIF does not analyze Fortran, but uses f2c, a public domain program, to transform Fortran source code into C source code and then analyzes it. Our library suppresses these two defaults. By using the front-end of an excellent HPF compiler from the public domain, Adaptor (written by T. Brandes 2]), we h a ve built a system that gives an intermediate representation of an HPF 2.0 source code under the form of a hierarchical collection of C++ objects. Under this form, the code can be analyzed, transformed and unparsed in HPF 2.0 very easily.

The global structure of Nestor is presented by t h e Fig. 1. Nestor is splitted into three di erent libraries (node, base, and graph) that are dependent (base needs node and graph needs base) and that provide di erent functionalities. This organization is exible and allows to use only the needed parts of Nestor. For instance, it is possible to build a syntax checker for HPF codes only by using the node library. If a user is not concerned by program dependences, it does not have to link the graph library. This design approach permits to add functionalities to Nestor in an incremental way without rewriting all the underlying bricks. In the following, we present in details the di erent libraries of Nestor.

FORTRAN (HPF)

Petit

BASE GRAPH

FORTRAN (HPF)

NODE

The node library

This library is a modi ed version of the front-end of Adaptor that recognizes HPF 2.0. This allows Nestor to handle real codes, instead of only considering a subset of language or an ad-hoc language. Furthermore, this approach has the advantage of keeping the semant i c o f a h i g h l e v el language, instead of translating Fortran to low l e v el C.

The front-end has been extended to handle new directives which a l l o w the user to control the parallelization of its code. For instance, there is a new directive SINGLE that can be placed in front of a loop nest that signi es to Nestor that it must treat this loop nest. Other directives allow t o de ne area of code that have to be analyzed. These directives drive the transformations that are done on a source code: completely or semi-automatically.

The parsing phase builds an abstract syntax tree in memory. The node library o ers C functions (not documented here) to access and travel around the tree. These functions are used by the base library to build a hierarchical collection of C++ objects representing the source code. They are written in a way such that replacing the parser is an easy task and o er an easy interface for other languages.

For supporting semi-automatic parallelization, it is useful to de ne parts of code that have t o b e parallelized and others that are not to be taken into account. The base library o ers a mechanism, by the use of new directives, that permits to ignore parts of code that are known to be sequential and to emphase parts that must be parallelized. These directives have the same structure than the HPF directives except that they begin with the keyword cNESTOR$.

The rst directive (SINGLE) has to be placed in front o f a DO or a FORALL statement:

!NESTOR$ SINGLE do i = 1,N a(i) = c(i-1) + b(i+1) enddo
This directive set the ag nestor_ ag to 1 in the object NstStatementDo or NstStatementForall during the parsing.

The second directive (BEGIN-END) de nes a region used to enclose a part of code:

!NESTOR$ BEGIN if (a(1) .eq. 0) then do i = 1,N a(i) = c(i-1) + b(i+1) enddo endif !NESTOR$ END
This creates a new object NstStatementNestor enclosing the statements inside.

The third directive (ALL) has to be placed in a subroutine, a function or a program between the declarations and the statements: The mask GlobalModeMask passed to the constructor of the class NstComputationUnit has the same e ect.

The base library

The base library of Nestor contains the de nition of all the classes representing the di erents syntactic elements of HPF 2.0, Fortran 90 and Fortran 77. The main purpose of this library is to provide the user an easy framework and programming tool to write source-to-source transformations of Fortran codes. Classes de ned in the base library permit to create new object, i.e. new syntactic elements and then, to create a new source code from scratch. Secondly, a special class (NstCompu-tationUnit) i s u s e d a s a n i n terface with the node library, creating a set of objects representing the parsed source code.

A source code transformed by the base library into C++ objects can be seen as a syntactic tree where each node is an object with methods and attributes representing the syntactic element. These objects can be easily modi ed, replaced, moved at another place of the hierarchical structure. For instance, a list of statements is represented by a class derived from the standard C++ class list where it is easy to reorganize the order of the statements. Each object representing a syntactic element has its own constructor that allows the programmer to add new objects and then new statements, variables, procedures in the source code. Each object has its own output function, a rede nition of the C++ operator , permiting an easy unparse of every object or of the whole code. This output function can be con gured, allowing to unparse in di erent languages (now, only HPF and Petit language are supported).

Suppose we w ant to create a program from scratch, i.e. creating a hierarchical structure of objects represent i n g a s o u r c e c o d e . F or instance, suppose we w ant to create the structure corresponding to the following code:

PROGRAM simple integer n parameter (n = 100) integer a(1:n) integer b(1:n) integer c(1:n) integer i do i = 2,n a(i) = b(i) c(i) = a(i-1) enddo end
There are two w ays of creating such a structure. First, if this source code is in a le named 'simple_code.f', it is easy to write a program using the base library and the node library to parse the le and create the structure. Here is the C++ code: This code can be found in the nestor directory under the directory src/doc and is called gene_code.cc. Try compiling this example by t yping make bin/gene_code and try to execute it. Now, we h a ve s e e n h o w to get a structure representing a source code. Now, we will see how to modify this structure to transform source code. Suppose we w ant to transform the previous code by distributing the do loop, i.e. we w ant to obtain: The next example is recursive traversal of an AST that prints the type of each object encountered. The method class_type() is de ned for each class and returns a string containing the ty p e o f t h e class. This example illustrates the use of the init() and next() methods. These methods are de ned for each class, even for classes representing lists. Consequently, they can be used to traverse a list instead of using an object iterator. This class permits to manipulate identi ers used to represent v ariables and various other names that resides in a piece of code. This class o ers a reliable mechanism to create unique identi ers.

PROGRAM simple integer n parameter (n = 100) integer a(1:n) integer b(1:n) integer c(1:n) integer i !HPF$ INDEPENDENT do i = 2,n a(i) = b(i) enddo !HPF$ INDEPENDENT do i = 2,n c(i) = a(i-

NstIdenti er()

Creates a new instance of this class containing an unique identi er of the form nst_d where d is choosen to ensure that the identi er is unique (no other identi er with the same name has been created by a constructor of the class NstIdenti er before this call).

NstIdenti er(const string& s)

Creates a new instance of this class containing s.

NstIdenti er(const char* s)

Creates a new instance of this class containing s. const string& id_string() const Returns the string contained in the object.

string id_string(const string& s) Replaces the current string by s and returns the old one.

string id_string(const char* s) Replaces the current string by s and returns the old one.

int is_empty()const

Returns 1 if the identi er is empty, 0 elsewhere. friend int operator==() Checks the equality b e t ween two identi ers or strings (case insensitive).

Here is an example of the use of this class: Another example to illustrate the method id_string(): % cat test_identifier2.cc # include <libnstbase.H> void main() { NstIdentifier i1("hello") NstIdentifier i2 = i1 string str str = i1.id_string("world.") cout << str << ", " << i1.id_string() << endl (void)i2.id_string("") cout << "i2 is " << (i2.is_empty()?"empty":"not empty") << endl } % test_identifier2 hello, world. i2 is empty Finally, an example to illustrate the use of the operator =: % cat test_identifier3.cc # include <libnstbase.H> void main() { NstIdentifier i1("hello") NstIdentifier i2("hillo") string str("hullo") cout << "i1 and i2 are " << (i1 == i2?"equal":"not equal") << endl cout << "i1 and hello are " << (i1 == "hello"?"equal":"not equal") << endl cout << "i2 and str are " << (i2 == str?"equal":"not equal") << endl } % test_identifier3 i1 and i2 are not equal i1 and hello are equal i2 and str are not equal

NstUnitList units NstSymbolTable intrinsics NstSymbolTable externals

This class is used to parse a le containing source code and to transform it into a hierarchical bunch of objects. An empty instance of the NstComputationUnit can also be created. The language supported is HPF 2.0. Here is an example of a simple program that parses a le named toto.f, and after the creation of the objects corresponding to the syntactical elements of the code, unparses it to the standard output:

NstComputationUnit program("toto.f") cout << program
Note that any source code transformation can be inserted between these two lines of code. These two lines of code are a simple syntactical and semantical analyzer.

There is a global variable unparse_stab which, when set to 1, a ects the unparsing of the units: the symbol table is unparsed as a comment before the declarations in Fortran mode. that can be combined with the operator |. By default, the le is parsed with the Fortran 77 format. This constructor uses the library node to check the correctness of the code and to build a syntactic tree. From this syntactic tree, all the objects corresponding to the syntactical elements of the code are created, starting from the list of the units (functions, subroutines) contained in the source code.

NstUnitList units

The list of the units of the source code.

NstSymbolTable intrinsics

The list of the intrinsics de ned by t h e node library. This list is empty if the object has been created from scratch.

NstSymbolTable externals

The list of the externals found in the source code.

Here is an example that gives the number of units in the source code and their names: An unit is a program, a function, a subroutine, a module or a block data. An unit contains declarations, internals (Fortran 90) and statements (depending on the type of unit!). The class NstUnit is the base class for unit classes. It contains informations common to all types of unit.

% cat test_compunit.cc # include
The two methods attach_to_list() and remove_from_list() are important in this class. They permit to attach or remove an object from a list (the list returned by the method in_list()). An unit can be in di erent lists, but can be attached to only one list.

int line

Stores the line number in the source code where the unit begin (assigned at parse time).

NstIdenti er* name() const

Returns the name of the unit. This name is not stored in this object but in the NstObjectBaseProcedure object associated with it. Returns the object associated with the unit. This object stores the symbol table and the name of the unit.

NstUnitList* in_list() const

This method returns a pointer to the list the unit is attached to. This method returns NULL if the unit is not attached to a list. See the method below for attaching an unit to a list. All the NstUnit objects created by t h e NstComputationUnit class are attached to their list, but a newly created object is not attached to a list. void attach_to_list(NstUnitList& ul)

Attaches the unit to the list ul. This method will return an error if the unit is already in a list. Note that this method does not put the unit into the list, it just tells to the unit that it is in the list, so be careful! Example: NstComputationUnit cunit NstUnitProgram prog("toto") NstUnitList dummy cunit.units.push_back(&prog) dummy.push_back(&prog) cout << prog.in_list() // Return NULL prog.attach_to_list(cunit.units) cout << prog.in_list() // Return &cunit.units void remove_from_list() Removes an unit from a list. Note that this method does not remove actually the unit from the list it is in, it just tells to the unit that it is not in the list anymore, so be careful! Example: This class represents a list of units (an unit is a function, a program, a subroutine, a module, etc...). The class list is the doubly linked list of the Standard Template Library (STL).

NstTree* isNstList() Returns this.

int type() const

Returns the type NST_UNIT_LIST.

NstUnitList()

Creates a new instance of this class, an empty l i s t .

NstUnit* search(NstIdenti er& id) const Searchs in the list the unit with the name id. Returns NULL if the unit is not found.

NstUnit* rsearch(NstIdenti er& id) const Searchs recursively in the list the unit with the name id. Returns NULL if the unit is not found.

NstUnit* search(const char* id) const Searchs in the list the unit with the name id. Returns NULL if the unit is not found.

NstComputationUnit* in_computation_unit() const

Returns the NstComputationUnit object if the list is an attribute of it. Returns NULL elsewhere.

NstUnit* in_unit() const Returns the NstUnit object the list is in. Returns NULL if the list is not in an unit.

void copy(const NstUnitList& s)

Copies all units of the list s into this list. Each unit of the list s is attached to the current list: the units of s must not be attached to any list.

NstIdenti er* name() const

Returns the name of the entity declared. The identi er is not stored in the object but in the NstObject associated with the declaration. This identi er can be null if the declaration has no name.

NstObject* object() const Return the NstObject object associated with the declaration. This method can return NULL if there is no object created with this kind of declaration. For instance, this eld will return NULL in the case of a NstDeclarationImplicit. int line Creates a new instance of this class. Declares a new variable of type t with identi er i into the unit bm. This object is added to the list of declarations of the unit bm. A new NstObjectVariable object is created and stored in the symbol table of the unit bm. If there is already an entity declared in the unit bm with the identi er i, an error is generated.

NstType* declaration_type() const Returns the type of the variable declared.

NstType* declaration_type(NstType& new_type) Replaces the type of the variable declared by new_type and returns the old one.

NstObjectVariable* object() const

Returns the NstObjectVariable object associated to the variable. This is a cast of the object returned by the method object() of the class NstDeclaration.

NstDeclarationImplicit(NstUnit& bm)

Creates a new instance of this class. Creates an IMPLICIT NONE declaration into the unit bm.

The method NstObject* object() will return NULL because no de nition is associated with this declaration.

NstType* implicit_type() const

Returns the type of the implicit declaration.

NstType* implicit_type(NstType& new_type)

Replaces the type of the implicit by new_type and returns the old one.

char rst_letter

The rst letter of the range de ned in the implicit declaration.

char last_letter

The last letter of the range de ned in the implicit declaration. The variables that have their rst letter between rst_letter and last_letter will have the implicit type de ned.

This example creates an implicit none declaration in an unit:

%

NstParameterList formats

The list of formats.

int label

The label associated with the format that can be used in an IO operation. Creates a new instance of this class. Declares a new variable of type t with identi er i into the unit bm. This object is added to the list of declarations of the unit bm and the identi er is added to the list of the formal parameters of the unit. The unit must be a NstUnitFunction object or a NstUnitSubroutine object. A new NstObjectVariable object is created and stored in the symbol table of the unit bm. If there is already an entity declared in the unit bm with the identi er i, an error is generated.

NstObjectVariable* object() const

Returns the NstObjectVariable object associated to the variable. This is a cast of the object returned by the method object() of the class NstDeclaration.

This Creates a new instance of this class. Declares a new topology with identi er i into the unit bm. This object is added to the list of declarations of the unit bm. A new NstObjectTopology object is created and stored in the symbol table of the unit bm. If there is already an entity declared in the unit bm with the identi er i, an error is generated.

NstShapeList dimensions

Stores the shape of the topology.

NstObjectTopology* object() const

Returns the NstObjectTopology object associated with the declaration. This is a cast of the object returned by the method object() of the class NstDeclaration. Replaces the speci cation of the distribution by new_distribution and returns the old one.

NstProcessor* target() const

Returns the target of the distribution. NstTypeBoolean* isNstTypeBoolean() Returns this object.

NstTypeBoolean()

Creates a new instance of this class, a type with the default size (sizeof (int)).

NstTypeBoolean(NstExpression& t_size)

Creates a new instance of this class, a type with size t_size. NstTypeString* isNstTypeString() Returns this object.

NstTypeString()

Creates a new instance of this class, a type with the default size (-1).

NstTypeString(NstExpression& t_size)

Creates a new instance of this class, a type with size t_size. Replaces the type of the array b y new_type and returns the old one.

NstShapeList shapes

Stores the shape of the array.

This is an example of the declaration of a two-dimensional array in a subroutine: NstTypePointer* isNstTypePointer() Returns this object.

NstTypePointer(NstType& a_type)

Creates a new instance of this class, a pointer of type a_type.

NstType* pointer_type() const

Returns the type of the pointer.

NstType* pointer_type(NstType& new_type)

Replaces the type of the pointer by new_type and returns the old one.

NstShape()

Creates an instance of this class with the type NST_SHAPE_DEFERRED.

NstShape(int tp, NstExpression& l)

Creates an instance of this class with the lower bound l with the type tp that can take the values NST_SHAPE_ASSUMED_SHAPE or NST_SHAPE_ASSUMED_SIZE.

NstShape(NstExpression& u)

Creates an instance of this class with the type NST_SHAPE_EXPLICIT. The lower bound is 1 and the upper bound is u.

NstShape(int u)

Creates an instance of this class with the type NST_SHAPE_EXPLICIT. The lower bound is 1 and the upper bound is u.

NstShape(NstExpression& l, NstExpression& u)

Creates an instance of this class with the type NST_SHAPE_EXPLICIT. The lower bound is l and the upper bound is u.

NstShape(int l, int u)

Creates an instance of this class with the type NST_SHAPE_EXPLICIT. The lower bound is l and the upper bound is u.

NstExpression* lower() const

Returns the lower bound expression.

NstExpression* lower(NstExpression& new_lower)

Replaces the lower bound expression with new_lower and returns the old one. This method searchs recursively the variable inside the expression. Comparison is done between the value of the objects that are inside a variable. It returns 0 if the variable is not inside or 1 elsewhere. Creates a new instance of this class, a binary expression with the left part l and the right p a r t r. The operator op can take the following values: Unparses a statement on a stream in the Petit language. The declarations needed are added to the beginning of the le. Note that the Petit language is a subset of Fortran. All the statements cannot be unparsed in Petit mode. This function returns 1 if the code cannot be unparsed. In this case, a warning is written on error stream to tell where the problem resides. Note that the unparse mode is not modi ed by this function. statement is unparsed in Fortran on the stream fortran (this pass is needed to get all the declarations), and in Petit on the stream petit. const string& nst_temp_dir() This function ensures that a character will be read. Returns an error if there are no character left in the input stream is. It returns the character read. 100 103 attribute NstParameterFormat, 1 1 1 attribute NstParameterList, 1 1 1 attribute NstParameterNamed, 1 1 1 attribute NstParameterNone, 1 1 1 attribute NstParameterValue, 1 1 1 attribute NstParameterVariable, 1 attribute NstParameter, 81 85 attribute NstProcessor, 1 1 0 attribute NstReal, 1 1 1 attribute NstShapeList, 1 0 9 attribute NstShape, 49, 109 attribute NstSimpleAllocate, 1 1 0 attribute NstSimpleAssign, 1 1 0 attribute NstSimpleCall, 1 1 0 attribute NstSimpleExit, 1 1 0 attribute NstSimpleGoto, 1 1 0 attribute NstSimpleIO, 1 1 0 attribute NstSimpleNullify, 1 1 0 attribute NstSimpleRealign, 1 1 0 attribute NstSimpleRedistribute, 1 1 0 attribute NstSimpleReturn, 1 1 0 attribute NstSimple, 7 2 7 9 attribute NstStatementBasic, 1 1 0 attribute NstStatementContinue, 0 attribute NstStatementDo, 1 1 0 attribute NstStatementForall, 1 1 0 attribute

 The main class . class NstTree . 3.2 Ident i e r s . class NstIdenti er . 3.3 Unit of computation: parsing a source code . class NstComputationUnit . 3.4 Units: functions, subroutines, etc. class NstUnit . class NstUnitModule . class NstUnitBlockData . class NstUnitProgram . class NstUnitSubroutine . class NstUnitFunction . class NstUnitList . 3.5 D e c l a r a t i o n s .

Figure 1 :

 1 Figure 1: Global organization of Nestor.

%

 cat exe.f PROGRAM tot integer NBLOCK, IBLOCK, ILOC integer PPTR(1:100),IBLEN(1:100) real XPLUS(1:100), XDPLUS(1:100) real X(1:100), XD(1:100), XDD(1:100) real DELTAT !NESTOR$ ALL do IBLOCK = 1, NBLOCK ILOC = PPTR(IBLOCK) do I = 1, IBLEN(IBLOCK) XDPLUS(ILOC+I-1) = XD(ILOC+I-1) + .1*DELTAT * XDD(ILOC+I-1) XPLUS(ILOC+I-1) = X(ILOC+I-1) + DELTAT * XDPLUS(ILOC+I-1) enddo enddo end % nstprs exe.f program TOT integer*4 NBLOCK integer*4 IBLOCK integer*4 ILOC integer*4 PPTR (1:100) integer*4 IBLEN (1:100) real*4 XPLUS (1:100) real*4 XDPLUS (1:100) real*4 X (1:100) real*4 XD (1:100) real*4 XDD (1:100) real*4 DELTAT !NESTOR$ BEGIN do IBLOCK = 1,NBLOCK ILOC = PPTR(IBLOCK) do I = 1,IBLEN(IBLOCK) XDPLUS(ILOC+I-1) = XD(ILOC+I-1)+.1*DELTAT*XDD(ILOC+I-1) XPLUS(ILOC+I-1) = X(ILOC+I-1)+DELTAT*XDPLUS(ILOC+I-1) end do end do !NESTOR$ END end program TOT

 void print_type(NstTree* t) { cout << t->class_type() << endl NstTree* current = t->init() while (current) { print_type(current) current = t->next() } } 3.2 Identi ers class NstIdenti er : public NstTree int type() const NstIdenti er* isNstIdenti er() NstIdenti er() NstIdenti er(const string& s) NstIdenti er(const char* s) const string& id_string() const string id_string(const string& s) string id_string(const char* s) int is_empty()const friend int operator==(const NstIdenti er& a, const NstIdenti er& b) friend int operator==(const NstIdenti er& a, const char* b) friend int operator==(const char* a, const NstIdenti er& b) friend int operator==(const NstIdenti er& a, const string& b) friend int operator==(const string& a, const NstIdenti er& b)

 int type() constReturns the type NST_IDENTIFIER.NstIdenti er* isNstIdenti er() Returns this.

3. 3

 3 Unit of computation: parsing a source code class NstComputationUnit : public NstTree int type() const NstComputationUnit* isNstComputationUnit() NstComputationUnit() NstComputationUnit(const char* le_name, unsigned long options = NoOptionsMask)

 empty instance (object) of this class. NstComputationUnit(const char* le_name, unsigned long options = NoOptionsMask) Creates a new instance of this class. Parses the le le_name according to options, an optional argument that can be set with the ags: NoOptionsMask No options DebugUnparse Unparse by the node library FreeCodeMask Parse free format code (Fortran 90) GlobalModeMask Tag all the DO and FORALL loops (see 2) VerboseMask Verbose mode

const

 NstDeclarationList& declarations() const Returns the list of the declarations of the unit. For declaring a new variable into an unit, see the class NstDeclaration. const NstSymbolTable& table_of_symbols() const Returns the table of symbols of the unit. const NstUnitList& internals() const Returns the list of the internals (functions or subroutines) of the unit. For declaring a new internal, see the classes NstUnitSubroutine and NstUnitFunction. NstObjectBaseProcedure* object() const

 class NstDeclarationVarParam : public NstDeclaration int type() const NstDeclarationFormat* isNstDeclarationFormat() NstDeclarationVarParam(NstUnit& bm, NstIdenti er& i, NstType& t) NstObjectVariable* object() const This class permits the declaration of a formal parameter of a function or subroutine. int type() const Returns the type NST_DECLARATION_VAR_PARAM. NstDeclarationVarParam* isNstDeclarationVarParam() Returns this.NstDeclarationVarParam(NstUnit& bm, NstIdenti er& i, NstType& t)

 class NstDeclarationDistribute : p u b l i c NstDeclaration int type() const NstDeclarationDistribute* isNstDeclarationDistribute() NstDeclarationDistribute(NstUnit& u, NstObject& o, NstDistSpec& d, NstProcessor& p) NstDistSpec* distribution() const NstDistSpec* distribution(NstDistSpec& new_distribution) NstProcessor* target() const NstProcessor* target(NstProcessor& new_target) This class describes the HPF speci cation of a distribution (DISTRIBUTE). int type() const Returns the type NST_DECLARATION_DISTRIBUTE. NstDeclarationDistribute* isNstDeclarationDistribute() Returns this. NstDeclarationDistribute(NstUnit& u, NstObject& o, NstDistSpec& d, NstProcessor& p) Creates a new instance of this class. This object is inserted into the list of declarations of the unit u and into the object o, that must represent a v ariable or a template. The distribution is speci ed by d and the target by p. NstDistSpec* distribution() const Returns the speci cation of the distribution. NstDistSpec* distribution(NstDistSpec& new_distribution)

 t_size) This class describes the type CHARACTER. int type() const Returns the type NST_TYPE_STRING.

3. 7

 7 Shapes: arrays, templates, etc. class NstShape : public NstTree int type() const NstShape* isNstShape() NstShape() NstShape(int tp, NstExpression& l) NstShape(NstExpression& u) NstShape(int u) NstShape(NstExpression& l, NstExpression& u) NstShape(int l, int u) NstExpression* lower() const NstExpression* lower(NstExpression& new_lower) NstExpression* upper() const NstExpression* upper(NstExpression& new_upper) void copy(const NstShape& s, int deep = 0) NstShape* clone(int deep = 0) const This class represents shapes of arrays, templates, etc... int type() const Returns one of the following types:

 class NstShapeList : public list<NstShape*>, public NstTree int type() const NstTree* isNstList() NstShapeList() void copy(const NstShapeList& e, int deep = 0) NstShapeList* clone(int deep = 0) const This class represents a list of shapes. int type() const Returns the type NST_SHAPE_LIST. NstTree* isNstList() Returns this. NstShapeList() Creates a new instance of this class, an empty l i s t . void copy(const NstShapeList& e, int deep = 0) Copies the object s into this object, recursively or not according to deep. NstShapeList* clone(int deep = 0) const Returns a clone of this object, recursive or not according to deep.

3. 8

 8 Distributions, alignments class NstDistSpec : public NstTree int type() const NstDistSpec* isNstDistSpec() NstDistSpec(int dstp, bool id = FALSE) NstDistFormatList mapping bool is_descriptive This class describes the speci cation of an HPF distribution. NstDistSpec* isNstDistSpec() Returns this. int type() const Returns one of the following types: dstp, bool id = FALSE) Creates a new instance of this class. dstp can take the values above a n d id tells if the distribution is descriptive o r n o t . NstDistFormatList mapping Stores the description of the distribution. bool is_descriptive Tells if the distribution is descriptive or prescriptive. class NstDistSpecList : public list<NstDistSpec*>, public NstTree NstTree* isNstList() int type() const NstDistSpecList() void copy(const NstDistSpecList& e, int deep = 0) NstDistSpecList* clone(int deep = 0) const This class represents a list of distribution speci cations. NstTree* isNstList() Returns this. int type() const Returns the type NST_DIST_SPEC_LIST. NstDistSpecList() Creates a new instance of this class, an empty l i s t . void copy(const NstDistSpecList& e, int deep = 0) Copies the object s into this object, recursively or not according to deep. NstDistSpecList* clone(int deep = 0) const Returns a clone of this object, recursive or not according to deep. class NstDistFormat : public NstTree NstDistFormat* isNstDistFormat() int type() const NstDistFormat(int dt) NstDistFormat(int dt, NstVariable& var) NstDistFormat(int dt, NstExpression& exp) NstExpression* size() const NstExpression* size(NstExpression& new_expression) NstVariable* array() const NstVariable* array(NstVariable& new_array) This class describes the speci cation of an HPF distribution format. instance of this class with the type dt that can take the following values: dt, NstVariable& var) Creates a new instance of this class with the type dt that can take the following values: NST_DIST_FORMAT_GEN_BLOCK GEN_BLOCK(var) NST_DIST_FORMAT_INDIRECT INDIRECT(var) and where var is the indirection array. NstDistFormat(int dt, NstExpression& exp) Creates a new instance of this class with the type dt that can take the following values: NST_DIST_FORMAT_BLOCK BLOCK, BLOCK(exp) NST_DIST_FORMAT_CYCLIC CYCLIC, CYCLIC(exp) and where exp is the size of the block. NstExpression* size() const Returns the size of the block. NstExpression* size(NstExpression& new_expression) Replaces the size of the block b y new_expression and returns the old one. NstVariable* array() const Returns the indirection array. NstVariable* array(NstVariable& new_array) Replaces the indirection array b y new_array and returns the old one. class NstDistFormatList : public list<NstDistFormat*>, public NstTree NstTree* isNstList() int type() const NstDistFormatList() void copy(const NstDistFormatList& e, int deep = 0) NstDistFormatList* clone(int deep = 0) const This class represents a list of distribution formats. NstTree* isNstList() Returns this. int type() const Returns the type NST_DIST_FORMAT_LIST. NstDistFormatList() Creates a new instance of this class, an empty l i s t . void copy(const NstDistFormatList& e, int deep = 0) Copies the object s into this object, recursively or not according to deep. NstDistFormatList* clone(int deep = 0) const Returns a clone of this object, recursive or not according to deep. class NstProcessor : public NstTree int type() const NstProcessor(int ptp = NST_PROCESSOR_DEFAULT_ARRAY) NstProcessor(NstObjectTopology& o) NstObjectTopology* top_name() const NstObjectTopology* top_name(NstObjectTopology& new_object) NstExpressionList subscripts This class describes target processor for distribution or realignment. int type() const Returns one of the following types: ptp = NST_PROCESSOR_DEFAULT_ARRAY) Creates an instance of this class with ptp that can take the following values: NST_PROCESSOR_DEFAULT_ARRAY NST_PROCESSOR_ANY_ARRAY NstProcessor(NstObjectTopology& o) Creates an instance of this class of type NST_PROCESSOR_ARRAY, o being the topology. NstObjectTopology* top_name() const Returns the topology. NstObjectTopology* top_name(NstObjectTopology& new_object) Replaces the topology by new_object and returns the old one. NstExpressionList subscripts This list de nes a subset of the topology and is only pertinent if the object has the type: NST_PROCESSOR_ARRAY class NstAlignSpec : public NstTree int type() const NstAlignSpec* isNstAlignSpec() NstAlignSpec(NstObject& o) NstObject* top_name() const NstObject* top_name(NstObject& new_object) NstExpressionList subscripts bool is_descriptive This class describes the speci cation of an alignment. NstAlignSpec* isNstAlignSpec() Returns this. int type() const Returns the type NST_ALIGN_SPEC. NstAlignSpec(NstObject& o) Creates a new instance of this class with the target alignment object o (an array or a template). NstObject* top_name() const Returns the object specifying the alignment. NstObject* top_name(NstObject& new_object) Replaces the object by new_object and returns the old one. NstExpressionList subscripts Speci es the alignment. bool is_descriptive Tells if the alignment is descriptive or prescriptive.

 void copy(const NstExpression& e, int deep = 0) Copies the object s into this object, recursively or not according to deep. virtual NstExpression* clone(int deep = 0) const Returns a clone of this object, recursive or not according to deep. class NstExpressionBinary : public NstExpression int type() const NstExpressionBinary* isNstExpressionBinary() NstExpressionBinary(int op, NstExpression& l, NstExpression& r) int operator_type() const NstExpression* left() const NstExpression* left(NstExpression& new_e) NstExpression* right() const NstExpression* right(NstExpression& new_e) void copy(const NstExpressionBinary& e, int deep = 0) NstExpression* clone(int deep = 0) const friend NstExpressionBinary& operator+(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator-(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator*(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator/(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator^(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator<(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator>(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator>=(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator<=(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator&&(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operatork(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator==(NstExpression& l, NstExpression& r) friend NstExpressionBinary& operator6 =(NstExpression& l, NstExpression& r) This class represents binary expressions, like a + b . int type() const Returns the type NST_EXPRESSION_BINARY. NstExpressionBinary* isNstExpressionBinary() Returns this object.NstExpressionBinary(int op, NstExpression& l, NstExpression& r)

 string nst_stream_to_ le(istream& from)This function reads the input stream from until EOF and put its content i n to a temporary le. It returns the name of the temporary le.

 NstDeclarationTemplate . class NstDeclarationProcessors . class NstDeclarationDistribute . class NstDeclarationAlign . class NstDeclarationDynamic . class NstDeclarationParameter . class NstDeclarationExternal . class NstDeclarationIntrinsic . class NstDeclarationList .3.6 Types . NstTypeBoolean . class NstTypeString . class NstTypeArray . class NstTypePointer . 3.7 Shapes: arrays, templates, etc. class NstShape . class NstShapeList . 3.8 Distributions, alignment s . class NstDistSpec . class NstDistSpecList . class NstDistFormat . class NstDistFormatList . class NstProcessor . class NstAlignSpec . 3.9 Statements and instructions . class NstStatement . class NstStatementContinue . class NstStatementBasic . NstSimpleRedistribute . 3.10 Parameters . class NstParameter . class NstParameterVariable . class NstParameterValue . class NstParameterNamed . class NstParameterNone . class NstParameterFormat . class class NstParameterList . 3.11 Expressions . NstInteger . class NstReal . class NstBoolean . class NstString . class NstComplex . class NstExpressionList . 3.12 Va r i a b l e s . class NstVariable . class NstVariableDummy . class NstVariableLoop . class NstVariableUsed . class NstVariableIndexed . class NstVariableList . 3.13 Symbol table, de nitions . 100 class NstObject . 0 class NstObjectBaseProcedure . 0 class NstObjectVariable . 1 class NstObjectTemplate . 2 class parallelization consists in transforming automatically a sequential program to a parallel program, for instance Fortran 77 or Fortran 90 to High Performance Fortran (HPF). The goal of Nestor is to provide a programming environment to build systems that transform programs. Furthermore, Nestor already integrates a set of algorithms that detect parallelism into loop nests and automatically transform sequential Fortran into HPF. Nestor is our development tool for the implementation of our theoretical results and is integrated as a parallelizing tool into TransTool 1].

. . . class NstDeclaration . class NstDeclarationVariable . class NstDeclarationImplicit . class NstDeclarationFormat . class NstDeclarationVarParam . class class NstType . class NstTypeDummy . class NstTypeBase . class NstTypeInteger . class NstTypeReal . class NstTypeComplex . class class NstStatementIf . class NstStatementWhere . class NstStatementRegion . class NstStatementLoop . class NstStatementNestor . class NstStatementWhile . class NstStatementDo . class NstStatementForall . class NstStatementList . class NstSimple . class NstSimpleAssign . class NstSimpleCall . class NstSimpleIO . class NstSimpleGoto . class NstSimpleReturn . class NstSimpleExit . class NstSimpleNullify . class NstSimpleAllocate . class NstSimpleRealign . class class NstExpression . class NstExpressionBinary . class NstExpressionUnary . class NstExpressionDummy . class NstExpressionCall . class NstExpressionSlice . class NstObjectTopology . 2 class NstSymbolTable . 3 class NstVarDesc . 3 class NstVarDescDummy . 4 class NstVarDescParameter . 4 class NstVarDescLocal . 5 3.14 Miscellaneous functions . 6 3.14.1 IO functions . 6 1 Introduction Automatic

 Creates a new instance of this class, a module named id. A new NstObjectBaseProcedure object is created and associated to it.Corresponds to a block data program unit. The use of modules should makes the use of block data program units unnecessary.Creates a new instance of this class, a block data named id. A new NstObjectBaseProcedure object is created and associated to it.Creates a new instance of this class, a program named id. A new NstObjectBaseProcedure object is created and associated to it.Creates a new instance of this class, a subroutine named id. A new NstObjectBaseProcedure object is created and associated to it.NstUnitSubroutine(NstIdenti er& id, NstUnit& obp)Creates a new instance of this class, a subroutine named id. A new NstObjectBaseProcedure object is created and associated to it. The subroutine is added to the internals of the unit obp and declared in its symbol table.This attribute contains the list of statements of the subroutine. The list representation allows to easily add, remove, or reorder statements.Creates a new instance of this class, a function of type tp named id. A new NstObjectBaseProcedure object is created and associated to it. A new variable is created in the function that is the return result of the function. This new variable is only included in the symbol table of the function and has the type of the function. The name of this variable is id_result_d, where d is an unique number.NstUnitFunction(NstIdenti er& id, NstType& tp, NstUnit& obp)Creates a new instance of this class, a function of type tp named id. A new NstObjectBaseProcedure object is created and associated to it. The function is added to the internals of the unit obp and declared in its symbol table. A new variable is created in the function that is the return result of the function. This new variable is only included in the symbol table of the function and has the type of the function. The name of this variable is id_result_d, where d is an unique number. This attribute contains the list of statements of the function. The list representation allows to easily add, remove, or reorder statements.

	cunit.units.pop_back() cout << prog.in_list() // Return &cunit.units prog.remove_from_list() cout << prog.in_list() // Return NULL // prog is still in the list dummy class NstUnitModule : public NstUnit int type() const NstUnitModule* isNstUnitModule() int type() const Returns the type NST_UNIT_MODULE. NstUnitModule* isNstUnitModule() Return this. NstUnitModule(NstIdenti er& id) class NstUnitBlockData : public NstUnit int type() const NstUnitBlockData* isNstUnitBlockData() NstUnitBlockData(NstIdenti er& id) int type() const Returns the type NST_UNIT_BLOCK_DATA. NstUnitBlockData* isNstUnitBlockData*() Return this. NstUnitBlockData(NstIdenti er& id) class NstUnitProgram : public NstUnit int type() const NstUnitProgram* isNstUnitProgram() NstUnitProgram (NstIdenti er& id) NstStatementList statements This class permits to represent fortran programs. int type() const Returns the type NST_UNIT_PROGRAM. NstUnitProgram* isNstUnitProgram() Return this. NstUnitProgram(NstIdenti er& id) int type() const NstUnitSubroutine* isNstUnitSubroutine*() NstUnitSubroutine(NstIdenti er& id) NstUnitSubroutine(NstIdenti er& id, NstUnit& obp) const NstDeclarationList& formals()const NstStatementList statements bool is_recursive bool is_pure This class permits to represent fortran subroutines. int type() const Returns the type NST_UNIT_SUBROUTINE. NstUnitSubroutine* isNstUnitSubroutine() Return this. NstUnitSubroutine(NstIdenti er& id) const NstDeclarationList& formals()const Returns the formal parameters of the subroutine. See the class NstDeclarationVarParam for declaring a new parameter. bool is_recursive Tells if the subroutine is recursive or not. int type() const NstUnitFunction* isNstUnitFunction*() NstUnitFunction(NstIdenti er& id, NstType& tp) NstUnitFunction(NstIdenti er& id, NstType& tp, NstUnit& obp) const NstDeclarationList& formals()const NstStatementList statements int is_recursive int is_pure NstVariableUsed* result_id() const NstType* function_type() const This class represents fortran functions. int type() const Returns the type NST_UNIT_FUNCTION. NstUnitFunction* isNstUnitFunction() Return this. NstUnitFunction(NstIdenti er& id, NstType& tp) const NstDeclarationList& formals()const Returns the formal parameters of the function. See the class NstDeclarationVarParam for declaring a new parameter. bool is_recursive Tells if the function is recursive or not. bool is_pure Tells if the function is pure or not. # include <libnstbase.H> int main(int ac, char **av) { NstIdentifier tutu ("toto") NstInteger three = 3 // New function NstUnitFunction stoto(tutu, nst_real_type) // New statement NstSimpleAssign sa(*stoto.result_id(), three) NstStatementBasic sb(sa) stoto.statements.push_back(&sb) cout << stoto } % test_fct real*4 function toto() result (toto_result_0) toto_result_0 = 3 contains subroutine toto () a = 3 end subroutine toto end program main % test_nameunit units.f program main call new_id() contains subroutine new_id () NstIdentifier c_id = "c" a = 3 # include <libnstbase.H> int main(int ac, char **av) { if (ac < 2) return -1 NstComputationUnit program(av 1]) NstUnit* first_unit = program.units.front() cout << first_unit->declarations() } % cat exe.f PROGRAM tot integer NBLOCK, IBLOCK, ILOC integer PPTR(1:100),IBLEN(1:100) real XPLUS(1:100), XDPLUS(1:100) real X(1:100), XD(1:100), XDD(1:100) real DELTAT integer big_text (1:11,1:23,1:34) do IBLOCK = 1, NBLOCK This example creates a new subroutine and declares three arrays into it: % cat test_sub.cc # include <libnstbase.H> int main(int ac, char **av) { // Identifiers NstIdentifier s_id ("dummy") NstIdentifier a_id = "a" NstIdentifier b_id = "b" ar_type.shapes.push_back(&shape) // New subroutine NstUnitSubroutine subr(s_id) // Array declaration NstDeclarationVariable a_decl(subr, a_id, ar_type) NstDeclarationVariable b_decl(subr, b_id, ar_type) NstDeclarationVariable c_decl(subr, c_id, ar_type) // Unparsing cout << subr } % test_sub subroutine dummy() real*4 a (1:100,1:100) real*4 b (1:100,1:100) real*4 c (1:100,1:100) end subroutine dummy NstVariableUsed* result_id() % cat test_fct.cc end function TOTO ILOC = PPTR(IBLOCK) class NstUnitList : public list<NstUnit*>, public NstTree do I = 1, IBLEN(IBLOCK) This example replaces the name of the rst internal of a program by new_id: % cat test_nameunit.cc XDPLUS(ILOC+I-1) = XD(ILOC+I-1) + .1*DELTAT * XDD(ILOC+I-1) XPLUS(ILOC+I-1) = X(ILOC+I-1) + DELTAT * XDPLUS(ILOC+I-1) enddo NstTree* isNstList() int type() const # include <libnstbase.H> int main(int ac, char **av) enddo end NstUnitList() { if (ac < 2) return -1 NstComputationUnit program(av 1]) NstUnit* first_unit = program.units.front() NstUnitProgram* prg = first_unit->isNstUnitProgram() if (!prg) return -1 % test_declarations exe.f integer*4 NBLOCK integer*4 IBLOCK integer*4 ILOC integer*4 PPTR (1:100) integer*4 IBLEN (1:100) NstUnit* search(NstIdenti er& id) const NstUnit* rsearch(NstIdenti er& id) const NstUnit* search(const char* id) const NstComputationUnit* in_computation_unit() const NstUnit* in_unit() const NstUnit* unit = prg->internals().front() NstIdentifier* unit_name = unit->name() call toto() integer*4 BIG_TEXT (1:11,1:23,1:34) program main real*4 DELTAT % cat units.f real*4 XDD (1:100) } real*4 XD (1:100) cout << program real*4 X (1:100) unit_name->id_string("new_id") real*4 XPLUS (1:100) real*4 XDPLUS (1:100) void copy(const NstUnitList& s)
	end subroutine new_id // New Shape NstUnitModule(NstIdenti er& id) end program main NstShape shape (100)
	A module (Fortran 90) is an unit of compilation that contains variable declarations, new types, // New array type This exemple prints the declarations of a program: NstTypeArray ar_type (nst_real_type) subroutines, functions. % cat test_declarations.cc ar_type.shapes.push_back(&shape)

NstStatementList statements

This attribute contains the list of statements of the program. The list representation allows to easily add, remove, or reorder statements. class NstUnitSubroutine : public NstUnit NstStatementList statements bool is_pure Tells if the subroutine is pure or not. class NstUnitFunction : public NstUnit NstStatementList statements const Returns the variable used for returning the result of the function. NstType* function_type() const Returns the type of the function. This example creates a new real function that returns 3:

 This class is the base class for declarations and contains common information for all declarations. Each declaration is associated with a Nstobject object that contains information about the entity declared.

	3.5 Declarations virtual NstDeclarationExternal* isNstDeclarationExternal() Return NULL.
	class NstDeclaration : public NstTree virtual NstDeclarationIntrinsic* isNstDeclarationIntrinsic() Return NULL.
	NstDeclaration* isNstDeclaration() virtual NstDeclarationVariable* isNstDeclarationVariable() virtual NstDeclarationTemplate* isNstDeclarationTemplate() virtual NstDeclarationProcessors* isNstDeclarationProcessors() virtual NstDeclarationDistribute* isNstDeclarationDistribute() virtual NstDeclarationAlign* isNstDeclarationAlign() virtual NstDeclarationImplicit* isNstDeclarationImplicit() virtual NstDeclarationFormat* isNstDeclarationFormat() virtual NstDeclarationDynamic* isNstDeclarationDynamic() virtual NstDeclarationVarParam* isNstDeclarationVarParam() virtual NstDeclarationExternal* isNstDeclarationExternal() virtual NstDeclarationIntrinsic* isNstDeclarationIntrinsic() NstIdenti er* name() const NstObject* object() const int line
	NstDeclaration* isNstDeclaration() Returns this.
	virtual NstDeclarationVariable* isNstDeclarationVariable() Return NULL.
	virtual NstDeclarationTemplate* isNstDeclarationTemplate() Return NULL.
	virtual NstDeclarationProcessors* isNstDeclarationProcessors() Return NULL.
	virtual NstDeclarationDistribute* isNstDeclarationDistribute() Return NULL.
	virtual NstDeclarationAlign* isNstDeclarationAlign() Return NULL.
	virtual NstDeclarationImplicit* isNstDeclarationImplicit() Return NULL.
	virtual NstDeclarationFormat* isNstDeclarationFormat() Return NULL.
	virtual NstDeclarationDynamic* isNstDeclarationDynamic() Return NULL.
	virtual NstDeclarationVarParam* isNstDeclarationVarParam() Return NULL.

 Store the line number of a parsed declaration. This class permits to declare a new variable inside an unit. It creates a new object in the table of symbols of the unit and insert the declaration into the declaration list.

	class NstDeclarationVariable : public NstDeclaration
	int type() const NstDeclarationVariable* isNstDeclarationVariable()
	NstDeclarationVariable(NstUnit& bm, NstIdenti er& i, NstType& t)
	NstType* declaration_type() const NstType* declaration_type(NstType& new_type) NstObjectVariable* object() const
	int type() const Returns the type NST_DECLARATION_VARIABLE.
	NstDeclarationVariable* isNstDeclarationVariable() Returns this.
	NstDeclarationVariable(NstUnit& bm, NstIdenti er& i, NstType& t)

 This example creates two v ariables in an unit:This class permits to de nes how the variables must be implicitly typed (IMPLICIT declaration). It inserts the declaration into the beginning of the declaration list of the unit.

	% cat test_dv.cc
	# include <libnstbase.H>
	int main()
	{
	NstIdentifier a ("a")
	NstIdentifier b ("b")
	NstIdentifier subr ("subr")
	NstUnitSubroutine subroutine(subr)
	NstDeclarationVariable av(subroutine, a, nst_integer_type)
	NstDeclarationVariable bv(subroutine, b, nst_complex_type)
	cout << "These two declarations:\n"
	cout << av << endl
	cout << bv << endl
	cout << "Are declared in subroutine " << *subroutine.name() << ":" << endl
	cout << subroutine
	}
	% test_dv
	hese two declarations:
	integer*4 a
	complex*8 b
	Are declared in subroutine subr:
	subroutine subr()
	integer*4 a
	complex*8 b
	end subroutine subr
	class NstDeclarationImplicit : public NstDeclaration
	int type() const NstDeclarationImplicit* isNstDeclarationImplicit()
	NstDeclarationImplicit(NstUnit& bm)
	NstType* implicit_type() const NstType* implicit_type(NstType& new_type) char rst_letter char last_letter
	int type() const Returns the type NST_DECLARATION_IMPLICIT.
	NstDeclarationImplicit* isNstDeclarationImplicit() Returns this.

 This class permits to declare a FORMAT pattern. This instruction is considered as obsolete in Fortran 90. It speci es a format with a label that can be used in I/O operations.

	cat test_impl.cc
	# include <libnstbase.H>
	int main()
	{
	NstIdentifier subr ("subr")
	NstUnitSubroutine subroutine(subr)
	NstDeclarationImplicit impl(subroutine)
	cout << subroutine
	}
	% test_impl
	subroutine subr()
	implicit none
	end subroutine subr
	class NstDeclarationFormat : public NstDeclaration
	int type() const NstDeclarationFormat* isNstDeclarationFormat()
	NstParameterList formats int label
	int type() const Returns NST_DECLARATION_FORMAT.
	NstDeclarationFormat* isNstDeclarationFormat() Return this.

 Creates a new instance of this class. Declares a new template with identi er i into the unit bm. This object is added to the list of declarations of the unit bm. A new NstObjectTemplate object is created and stored in the symbol table of the unit bm. If there is already an entity declared in the unit bm with the identi er i, an error is generated.

		This class de nes the HPF declaration of a template (TEMPLATE t). This class de nes the HPF declaration of a topology (PROCESSORS)
	int type() const Returns the type NST_DECLARATION_TEMPLATE. int type() const Returns the type NST_DECLARATION_PROCESSORS.
	NstDeclarationTemplate* isNstDeclarationTemplate() Returns this. NstDeclarationTopology* isNstDeclarationTopology() Returns this.
	NstDeclarationTemplate(NstUnit& bm, NstIdenti er& i) NstDeclarationProcessors(NstUnit& bm, NstIdenti er& i)
	NstShapeList dimensions Stores the shape of the template.
	NstObjectTemplate* object() const Returns the NstObjectTemplate object associated with the declaration. This is a cast of the object returned by the method object() of the class NstDeclaration.
	This example creates two templates in a program, one with one dimension and one with two dimensions:
	% cat test_template.cc
	# include <libnstbase.H>
	int main()
	{	
		NstIdentifier t1 = "T1"
	% cat test_varparam.cc NstIdentifier t2 = "T2"
	# include <libnstbase.H> NstIdentifier pg = "temp"
	int main(int ac, char **av) NstUnitProgram program(pg)
	{	NstDeclarationTemplate t1d(program, t1)
		NstIdentifier tutu ("toto") NstDeclarationTemplate t2d(program, t2)
		NstIdentifier n_id ("N") NstShape one_hundred (100)
		// New Subroutine t1d.dimensions.push_back(&one_hundred)
		NstUnitSubroutine stoto(tutu) t2d.dimensions.push_back(&one_hundred)
		// Declare new formal parameter in subroutine t2d.dimensions.push_back(&one_hundred)
		NstDeclarationVarParam dv(stoto, n_id, nst_integer_type) cout << program
	}	cout << stoto
	} % test_template
	% test_varparam program TEMP
	subroutine toto(N) !HPF$ TEMPLATE T1 (1:100)
	integer*4 N !HPF$ TEMPLATE T2 (1:100,1:100)
		end subroutine toto end program TEMP
	class NstDeclarationTemplate : public NstDeclaration class NstDeclarationProcessors : public NstDeclaration
		int type() const NstDeclarationTemplate* isNstDeclarationTemplate() int type() const NstDeclarationTemplate* isNstDeclarationTemplate()
		NstDeclarationTemplate(NstUnit& bm, NstIdenti er& i) NstDeclarationProcessors(NstUnit& bm, NstIdenti er& i)
		NstShapeList dimensions NstObjectTemplate* object() const NstShapeList dimensions NstObjectTopology* object() const

example creates a new formal parameter in a subroutine:

 Creates a new instance of this class. This object is inserted into the list of declarations of the unit u and into the object o, that must represent a v ariable or a template. The alignment is speci ed by as.Creates a new instance of this class that is inserted into the list of declarations of the unit u. Declares a parameter of identi er i with the type t and with value e (this expression is stored in the NstVarDescParameter object contained in the NstObjectVariable object associated with the parameter). A new NstObjectVariable object is created and stored in the symbol table of the unit u. If there is already an entity declared in the unit u with the identi er i, an error is generated.Searchs in the list the declaration with the name id. Returns NULL if the declaration is not found.Searchs in the list the declaration with the name id. Returns NULL if the declaration is not found.Returns the NstUnit object the list is in. Returns NULL if the list is not in an unit. This is the base class for representing simple types that have a size: integers, reals, etc.. This class describes the type REAL. There is a global prede ned type This class describes the type LOGICAL. There is a global prede ned type

	NstProcessor* target(NstProcessor& new_target) Replaces the target of the distribution by new_target and returns the old one. int type() const Returns the type NST_DECLARATION_ALIGN. int type() const NstDeclarationParameter* isNstDeclarationParameter() class NstDeclarationExternal : public NstDeclaration NstTree* isNstList() Returns this. 3.6 Types int type() const Returns the type NST_TYPE_DUMMY. int type() const NstTypeReal* isNstTypeReal() int type() const NstTypeBoolean* isNstTypeBoolean()
	This example distributes a template: % cat test_distribute.cc # include <libnstbase.H> int main() { // New program NstIdentifier pg = "temp" NstUnitProgram program(pg) // Declare a template NstIdentifier t1 = "T1" NstShape one_hundred (100) NstDeclarationTemplate t1d(program, t1) t1d.dimensions.push_back(&one_hundred) // Distribute the template NstDistSpec dspec(NST_DIST_SPEC_NODE, FALSE) NstDistFormat fblock(NST_DIST_FORMAT_ANY_BLOCK) dspec.mapping.push_back(&fblock) NstProcessor pd NstDeclarationDistribute dd(program, *t1d.object(), dspec, pd) // Creates a new variable NstIdentifier aid = "a" NstTypeArray at(nst_real_type) at.shapes = t1d.dimensions NstDeclarationVariable a(program, aid, at) // Creates a new alignment NstAlignSpec als(*t1d.object()) NstDeclarationAlign align(program, *a.object(), als) // Unparse cout << program } % test_distribute program temp !HPF$ TEMPLATE T1 (1:100) !HPF$ DISTRIBUTE T1 (BLOCK) real*4 a (1:100) !HPF$ ALIGN a WITH T1 end program temp class NstDeclarationAlign : public NstDeclaration int type() const NstDeclarationAlign* isNstDeclarationAlign() NstDeclarationAlign(NstUnit& u, NstObject& o, NstAlignSpec& as) integer*4 N NstAlignSpec* target(NstAlignSpec& new_target) subroutine PROG() NstTypeDummy() NstAlignSpec* target() const % test_param NstExpressionList source NstDeclarationAlign* isNstDeclarationAlign() Returns this. NstDeclarationAlign(NstUnit& u, NstObject& o, NstAlignSpec& as) NstExpressionList source Store the alignement o f t h e s o u r c e . T o create a NstVariableUsed for an alignment, one must create a dummy NstObjectVariable. This can be done like this: imagine we w ant to create the alignment: !HPF$ ALIGN A(I,J) WITH B(I+1,J) We need two objects for I and J. They can be created like this: NstIdentifier i_id ("I") NstIdentifier j_id ("J") NstObjectVariable i_obj (i_id) NstObjectVariable j_obj (j_id) NstVariableUsed i_var(i_obj) NstVariableUsed j_var(j_obj) NstAlignSpec* target() const int type() const NstDeclarationDynamic* isNstDeclarationDynamic() NstDeclarationDynamic(NstUnit& u, NstObject& o) This class describes the HPF declaration DYNAMIC. int type() const Returns the type NST_DECLARATION_DYNAMIC. NstDeclarationDynamic* isNstDeclarationDynamic() Returns this. NstDeclarationDynamic(NstUnit& u, NstObject& o) This example declares a parameter: % cat test_param.cc # include <libnstbase.H> int main(int ac, char **av) { NstIdentifier n_id ("N") NstIdentifier p_id ("PROG") NstInteger m = 1000 // New Subroutine NstUnitSubroutine stoto(p_id) // Declare new parameter in subroutine NstDeclarationParameter dv(stoto, n_id, nst_integer_type, m) cout << stoto } NstDeclarationIntrinsic(NstUnit& u, NstObject& o) int type() const NstDeclarationIntrinsic* isNstDeclarationIntrinsic() NstDeclarationIntrinsic(NstUnit& u, NstObject& o) Creates a new instance of this class, an intrinsic declaration of the object o into the list of declarations of u. class NstDeclarationList : public list<NstDeclaration*>, public NstTree NstTree* isNstList() int type() const NstDeclarationList() virtual NstTypeArray* isNstTypeArray() virtual NstTypeString* isNstTypeString() virtual NstTypePointer* isNstTypePointer() NstTypeDummy* isNstTypeDummy() int type() const NstTypeInteger() Creates a new instance of this class, a type with the default size (sizeof (int)). Creates a new instance of this class, a type with the default size (2*sizeof (float)). NstTypeComplex() class NstTypeDummy : public NstType NstTypeInteger* isNstTypeInteger() Returns this object. Returns this object. NstTypeComplex* isNstTypeComplex() Returns NULL. int type() const Returns the type NST_TYPE_INTEGER. Returns the type NST_TYPE_COMPLEX. int type() const Returns NULL. that can be used instead of de ning a new type. New objects for types should be created only if you want t o c r e a t e a t ype with a di erent size. you want t o c r e a t e a t ype with a di erent size. that can be used instead of de ning a new type. New objects for types should be created only if Returns NULL. NstTypeInteger nst_integer_type NstTypeComplex nst_complex_type Returns this. Returns NULL. This class describes the type COMPLEX. There is a global prede ned type This class describes the type INTEGER. There is a global prede ned object virtual NstTypeBoolean* isNstTypeBoolean() Returns the type NST_DECLARATION_INTRINSIC. virtual NstTypeComplex* isNstTypeComplex() Returns NULL. NstTypeInteger() NstTypeInteger(NstExpression& t_size) NstTypeComplex(NstExpression& t_size) NstTypeComplex() This class is used to declare an intrinsic subroutine. virtual NstTypeReal* isNstTypeReal() Returns NULL. int type() const NstTypeInteger* isNstTypeInteger() NstTypeComplex* isNstTypeComplex() int type() const Returns the target of the alignment. NstDeclarationParameter(NstUnit& u, NstIdenti er& i, NstType& t, NstExpression& e) NstExpression* value() const NstExpression* value(NstExpression& new_value) NstObjectVariable* object() const This class describes the declaration of a parameter. int type() const Returns the type NST_DECLARATION_DYNAMIC. NstDeclarationParameter* isNstDeclarationParameter() Returns this. NstDeclarationParameter(NstUnit& u, NstIdenti er& i, NstType& t, NstExpression& e) int type() const int type() const Returns the type NST_DECLARATION_LIST. class NstType : public NstTree NstTypeDummy* isNstTypeDummy() Returns this object. NstTypeReal() NstTypeReal(NstExpression& t_size) NstTypeBoolean() NstTypeBoolean(NstExpression& t_size) NstDeclarationExternal* isNstDeclarationExternal() NstDeclarationExternal(NstUnit& u, NstObject& o) This class is used to declare an external subroutine. int type() const Returns the type NST_DECLARATION_EXTERNAL. NstDeclarationExternal* isNstDeclarationExternal() Returns this. NstDeclarationExternal(NstUnit& u, NstObject& o) Creates a new instance of this class, an external declaration of the object o into the list of declarations of u. NstDeclarationInstrinsic* isNstDeclarationInstrinsic() Returns NULL. virtual NstTypeInteger* isNstTypeInteger() int type() const Returns NULL. virtual NstTypeDummy* isNstTypeDummy() class NstDeclarationIntrinsic : public NstDeclaration NstDeclarationList() Creates a new instance of this class, an empty l i s t . NstDeclaration* search(NstIdenti er& id) const NstDeclaration* search(const char* id) const NstUnit* in_unit() const NstType* isNstType() NstTypeDummy() Creates a new instance of this class. virtual NstTypeDummy* isNstTypeDummy() virtual NstTypeInteger* isNstTypeInteger() virtual NstTypeReal* isNstTypeReal() virtual NstTypeComplex* isNstTypeComplex() virtual NstTypeBoolean* isNstTypeBoolean() virtual NstTypeArray* isNstTypeArray() virtual NstTypeString* isNstTypeString() virtual NstTypePointer* isNstTypePointer() This class is the base class for representing fortran types. Returns this. NstType* isNstType() class NstTypeBase : public NstType NstExpression* size() const NstExpression* size(NstExpression& new_size) Returns the size of the type. NstTypeReal() NstExpression* size() const NstTypeReal nst_real_type NstTypeBoolean nst_boolean_type that can be used instead of de ning a new type. New objects for types should be created only if you want t o c r e a t e a t ype with a di erent size. that can be used instead of de ning a new type. New objects for types should be created only if you want t o c r e a t e a t ype with a di erent size. int type() const Returns the type NST_TYPE_REAL. Returns this object. NstTypeReal* isNstTypeReal() int type() const Returns the type NST_TYPE_BOOLEAN.
	PARAMETER (N = 1000)
	end subroutine PROG

This class describes the HPF speci cation of an alignment (ALIGN). NstAlignSpec* target(NstAlignSpec& new_target) Replaces the target of the alignment b y new_target and returns the old one. class NstDeclarationDynamic : public NstDeclaration Creates a new instance of this class that is inserted into the unit u. Declares the object o as being dynamic: it can be realigned or redistributed. class NstDeclarationParameter : public NstDeclaration NstExpression* value() const Returns the value of the parameter. NstExpression* value(NstExpression& new_value) Replaces the value of the parameter by new_value and returns the old one. NstObjectVariable* object() const Returns the NstObjectVariable object associated to the parameter. This is a cast of the object returned by the method object() of the class NstDeclaration. NstDeclaration* search(NstIdenti er& id) const NstDeclaration* search(const char* id) const NstUnit* in_unit() const This class represents a list of declarations. This class represents a dummy t ype (no type). NstExpression* size(NstExpression& new_size) Replaces the size of the type by new_size and returns the old one. class NstTypeInteger : public NstTypeBase NstTypeInteger(NstExpression& t_size) Creates a new instance of this class, a type with size t_size. class NstTypeReal : public NstTypeBase Creates a new instance of this class, a type with the default size (sizeof (float)). NstTypeReal(NstExpression& t_size) Creates a new instance of this class, a type with size t_size. class NstTypeComplex : public NstTypeBase NstTypeComplex(NstExpression& t_size) Creates a new instance of this class, a type with size t_size. class NstTypeBoolean : public NstTypeBase

 This is the intent of the variable. This attribute can have the following values:Replaces the current expression of the parameter with e and returns the old expression.Set the indentation step to nid for output. By default, this indentation step is set to 3. Returns the old indentation step. int nst_petit_unparse(ostream& fortran, ostream& petit, const NstStatement &statement)

	virtual NstVarDescLocal *isNstVarDescLocal() This class de nes informations for a parameter variable. Returns NULL. 3.14 Miscellaneous functions
	Type NST_OPERAND_EQUAL NST_OPERAND_NOT_EQUAL NST_OPERAND_LOWER NST_OPERAND_GREATER NST_OPERAND_GREATER_EQUAL .ge. Fortran unparse Operator rede ned .eq. operator== .ne. operator6 = .lt. operator< .gt. operator>= NST_OPERAND_LOWER_EQUAL .le. operator<= NST_OPERAND_PLUS + operator+ NST_OPERAND_MINUS -operator-NST_OPERAND_OR .or. NST_OPERAND_CONCAT // NST_OPERAND_TIMES * NST_OPERAND_DIVIDE / operator/ NST_OPERAND_AND .and. operator&& NST_OPERAND_EQUIVALENT .eqv. NST_OPERAND_NOT_EQUIVALENT .neqv. NST_OPERAND_EXPONENTIAL ** operatorN ST_OPERAND_DEFINED .identifier. NST_OPERAND_NOT .not. Returns the type NST_VARDESC_DUMMY. bool is_target int dynamic int save Returns this object. NstVarDescDummy *isNstVarDescDummy() NstVarDescLocal *isNstVarDescLocal() int type() const int type() const operator* class NstVarDescLocal : public NstVarDesc This class de nes informations for a variable. operatork NST_OPERAND_XOR .xor. int intent bool is_optional bool is_target NstExpression* expression(NstExpression& e) int dynamic Returns the expression of the parameter. NstExpression* expression() const operator> class NstVarDescDummy : public NstVarDesc int type() const NstVarDescDummy *isNstVarDescDummy() int type() const 3.14.1 IO functions Returns the type NST_VARDESC_PARAMETER. Returns this object. NstVarDescParameter *isNstVarDescParameter() int set_indent_step(int nid)
	int operator_type() const The type of the binary operator (see above). NstExpression* left() const Returns the left part of the expression. NstExpression* left(NstExpression& new_e) Replaces the left part of the expression by new_e and returns the old one. NstExpression* right() const Returns the right part of the expression. NstExpression* right(NstExpression& new_e) Replaces the right part of the expression by new_e and returns the old one. void copy(const NstExpressionBinary& e, int deep = 0) Copies the object s into this object, recursively or not according to deep. NstExpression* clone(int deep = 0) const Returns a clone of this object, recursive or not according to deep. friend NstExpressionBinary& operator+(NstExpression& l, NstExpression& r) These operators create a new object NstExpressionBinary with l the left part and r the right p a r t o f the expression. See the table above. NstIntentNo 0 NstIntentIn 1 NstIntentOut 2 int type() const Returns the type NST_VARDESC_LOCAL. NstIntentInOut 3 int dynamic NstVarDescLocal *isNstVarDescLocal() Returns this object. This is the status of the variable in terms of dynamicity. This attribute can have the following values: NstArrayIllegal int save Tells if the variable has the save attribute. -1 NstArrayFixedSize 0 NstArrayAutomatic 1 NstArrayAllocatable int dynamic This is the status of the variable in terms of dynamicity. This attribute can have the following values: 2 NstArrayAssumedShape 3 NstArrayAssumedSize 4 bool is_optional Tells if the variable is optional. NstArrayIllegal -1 NstArrayFixedSize 0 NstArrayAutomatic 1 NstArrayAllocatable 2 NstArrayAssumedShape 3 NstArrayAssumedSize 4 bool is_target Tells if the variable is declared as being a target for a pointer. class NstVarDescParameter : public NstVarDesc bool is_target Tells if the variable is declared as being a target for a pointer.
	int type() const NstVarDescParameter *isNstVarDescParameter()
	NstExpression* expression() const NstExpression* expression(NstExpression& e)

int intent

 Returns the temporary directory where nestor stores its temporary les. By default, this directory is /tmp. const string& nst_temp_dir(const string& ntp)Replaces the temporary directory where nestor stores its temporary les by ntp and returns the old one.This function removes all character from is until the end of the current line.

	string nst_tmp_ le(const string& post x, const string& end) This functions creates a string of the form
	<nst_temp_dir()>/nst_<nst_tmp_number><post x>.<end>
	For example, the call:
	string t = "truc"
	string e = "txt"
	cout << nst_tmp_file(t, e) << endl
	will display:
	/tmp/nst_0truc.txt
	unsigned long nst_tmp_number() Each time this function is called, a global number is returned and incremented.
	ifstream& nst_eatwhite(ifstream& is) This function removes all consecutive spaces until it reaches a non-space character from the input stream is.
	ifstream& nst_eatsome(ifstream& is, int number) This function removes number spaces from the input stream is.
	ifstream& nst_endo ine(ifstream& is)

char nst_sure_get(ifstream& is)

Table 1 :

 1 Type of the classes of the base library.

	Index	
	attribute body, 62 67, 69, 70 attribute branches, 56, 57 attribute comment, 5 6 , 5 7 attribute dimensions, 34 36 attribute dynamic, 104, 105 attribute else_part, 60, 61 attribute externals, 19, 2 0 attribute false_part, 6 2 attribute rst_letter, 32, 33 attribute formats, 3 3 attribute format, 84, 85 attribute hide, 6 4 attribute img, 94, 95 attribute independent, 66, 67, 69, 70 attribute indexes, 98, 99 attribute intent, 1 0 4 attribute intrinsics, 19, 2 0 attribute is_commented, 56, 58 attribute is_descriptive, 51, 54, 55 attribute is_optional, 1 0 4 attribute is_pure, 2 4 , 2 5 attribute is_recursive, 24, 25 attribute NstDeclarationProcessors, 109 attribute NstDeclarationParameter, 1 0 9 attribute NstDeclarationList, 1 0 9 attribute NstDeclarationIntrinsic, 1 0 9 attribute NstDeclarationImplicit, 1 0 9 attribute NstDeclarationFormat, 109 attribute NstDeclarationExternal, 109 attribute NstDeclarationDynamic, 1 0 9 attribute NstDeclarationDistribute, 1 0 9 attribute NstDeclarationAlign, 1 0 9 attribute NstComputationUnit, 1 0 9 attribute NstComplex, 111 attribute NstBoolean, 1 1 0 attribute NstAlignSpec, 110 attribute nst_real_type, 4 4 attribute nst_integer_type, 4 3 attribute nst_complex_type, 4 4 attribute nst_boolean_type, 4 5 attribute new_variables, 66, 67, 69, 70 attribute nestor_ ag, 66, 67, 69, 70 attribute mapping, 5 1 99, 103 attribute list, 28, 40, 49, 51, 53, 57, 70, 85, 95, attribute line, 21, 30, 31, 56, 57 attribute last_letter, 32, 33 attribute label, 33, 56, 57, 75 attribute kind, 100, 101 attribute items, 7 4 attribute is_target, 104, 105	attribute NstDeclarationTemplate, 0 9 attribute NstDeclarationVariable, 9 attribute NstDeclarationVarParam, 109 attribute NstDeclaration, 31 38, 40 attribute NstDistFormatList, 110 attribute NstDistFormat, 53, 109, 110 attribute NstDistSpecList, 1 0 9 attribute NstDistSpec, 51, 109 attribute NstExpressionBinary, 1 1 attribute NstExpressionCall, 1 1 0 attribute NstExpressionDummy, 1 attribute NstExpressionList, 1 1 1 attribute NstExpressionSlice, 1 1 0 attribute NstExpressionUnary, 1 1 0 attribute NstExpression, 87, 89 96 attribute NstIdenti er, 1 0 9 attribute NstInteger, 1 1 0 attribute NstObjectBaseProcedure, 111 attribute NstObjectTemplate, 1 1 1 attribute NstObjectTopology, 1 1 1 attribute NstObjectVariable, 38, 111 attribute NstObject,

 NstDeclarationProcessors, 35, 102 class NstDeclarationTemplate, 34, 1 0 2 class NstDeclarationVariable, 31, 1 0 2 class NstDeclarationVarParam, 24, 25, 33 class NstDeclaration, 2 2 , 30, 31, 34 36, 39, 100 class NstDistFormatList, 53 class NstDistFormat, 52 class NstDistSpecList, 51 class NstDistSpec, 51 class NstExpressionBinary, 87, 8 8 class NstExpressionCall, 90 class NstExpressionDummy, 89 class NstExpressionList, 95 class NstExpressionSlice, 91 class NstExpressionUnary, 8 9 , 89 class NstExpression, 86 class NstIdenti er, 1 6 , 16 class NstInteger, 92 class NstObjectBaseProcedure, 21, 23 25, 100 class NstObjectTemplate, 3 5 , 102 class NstObjectTopology, 3 6 , 102 class NstObjectVariable, 31, 34, 39, 101 class NstObject, 3 1 , 100, 101, 103 class Nstobject, 3 0 class NstParameterFormat, 84 class NstParameterList, 85 class NstParameterNamed, 83 class NstParameterNone, 84 class NstParameterValue, 82 class NstParameterVariable, 81 class NstParameter, 81 class NstProcessor, 53 class NstReal, 92 class NstShapeList, 49 class NstShape, 48 class NstSimpleAllocate, 77 class NstSimpleAssign, 72 class NstSimpleCall, 73 class NstSimpleExit, 76 class NstSimpleGoto, 75 class NstSimpleIO, 74 class NstSimpleNullify, 77 class NstSimpleRealign, 78 class NstSimpleRedistribute, 79 class NstSimpleReturn, 75 class NstSimple, 71 class NstStatementBasic, 59, 7 1 class NstStatementContinue, 1 1 , 58 class NstStatementDo, 6 , 65 class NstStatementForall, 6 , 69 class NstStatementIf, 57, 60 class NstStatementList, 70 class NstStatementLoop, 63 class NstStatementNestor, 6 , 64 class NstStatementRegion, 62 class NstStatementWhere, 61 class NstStatementWhile, 64 class NstStatement, 56, 57, 58 class NstString, 94 class NstSymbolTable, 103 class NstTree, 1 1 , 11, 12, 14 class NstTypeArray, 45 class NstTypeBase, 43 class NstTypeBoolean, 44 class NstTypeComplex, 44 class NstTypeDummy, 42 class NstTypeInteger, 43 class NstTypePointer, 47 class NstTypeReal, 43 class NstTypeString, 45 class NstType, 42 class NstUnitBlockData, 23 class NstUnitFunction, 2 2 , 24, 3 4 class NstUnitList, 28 class NstUnitModule, 22 class NstUnitProgram, 8 , 23 class NstUnitSubroutine, 2 2 , 24, 3 4 class NstUnit, 2 1 , 21, 22, 29, 41, 58, 101 class NstVarDescDummy, 104 class NstVarDescLocal, 105 class NstVarDescParameter, 39, 104 class NstVarDesc, 103 class NstVariableDummy, 96 class NstVariableIndexed, 98 class NstVariableList, 99 class NstVariableLoop, 97 class NstVariableUsed, 97 class NstVariable, 96

	attribute NstStatementNestor, 110 attribute NstStatementRegion, 110 attribute NstStatementRepeat, 1 1 0 attribute NstStatementWhere, 110 attribute NstStatementWhile, 1 1 0 attribute NstStatement, 58 65, 69, 70 attribute NstString, 110 attribute NstSymbolTable, 111 attribute NstTree, 16, 19, 21, 28, 30, 40, 42, 48, 49, 51 54, 56, 70, 71, 81, 85, 86, 95, 99, 100, 103 attribute NstTypeArray, 1 0 9 attribute NstTypeBase, 4 3 4 5 attribute NstTypeBoolean, 1 0 9 attribute NstTypeComplex, 1 0 9 attribute NstTypeDummy, 109 attribute NstTypeInteger, 1 0 9 attribute NstTypePointer, 1 0 9 attribute NstTypeReal, 1 0 9 attribute NstTypeString, 1 0 9 attribute NstType, 42, 43, 45, 47 attribute NstUnitBlockData, 1 0 9 attribute NstUnitFunction, 109 attribute NstUnitList, 109 attribute NstUnitModule, 1 0 9 attribute NstUnitProgram, 109 attribute NstUnitSubroutine, 1 0 9 attribute NstUnit, 22 24, 28 attribute NstVarDescDummy, 1 1 1 attribute NstVarDescLocal, 1 1 1 attribute NstVarDescParameter, 1 1 1 attribute NstVarDesc, 1 0 4 , 1 0 5 attribute NstVariableDummy, 1 1 0 attribute NstVariableIndexed, 110 attribute NstVariableList, 1 1 0 attribute NstVariableLoop, 110 attribute NstVariableUsed, 38, 110 attribute NstVariable, 9 6 9 9 attribute parameters, 73, 77, 78, 90, 91 attribute real, 94, 95 attribute reduction_variables, 66, 67, 69, 70 attribute save, 105 attribute shapes, 4 6 attribute source, 37, 38 attribute specs, 7 4 attribute statements, 23 25 attribute subscripts, 54, 55 attribute then_part, 60, 61 attribute true_part, 6 2 attribute units, 19, 19 attribute value, 9 2 9 4 attribute Warning, 11 base library, 7 class Warning, 1 2 constructor NstAlignSpec, 5 4 , 5 5 constructor NstStatementList, 70, 71 constructor NstStatementLoop, 63, 64 constructor NstStatementNestor, 6 4 constructor NstStatementRegion, 62, 63 constructor NstStatementWhere, 6 2 constructor NstStatementWhile, 6 5 constructor NstString, 9 4 constructor NstSymbolTable, 103 constructor NstTypeArray, 4 6 constructor NstTypeBoolean, 4 5 constructor NstTypeComplex, 4 4 constructor NstTypeDummy, 42, 4 3 constructor NstTypeInteger, 4 3 constructor NstTypePointer, 4 7 constructor NstTypeReal, 4 4 constructor NstTypeString, 4 5 constructor NstUnitBlockData, 2 3 , 23 constructor NstUnitFunction, 25, 25 constructor NstUnitList, 2 8 constructor NstUnitModule, 22, 2 3 constructor NstUnitProgram , 23 constructor NstUnitProgram, 2 3 constructor NstUnitSubroutine, 2 4 , 24 constructor NstVariableDummy, 96, 97 constructor NstVariableIndexed, 9 8 constructor NstVariableList, 9 9 constructor NstVariableLoop, 9 7 constructor NstVariableUsed, 9 8	NstStatementIf, 1 1 0 attribute NstStatementList, 57, 110 attribute NstStatementLoop, 1 1 0 class list, 7 , 2 8 class NstAlignSpec, 54 class NstBoolean, 93 class NstBranches, 57 class NstComplex, 94 class NstComputationUnit, 7 , 8 , 1 9 , 19, 22, 28, 57, 58 class NstDeclarationAlign, 37 class NstDeclarationDistribute, 36 class NstDeclarationDynamic, 38 class NstDeclarationExternal, 40 class NstDeclarationFormat, 33 class NstDeclarationImplicit, 3 1 , 32 class NstDeclarationIntrinsic, 40 class NstDeclarationList, 40 class NstDeclarationParameter, 38 constructor NstBoolean, 9 3 constructor NstComplex, 94, 95 constructor NstComputationUnit, 1 9 , constructor NstDeclarationAlign, 3 7 , 3 8 constructor NstDeclarationDistribute, 6 constructor NstDeclarationDynamic, constructor NstDeclarationExternal, 4 0 constructor NstDeclarationImplicit, 3 constructor NstDeclarationIntrinsic, 4 0 constructor NstDeclarationList, 40, constructor NstDeclarationParameter, 39, 39 constructor NstDeclarationProcessors, 35, 3 6 constructor NstDeclarationTemplate, 34, 3 5 constructor NstDeclarationVariable, 31, 31 constructor NstDeclarationVarParam, 34, 34 constructor NstDistFormatList, 5 3 constructor NstDistFormat, 52, 53 constructor NstDistSpecList, 51, 52 constructor NstDistSpec, 5 1 constructor NstExpressionBinary, 8 7 , 8 8 constructor NstExpressionCall, 9 0 constructor NstExpressionDummy, 9 0 constructor NstExpressionList, 9 5 constructor NstExpressionSlice, 9 1 constructor NstExpressionUnary, 8 9 constructor NstIdenti er, 1 6 , 16 constructor NstInteger, 9 2 constructor NstStatementIf, 60, 61 constructor NstStatementForall, 6 9 constructor NstStatementDo, 6 6 constructor NstStatementContinue, 5 9 constructor NstStatementBasic, 5 9 , 6 0 constructor NstSimpleReturn, 75, 76 constructor NstSimpleRedistribute, 7 constructor NstSimpleRealign, 78, 79 constructor NstSimpleNullify, 7 7 constructor NstSimpleIO, 7 4 constructor NstSimpleGoto, 7 5 constructor NstSimpleExit, 7 6 constructor NstSimpleCall, 7 3 constructor NstSimpleAssign, 72, 73 constructor NstSimpleAllocate, 7 7 , 7 constructor NstShape, 48, 49 constructor NstShapeList, 49, 50 constructor NstReal, 92, 93 constructor NstProcessor, 5 4 constructor NstParameterVariable, 8 2 constructor NstParameterValue, 82, 83 constructor NstParameterNone, 8 4 constructor NstParameterNamed, 8 3 constructor NstParameterList, 8 5 constructor NstParameterFormat, 8 4 constructor NstObjectVariable, 101, 101

class

virtual NstVarDescDummy *isNstVarDescDummy() Returns NULL. virtual NstVarDescParameter *isNstVarDescParameter() Returns NULL.

declaration, 30 align, 37 distribution, 36 dynamic, 38 external, 40 formal parameter, 33 format, 33 implicit, 32 intrinsic, 40 list of declarations, 40 parameter, 38 template, 34 topology, 3 5 variable, 31 de nition, 100 function, 100 program, 100 subroutine, 100 symbol table, 103 template, 102 topology, 102 variable, 101 distribution, 51 alignment, 54 format, 52 list of formats, 53 list of speci cations, 51 speci cation, 51 target processor, 53 expression, 86 binary, 8 7 boolean constant, 93 complex constant, 94 dummy, 8 9 function call, 90 integer constant, 92 list of expressions, 95 real constant, 92 slice, 91 string constant, 94 unary, 8 9 function nst_eatsome, 1 0 6 function nst_eatwhite, 1 0 6 function nst_endo ine, 1 0 6 function nst_fortran_type, 1 3 function nst_petit_unparse, 1 0 6 function nst_stream_to_ le, 1 0 7 function nst_sure_get, 1 0 6 function nst_temp_dir, 1 0 6 function nst_tmp_ le, 1 0 6 function nst_tmp_number, 6 function nst_unparse_mode, 1 2 function set_indent_step, 1 identation step, 106 identi er, 16 incremented number, 106 instruction, 71 allocate, 77 assign, 72 cycle, 76 deallocate, 77 exit, 76 goto, 75 IO, 74 nullify, 7 7 pause, 75 pointer assign, 72 procedure call, 73 realign, 78 redistribute, 79 return, 75 stop, 75 method alignee, 7 8 , 7 9 method array_type, 4 6 method array, 52, 53

miscellaneaous functions, 106 IO functions, 106 node library, 5 parameter, 81 format, 84 list of parameters, 85 named, 83 none, 84 value, 82 variable, 81 petit unparse, 106 shape, 48 list of shapes, 49 source code, 19 statement, 56 basic, 59 continue, 58 do loop, 65 forall loop, 69 hpf task region, 62 if, 60 in nite loop, 63 list of statements, 70 nestor region, where, 61 while, 64 temporary directory, 106 temporary le, 106 tree, 11 type, 42 array, 4 5 base, 43 boolean, 44 complex, 44 dummy, 4 2 integer, 43 pointer, 47 real, 43 string, 45 unit, 21 block data, 23 function, 24 list of units, 28 module, 22 program, 23 subroutine, 24 variable list of variables, variable access, 96 dummy, 9 6 indexed, 98 loop index, 97 use, 97 variable description, dummy, 104 local, 105 parameter, 104

int label

Stores the label of the statement. If the object has not been created by a NstComputationUnit object, the label is set to 0 and is not unparsed.

int line

Stores the line number of the statement in the parsed source code. If the object has not been created by a NstComputationUnit object, the line number is set to 0.

NstBranches branches

This is a general list that permits to travel recursively around statements without knowing explicitely the type of the derived statement o f NstStatement. This class has the following de nition: NstBranches : public list<NstStatementList*> For example, an NstStatementIf object has two b r a n c hes, the then part and the else part. The arity of the statement is given by branches().size(). Therefore, it is easy to write a general travel around the statements: Returns the NstUnit object where the statement is located. The object returned by this method depends on the method in_list(): if this method returns NULL, the method in_unit() too.

NstStatementList* in_list() const This method returns a pointer to the list the statement is attached to. This method returns NULL if the statement is not attached to a list. See the method below for attaching an statement to a list. All the NstStatement objects created by the NstComputationUnit class are attached to their list, but a newly created object is not attached to a list. void attach_to_list(NstStatementList& sl)

Attaches the statement to the list ul. This method will return an error if the statement is already in a list. Note that this method does not put the statement i n to the list, it just tells to the statement that it is in the list, so be careful! Example: NstStatementContinue sc NstUnitProgram prog("toto") NstStatementList dummy prog.statements.push_back(&sc) dummy.push_back(&sc) cout << sc.in_list() // Return NULL cout << sc.in_unit() // Return NULL sc.attach_to_list(prog.statements) cout << sc.in_list() // Return &prog.statements cout << sc.in_unit() // Return &prog void remove_from_list() Removes an statement from a list. Note that this method does not remove actually the statement from the list it is in, it just tells to the statement that it is not in the list anymore, so be careful! Example: prog.statements.pop_back() cout << sc.in_list() // Return &prog.statements cout << sc.in_unit() // Return &prog sc.remove_from_list() cout << sc.in_list() // Return NULL cout << sc.in_unit() // Return NULL // sc is still in the list dummy void copy(const NstStatement& s, int deep = 0)

Copies the object s into this object, recursively or not according to deep.

virtual NstStatement* clone(int deep = 0) const Returns a clone of this object, recursive or not according to deep. Copies the object s into this object, deep is not taken into account because the copy cannot be recursive (it is a terminal object).

NstStatement* clone(int deep = 0) const Returns a clone of this object, deep is not taken into account because the copy cannot be recursive (it is a terminal object). This example creates a new CONTINUE statement with a label set to 100: NstStatementIf* isNstStatementIf() Returns this object.

NstStatementIf(NstExpression& e)

Creates a new instance of this class, an IF statement with the boolean expression e.

NstExpression* condition() const

Returns the condition of the IF statement.

NstExpression* condition(NstExpression& new_expression)

Replaces the condition of the IF statement b y new_expression and returns the old one.

NstStatementList then_part

The list of the statements in the THEN part of the statement.

NstStatementList else_part

The list of the statements in the ELSE part of the statement. NstStatementWhere* isNstStatementWhere() Returns this object.

NstStatementWhere(NstExpression& e)

Creates a new instance of this class, a WHERE statement with the condition e.

NstExpression* condition() const

Returns the condition of the statement.

NstExpression* condition(NstExpression& new_expression)

Replaces the condition of the statement b y new_expression and returns the old one.

NstStatementList true_part

The list of the statements in the TRUE part of the statement.

NstStatementList false_part

The list of the statements in the FALSE part of the statement. This list is not unparsed if it is empty.

NstStatementRegion()

Creates a new instance of this class, with an empty statements list.

NstStatementList body

The list of the statements in the region.

NstStatementLoop()

Creates a new instance of this class, with an empty statements list.

NstStatementList body

The list of the statements in the loop. NstStatementNestor* isNstStatementNestor() Returns this object.

NstStatementNestor()

Creates a new instance of this class, with an empty statements list.

NstStatementList body

The list of the statements in the region. Replaces the condition of the statement b y new_expression and returns the old one.

NstStatementList body

The list of the statements in the while.

int nestor_ ag

This ag is set to 1 by the node library if the directive SINGLE is put before the statement (see 2).

NstVariableList new_variables

List of variables in the HPF NEW clause. Only unparsed if the loop is independent.

NstVariableList reduction_variables

List of variables in the HPF REDUCTION clause. Only unparsed if the loop is independent.

NstStatementList body

The statements in the loop body.

NstStatementList()

Creates a new instance of this class, an empty l i s t .

NstStatement* in_statement() const Returns the surrounding statement if this statement list is in a statement. Returns NULL elsewhere.

NstUnit* in_unit() const

Returns the surrounding unit if this statement list is in an unit. Returns NULL elsewhere.

NstStatement* search_line(int l) const

Returns the rst statement in the list that is at or after the line l. Returns NULL elsewhere.

NstStatement* search_label(int l) const Returns the statement in the list that has the label l. Returns NULL elsewhere.

NstStatement* search(NstStatement* st) const Searchs the statement st in the list. Returns NULL if not found. void release_statements() Detachs all statements from the list (call the method remove_from_list() for each statement). Copies all statements of the list s into this list, recursively or not according to deep. E a c h cloned statement of the list s is attached to the current list. If the copy is not recursive, the statements of s must not be attached to any list.

NstSimpleGoto(int lb)

Creates a new instance of this class, a jump to the label lb.

int label

The label where to go. Creates a new instance of this class, an allocation/deallocation of the avriable sv, where st can take on of the types above.

NstVariable *status() const Returns the status variable.

NstVariable *status(NstVariable& new_stat) Replaces the status variable by new_stat and returns the old one.

NstParameterList parameters

List of the variables to allocate/deallocate. Replaces the variable by new_var and returns the old one.

NstParameterNamed(NstIdenti er& i, NstParameter& p)

Creates a new instance of this class, a named parameter with the name i and the parameter p.

NstIdenti er* name() const

Returns the name of the parameter. NstExpressionCall* isNstExpressionCall() Returns this object.

NstExpressionCall(NstObjectBaseProcedure& op)

Creates a new instance of this class, a expression that is a call to the function represented by op.

NstObjectBaseProcedure* function() const

Returns the function called.

NstObjectBaseProcedure* function(NstObjectBaseProcedure& new_ob)

Replaces the function called by new_ob and returns the old one.

NstParameterList parameters

The parameters of the call. NstInteger* isNstInteger() Returns this object.

NstInteger(int v)

Creates a new instance of this class, an integer constant with the value v.

int value

The value stored in the object. NstReal* isNstReal() Returns this object.

NstReal(const string& v)

Creates a new instance of this class, a real constant with the value v.

NstReal(const char* v)

Creates a new instance of this class, a real constant with the value v.

string value

The value stored in the object. NstBoolean* isNstBoolean() Returns this object.

NstBoolean(bool v)

Creates a new instance of this class, a boolean constant with the value v.

bool value

The value stored in the object. NstComplex* isNstComplex() Returns this object.

NstComplex(const string& r, const string& i)

Creates a new instance of this class, a complex constant with the real value r and the imaginary value i.

NstComplex(const char* r, const char* i)

Creates a new instance of this class, a complex constant with the real value r and the imaginary value i.

string real

The real part.

string img This class de nes an object that is associated with each declared variable. This object is stored in the symbol table of the object corresponding to the unit where the variable has been declared. NstObjectVariable* isNstObjectVariable() Return this object.

NstObjectVariable(NstIdenti er& idf)

Creates a dummy v ariable with no declaration, no type. It can be used for the declaration of a symbolic variable for an alignment.

NstDeclarationVariable* declaration() const Returns the declaration of the variable associated with the object. Note that the NstDeclarationVariable object has a method object() that returns this object.