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Abstract
This document describes the Fortran 90 and C user interface toMUMPS Version
4.2 beta, a software package for the solution of sparse systems of linear equations.
We describe in detail the data structures, parameters, calling sequences, and error
diagnostics. Example programs usingMUMPS are also given.
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Résumé
Ce document décrit l’interface utilisateur de MUMPS Version 4.2 beta, un logiciel
pour la résolution de systèmes linéaires creux de grande taille. Nous décrivons en
détails les structures de données, séquences d’appels et paramètres d’erreur. Des
exemples d’utilisation de MUMPS sont aussi donnés.
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1 Introduction

MUMPS (“MUltifrontal Massively Parallel Solver”) is a package for solving linear systems of equations
�� � �, where the matrix� is sparse and can be either unsymmetric, symmetric positive definite, or
general symmetric.MUMPS uses a multifrontal technique which is a direct method based on either the��

or the���� factorization of the matrix. We refer the reader to the papers [2, 6, 17, 18] for full details
of this technique.MUMPS exploits both parallelism arising from sparsity in the matrix� and from dense
factorizations kernels.

The main features of theMUMPS package include the solution of the transposed system, input of
the matrix in assembled format (distributed or centralized) or elemental format, error analysis, iterative
refinement, scaling of the original matrix, estimate of rank deficiency and null space basis, and return of
a Schur complement matrix.MUMPS offers several built-in ordering algorithms, a tight interface to some
external ordering packages such as METIS [19], and the possibility for the user to input a given ordering.
Finally,MUMPS is available in various types (real or complex, single or double).

The software is written in Fortran 90 although there is a basic C interface available (see Section 6). The
parallel version ofMUMPS requires MPI for message passing and makes use of BLAS [12, 13], BLACS, and
ScaLAPACK [9] subroutines. It has been tested on an SGI Origin 2000, a CRAY T3E, an IBM SP, and a
cluster of PC under Linux, and on the following operating systems: IRIX 6.4 and higher, UNICOS, AIX 4.3
and higher, and Linux. On networks of SMP nodes (multiprocessor nodes with a shared memory), a parallel
shared memory BLAS library (also called multithread BLAS) is often provided by the manufacturer. Using
shared memory BLAS (between 2 and 4 threads per MPI process) can be significantly more efficient than
running with only MPI processes. For example on a computer with 2 SMP nodes and 16 processors per
node, we advise to run using 16 MPI processes with 2 threads per MPI process.

MUMPS distributes the work tasks among the processors, but an identified (host) processor is required to
perform most of the analysis phase, distribute the incoming matrix to the other (slave) processors in the case
where the matrix is centralized, collect the solution, and generally oversee the computation. The system
�� � � is solved in three main steps:

1. Analysis. The host performs an ordering (see Section 2.2) based on the symmetrized pattern��� �,
and carries out symbolic factorization. A mapping of the multifrontal computational graph is then

�Information on how to obtain updated copies of MUMPS can be obtained from the Web page
http://www.enseeiht.fr/apo/MUMPS/ or by sending email to mumps@cerfacs.fr

�amestoy@enseeiht.fr, ENSEEIHT-IRIT, 2 rue Camichel, Toulouse, France.
�I.Duff@rl.ac.uk, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX England, and CERFACS, Toulouse, France.
�Jean-Yves.L.Excellent@ens-lyon.fr, INRIA Rhône-Alpes, LIP-ENS Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France.
� jak@ii.uib.no, Parallab, University of Bergen, Norway.
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computed, and symbolic information is transferred from the host to the other processors. Using this
information, the processors estimate the memory necessary for factorization and solution.

2. Factorization. The original matrix is first distributed to processors that will participate in the
numerical factorization. The numerical factorization on each frontal matrix is conducted by a
masterprocessor (determined by the analysis phase) and one or moreslaveprocessors (determined
dynamically). Each processor allocates an array for contribution blocks and factors; the factors must
be kept for the solution phase.

3. Solution. The right-hand side� is broadcast from the host to the other processors. These processors
compute the solution� using the (distributed) factors computed during Step 2, and the solution is
assembled on the host.

Each of these phases can be called independently and several instances ofMUMPS can be handled
simultaneously.MUMPS allows the host processor to participate in computations during the factorization
and solve phases, just like a slave processor. This may lead to memory imbalance if the host already stores
the initial matrix, but it also allowsMUMPS to run on a single processor and avoids one processor being idle
during the factorization and solve phases. If the user is able to input the matrix in a distributed way or if
memory is not an issue, we recommend this mode of using the host as a working processor.

For both the symmetric and the unsymmetric algorithms used in the code, we have chosen a
fully asynchronous approach with dynamic scheduling of the computational tasks. Asynchronous
communication is used to enable overlapping between communication and computation. Dynamic
scheduling was initially chosen to accommodate numerical pivoting in the factorization. The other
important reason for this choice is that, with dynamic scheduling, the algorithm can adapt itself at execution
time to remap work and data to more appropriate processors. In fact, we combine the main features of static
and dynamic approaches; we use the estimation obtained during the analysis to map some of the main
computational tasks; the other tasks are dynamically scheduled at execution time. The main data structures
(the original matrix and the factors) are similarly partially mapped according to the analysis phase. Part of
the initial matrix is replicated to enable rapid task migration without data redistribution.

In Section 2, we describe some functionalities ofMUMPS; in Section 3, we describe the mainMUMPS
subroutine; Section 4 gives a detailed description of all input and output parameters, including various
matrix input formats, while error diagnostics are detailed Section 5. Section 6 shows how to callMUMPS
from a C program. Finally, some examples usingMUMPS are given Section 7.

2 Some functionalities ofMUMPS 4.2

We describe here some of the functionalities of the solverMUMPS. The user should refer to Section 4 for a
complete description of the parameters that must be set or that are referred to in this Section. The variables
mentioned in this section are components of mumps_par (for example, mumps_par%ICNTL) but, for the
sake of clarity, we refer to them only by their component name (that is, as ICNTL).

2.1 Input matrix structure

MUMPS provides several possibilities for the way in which the matrix can be input. This is controlled by
the parameters ICNTL(5) and ICNTL(18). If ICNTL(5) is left at its default value of 0, the input matrix
must be presented in assembled format in coordinate form. The matrix can be input centrally on the host
processor (when ICNTL(18) is left at its default value of 0). Other possibilities for the coordinate entry are
to provide only the matrix structure on the host for the analysis phase and to input the matrix entries for
the numerical factorization, distributed across the processors, either according to a mapping supplied by the
analysis (ICNTL(18) = 1) or according to a user determined mapping (ICNTL(18) = 2). It is also possible,
with the coordinate entry, to distribute the matrix pattern and the entries in any distribution in local triplets
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(ICNTL(18) = 3) for both analysis and factorization. If ICNTL(5) is set to 1, the matrix must be supplied
in elemental format and, in this case, must be input centrally on the host.

2.2 Ordering

A wide range of orderings to preserve sparsity is possible in the analysis phase, and most are introduced
for the first time in the Version 4.2 release. The parameter ICNTL(7) is used to control the ordering
requested, with the default value of 0 using the approximate minimum degree ordering as in previous
releases of theMUMPS package. Other ordering algorithms that are available in Version 4.2 ofMUMPS
are an approximate minimum degree ordering with automatic quasi dense row detection, an approximate
minimum fill-in ordering, and PORD from Jürgen Schulze at Paderborn [20]. There is also an interface to
the METIS package from Minnesota [19] so that their METIS_NODEND hybrid ordering routine can be
used. A user supplied ordering can be provided (ICNTL(7)=1) as in earlier versions ofMUMPS although
it should be noted that the logic that handles this case is different from the built in orderings so that, for
example, a different performance and different internal data structures are created by a run that generates
an ordering and a separate one that feeds that same ordering array in as input.

2.3 Solving the transposed system

Given the factorization of an unsymmetric (SYM = 0, see Section 4) matrix�, the system�� � � or
�
�
� � � can be solved during the solve stage. This is controlled by ICNTL(9) (see Section 4.5).

2.4 Pre-processing and post-processing facilities

MUMPS offers pre-processing and post-processing facilities. Permutations for a zero-free diagonal [14, 15,
16] can be applied to very unsymmetric matrices and can help reduce fill-in and arithmetic (controlled by
ICNTL(6), see Section 4.5). Prescaling of the input matrix can help reduce fill-in during factorization and
can improve the numerical accuracy. A range of classical scalings are provided and can be automatically
performed before numerical factorization. Iterative refinement (see the description of ICNTL(10) in Section
4.5) can be optionally performed after the solution step. Arioli, Demmel, and Duff [8] have shown that with
only two to three steps of iterative refinement the solution can often be significantly improved. Finally,
MUMPS also enables the user to perform classical error analysis based on the residuals (see the description
of ICNTL(11) in Section 4.5).

We calculate an estimate of the sparse backward error using the theory and metrics developed in [8].
We use the notation�� for the computed solution and a modulus sign on a vector or a matrix to indicate the
vector or matrix obtained by replacing all entries by their moduli. The scaled residual

��������
����� ���������

(1)

is computed for all equations except those for which the numerator is nonzero and the denominator is small.
For all the exceptional equations,

��������
���� ������ � ����������

(2)

is used instead, where�� is row � of �. The largest scaled residual (1) is returned, on the host, in
RINFOG(7) and the largest scaled residual (2) is returned in RINFOG(8). If all equations are in category
(1), zero is returned in RINFOG(8). The computed solution�� is the exact solution of the equation

��� Æ��� � ��� Æ��,

where
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Æ��� � �����	
�������	
����������� ,

andÆ�� � �����	
�����������	
����������������. Note thatÆ� respects the sparsity of�.
An upper bound for the error in the solution is returned in RINFOG(9) and condition numbers for the matrix
are returned in RINFOG(10) and RINFOG(11).

2.5 Rank revealing and null space basis determination

MUMPS provides an experimental option for rank detection and computation of the null space basis (see
ICNTL(16), ICNTL(17), DEFICIENCY and NULL_SPACE in Section 4). The dynamic pivoting strategy
available in both the symmetric and unsymmetric version ofMUMPS normally postpones all the singularities
to the root. Therefore, the problem of rank detection for the original matrix is reduced to the problem of
rank detection for the root matrix. At this root, rank revealing algorithms are applied. The null space basis
is then computed using backward transformations.

Strategies based on rank revealing�� and rank revealing�� are implemented.

2.6 Return a specified Schur complement

A Schur complement matrix can be returned to the user. The user must specify the list of indices of the Schur
matrix.MUMPS then provides both a partial factorization of the complete matrix and returns the assembled
Schur matrix in user memory. The Schur matrix is considered as a full matrix. The partial factorization that
builds the Schur matrix can also be used to solve linear systems associated with the “interior” variables.

For example, consider the partitioned matrix

� �

�
���� ����

���� ����

�
(3)

where the variables of���� are those specified by the user. Then the Schur complement, as returned by
MUMPS, is���� ������

��

�������, and the solve is performed on���� only. (Entries in the solution vector
corresponding to indices in the Schur matrix are explicitly set to 0.)

See also the descriptions of the components SIZE_SCHUR, LISTVAR_SCHUR, and SCHUR in
Section 4.

Note that the Schur complement could be considered as an element contribution to the interface block
in a domain decomposition and soMUMPS could be used to solve this subproblem using the element entry.

2.7 Various precisions

With the Version 4.2 release, several versions of the packageMUMPS are available:REAL, DOUBLE
PRECISION, COMPLEX, andDOUBLE COMPLEX.

The rest of this document applies to all four precisions. We use the following conventions:

1. the notation[SDCZ]MUMPS refers toDMUMPS, SMUMPS, ZMUMPS orCMUMPS for REAL, DOUBLE
PRECISION, COMPLEX andDOUBLE COMPLEX versions, respectively.

2. similarly [SDCZ]MUMPS_STRUC refers to either SMUMPS_STRUC, DMUMPS_STRUC,
CMUMPS_STRUC, or ZMUMPS_STRUC, and[sdcz]mumps_struc.h to smumps_struc.h,
dmumps_struc.h, cmumps_struc.h or zmumps_struc.h.

3. the termreal is used forREAL or DOUBLE PRECISION,

4. the termcomplex is used forCOMPLEX or DOUBLE COMPLEX,

5. complex version means eitherCOMPLEX, orDOUBLE COMPLEX version,

6. real version means eitherREAL orDOUBLE PRECISION version.
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2.8 Sequential version

In releases prior to Version 4.2, it was already possible to useMUMPS sequentially by limiting the number
of processors to one, but the link phase still required the MPI, BLACS, and ScaLAPACK libraries and the
user program needed to make explicit calls toMPI_INIT andMPI_FINALIZE.

In Version 4.2, a purely sequential version ofMUMPS is available: for this, a special library is distributed
which provides all external symbols needed byMUMPS for a sequential environment.MUMPS can thus be
used in a simple sequential program, ignoring anything related to MPI. Details on how to build a purely
sequential version ofMUMPS are available in the file README available in theMUMPS distribution. Note
that for the sequential version, PAR (see Section 4) must be set to 1.

3 Calling sequence

In the Fortran 90 interface, there is a single user callable subroutine per precision, called[SDCZ]MUMPS,
that has a single parametermumps_par of Fortran 90 derived datatype[SDCZ]MUMPS_STRUC. The
interface is the same for the sequential version, only the compilation process and libraries need be changed.
Except for the purely sequential version, MPI must be initialized by the user before the first call to
[SDCZ]MUMPS is made. The calling sequence for theDOUBLE PRECISION version may look as
follows:

INCLUDE ’mpif.h’
INCLUDE ’dmumps_struc.h’
...
INTEGER IERR
TYPE (DMUMPS_STRUC) :: mumps_par
...
CALL MPI_INIT(IERR) ! Not needed in purely sequential version
...
CALL DMUMPS( mumps_par )
...
CALL MPI_FINALIZE(IERR) ! Not needed in purely sequential version

For other precisions, dmumps_struc.h should be replaced bysmumps_struc.h,
cmumps_struc.h, or zmumps_struc.h, and the’D’ in DMUMPS and DMUMPS_STRUC by
’S’, ’C’ or ’Z’.

The variablemumps_par of datatype[SDCZ]MUMPS_STRUC holds all the data for the problem.
It has many components, only some of which are of interest to the user. The other components are
internal to the package. Some of the components must only be defined on the host. Others must be
defined on all processors. The file[sdcz]mumps_struc.h defines the derived datatype and must
always be included in the program that callsMUMPS. The file[sdcz]mumps_root.h, which is included
in [sdcz]mumps_struc.h, defines the datatype for an internal componentroot, and must also be
available at compilation time. Components of the structure[SDCZ]MUMPS_STRUC that are of interest to
the user are shown in Figure 1.

The interface toMUMPS consists in calling the subroutine[SDCZ]MUMPS with the appropriate
parameters set inmumps_par.
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INCLUDE ’[sdcz]mumps_root.h’
TYPE [SDCZ]MUMPS_STRUC

SEQUENCE
C INPUT PARAMETERS
C *****************
C Problem definition
C ------------------
C Solver (SYM=0 Unsymmetric, SYM=1 Sym. Positive Definite, SYM=2 General Symmetric)
C Type of parallelism (PAR=1 host working, PAR=0 host not working)

INTEGER SYM, PAR, JOB
C Control parameters
C ------------------

INTEGER ICNTL(40)

real CNTL(5)

C Order of Input matrix
C --------------------

INTEGER N
C Assembled input matrix : User interface
C ----------------------------------------

INTEGER NZ

real/complex, DIMENSION(:), POINTER :: A

INTEGER, DIMENSION(:), POINTER :: IRN, JCN
C Case of distributed matrix entry
C --------------------------------

INTEGER NZ_loc
INTEGER, DIMENSION(:), POINTER :: IRN_loc, JCN_loc

real/complex, DIMENSION(:), POINTER :: A_LOC

C Unassembled input matrix: User interface
C ----------------------------------------

INTEGER NELT
INTEGER, DIMENSION(:), POINTER :: ELTPTR, ELTVAR

real/complex, DIMENSION(:), POINTER :: A_ELT

C MPI Communicator
C -----------------

INTEGER COMM
C Ordering and scaling, if given by user (optional)
C -------------------------------------------------

INTEGER, DIMENSION(:), POINTER :: PERM_IN

real/complex, DIMENSION(:), POINTER :: COLSCA, ROWSCA

C INPUT/OUTPUT data
C ******************
C RHS : on input it holds the right-hand side
C on output it always holds the assembled solution
C -------------------------------------------------------

real/complex, DIMENSION(:), POINTER :: RHS

C OUTPUT data and Statistics
C **************************

INTEGER INFO(40)

real RINFO(20)
real RINFOG(20) ! Global information (host only)

INTEGER INFOG(40)
C Deficiency and null space basis (optional)
C -----------------------------------------

INTEGER DEFICIENCY

real/complex, DIMENSION(:,:), POINTER :: NULL_SPACE

C Schur
C ------

INTEGER SIZE_SCHUR
INTEGER, DIMENSION(:), POINTER :: LISTVAR_SCHUR

real/complex, DIMENSION(:), POINTER :: SCHUR

C Mapping potentially provided by MUMPS
C -------------------------------------

INTEGER, DIMENSION(:), POINTER :: MAPPING
END TYPE [SDCZ]MUMPS_STRUC

Figure 1: Main components of the structure[SDCZ]MUMPS_STRUC defined in
[sdcz]mumps_struc.h. real/complex qualifies parameters that are real in the real version and
complex in the complex version, whereasreal is used for parameters that are always real, even in the
complex version ofMUMPS.
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4 Input and output parameters

Components of the structure that must be set by the user are:

mumps_par%JOB (integer) must be initialized by the user on all processors before a call toMUMPS. It controls the
main action taken byMUMPS. It is not altered.

JOB=–1 initializes an instance of the package. This must be called before any other call to the package
concerning that instance. It sets default values for other components ofMUMPS_STRUC, which may then
be altered before subsequent calls toMUMPS. Note that three components of the structure must always be
set by the user (on all processors) before a call with JOB=–1. These are

� mumps_par%COMM,

� mumps_par%SYM, and

� mumps_par%PAR.

JOB=–2 destroys an instance of the package. All data structures associated with the instance, except those
provided by the user in mumps_par, are deallocated. It should be called by the user only when no further
calls toMUMPS with this instance are required. It should be called before a further JOB=–1 call with the
same argument mumps_par.

JOB=1 performs the analysis. It uses the pattern of the matrix� input by the user. In the case of a centralized
matrix, the following components of the structure define the matrix pattern and must be set by the user (on
the host only) before a call with JOB=1:

� mumps_par%N, mumps_par%NZ, mumps_par%IRN, and mumps_par%JCN if the user wishes to
input the structure of the matrix in assembled format (ICNTL(5)=0 and ICNTL(18)�� 3),

� mumps_par%N, mumps_par%NELT, mumps_par%ELTPTR, and mumps_par%ELTVAR if the user
wishes to input the matrix in elemental format (ICNTL(5)=1).

(See Sections 4.1-4.2.) These components should be passed unchanged when later calling the factorization
(JOB=2) and solve (JOB=3) phases.

In the case of a distributed assembled matrix,

� If ICNTL(18) = 1 or 2, the previous requirements hold except that IRN and JCN are no longer
required and need not be passed unchanged to the factorization phase.

� If ICNTL(18) = 3, the user should provide

– mumps_par%N on the host

– mumps_par%NZ_loc, mumps_par%IRN_loc and mumps_par%JCN_loc on all slave processors.
Those should be passed unchanged to the factorization (JOB=2) and solve (JOB=3) phases.

See Section 4.3 for more details and options for the distributed matrix entry.

In the analysis,MUMPS chooses pivots from the diagonal using a selection criterion to preserve sparsity. It
uses the pattern of���� but ignores numerical values. It subsequently constructs subsidiary information
for the numerical factorization (a JOB=2 call).

An option exists for the user to input the pivotal sequence (in array PERM_IN, ICNTL(7)=1, see below)
in which case only the necessary information for a JOB=2 call will be generated.

A call to MUMPS with JOB=1 must be preceded by a call with JOB=–1 on the same instance.

JOB=2 performs the factorization. It uses the numerical values of the matrix� provided by the user and the
information from the analysis phase (JOB=1) to factorize the matrix�.

If the matrix is centralized on the host (ICNTL(18)=0), the pattern of the matrix should be passed
unchanged since the last call to the analysis phase (see JOB=1); the following components of the structure
define the numerical values and must be set by the user (on the host only) before a call with JOB=2:

� mumps_par%A if the matrix is in assembled format (ICNTL(5)=0), or

� mumps_par%A_ELT if the matrix is in elemental format (ICNTL(5)=1).

If the initial matrix is distributed (ICNTL(5)=0 and ICNTL(18)�� 0), then the following components of
the structure must be set by the user on all slave processors before a call with JOB=2:

� mumps_par%A_loc on all slave processors, and
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� mumps_par%NZ_loc, mumps_par%IRN_loc and mumps_par%JCN_loc if ICNTL(18)=1 or 2. (For
ICNTL(18)=3, NZ_loc, IRN_loc and JCN_loc have already been passed to the analysis step and must
be passed unchanged.)

(See Sections 4.1–4.2–4.3.) The actual pivot sequence used during the factorization may differ slightly
from the sequence returned by the analysis if the matrix� is not diagonally dominant.

An option exists for the user to input scaling vectors or letMUMPS compute such vectors automatically (in
arrays COLSCA/ROWSCA, ICNTL(8)�� 0, see below).

A call to MUMPS with JOB=2 must be preceded by a call with JOB=1 on the same instance.

JOB=3 performs the solution. It uses the right-hand sidex provided by the user and the factors generated by the
factorization (JOB=2) to solve a system of equations�� � � or��

� � �. The pattern and values of the
matrix should be passed unchanged since the last call to the factorization phase (see JOB=2). The structure
component mumps_par%RHS must be set by the user (on the host only) before a call with JOB=3. (See
Section 4.4.)

A call to MUMPS with JOB=3 must be preceded by a call with JOB=2 (or JOB=4) on the same instance.

JOB=4 combines the actions of JOB=1 with those of JOB=2. It must be preceded by a call toMUMPS with
JOB=–1 on the same instance.

JOB=5 combines the actions of JOB=2 and JOB=3. It must be preceded by a call toMUMPS with JOB=1 on
the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. It must be preceded by a call toMUMPS with
JOB=–1 on the same instance.

Consecutive calls with JOB=2,3,5 on the same instance are possible.

mumps_par%COMM (integer) must be set by the user on all processors before the initialization phase (JOB=–1) and
must not be changed. It must be set to a valid MPI communicator that will be used for message passing inside
MUMPS. It is not altered byMUMPS. The processor with rank 0 in this communicator is used byMUMPS as the
hostprocessor.

mumps_par%SYM (integer) must be initialized by the user on all processors and is accessed byMUMPS only during
the initialization phase (JOB=–1). It is not altered byMUMPS except for the complex version ofMUMPS where
SYM=1 is replaced by SYM=2 and structural symmetry is exploited up to the root. Possible values for SYM
are:

0 � is unsymmetric

1 � is symmetric positive definite

2 � is general symmetric

For the complex version, the value SYM=1 is currently treated as SYM=2. We do not have a version for
Hermitian matrices in this release ofMUMPS.

mumps_par%PAR (integer) must be initialized by the user on all processors and is accessed byMUMPS only during
the initialization phase (JOB=–1). It is not altered byMUMPS. Possible values for PAR are:

0 host is not involved in factorization/solve phases

1 host is involved in factorization/solve phases

Other values are treated as 1.

If PAR is set to 0, the host will only hold the initial problem, perform symbolic computations during the analysis
phase, distribute data, and collect results from other processors. If set to 1, the host will also participate in
the factorization and solve phases. If the initial problem is large and memory is an issue, PAR = 1 is not
recommended if the matrix is centralized on processor 0 because this can lead to memory imbalance, with
processor 0 having a larger memory load than the other processors. Note that setting PAR to 1, and using only 1
processor, leads to a sequential code.
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4.1 Centralized assembled matrix input

mumps_par%N (integer), mumps_par%NZ (integer), mumps_par%IRN (integer array pointer, dimension NZ),
mumps_par%JCN (integer array pointer, dimension NZ), and mumps_par%A (real/complex array pointer,
dimension NZ) hold the matrix in assembled format. These components should be set by the user only on
the host and only when ICNTL(5)=0 and ICNTL(18)=0:

� N is the order of the matrix�, N� 0. It is not altered byMUMPS.

� NZ is the number of entries being input, NZ� 0. It is not altered byMUMPS.

� IRN, JCN are integer arrays of length NZ containing the row and column indices, respectively, for the
matrix entries. IRN and JCN are unchanged unless ICNTL(6)�0, in which case the original matrix might
be permuted to have a zero-free diagonal.

� A is a real (complexin the complex version) array of length NZ. The user must set A(k) to the value of the
entry in row IRN(k) and column JCN(k) of the matrix. A is not accessed when JOB=1. Duplicate entries
are summed and any with IRN(k) or JCN(k) out-of-range are ignored.

Note that, in the case of the symmetric solver, a diagonal nonzero��� is held as A(k)=���,
IRN(k)=JCN(k)=�, and a pair of off-diagonal nonzeros��� � ��� is held as A(k)=��� and IRN(k)=�,
JCN(k)=� or vice-versa. Again, duplicate entries are summed and entries with IRN(k) or JCN(k) out-of-
range are ignored.

The components N, NZ, IRN, and JCN describe the pattern of the matrix and must be set by the user before the
analysis phase (JOB=1). Component A must be set before the factorization phase (JOB=2).

4.2 Element matrix input

mumps_par%N (integer), mumps_par%NELT (integer), mumps_par%ELTPTR (integer array pointer,
dimension NELT+1), mumps_par%ELTVAR (integer array pointer, dimension ELTPTR(NELT+1)–1),
and mumps_par%A_ELT (real/complexarray pointer) hold the matrix in elemental format. These components
should be set by the user only on the host and only when ICNTL(5)=1:

� N is the order of the matrix�, N� 0. It is not altered byMUMPS.

� NELT is the number of elements being input, NELT� 0. It is not altered byMUMPS.

� ELTPTR is an integer array of length NELT+1. ELTPTR(j) points to the position in ELTVAR of the first
variable in element j, and ELTPTR(NELT+1) must be set to the position after the last variable of the last
element. Note that ELTPTR(1) should be equal to 1. It is not altered byMUMPS.

� ELTVAR is an integer array of length ELTPTR(NELT+1)–1 and must be set to the lists of variables of
the elements. It is not altered byMUMPS. Those for element j are stored in positions ELTPTR(j),. . . ,
ELTPTR(j+1)–1. Out-of-range variables are ignored.

� A_ELT is areal (complex in the complex version) array. If�� denotes ELTPTR(p+1)–ELTPTR(p), then
the values for element j are stored in positions�� � �, . . . ,�� � ��, where

– �� �
����

���
��

�, and�� � ��
� in the unsymmetric case (SYM = 0)

– �� �
����

���
��� � ��� � �����, and�� � ��� � ��� � ����� in the symmetric case (SYM�� 0).

Only the lower triangular part is stored.

Values within each element are stored column-wise. Values corresponding to out-of-range variables are
ignored and values corresponding to duplicate variables within an element are summed. A_ELT is not
accessed when JOB = 1. Note that, although the elemental matrix may be symmetric or unsymmetric in
value, its structure is always symmetric.

The components N, NELT, ELTPTR, and ELTVAR describe the pattern of the matrix and must be set by the
user before the analysis phase (JOB=1). Component A_ELT must be set before the factorization phase (JOB=2).
Note that, in the current release of the package, the element entry must be centralized on the host.
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4.3 Distributed assembled matrix input

When the matrix is in assembled form (ICNTL(5)=0), we offer several options, defined by the control parameter
ICNTL(18) described in Section 4.5. The following components of the structure define the distributed assembled
matrix input. They are valid for nonzero values of ICNTL(18), otherwise the user should refer to Section 4.1.

mumps_par%N (integer), mumps_par%NZ (integer), mumps_par%IRN (integer array pointer, dimension NZ),
mumps_par%JCN (integer array pointer, dimension NZ), mumps_par%IRN_loc (integer array pointer,
dimension NZ_loc), mumps_par%JCN_loc (integer array pointer, dimension NZ_loc), mumps_par%A_loc
(real/complexarray pointer, dimension NZ_loc), and mumps_par%MAPPING (integer array, dimension NZ).

� N is the order of the matrix�, N � 0. It must be set on the host before analysis. It is not altered by
MUMPS.

� NZ is the number of entries being input in the definition of�, NZ � 0. It must be defined on the host
before analysis if ICNTL(18) = 1, or 2.

� IRN, JCN are integer arrays of length NZ containing the row and column indices, respectively, for the
matrix entries. They must be defined on the host before analysis if ICNTL(18) = 1, or 2. They can be
deallocated by the user just after the analysis.

� NZ_loc is the number of entries local to a processor. It must be defined on all processors in the case of the
working host model of parallelism (PAR=1), and on all processors except the host in the case of the non-
working host model of parallelism (PAR=0), before analysis if ICNTL(18) = 3, and before factorization if
ICNTL(18) = 1 or 2.

� IRN_loc, JCN_loc are integer arrays of length NZ_loc containing the row and column indices, respectively,
for the matrix entries. They must be defined on all processors if PAR=1, and on all processors except the
host if PAR=0, before analysis if ICNTL(18) = 3, and before factorization if ICNTL(18) = 1 or 2.

� A_loc is areal (complex in the complex version) array of dimension NZ_loc that must be defined before
the factorization phase (JOB=2) on all processors if PAR = 1, and on all processors except the host if PAR
= 0. The user must set A_loc(k) to the value in row IRN_loc(k) and column JCN_loc(k).

� MAPPING is an integer array of size NZ which is returned byMUMPS on the host after the analysis phase
as an indication of a preferred mapping if ICNTL(18) = 1. In that case, MAPPING(i) = IPROC means that
entry IRN(i), JCN(i) should be provided on processor with rank IPROC in theMUMPS communicator.

We recommend the use of options ICNTL(18)= 2 or 3 because they are the simplest and most flexible options.
Furthermore, those options (2 or 3) are in general almost as efficient as the more sophisticated (but more complicated
for the user) option ICNTL(18)=1.

4.4 Right-hand side and solution vector

mumps_par%RHS (real/complexarray pointer, dimension N) is areal (complex in the complex version) array that
must be set by the user on the host only, before a call toMUMPS with JOB = 3, 5, or 6. On entry, RHS(i) must
hold the i-th component of the right-hand side of the equations being solved. On exit, RHS(i) will hold the i-th
component of the solution vector.

4.5 Control parameters

On exit from the initialization call (JOB=–1), the control parameters are set to default values. If the user wishes to use
values other than the defaults, the corresponding entries in mumps_par%ICNTL and mumps_par%CNTL should be
reset after this initial call and before the call in which they are used.

mumps_par%ICNTL is an integer array of dimension 40.

ICNTL(1) is the output stream for error messages. If it is negative or zero, these messages will be suppressed. Default
value is 6.

ICNTL(2) is the output stream for diagnostic printing, statistics, and warning messages. If it is negative or zero, these
messages will be suppressed. Default value is 0.
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ICNTL(3) is the output stream for global information, collected on the host. If it is negative or zero, these messages
will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diagnostic messages. Maximum value is 4 and default value
is 2 (errors and warnings printed). Possible values are

� � �: No messages output.

� 1 : Only error messages printed.

� 2 : Errors and warnings printed.

� 3 : Errors and warnings and terse diagnostics (only first ten entries of arrays) printed.

� 4 : Errors and warnings and all information on input and output parameters printed.

ICNTL(5) has default value 0 and is only accessed by the host and only during the analysis phase. If ICNTL(5) =
0, the input matrix must be given in assembled format in the structure components N, NZ, IRN, JCN, and A
(or NZ_loc, IRN_loc, JCN_loc, A_loc, see Section 4.3). If ICNTL(5) = 1, the input matrix must be given in
elemental format in the structure components N, NELT, ELTPTR, ELTVAR, and A_ELT.

ICNTL(6) has default value 7 for unsymmetric matrices and 0 for symmetric matrices. It is only accessed by the host
and only during the analysis phase. If ICNTL(6)=1, 2, 3, 4, 5, 6, 7 a column permutation based on the public
domain code MC64 (see [15, 16] for more details) is applied to the original matrix. Column permutations are
then applied to the original matrix to get a zero-free diagonal. Possible values of ICNTL(6) are:

� 0 : No column permutation is computed.

� 1 : The permuted matrix has as many entries on its diagonal possible. The values on the diagonal are of
arbitrary size.

� 2 : The smallest value on the diagonal of the permuted matrix is maximized.

� 3 : Variant of option 2 with different performance.

� 4 : The sum of the diagonal entries of the permuted matrix is maximized.

� 5 : The product of the diagonal entries of the permuted matrix is maximized. Vectors are also computed
(and stored in COLSCA and ROWSCA, only if ICNTL(8) was set to -1 or 7) to scale the permuted
matrix so that the nonzero diagonal entries in the permuted matrix are one in absolute value and all the
off-diagonal entries are less than or equal to one in absolute value.

� 6 : Similar as 5 but with a quite different algorithm.

� 7 : Based on the structural symmetry of the input matrix and on the availability of the numerical values,
the value of ICNTL(6) is automatically chosen by the software.

Other values are treated as 0.

Except for ICNTL(6)=0 or 1, the numerical values of the original matrix, mumps_par%A, must be provided
by the user during the analysis phase. The user is advised to set ICNTL(6) only when the matrix is very
unsymmetric. If the matrix is symmetric (SYM�� 0), or in elemental format (ICNTL(5)=1), or the ordering
is provided by the user (ICNTL(7)=1), or the Schur option (ICNTL(19)�� 0) is required, or the matrix is initially
distributed (ICNTL(18)�� 0) then ICNTL(6) is treated as zero.

ICNTL(7) has default value 7 and is only accessed by the host and only during the analysis phase. It determines
the pivot order to be used for the factorization. Note that, even when the ordering is provided by the user, the
analysis must be performed before numerical factorization. Possible values are:

� 0 : Approximate Minimum Degree (AMD) [1] is used,

� 1 : the pivot order should be set by the user in PERM_IN. In this case, PERM_IN(i), (i=1, ... N) holds the
position of variable i in the pivot order.

� 2 : the Approximate Minimum Fill (AMF) is used,

� 3 : Not available in the current version.

� 4 : PORD1 [20] is used,

1Distributed within MUMPS by permission of J. Schulze (University of Paderborn).
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� 5 : the METIS2 [19] routine METIS_NODEND is used,

� 6 : the Approximate Minimum Degree with automatic quasi-dense row detection is used.

� 7 : Automatic value chosen by the software during analysis phase. This choice will depend on the ordering
packages made available, on the matrix (type and size), and on the number of processors.

Other values are treated as 7. Currently, options 3, 4 and 5 are only available if the corresponding packages are
installed (see comments in the Makefiles to letMUMPS know about them). If the packages are not installed or if
the matrix is by elements, options 3, 4 and 5 are treated as 7.

With option 7, the automatic value of ICNTL(7) chosen by the package depends on the ordering packages
installed, the type of matrix (symmetric or unsymmetric), the size of the matrix and the number of processors.

For linear programming matrices of form��� , and for matrices with relatively dense rows, we highly
recommend option 6 which may significantly reduce the time for analysis.

If the user asks for a Schur complement matrix, or if the matrix is by elements, only options 0 and 1 are currently
available.

ICNTL(8) has default value 0 for symmetric matrices and 7 for unsymmetric matrices. Except if ICNTL(6)=5 or 6 then
it is only accessed by the host and only during the factorization phase. It is used to describe the scaling strategy.
If ICNTL(8) = –1, the user must provide scaling vectors in the arrays COLSCA and ROWSCA (combined with
ICNTL(6)=5, scaling arrays might automatically be computed by the package during the analysis phase). If
ICNTL(8) = 0, no scaling is performed, and arrays COLSCA/ROWSCA are not used. If ICNTL(8)� 0, the
package allocates and computes the arrays COLSCA/ROWSCA. Possible values of ICNTL(8) are listed below:

� -1: Scaling provided on entry to numerical phase,

� 0 : No scaling applied/computed.

� 1 : Diagonal scaling,

� 2 : Scaling based on [11] (HSL code MC29),

� 3 : Column scaling,

� 4 : Row and column scaling,

� 5 : Scaling based on [11] followed by column scaling,

� 6 : Scaling based on [11] followed by row and column scaling.

� 7 : Automatic choice of scaling value done during analysis.

If the input matrix is symmetric (SYM�� �), then only options –1, 0, and 1 are allowed and other options are
treated as 0; if ICNTL(8)=–1, the user should ensure that the array ROWSCA is equal to the array COLSCA. If
the input matrix is in elemental format (ICNTL(5) = 1), then only options –1 and 0 are allowed and other options
are treated as 0. If the initial matrix is distributed (ICNTL(18)�� 0 and ICNTL(5) = 0) or if rank-revealing
options are set (ICNTL(16)�� 0), then the value of ICNTL(8) is ignored and no scaling is applied.

ICNTL(9) has default value 1 and is only accessed by the host during the solve phase. If ICNTL(9) = 1,�� � � is
solved, otherwise,��

� � � is solved.

ICNTL(10) has default value 0 and is only accessed by the host during the solve phase. It corresponds to the maximum
number of steps of iterative refinement. If ICNTL(10)� 0, iterative refinement is not performed.

ICNTL(11) has default value 0 and is only accessed by the host and only during the solve phase. A positive value
will return statistics related to the linear system solved (�� � � or ��

� � � depending on the value of
ICNTL(9)): the infinite norm of the input matrix, the computed solution, and the scaled residual in RINFOG(4)
to RINFOG(6), respectively, a backward error estimate in RINFOG(7) and RINFOG(8), an estimate for the error
in the solution in RINFOG(9), and condition numbers for the matrix in RINFOG(10) and RINFOG(11). See also
Section 2.4. Note that if performance is concerned, ICNTL(11) should be left to 0.

Note that, although the following ICNTL entries (12 to 15) control the efficiency of the factorization and solve
phases, they involve preprocessing work performed during analysis and must thus be set at the analysis phase.

2See http://www-users.cs.umn.edu/�karypis/metis/ to obtain a copy.
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ICNTL(12) has default value 0 and is only accessed by the host and only during the analysis phase. If ICNTL(12) =
0, node level parallelism is switched on, otherwise only tree parallelism will be used during factorization/solve
phases.

ICNTL(13) has default value 0 and is only accessed by the host during the analysis phase. If ICNTL(13) = 0,
ScaLAPACK will be used for the root node if the size of the root node of the assembly tree is larger than a
machine-dependent minimum size. Otherwise, the root node of the tree will be processed sequentially.

ICNTL(14) is accessed by the host both during the analysis and the factorization phases. It corresponds to the
percentage increase in the estimated working space. When significant extra fill-in is caused by numerical
pivoting, larger values of ICNTL(14) may help use the real working space more efficiently. Default value is
20 % except for symmetric positive definite matrices (SYM=1) where the default value is 10 %.

ICNTL(15) has default value 0 and is only accessed by the host during the analysis phase. If ICNTL(15) = 0, the
criterion for mapping the top of the tree to the processors is based on memory balance only. Otherwise, mapping
is based on the number of flops.

Note that options ICNTL(16) and ICNTL(17) correspond to an experimental research prototype and those
functionalities are not maintained.

ICNTL(16) has default value 0 and is only accessed by the host. During the analysis phase, a valid positive value
prepares the data for later use of the null space functionality. If ICNTL(16) is negative or zero, the null space
feature will be disabled during the factorization phase.

During the factorization phase, if ICNTL(16) was positive for analysis, values of ICNTL(16) have the following
meaning.

0 : no null space analysis is performed

1,3,5,7,9 : rank detection only

2,4,6,8,10 : rank detection and null space basis.

The deficiency of the matrix is returned in mumps_par%DEFICIENCY (on all processors) after the factorization
phase. If a null space basis was required, it is returned on the host in mumps_par%NULL_SPACE, areal
(complex in the complex version) array pointer of size N� DEFICIENCY allocated byMUMPS.

The following strategies have been implemented:

1,2 :�	 with pivoting,

3,4 :�	 with pivoting improved by Chan algorithm,

5,6 :�
 with partial pivoting,

7,8 : an improved strategy based on�
 with partial pivoting.

9,10 : ICNTL(17) is used as the exact size of the (pseudo-)null space.

Options 3 to 8 although implemented and ready for experimentation are not currently available to the user, and
are treated as 0. Although implemented, the parallel treatment of the root node (see ICNTL(14) above) is also
disabled when ICNTL(16)� 0.

ICNTL(17) has default value 0 and is only accessed by the host during the factorization phase if rank detection is
effective (ICNTL(16)�� 0). In such cases,

� if 0 � ICNTL(16) � 8, ICNTL(17) should hold an estimate of the maximum size of the null space. If
ICNTL(17) is negative or zero,MUMPS assumes that the user has no information about the null space size.

� if ICNTL(16) is 9 or 10, ICNTL(17) should hold the exact size of the null space (or pseudo-null space).

ICNTL(18) has default value 0 and is only accessed by the host during the analysis phase, if the matrix format is
assembled (ICNTL(5) = 0). ICNTL(18) defines the strategy for the distributed input matrix. Possible values are:

� 0: the input matrix is centralized on the host. This is the default, see Section 4.1.

� 1: the user provides the structure of the matrix on the host at analysis,MUMPS returns a mapping and
the user should then provide the matrix distributed according to the mapping on entry to the numerical
factorization phase.
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� 2: the user provides the structure of the matrix on the host at analysis, and the distributed matrix on all
slave processors at factorization. Any distribution is allowed.

� 3: user directly provides the distributed matrix input both for analysis and factorization.

For options 1, 2, 3, see Section 4.3 for more details on the input/output parameters toMUMPS. For flexibility,
options 2 or 3 are recommended.

ICNTL(19) has default value 0 and is only accessed by the host during the analysis phase. If ICNTL(19)�� 0 then the
Schur matrix will be returned to the user. The user must set on entry on the host node (before analysis):

� the integer variable SIZE_SCHUR to the size of the Schur matrix,

� the integer array pointer LISTVAR_SCHUR to the list of indices of the Schur matrix.

Before the factorization phase, on the host node, the 1-dimensional pointer array SCHUR should point to
SIZE_SCHUR*SIZE_SCHUR locations in memory, allocated by the user. On output from the factorization
phase, and on the host node, the 1-dimensional pointer array SCHUR of length SIZE_SCHUR*SIZE_SCHUR
holds the (dense) Schur matrix of order SIZE_SCHUR. Note that the order of the indices in the Schur matrix is
identical to the order provided by the user in LISTVAR_SCHUR and that the Schur matrix is storedby rows.
If the matrix is symmetric then only the lower triangular part of the Schur matrix is provided (by rows) and the
upper part is not significant.

The partial factorization of the interior variables can then be exploited to perform a solve phase (transposed
matrix or not). Note that the right-hand side (RHS) provided on input must still be of size N even if only the
N-SIZE_SCHUR indices will be considered and if only N-SIZE_SCHUR indices of the solution will be relevant
to the user.

Finally note that since the Schur complement can be viewed as a partial factorization of the global matrix
(with partial ordering of the variables provided by the user) the following options ofMUMPS are incompatible
with the Schur option: null space, maximum transversal, scaling, iterative refinement, error analysis. Note
that if the ordering is given then the following property should hold: PERM_IN(LISTVAR_SCHUR(i)) = N-
SIZE_SCHUR+i, for i=1,SIZE_SCHUR.

ICNTL(20-40) are not used in the current version.

mumps_par%CNTL is areal (alsoreal in the complex version) array of dimension 5.

CNTL(1) is the relative threshold for numerical pivoting. It forms a trade-off between preserving sparsity and ensuring
numerical stability during the factorization. In general, a larger value of CNTL(1) increases fill-in but leads to a
more accurate factorization. If CNTL(1) is nonzero, numerical pivoting will be performed. If CNTL(1) is zero,
no such pivoting will be performed and the subroutine will fail if a zero pivot is encountered. If the matrix is
diagonally dominant, then setting CNTL(1) to zero will decrease the factorization time while still providing a
stable decomposition. If the code is called for unsymmetric or general symmetric matrices, CNTL(1) has default
value 0.01. For symmetric positive definite matrices, numerical pivoting is suppressed and the default value is
0.0. Values less than 0.0 are treated as 0.0, values greater than 1.0 are treated as 1.0.

CNTL(2) is the stopping criterion for iterative refinement and is only accessed by the host during the solve phase.
Let��� � ��	�

����
��������������

[8]. Iterative refinement will stop when either the required accuracy is reached
(��� � CNTL(2) ) or the convergence rate is too slow (��� does not decrease by at least a factor of 5).
Default value is

�
�.

CNTL(3) determines the absolute threshold���� for numerical pivoting. It has default value -1.0 and is only accessed
by the host during the numerical factorization phase. If CNTL(3)� 0, ���� is determined automatically:
���� � ���� if ICNTL(16) �� 0 or SYM = 2;���� � � otherwise. If CNTL(3)� 0, then the value���� �
CNTL(3) is used. During the numerical factorization, a potential pivot has to be larger than���� to be accepted.

CNTL(4) - CNTL(5) are not used in the current version.

4.6 Other optional input/output parameters

mumps_par%COLSCA, mumps_par%ROWSCA (double precision array pointers, dimension N) are optional scaling
arrays required only by the host. If a scaling is provided by the user (ICNTL(8)=–1), these arrays must be
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allocated and initialized by the user on the host, before a call to the factorization phase (JOB=2). They might
also be automatically allocated and computed by the package during analysis (if ICNTL(6)=5 or 6). They should
be passed unchanged to the solve phase (JOB=3).

mumps_par%PERM_IN (integer array pointer, dimension N) must be allocated and initialized by the user on the host
if ICNTL(7)=1. It is accessed during the analysis (JOB=1) and PERM_IN(i), i=1,. . . , N must hold the position
of variable i in the pivot order. Note that, even when the ordering is provided by the user, the analysis must still
be performed before numerical factorization.

mumps_par%SIZE_SCHUR (integer) must be initialized on the host to the size of the Schur complement if ICNTL(19)
�� 0. It is accessed during the analysis phase and should be passed unchanged to the factorization and solve
phases.

mumps_par%LISTVAR_SCHUR (integer array pointer, dimension mumps_par%SIZE_SCHUR must be allocated
and initialized by the user on the host if ICNTL(19)�� 0. It is not altered byMUMPS. It is accessed during
analysis (JOB=1) and LISTVAR_SCHUR(i), i=1,. . . , SIZE_SCHUR must hold the��� index of the Schur
matrix.

mumps_par%SCHUR is areal (complex in the complex version) pointer array of size SIZE_SCHUR�
SIZE_SCHUR that must be allocated by the user on the host before the factorization phase if ICNTL(19)��
0. On exit, it holds the Schur complement matrix (see ICNTL(19) above).

mumps_par%MAXIS and mumps_par%MAXS (integers) are defined, for each processor, as the size of the integer
and the real (complex for the complex version) workspaces respectively required for factorization and/or solve.
On return from analysis (JOB = 1), INFO(7) and INFO(8) return the minimum values for MAXIS and MAXS,
respectively, to the user. If the user has reason to believe that significant numerical pivoting will be required,
it may be desirable to choose a higher value for MAXIS (or MAXS) than output from the analysis. At the
beginning of the factorization, MAXIS and MAXS are set to the maximum of estimates based on analysis phase
data and the values supplied by the user. An integer array IS of size MAXIS and a real (complex in the complex
version) array S of size MAXS are then dynamically allocated and used during the factorization and solve phases
to hold the factors and contribution blocks.

mumps_par%DEFICIENCY (integer) is set during the factorization step to the deficiency of the initial matrix if
ICNTL(16) was set to a nonzero value.

mumps_par%NULL_SPACE is areal (complex in the complex version) pointer array of size N� DEFICIENCY
that is allocated byMUMPS and contains the null space basis of�, if required by the value of ICNTL(16).
mumps_par%NULL_SPACE is set during the factorization step.

4.7 Information parameters
The parameters described in this section are returned byMUMPS and hold information that may be of interest to the
user. Some of the information is local to each processor and some only on the host. If an error is detected (see Section
5), the information may be incomplete.

4.7.1 Information local to each processor

The arrays mumps_par%RINFO and mumps_par%INFO are local to each process.

mumps_par%RINFO is a double precision array of dimension 20. It contains the following local information on the
execution ofMUMPS:

RINFO(1) - after analysis: The estimated number of floating-point operations on the processor for the elimination
process.

RINFO(2) - after factorization: The number of floating-point operations on the processor for the assembly process.

RINFO(3) - after factorization: The number of floating-point operations on the processor for the elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumps_par%INFO is an integer array of dimension 40. It contains the following local information on the execution of
MUMPS:
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INFO(1) is 0 if the call toMUMPSwas successful, negative if an error occurred (see Section 5), or positive if a warning
is returned.

INFO(2) holds additional information about the error or the warning. If INFO(1)=–1, INFO(2) is the processor number
(in communicator mumps_par%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated real space needed on the processor for factors.

INFO(4) - after analysis: Estimated integer space needed on the processor for factors.

INFO(5) - after analysis: Estimated maximum front size on the processor.

INFO(6) - after analysis: Number of nodes in the complete tree. The same value is returned on all processors.

INFO(7) - after analysis: Minimum value of MAXIS estimated by the analysis phase to run the numerical factorization
successfully.

INFO(8) - after analysis: Minimum value of MAXS estimated by the analysis phase to run the numerical factorization
successfully.

INFO(9) - after factorization: Size of the real space used on the processor to store the LU factors.

INFO(10) - after factorization: Size of the integer space used on the processor to store the LU factors.

INFO(11) - after factorization: Order of the largest frontal matrix processed on the processor.

INFO(12) - after factorization: Number of off-diagonal pivots encountered on the processor or number of negative
pivots if the SYM=1.

INFO(13) - after factorization: The number of uneliminated variables, corresponding to delayed pivots, sent to the
father. If a delayed pivot is subsequently passed to the father of the father, it is counted a second time.

INFO(14) - after factorization: Number of memory compresses on the processor.

INFO(15) - after analysis: estimated total size (in millions of bytes) of allMUMPS internal data for running numerical
factorization.

INFO(16) - after factorization: total size (in millions of bytes) of allMUMPS internal data used during numerical
factorization.

INFO(17) - INFO(40) are not used in the current version.

4.7.2 Information available on the host

The arrays mumps_par%RINFOG and mumps_par%INFOG :

mumps_par%RINFOG is a double precision array of dimension 20. It contains the following global information on the
execution ofMUMPS:

RINFOG(1) - after analysis: The estimated number of floating-point operations (on all processors) for the elimination
process.

RINFOG(2) - after factorization: The total number of floating-point operations (on all processors) for the assembly
process.

RINFOG(3) - after factorization: The total number of floating-point operations (on all processors) for the elimination
process.

RINFOG(4) to RINFOG(11) - after solve with error analysis: Only returned on the host process if ICNTL(11)�� 0.
See description of ICNTL(11).

RINFOG(12) - RINFOG(20) are not used in the current version.

mumps_par%INFOG is an integer array of dimension 40. It contains the following global information on the execution
of MUMPS:

INFOG(1) is 0 if the call toMUMPS was successful, negative if an error occurred (see Section 5), or positive if a
warning is returned.

INFOG(2) holds additional information about the error or the warning.
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The difference between INFOG(1:2) and INFO(1:2) is that INFOG(1:2) is the same on all processors. It has the
value of INFO(1:2) of the processor which returned with the most negative INFO(1) value. For example, if processor
� returns with INFO(1)=-13, and INFO(2)=10000, then all other processors will return with INFOG(1)=-13 and
INFOG(2)=10000, but still INFO(1)=-1 and INFO(2)=�.

INFOG(3) - after analysis: Total estimated real workspace for factors on all processors.

INFOG(4) - after analysis: Total estimated integer workspace for factors on all processors.

INFOG(5) - after analysis: Estimated maximum front size in the complete tree.

INFOG(6) - after analysis: Number of nodes in the complete tree.

INFOG(7:8) : not significant.

INFOG(9) - after factorization: Total real space to store the LU factors.

INFOG(10) - after factorization: Total integer space to store the LU factors.

INFOG(11) - after factorization: Order of largest frontal matrix.

INFOG(12) - after factorization: Total number of off-diagonal pivots or negative pivots if SYM=1.

INFOG(13) - after factorization: Total number of delayed pivots.

INFOG(14) - after factorization: Total number of memory compresses.

INFOG(15) - after solution: Number of steps of iterative refinement.

INFOG(16) - after analysis: Estimated size (in million of bytes) of allMUMPS internal data for running factorization:
value on the most memory consuming processor.

INFOG(17) - after analysis: Estimated size (in millions of bytes) of allMUMPS internal data for running factorization:
sum over all processors.

INFOG(18) - after factorization: Size in millions of bytes of allMUMPS internal data during factorization: value on
the most memory consuming processor.

INFOG(19) - after factorization: Size in millions of bytes of allMUMPS internal data during factorization: sum over
all processors.

INFOG(20) - after analysis: Estimated number of entries in the factors.

INFOG(21) - INFOG(40) are not used in the current version.

5 Error diagnostics

MUMPS uses the following mechanism to process errors that may occur during the parallel execution of
the code. If, during a call toMUMPS, an error occurs on a processor, this processor informs all the other
processors before they return from the call. In parts of the code where messages are sent asynchronously
(for example factorization and solve phases), the processor on which the error occurs sends a message to
the other processors with a specific error tag. On the other hand, if the error occurs in a subroutine that does
not use asynchronous communication, the processor propagates the error to the other processors.

On successful completion, a call toMUMPS will exit with the parameter mumps_par%INFOG(1) set to
zero. A negative value for mumps_par%INFOG(1) indicates that an error has been detected on one of the
processors. For example, if processor� returns with INFO(1)=–8 and INFO(2)=1000, then processor� ran
out of integer workspace during the factorization and the size of the workspace MAXIS should be increased
by 1000 at least. The other processors are informed about this error and return with INFO(1) = –1 (i.e., an
error occurred on another processor) and INFO(2)=� (i.e., the error occurred on processor�). Processors
that detected a local error, do not overwrite INFO(1), i.e., only processors that did not produce an error will
set INFO(1) to –1 and INFO(2) to the processor having the smallest error code.

The behaviour is slightly different for INFOG(1) and INFOG(2): in the previous example, all processors
would return with INFOG(1)=–8 and INFOG(2)=1000.

The possible error codes returned in INFO(1) (and INFOG(1)) have the following meaning:
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–1 An error occurred on processor INFO(2).

–2 NZ is out of range. INFO(2)=NZ.

–3 MUMPS was called with an invalid value for JOB. This may happen for example if the analysis (JOB=1) was not
performed before the factorization (JOB=2), or the factorization was not performed before the solve (JOB=3).
See item for JOB in Section 3. This error also occurs if JOB does not contain the same value on all processes on
entry toMUMPS.

–4 Error in user-provided permutation array PERM_IN in position INFO(2). This error occurs on the host only.

–5 Problem of REAL workspace allocation of size INFO(2) during analysis.

–6 Matrix is singular in structure.

–7 Problem of INTEGER workspace allocation of size INFO(2) during analysis.

–8 MAXIS too small for factorization. This may happen, for example, if numerical pivoting leads to significantly
more fill-in than was predicted by the analysis. The user should increase the value of ICNTL(14) or the value of
MAXIS before entering the factorization (JOB=2).

–9 MAXS too small for factorization. The user should increase the value of ICNTL(14) or MAXS before entering the
factorization (JOB=2).

–10 Numerically singular matrix.

–11 MAXS too small for solution. See error INFO(1)=–9.

–12 MAXS too small for iterative refinement. See error INFO(1)=–9.

–13 Error in a Fortran ALLOCATE statement. INFO(2) contains the size that the package requested.

–14 MAXIS too small for solution. See error INFO(1)=–8.

–15 MAXIS too small for iterative refinement and/or error analysis. See error INFO(1)=–8.

–16 N is out of range. INFO(2)=N.

–17 The internal send buffer that was allocated dynamically byMUMPS on the processor is too small. The user should
increase the value of ICNTL(14) before entering the analysis (JOB=1).

–18 MAXIS too small to process root node. See error INFO(1)=–8.

–19 MAXS too small to process root node. See error INFO(1)=–9.

–20 The internal reception buffer that was allocated dynamically byMUMPS on the processor is too small. INFO(2)
holds the minimum size of the reception buffer required (in bytes). The user should increase the value of
ICNTL(14) before entering the analysis (JOB=1).

–21 Incompatible values of PAR=0 and NPROCS=1. INFO(2)=NPROCS. RunningMUMPS in host-node mode (the
host is not a slave processor itself) requires at least two processors. The user should either set PAR to 1 or
increase the number of processors.

–22 A pointer array is provided by the user that is not associated or that has insufficient size. INFO(2) points to the
pointer array having the wrong format:

INFO(2) array
1 IRN or ELTPTR
2 JCN or ELTVAR
3 PERM_IN
4 A or A_ELT
5 ROWSCA
6 COLSCA
7 RHS
8 LISTVAR_SCHUR
9 SCHUR

–23 MPI was not initialized by the user prior to a call toMUMPS with JOB=–1.

–24 NELT is out of range. INFO(2)=NELT.

–25 A problem has occured in the initialization of the BLACS. This may be because you are using a vendor’s BLACS.
Try using a BLACS version from netlib instead.
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A positive value of INFO(1) is associated with a warning message which will be output on unit
ICNTL(2).

+1 Index (in IRN or JCN) out of range. Action taken by subroutine is to ignore any such entries and continue. INFO(2)
is set to the number of faulty entries. Details of the first ten are printed on unit ICNTL(2).

+2 During error analysis the max-norm of the computed solution was found to be zero.

+8 Warning return from the iterative refinement routine. More than ICNTL(10) iterations are required.

+ Combinations of the above warnings will correspond to summing the constituent warnings.

6 Calling MUMPS from C

MUMPS is a Fortran 90 library, designed to be used from Fortran 90 rather than C. However a basic C
interface is provided that allows users to callMUMPS directly from C programs. Similarly to the Fortran
90 interface, the C interface uses a structure whose components match those in theMUMPS structure for
Fortran (Figure 1). Thus the description of the parameters in Section 4 applies. Figure 2 shows the C
structure[SDCZ]MUMPS_STRUC_C. This structure is defined in the include file[sdcz]mumps_c.h
and there is one main routine per available precision with the following prototype:

void [sdcz]mumps_c(MUMPS_STRUC_C * id);

typedef struct

�
int sym, par, job;

int comm_fortran; /* Fortran communicator */

int icntl[40];

real cntl[5];

int n;

/* Assembled entry */

int nz; int *irn; int *jcn; real/complex *a;

/* Distributed entry */

int nz_loc; int *irn_loc; int *jcn_loc; real/complex *a_loc;

/* Element entry */

int nelt; int *eltptr; int *eltvar; real/complex *a_elt;

/* Ordering, if given by user */

int *perm_in;

/* Scaling (input only in this version) */

real/complex *colsca; real/complex *rowsca;

/* Output data and statistics */

real/complex *rhs;

int info[40],infog[40];

real rinfo[20], rinfog[20];

/* Null space */

int deficiency; real/complex * nullspace; int * mapping;

/* Schur */ int size_schur; int *listvar_schur; real/complex *schur;

/* Internal parameters */

int instance_number;

	 [SDCZ]MUMPS_STRUC_C;

Figure 2: Definition of the C structure[SDCZ]MUMPS_STRUC_C. real/complexis used for data that can
be either real or complex,real for data that stays real (float or double) in the complex version.
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An example of callingMUMPS from C for a complex assembled problem is given in Section 7.3. The
following subsections discuss some technical issues that a user should be aware of before using the C
interface toMUMPS.

6.1 Array indices

Arrays in C start at index 0 whereas they normally start at 1 in Fortran. Therefore, care must be taken when
providing arrays to the C structure. For example, the row indices of the matrixA, stored inIRN(1:NZ)
in the Fortran version should be stored inirn[0:nz-1] in the C version. (The contents ofirn itself is
unchanged with values between 1 and N.) One solution to deal with this is to define macros:

#define ICNTL( i ) icntl[ (i) - 1 ]
#define A( i ) a[ (i) -1 ]
#define IRN( i ) irn[ (i) -1 ]
...

and then use the uppercase notation with parenthesis (instead of lowercase/brackets). In that case, the
notationid.IRN(I), whereI is in � 1, 2, ... N� can be used instead ofid.irn[I-1]; this notation
then matches exactly with the description in Section 4, where arrays are supposed to start at 1.

This can be slightly more confusing for element matrix input (see Section 4.2), where some arrays are
used to index other arrays. For instance, the first value ineltptr, eltptr[0], pointing into the list of
variables of the first element ineltvar, should be equal to 1. Effectively, using the notation above, the list
of variables for element� � � starts at locationELTVAR(ELTPTR(j)) = ELTVAR(eltptr[j-1])
= eltvar[eltptr[j-1]-1].

6.2 Issues related to the C and Fortran communicators

In general, C and Fortran communicators have a different datatype and are not directly compatible. For the
C interface,MUMPS requires a Fortran communicator to be provided inid.comm_fortran. If, however,
this field is not provided, the Fortran communicatorMPI_COMM_WORLD is used by default. If you need
to callMUMPS based on a smaller number of processors defined by a C subcommunicator, then you should
convert your C communicator to a Fortran one. This has not been included inMUMPS because it is dependent
on theMPI implementation and thus not portable. ForMPI2, you may just do

id.comm_f77 = (F_INT) MPI_Comm_c2f(comm_c);

For MPI implementations where the Fortran and the C communicators have the same integer representation,
id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c); should work.

For MPICH, check ifid.comm_fortran = MPIR_FromPointer(comm_c)gives the expected
result.

6.3 Fortran I/O

Diagnostic, warning and error messages (controlled byICNTL(1:4) / icntl[0..3]) are based on
Fortran file units. Use the value 6 for the Fortran unit 6 which corresponds tostdout. For a more general
usage with specific file names from C, passing a C file handler is not currently possible. One solution would
be to use a Fortran subroutine along the lines of the model below:

SUBROUTINE OPENFILE( UNIT, NAME )
INTEGER UNIT
CHARACTER*(*) NAME
OPEN(UNIT, file=NAME)
RETURN
END
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and have (in the C user code) a statement like
openfile_( &mumps_par.ICNTL(1), name, name_length_byval)

(or slightly different depending on the C-Fortran calling conventions); something similar could be done to
close the file.

6.4 Runtime libraries

The Fortran 90 runtime library corresponding to the compiler used to compileMUMPS is required at the
link stage. One way to provide it is to perform the link phase with the Fortran compiler (instead of the C
compiler orld).

6.5 Integer, real and complex datatypes in C and Fortran

We assume that theint, float anddouble types are compatible with the FortranINTEGER,REAL and
DOUBLE PRECISION datatypes. If this was not the case, the files[dscz]mumps_prec.hor Makefiles
would need to be modified accordingly.

Since not all C compilers define thecomplex datatype (this only appeared in the C99 standard), we
define the following, compatible with the FortranCOMPLEX andDOUBLE COMPLEX types:

typedef struct {float r,i;} mumps_complex; for simple precision (cmumps), and
typedef struct {double r,i;} mumps_double_complex; for double precision

(zmumps).
Types for complex data from the user program should be compatible with those above.

6.6 Sequential version

The C interface toMUMPS is compatible with the sequential version; see Section 2.8.

7 Examples of use ofMUMPS

7.1 An assembled problem

An example program illustrating a possible use ofMUMPS on assembledDOUBLE PRECISION problems
is given Figure 3. Two files must be included in the program:mpif.h for MPI andmumps_struc.h
for MUMPS. The filemumps_root.h must also be available because it is included inmumps_struc.h.
The initialization and termination of MPI are performed in the user program via the calls toMPI_INIT
andMPI_FINALIZE.

TheMUMPS package is initialized by callingMUMPS with JOB=–1, the problem is read in by the host
(in the components N, NZ, IRN, JCN, A, and RHS), and the solution is computed in RHS with a call on
all processors toMUMPS with JOB=6. Finally, a call toMUMPS with JOB=–2 is performed to deallocate the
data structures used by the instance of the package.

Thus for the assembled�� � matrix and right-hand side
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we could have as input
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, I
CALL MPI_INIT(IERR)

C Define a communicator for the package
id%COMM = MPI_COMM_WORLD

C Ask for unsymmetric code
id%SYM = 0

C Host working
id%PAR = 1

C Initialize an instance of the package
id%JOB = -1
CALL DMUMPS(id)

C Define problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN

READ(5,*) id%N
READ(5,*) id%NZ
ALLOCATE( id%IRN ( id%NZ ) )
ALLOCATE( id%JCN ( id%NZ ) )
ALLOCATE( id%A( id%NZ ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5,*) ( id%IRN(I) ,I=1, id%NZ )
READ(5,*) ( id%JCN(I) ,I=1, id%NZ )
READ(5,*) ( id%A(I),I=1, id%NZ )
READ(5,*) ( id%RHS(I) ,I=1, id%N )

END IF
C Call package for solution

id%JOB = 6
CALL DMUMPS(id)

C Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN

WRITE( 6, * ) ’ Solution is ’,(id%RHS(I),I=1,id%N)
END IF

C Deallocate user data
IF ( id%MYID .eq. 0 )THEN

DEALLOCATE( id%IRN )
DEALLOCATE( id%JCN )
DEALLOCATE( id%A )
DEALLOCATE( id%RHS )

END IF
C Destroy the instance (deallocate internal data structures)

id%JOB = -2
CALL DMUMPS(id)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 3: Example program usingMUMPS on an assembledDOUBLE PRECISION problem
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5 : N
12 : NZ
1 2 3.0
2 3 -3.0
4 3 2.0
5 5 1.0
2 1 3.0
1 1 2.0
5 2 4.0
3 4 2.0
2 5 6.0
3 2 -1.0
1 3 4.0
3 3 1.0 : A
20.0
24.0
9.0
6.0
13.0 :RHS

and we obtain the solution RHS(i) = i, i = 1,. . . , 5.

7.2 An elemental problem

An example of a driver to useMUMPS for elementDOUBLE PRECISION problems is given in Figure 4.
The calling sequence is similar to that for the assembled problem in Section 7.1 but now the host reads the
problem in components N, NELT, ELTPTR, ELTVAR, A_ELT, and RHS. Note that for elemental problems
ICNTL(5) must be set to 1 and that elemental matrices always have a symmetric structure. For the two-
element matrix and right-hand side
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we could have as input

5
2
6
18
1 4 7
1 2 3 3 4 5
-1.0 2.0 1.0 2.0 1.0 1.0 3.0 1.0 1.0 2.0 1.0 3.0 -1.0 2.0 2.0 3.0 -1.0 1.0
12.0 7.0 23.0 6.0 22.0

and we obtain the solution RHS(i) = i, i = 1,. . . , 5.

7.3 An example of calling MUMPS from C

An example of a driver to useMUMPS from C is given in Figure 5.
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, LELTVAR, NA_ELT
CALL MPI_INIT(IERR)

C Define a communicator for the package
id%COMM = MPI_COMM_WORLD

C Ask for unsymmetric code
id%SYM = 0

C Host working
id%PAR = 1

C Initialize an instance of the package
id%JOB = -1
CALL DMUMPS(id)

C Define the problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN

READ(5,*) id%N
READ(5,*) id%NELT
READ(5,*) LELTVAR
READ(5,*) NA_ELT
ALLOCATE( id%ELTPTR ( id%NELT+1 ) )
ALLOCATE( id%ELTVAR ( LELTVAR ) )
ALLOCATE( id%A_ELT( NA_ELT ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5,*) ( id%ELTPTR(I) ,I=1, id%NELT+1 )
READ(5,*) ( id%ELTVAR(I) ,I=1, LELTVAR )
READ(5,*) ( id%A_ELT(I),I=1, NA_ELT )
READ(5,*) ( id%RHS(I) ,I=1, id%N )

END IF
C Specify element entry

id%ICNTL(5) = 1
C Call package for solution

id%JOB = 6
CALL DMUMPS(id)

C Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN

WRITE( 6, * ) ’ Solution is ’,(id%RHS(I),I=1,id%N)
END IF

C Deallocate user data
DEALLOCATE( id%ELTPTR )
DEALLOCATE( id%ELTVAR )
DEALLOCATE( id%A_ELT )
DEALLOCATE( id%RHS )

C Destroy the instance (deallocate internal data structures)
id%JOB = -2
CALL DMUMPS(id)
CALL MPI_FINALIZE(IERR)
STOP
END

Figure 4: Example program usingMUMPS on an elementDOUBLE PRECISION problem.
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/* Example program using the C interface to the
* double precision version of MUMPS, dmumps_c.
* We solve the system A x = RHS with
* A = diag(1 2) and RHS = [1 4]^T
* Solution is [1 2]^T */

#include <stdio.h>
#include "mpi.h"
#include "dmumps_c.h"
#define JOB_INIT -1
#define JOB_END -2
int main(int argc, char ** argv) {

DMUMPS_STRUC_C id;
int n = 2;
int nz = 2;
int irn[] = {1,2};
int jcn[] = {1,2};
double a[2];
double rhs[2];

int myid, ierr;
ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
/* Define A and rhs */
rhs[0]=1.0;rhs[1]=4.0;
a[0]=1.0;a[1]=2.0;

/* Initialize a MUMPS instance */
id.job=JOB_INIT; id.par=1; id.sym=0;
dmumps_c(&id);
/* Define the problem on the host */
if (myid == 0) {

id.n = n; id.nz =nz; id.irn=irn; id.jcn=jcn;
id.a = a; id.rhs = rhs;

}
#define ICNTL(I) icntl[(I)-1] /* macro s.t. indices match documentation */
/* No outputs */

id.ICNTL(1)=-1; id.ICNTL(2)=-1; id.ICNTL(3)=-1; id.ICNTL(4)=0;
/* Call the MUMPS package. Note that no MPI communicator is passed
* in "id.comm_fortran", so that MPI_COMM_WORLD is assumed by MUMPS. */
id.job=6;
dmumps_c(&id);
id.job=JOB_END; dmumps_c(&id); /* Terminate instance */
if (myid == 0) {

printf("Solution is : (%8.2f %8.2f)\n", rhs[0],rhs[1]);
}
return 0;

}

Figure 5: Example program usingMUMPS from C on an assembled problem.
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