
HAL Id: hal-02102757
https://hal-lara.archives-ouvertes.fr/hal-02102757v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Myrinet firmware development experience
Marc Herbert

To cite this version:
Marc Herbert. A Myrinet firmware development experience. [Research Report] LIP TR-2002-01,
Laboratoire de l’informatique du parallélisme. 2002, 2+10p. �hal-02102757�

https://hal-lara.archives-ouvertes.fr/hal-02102757v1
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Par-
allélisme
École Normale Sup´erieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON no 5668

A Myrinet Firmware development
experience

Marc Herbert, RESAM / INRIA RESO March 2002

Technical Report No TR2002-01

École Normale Suṕerieure de
Lyon

46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse ´electronique :lip@ens-lyon.fr



A Myrinet Firmware development experience

Marc Herbert, RESAM / INRIA RESO

March 2002

Abstract

This report describes thetechnical aspects of the developpement of a MyrinetLANai code on a Linux
platform. It contains information and references that can be useful to people wishing to develop in a similar
context, whether from the Myrinet side (embedded code) or from the Linux side (driver).

Keywords: Myrinet, LANai, Linux, driver, programming

Résuḿe

Ce rapport d´ecrit les problèmes techniques li´es à la programmation d’un code pour processeurLANai,
embarqu´e sur carte de communication Myrinet. Il contient informations et r´eférences pertinentes d’un point
vueLANai mais aussi concernant le d´eveloppement de pilotes de mat´eriel pour Linux.

Mots-clés: Myrinet, LANai, Linux, pilote, programmation



1 Introduction

This work took place as part of a study [Her01], whose goal was to sketch a distributed
and decentralized switching architecture. The MyricomLANai processor was chosen
as the processing leaf node in this “dumb-core” high speed switching architecture ex-
periment. A partial goal for the thesis was to implement and benchmark embedded
LANai programs, refered to in the following by the acronymMCP, short for Myrinet
Control Program. This report describes the documentations, references and methods
used for this development.

Myrinet hardware was picked out because it fitted well in the envisioned archi-
tecture. Myrinet is composed of an over-simplified, dumb and performant core, with
potential “intelligence” at the edges of the network thanks to programmable processors.
Moreover, the openness of the technology and the availability of numerous documen-
tations, research papers and free software made this study possible.

Due to time and cost constraints, only common (“off the shelf”) hardware parts
were used:i.e. Myrinet PCI interface cards with their on-boardLANai processor. The
hosts for these cards were simpleIBM-compatiblePCs running the Linux 2.2 kernel
(Debian operating system). The hosts acted as a necessary power supply for theLANai,
and as a developpement and control platform thanks to and through thePCI bus.

The section 2 gives the project background. It introduces Myricom’s hardware,
documentations available and existing software projects. The section 3 presents the
developed software and the design issues.

2 Context

At the very beginning of the Myrinet technology marketing, the software offer was
naturally poor. But thanks to a very open policy from Myricom [Myr] and the im-
mediate availability of a C compiler and a primitive myriAPI library, many research
projects took advantage of the programmable feature of the network interfaces to ex-
periment miscellaneous ideas about high-performance computing. The software and
documentation offer grew up very quickly.

Today Myricom has achieved a full-featured, versatile, efficient andGPL’ed [GPL]
low communication layer (MCP + drivers + communication library) calledGM, as well
as aMPI layer aboveGM. They have given up since 1998 their original myriAPI. They
still actively maintain and distribute theLANai-gcc backend (version 2.95.2). The re-
search activity around Myrinet communication layers has levelled off: asideGM, only
a few projects are still maintained, generally because they are still used as a foundation
for higher level communication software. The “customers project page” on Myricom’s
web site [Myr] gives an exhaustive list of pointers.

2.1 Myricom hardware

Myricom has a complete Myrinet offer. At the heart of their products is their edge-
network processor,i.e. their successiveLANai generations, that they sell as anOEM 1

to some high-performance computer vendors. Their main retail product is theirPCI

boards, now 64 bits/66 MHz capable. They also propose a smallerPMC (PCI Mezzanine
Card) variation.

1Original Equipment Manufacturer



A wide range of wormhole switches are proposed, all built by interconnecting sev-
eral of their basic XBar16 crossbar chip (bissection 35.2 Gb/s). Thanks to extremely
low switch latency, Myrinet network diameter is only limited by financial considera-
tions.

2.1.1 Notable steps in LANai evolution

All known LANai processors (until 9.x) have a 32 bits internal architecture.

Version Important innovations (incremental list)
5.0 64 bits-datapaths. CRC32.
7.0 Supression of the dual-context capabilitya

7.2 66 MHz internal clockb

9.0 Increased clock rates, up to 200 MHz

aThe Interrupt Status Register is renamed Interface Status Register.
bPrevious versions were clocked atonce thestandard bus frequency (33 MHz forPCI, up to 40 MHz with

faster buses)

2.1.2 PCI boards

RetailPCI boards featured onlyLANai processors 3.x, 4.x, 7.x and now 9.x. Intermedi-
ateLANai versions were either only sold on theOEM market or just internal prototypes.

PCI revision Introd. date LANai New features
1 ? 3.x, 4.x
2 (PCI64) April 1999 7.0, 7.1 64 bits datapaths.PCI DMA linked lists.
3 (PCI64A) Sept. 1999 7.2, 7.3 66 MHz PCI support, clock multiplier.

(PCI64B, C) May 2000 9.x

Every board is compatible with every kind ofPCI bus. Thanks to the clock mul-
tiplier, the LANai is able to run at its max speed whatever the characteristics of the
PCI bus. A, B and C boards feature processors running at respectively 66, 133 and
200 MHz maximum speed.

2.2 Documentation

2.2.1 Myrinet

The documentation freely available from Myricom is much more plentiful than from
other similar hardware companies. All Myricom documents can be found on their web
site [Myr].

A complete documentation of everyLANai processor is available, detailed from the
raw hardware (pinout and timings) to thesofter-ware (interface registers semantics). A
separate document presents theLANai 3.x instruction set, which has not changed much
until and includingLANai 9.0. ReadingLANai machine code is rather easy since it is
a realRISC architecture. Newer instruction sets are not and will not be documented
(“We [Myricom] strongly discourage people from writing their own MCPs since you
need LANai, host-driver and host-user code. It is a non-trivial amount of work.”) The
instruction set is chosen at compilation time thanks to the classical ’-m’ gcc option:
-m4.1, -m7.0 or -m9.0.

2



The LANai-gcc suite should be sufficient to satisfy every development need, even
if it is no more documented than standard gcc.

An even-less documented ’-many ’ option of the compiler may generate a verbose
and cross-generation compatible code. In fact, giving no-mXXX option at all pro-
duces the same binary code. This kind of polyvalent code has not been tested, mainly
because I have reused someGM header files that define generation-specific constants
and that definitely do not allow this option. Morevover, some quick and dirty tests
with the-many option succeeded in crashing the compiler (“Internal compiler error
in ‘output store’,. . . ”), so this looked likenot the way to go.

The processor documentation is not sufficient to run thePCI boards. The doc-
umentation for the revision 2 and 3PCI boards (PCI64) is also available. ThisPCI

documentation is fairly complete, only some details are missing or confusing. For
instance explanations about the hardware link speed (1280/2000 Mb/s) microswitch
are missing, you have to explore someFAQ. It seems the software links speed setting
is recommended and prefered. The code for this setting may be extracted fromGM

source.
There is no documentation for the older revision 1/PCI 32 boards. Their (simpler)

driving and their hardware constants have to be digged out from sample code source.
SomeFAQs, tutorials and oldMyriAPI documentations can also be found on the

Myricom web site, but are outdated: they do not considerLANai generations above 4.1.
A tutorial based on this oldAPI was published by the High Performance Computing
Laboratory of the Mississippi State University [SHDM] some time ago. Some basic
concepts exposed there may still be interesting to read.

For GM users,i.e. peoplenot wanting to hack into Myrinet hardware, an extensive
and up-to-date documentation is freely downloadable. Reactive support from Myricom
is available through a mailing list.

2.2.2 PCI

A basic understanding of thePCI bus is necessary. This can be achieved for instance
thanks to the following references [Tec] [RC01] or to anyPCI chipset documentation.

2.2.3 Linux kernel

Debian/GNU Linux was the system running the hosts. It was taken among other open
systems mainly for familiarity reasons, and for the assumption that a lot of documen-
tation was available. This choice is retrospectively questionable. As a Linux appli-
cation programmer or system administrator, the volume of documentation is indeed
impressive. But when getting closer to the hardware, life is much less easy, due to the
very quick evolution of the kernel code and structures; every documentation effort is
doomed to fast obsolescence. There is a productive kernel and drivers documentation
effort, but very scattered and often subtly outdated and inaccurate. It is rather easy to
find inconsistent statements among documents. Often, the only really reliable reference
is the source code2. Using a “company-supported”and professionaly documented open
system (e.g., Solaris [SUN]) would probably have solved this documentation problem.

Probably the best structuration effort for Linux documentation is the Linux Doc-
umentation Project [LDP], but kernel programming is only a small part of this effort.
The more important document is the Linux Kernel Mailing List FAQ [LKM], which
among simple answers includes pointers to many (too many ?) pertinent documents and

2The Linux source includes a low volume but not to under-estimate “Documentation” directory

3



to list archive search engines. Another interesting document, and up-to-date at time of
writing, is the list of pointers collected by Juan-Mariano de Goyeneche [dG]. The best
book available on the subject of drivers is the one from Alessandro Rubini [RC01].
Unfortunately, the updated 2nd edition was published just after this work.

Other drawbacks of Linux were the monolithical approach (micro-kernel architec-
tures are known for natively providing a fine granularity access control to hardware,
see issues in section 3.2), and the lack of real-time capabilities, which could have been
useful for control and monitoring tasks (see section 3.4).

On the other hand, the setup and administration of a development Linux system is
probably among the easiest, thanks to the tight integration with standard tools. Most
Linux distributions (in particular Debian) have a lead in this domain on all other sys-
tems, and this is really time spare.

2.3 Software resources

In order to avoid re-inventing the wheel, our code was designed with a constant eye on
already available Myrinet open-source codes and a pair of scissors. Two low level mes-
sage passing libraries,GM andBIP, were used as samples. Another one (PM/SCore [SCo])
was considered, but as the start-up cost of understanding a code is quite high, we did
not think the information brought by this third code was worth the investment.

2.3.1 GM

GM is not a research project, it is designed with an “industrial” perspective. No research
paper describing its architecture is available. On the other hand, its code has most of
the characteristics of a professional project which renders it rather easy to approach for
a C project of this size3. It also has many users, is continuously maintained and has
very few bugs.

The big volume ofGM is partially due to a very heavy and disseminated error-
handling and debugging part, probably necessary for unsavvy customer support. An-
other reason is the great number of architectures it supports, and the multiple abstrac-
tion layers it is made of. The pecularities of the outdated C language increase the
verbosity of this part and do some harm to readability. Anyway, a complete overview
of GM design choices was not needed for this study. For instance, understanding the
complex event-drivenMCP automaton would have been a waste of time, since our goal
was to evaluate our own.

Last but not least,GM is naturally developped in close collaboration with Myricom
hardware developpers. In addition to a pool of hardware constants and small subrou-
tines,GM has been in used in this project as the reference to solve any documentation
hole or inaccuracy that has arisen during developpment.

2.3.2 BIP

BIP [PT98] was the first communication library bringing the full wire performance to
the user application. As it has less high-level features and supports less host architec-
tures thanGM, its volume is much lower4 and so it seems at first much quicker to grasp.
But its highly tuned approach and hacking style counter-balances this first impression.
Moreover, it is much less widely used thanGM, less steadily maintained, and lacks

3about 260,000 lines
425,000 lines of C

4



a reliable support of the latestLANai generation (v9). One of the big advantages of
studyingBIP was a direct access to some of its (kindly available) main developpers.

2.3.3 Why not writing a patch ?

An alternative to the developpement of an isolated and autonomous Myrinet software
would have been to patch an existing communication library until it meets our needs.
This alternative has not been followed for the following reasons.

Very different goal Our aim was to evaluate the capabilities of a “network-edge” pro-
cessor, and to find how to control and evaluate this processor in a non-intrusive
way. In comparison, all available Myrinet software is designed to use the Myrinet
boards exactly for what they are:i.e. network interface cards, as transparent as
possible to the communication library that use them.

Big project management overheadExcept maybe in a perfectly modular designed
software architecture, it is always risky to make any change to the fragile bal-
ance of a big software project. Unless a very good global overview of the project
is acquired (which is already time-consuming), any change may often have sub-
tle side-effects that are very hard to understand, the simplest example being to
trigger hidden bugs.

Performance issuesThe evaluation of embedded software costs implies no interfer-
ences, in particular from the hypothetical “guest” code. It may be hard to check
that every unwanted feature has been disabled.

Re-usability The code developped to make our experiments is only a few thousands
lines long and easy to read, and so it can be really quickly grasped by any person
wishing to start a similar project or simply understand how to drive Myrinet
boards.

3 Developed software components

3.1 Hardware used

The hardware and software used for this experience is presented on figure 1. The goal is
to emulate a standard Ethernet switching equipment with a Myrinet network andLANai
processors at the edge (i.e. on Ethernet ports) of this pseudo-equipment.LANai role is
to handle the Ethernet into Myrinet encapsulation. In our prototype, the Ethernet ports
are simulated by thePCI bus. The machines used featured old Pentium Pro 200 MHz
processors, and the famous Intel 440BXPCI chipset, still quite performant by today’s
standards. DifferentLANai generations (4.1, 7.2, 9.0) have been tested.

3.2 PCI board Linux driver

In order to control myrinet boards (initialization, code upload, debugging, monitoring
and measures) some software must be running on the hosts: we need an operating
system. The Debian Linux (kernel 2.2) was taken (see why in section 2.2.3).

5



Pentium

LANai

µP
LANai

µP

Mode
User

Mode
Kernel

LANai

µP

Myrinet
interface

Myrinet
interface

Myrinet
interface

PCI bus

Hardware

Network

Code

Ethernet
Simulator

driver
Device

Linux kernel

Embedded

Myrinet

Software

Figure 1: General architecture

6



Issues The main role of an operating system is to isolate users from the hardware,
and thus provide security. This is especially useful during classical development tasks,
when incomplete and buggy software is tested, since crashes may be contained in
the process’ sandbox. Unfortunately, we want here to access the Myrinet hardware
through thePCI bus, and this normaly restricted to programs running in unprotected
kernel mode, typically hardware drivers. Programming in kernel mode is really painful
compared to user mode since a complete machine reboot is very long, and repetitive
machine crashes may even corrupt the system stored on the hard drive.

Solution I’ve implemented a minimal Linux driver, which role is to detect and ini-
tialize the boards and to provide a memory mapping of the boards for normal user
programs. This driver abstracts differences between boards, and exports to user mode
four pseudo-files corresponding to the four memory zones of the board. Since the
driver restrict hardware access toPCI adresses specific to a Myrinet board zone, the
“damage zone” in user mode is extended to some sections of the Myrinet board. Nat-
urally, it is easy to imagine a board crash that drags the whole host down thanks to
the PCI bus, but this is extremely unlikely to happen since theLANai code needs an
explicit DMA engine programmation to access thePCI bus. My experience is that a
few machine crashes occurred during driver development, but none at all once the rest
of the development took place in user mode. Moreover, this approach has allowed to
test and debug some routines in user mode before easily transfering fixed code to the
LANai, taking advantage of facilities like debugger and librairies. This is also useful
from the evaluation point of view: this code transfer helps breaking down costs without
loss of functionality. For instance the Ethernet address learning algorithm source code
is 90% source compatible between the Pentium and theLANai versions, thanks to a few
pre-processing instructions.

Implementation details The driver is naturally implemented as a module dynami-
cally linked and unlinked with a running kernel, since this allows very fast testing: no
need to reboot to test a new driver (unless a fatal error freezes the kernel). At loading
time, the driver explores thePCI space, locating all Myrinet boards, and stores basic
parameters for each one in its internal devices table. It also runs the revision-specific
initialization procedure for each one, possibly setting the clock multiplier.PCI 64 re-
visions (2 and above) have a more complex configuration and initialization sequence.
For instance, they have three different reset triggers (instead of only one for previous
boards): one for the board, one for thePCI interface, and finally theLANai processor
one. After the initialization by the driver, only the processor is maintained in “frozen”
reset state, waiting for the user to upload his code. Nothing is done at driver unloading,
leaving the user the freedom to let theLANai still running or not.

Themmap(2) system call is implemented with 4 different devices per physical
Myrinet board, one for each board memory zone (ROM, RAM, board registers and pro-
cessor registers). This provides abstraction and finer access granularity (and so better
security) in user-mode.

3.3 MCP

Programming theLANai and the on-boardSRAM is similar to classical standard C pro-
gramming, but stripped to a bare minimum. No librairies are available, so operations
on floating point numbers, strings,I /O and memory allocation are absent. Neither a

7



debugger nor memory protection nor preemptive multitasking are available. We will
see in the next section some solutions to partially overcome these development diffi-
culties thanks to host control. In addition to standard C programming, theLANai-gcc
suite provides transparent access toLANai and board registers in a cross-generation
compatible way5, and thus provides programmable access to both external (PCI) and
internal (Myri network) interfaces. Contrary to the host side, the access to thePCI bus
is not mapped to processor adresses: every access must be explicitly programmed into
the on-boardDMA engine. ThisPCI space access from the board was not needed here.

The goal of this experience was to implement and evaluate a distributed Ethernet
switch prototype [Her01]. TheLANai processors role is to encapsulate incoming Ether-
net frames into Myrinet worms, send (“switch”) them to the rightLANai “exit”, where
this destinationLANai will decapsulate the Ethernet frame and forwards it to destina-
tion Ethernet segment. In order to break down the cost of this “switching” process
between its different features, a simple conditional compilation technique was used at
first. Then the synchronization procedure between the board and the host (described
in the next section) was enriched to pass command line arguments to the embedded
code. The inclusion of some code sections has to stay under preprocessing control for
performance reasons.

The first and very basic feature implemented, after the link initialization, consists
in bare send/receive operations. Then two independent buffer rings are defined in the
boardSRAM, with two on-board indexes per ring to handle queueing: one index is up-
dated by the host control and the other by theLANai. First theLANai was evaluated
running only one of the two functions at a time, then a simple send/receive automaton
was tested, and remaining features (CRC check, variable frame length, address learn-
ing,. . . ) havealso been incrementally added.

In order to use 32 bits and 64 bits boards together on the same network,LANai 4
worm lengths are forced to 8 octets multiples, and the advancedCRC32 feature is
unused.

3.4 Control and monitoring

Functions implemented in user-level take care of uploadingLANai code in board mem-
ory, launching the desired test, simulating the Ethernet trafic/environment, collect data
and compute and display results. In addition, the host debugger may be used to inspect
and controlLANai execution in a limited way through thePCI bus.

Handshake In the beginning both codes initialize separately then a handshake mech-
anism, very close to theGM one, is used to establish the communication channel (i.e.
the shared structure), synchronize and pass parameters to the board before starting the
test.

First the host polls on a well known “bootstrap”LANai register, which is garanteed
to be initialized to zero. TheLANai writes in this visible register the pointer to the
shared structure located in its memory. Then it waits on another mailbox located in this
shared structure. The host grabs this pointer and so can write in the just-located shared
structure to transmit parameters to the board. Finally, it writes in the mailbox to signal
the board it is ready. Then the board may possibly check the network connection, and
if all clear, send a third and final handshake message to the host. The test starts.

5except of course for new registers

8



Traffic simulation As every type of host-LANai communication, the simulation of
the incoming and outcoming Ethernet traffic goes through the hostPCI bus. The host
polls on the “new frames arrived” index, picking them up, and updates the “frames
picked” index. And the same thing but reversed for the other independent outgoing
frames ring.

The issue here, is that thePCI bus is performance limited compared to the Myrinet
link. Wire PCI speed starts at 1 Gb/s (at 32 bits/33 MHz)half-duplex, whereas Myrinet
link starts at 1 Gb/s full duplex. The main difference is that thePCI bus is shared and un-
deterministic, with an important arbitration cost leading to poor performance for small
size transactions. The first solution to reduce the needed throughput is simply to read
and write only framesheaders6, since we do not care about the payload content. An-
other is to optimize index updates by sending and receiving frames headers by bursts:
this is a typical throughput/latency trade-off. But the performance on the bus still had
to be evaluated to check that the host control was tight enough. The main worry comes
from the operating system: the price to pay for the previously praised development
facilities is that our control code gets no guarantee on the latency of itsPCI accesses.
In order to check this, I measured the fillness (or emptyness) of send (or receive) rings.
Only with very long bursts could the send ring become empty, even in tests with very
short payload frames and minimalLANai tasks. This is due to the fact that even latest
Myrinet boards can not handle more than 6 millions of frames per second. So thePCI

bus was proved performant enough to handle this kind of control/simulation task.
Another issue is the limited bandwith of theSRAM of old boards. On revision 1

boards, it was possible to stall the processor thanks to intensive other concurrent mem-
ory accesses. But this time, the high arbitration/transaction cost of thePCI bus plays
with us, since we only transfer small chunks on it. By artificially pushing the polling
from the host to the board to a maximum, I checked that the polling still not slowed
down theLANai.

A possibility to optimizePCI performance could have been to exploit the complex
cache memory possibilities of the Intel P6 architecture [Int01] to carefully use the
write-combining optimization. This has not been tested. Another one would have been
to use interrupts, or thePCI DMA capability of the board to make the user code poll
on its local systemRAM instead of thePCI bus space. Interrupts have a big cost and
latency. Their interest relies in alleviating the main processor. As our main processor is
dedicated to run the test, we would have seen only the drawbacks. TheDMA possibility
is more interesting, even if it would have added a parasite cost on the evaluatedMCP.
But as the simplePCI polling was proved successful, this was not investigated.

Evaluation Measuring software micro-costs can be tricky. The Myrinet on-board
clock could have provided a solution. But this would have required an additionalLANai
cost disturbing the measure. Moreover, these clocks have been seen diverging up to
20% from their nominal frequency on old boards, so it is difficult to put trust on them.
The only alternative is to time from the host, but thePCI latency prevents any micro-
timing. The final solution is to time repetitive micro benchmarks. A variance inferior
to ������ has been achieved this way.

Debugging Since the board memory is seen from the host, it is possible to do a
sort of primitive “remote-debugging” by reading and writing distant memory locations
while using a debugger on the host. For an unknown reason, it was not possible to use

6three 32 bits words at most

9



direct read/writegdb commands. The workaround is to compile simple read and write
functions in the user code and to call them from the debugger.

Conditional compilation allows to get, in a manual but yet simple way, a pretty good
quantity of debugging information without performance consequences. PossibleMCP

debugging techniques are —tracing, by asking theMCP to frequently write line num-
bers reached, or any useful information in dedicated memory locations; —assertions,
where theMCP enters a infinite loop after writing down the crash cause.Stepping is also
possible, but much less practical since breakpoints, where theMCP polls a pre-defined
restart flag, must be recompiled. Myricom uses internally more advanced debugging
techniques, but sinceLANai programmation is discouraged, it is difficult to know if it
involves ad hoc hardware of only undocumented “software”LANai features.

References

[dG] Juan-Mariano de Goyeneche. Kernel links.http://jungla.dit.upm.
es/˜jmseyas/linux/kernel/hackers-docs.html.

[GPL] GPL: GNU general public license. http://www.gnu.org/
philosophy/license-list.html.

[Her01] Marc Herbert. Vers une architecture de commutation distribu´ee. Master’s
thesis,École Normale Sup´erieure de Lyon, Lyon, France, July 2001.

[Int01] Intel, editor. IA-32 Intel Architecture Software developer’s manual, vol-
ume 3. 2001. Available at ”Intel’s Literature Center”,http://
developer.intel.com/.

[LDP] LDP: Linux documentation project. http://www.linuxdoc.org/
mirrors.html.

[LKM] Linux kernel mailing list FAQ. http://www.tux.org/lkml/.

[Myr] Myricom web site.http://www.myri.com/.

[PT98] L. Prylli and B. Tourancheau. BIP: A new Protocol Designed for High Per-
formance Networking on Myrinet. In1st Workshop on Personal Computer
based Networks Of Workstations (PC-NOW ’98), volume 1388 ofLect. Notes
in Comp. Science, pages 472–485, Springer-Verlag, April 1998.

[RC01] Alessandro Rubini and Jonathan Corbet.Linux Device Drivers. O’Reilly,
2nd edition, June 2001. Fully available on linehttp://www.oreilly.
com/catalog/linuxdrive2/.

[SCo] SCore web site.http://pdswww.rwcp.or.jp/.

[SHDM] Anthony Skjellum, Gregory Henley, Nathan Doss, and Thomas McMa-
hon. A guide to writing myrinet control programs for LANai 3.x. Avail-
able athttp://www.erc.msstate.edu/research/labs/hpcl/
myrimpi/learn_mcp/.

[SUN] SUN product documentation.http://docs.sun.com/.

[Tec] TechFest PCI local bus technical summary.http://www.techfest.
com/.

10


