
HAL Id: hal-02102693
https://hal-lara.archives-ouvertes.fr/hal-02102693

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BIP messages user manual
Loïc Prylli, Bernard Tourancheau

To cite this version:
Loïc Prylli, Bernard Tourancheau. BIP messages user manual. [Research Report] LIP TR-97-02,
Laboratoire de l’informatique du parallélisme. 1997, 2+13p. �hal-02102693�

https://hal-lara.archives-ouvertes.fr/hal-02102693
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

BIP Messages User Manual

Loic Prylli

Bernard Tourancheau
September ����

Technical Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) (0)4.72.72.80.00 Télécopieur : (+33) (0)4.72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

BIP Messages User Manual

Loic Prylli

Bernard Tourancheau

September ����

Abstract

BIP stands for Basic Interface for Parallelism� It is a message�
passing system implementation on top of Myrinet� It achieves one
Gigabit�s bandwidth and less than � �s latency� This manual de�
scribes the whole BIP API� as well as the tools used to compile and
run BIP programs on a Myrinet platform� The BIP API de�nition is
still evolving in function of user requirements� Still backwards com�
patibility has always been maintained until now� The last version of
the manual can be found at�
http���www�bip�univ�lyon��fr�bip�html�doc�

Keywords� Message�passing interface� BIP� Myrinet�Communication Proto�
col� High�speed networks

R�sum�

BIP �Basic Interface for Parallelism� est une interface d	
change de
messages de bas�niveau impl
ment
e sur un r
seau Myrinet� Elle
permet � l	utilisateur d	atteindre �Gbit�s de bande passante� et d	�
exploiter des latences inf
rieures � � �s� Ce manual d
crit l	ensemble
des fonctions de l	API et la mise en oeuvre pour compiler et ex
cuter
des programmes
BIP� sur un r
seau Myrinet� L	API BIP
volue
encore en fonction des besoins des utilisateurs� La compatibilit
 as�
cendante a toujours
t
 assur
e jusqu	� pr
sent� La derni�re version
de ce manuel peut �tre trouv
e sur�
http���www�bip�univ�lyon��fr�bip�html�doc�

Mots�cl�s� Biblioth�que d	
change de Messages� BIP� Myrinet� Protocole de
communication� R
seaux haut�d
bits

BIP Messages User Manual for BIP ����

Lo�c PRYLLI

September ��� ����

Contents

� Introduction �

� BIP message�passing model and semantics �

��� Overview of the BIP API �
��� Reliability �
��� Quick start example �
��� BIP
short� and
long� messages semantics � � � � � � � � � � � � � �
��� BIP queues �

� De�nition of BIP variables and functions �

��� Basic primitives and variables of BIP � � � � � � � � � � � � � � � � �
extern int bip�mynode�bip�numnodes � � � � � � � � � � � � � � �
void bip�init�void	 �
int bip�tisend�int dst�int tag�int
buf� int length	 � � �
void bip�swait�int id	 �
int bip�stest�int id	 �
int bip�tirecv�int tag�int
buf� int maxlength	 � � � � � �
int bip�rwait�int id	 �
int bip�rwaitx�int id�int
node	 � � � � � � � � � � � � � � � �
int bip�rtest�int id	 �
int bip�rtestx�int id�int
node	 � � � � � � � � � � � � � � � �
int bip�tprobe�int tag	 �
int bip�tnrecv�int tag� int
buf�int maxlength	 � � � � � �
int bip�tnrecvx�int tag� int
buf�int maxlength�int
node	 �
int
bip�tgetmsg�int tag� int
length� int
node	 � � � � �
int
bip�tngetmsg�int tag� int
length�int
node	 � � � � �
void bip�tfreemsg�int tag	 �
int bip�taginit�int tag� int nbufs� int size	 � � � � � � �

��� Blocking calls �
int bip�trecv�int tag� int
buf�int maxlength	 � � � � � � �
int bip�trecvx�int tag� int
buf�int maxlength�int
node	 �
int bip�tsend�int dst� int tag� int
buf�int length	 � � �

��� Non tagged message �
bip�isend�int dst� int
buf� int length	 � � � � � � � � � � �
int bip�irecv�int
buf� int maxlength	 � � � � � � � � � � � �
int bip�nrecv�int
buf�int maxlength	 � � � � � � � � � � � � �
int bip�nrecvx�int
buf�int maxlength�int
node	 � � � � �

�

int
bip�getmsg�int
length� int
node	 � � � � � � � � � � �
int
bip�ngetmsg�int
length� int
node	 � � � � � � � � � � �
void bip�freemsg�void	 �
int bip�probe�void	 �
int bip�recv�int
buf�int maxlength	 � � � � � � � � � � � � �
int bip�recvx�int
buf�int maxlength�int
node	 � � � � � �
int bip�send�int dst� int
buf�int length	 � � � � � � � � �

��� Comments �

� BIP utilization 	

��� Note for MPI �
��� Warning �
��� General requirements �
��� Con�guration ��
��� Creating the routing database ��
��� Specifying a BIP con�guration ��
��� Compiling the application ��
��� Running the application ��

� De�nition of the BIP con�guration �le format ��

 Installation ��

�

� Introduction

Our objective is to provide for the Myrinet �BCF���� Myr��� SBSS��� LS���
FDCF��� network a basic interface for message�passing� targeted towards par�
allel computing� Of course there are standard API well established� MPI
�SOHL���� and PVM �GBD����� but to begin with we choose to implement
our own simpler interface� BIP �for Basic Interface for Parallelism�� One of BIP
main goal is to really achieve the maximal performance of the hardware� but
with a su�cient abstraction level� to hide the hardware details�

Currently BIP messages has only been implemented for cluster of x���Linux
workstations� linked by Myrinet boards with the LANAI��� processor�

The base principle of BIP messages is to implement all communication in a
user�level library with zero�memory copies and direct access the network hard�
ware without system calls� Our current implementation achieves less than � mi�
croseconds latency for small messages and more than ���Mbytes�s bandwidth
�so more than �Gigabit�s if you take Giga������

� BIP message�passing model and semantics

��� Overview of the BIP API

The BIP API consists in several variants of send and receive primitives that
should meet any need� with both blocking and non�blocking versions�

BIP ensures reliable and ordered transmission of messages in the absence of
network fault �cf� �����

It is an error to send a message to yourself�
All messages consist of a contiguous array of words �multiple of � bytes�

properly aligned in memory�� Bu�ers can be located anywhere in the process
address space� either
global� data� or data allocated with malloc� or data on
the stack�

��� Reliability

In general a Myrinet network is reliable enough so that error recovery is not
strongly necessary� Still sometimes a network error can happen� in this case
it will be detected� Either an application terminates correctly� or it may be
aborted in case of network error� In any case� BIP ensures that no messages
can be silently lost and no corrupt message can arrive to the application�

Implementing error recovery is ongoing work� If the gain is worth� we will
make it a compile�time option� because from our experience� we have never been
able to show evidence of a network error on our platform�

��� Quick start example

Here is a small example before going into the details of BIP�

�include �bip�h�

int main�int argc�char
argv�
	

�

�

int token�

bip�init�	�

if �bip�mynode �� �	 �

token � ����

printf��token start on ��n�	�

bip�send����token��	�

bip�recv��token��	�

printf��token arrived�n�	�

� else �

bip�recv��token��	�

printf��token �d received on �d�n��token� bip�mynode	�

bip�send��bip�mynode��	�bip�numnodes��token��	�

�

return ��

�

This example can be run on � machines �here lhpca� lhpcb� lhpcc� by doing�

� bipcc token�c �o token

� bipconf lhpca lhpcb lhpcc

� bipload token

token start on �

token ��� received on �

token ��� received on �

token arrived

�

��� BIP �short� and �long� messages semantics

BIP calls have some semantic di�erences between short and long messages� the
same send and receive calls are used for both� so in simple cases� the user can
ignore the semantic distinctions�

long messages� sends and receives have a rendez�vous semantic where a
receive need to be posted before or at least
not too long� after the matching
send has begun� This is a requirement similar to the
ready send� mode of MPI�
It is in fact a bit more permissive� the precise restriction is that the receive
should be posted no longer than about �� ms after the send �after which a
message blocked on the network could be dropped in some cases�� but note
that the receive should preferably be posted before or
very soon� after the send
to avoid blocking communication paths in the Myrinet network �which could
severely a�ect performance of other communications��

On the opposite
short� messages are stored into an circular queue� so that
the send calls will not block even if no matching receive has been posted� �ex�
cept if the destination receive bu�ers are full� the amount of bu�ering can be
controlled with bip�taginit��

The limit between
short� and
long� messages is speci�ed by BIPSMALLSIZE

�and depending on the release is between ��� and ��� bytes��

�

��� BIP queues

Each message is sent to a particular queue of a particular node� Each di�erent
queue on a node is identi�ed with a tag between � and NTAGS�� �NTAGS is ���
in the current release�� The
token� example shown above use the default queue
by not specifying any tag�

Communication bu�ers for small messages are allocated at initialization for
each receive queue� you can override the default amount of bu�ers independantly
for each queue before the call to bip�init with the primitive bip�taginit�

As small messages are bu�ered on reception� it is not mandatory for the
user to receive these messages in the sending order� On the contrary� for a long
message� the application must be ready to receive such a message when it is sent�
and messages for other queues cannot be received before the user has provided
a bu�er for such a long message�

On one process send and receive functions are completely independent� At
one time� you can have at most one send call in progress� and one receive call
per tag posted� Receives on di�erent tags� and a send can be done at the same
time in di�erent threads and are thread�safe �but note that blocking calls will
not automatically generate a thread switch�� Two receives with the same tag�
or two sends cannot be done concurrently by two threads�

� De�nition of BIP variables and functions

Each C module using BIP must include the �le bip�h�

��� Basic primitives and variables of BIP

extern int bip�mynode�bip�numnodes

respectively give the logical number of the current process and the total number
of processes�

void bip�init�void	

should be called once before any other BIP primitive except bip�taginit� and
will initialize the system� Note that bip�mynode and bip�numnodes are only
valid after this call�

int bip�tisend�int dst�int tag�int
buf� int length	

this is an asynchronous tagged send call� length is the size of the message to
be sent in words �not bytes�� buf points on the message data� the destination
node number is given by dst� the message is sent to queue tag� This function
returns immediately but the bu�er should not be changed until the send has
completed as ensured by bip�swait� in the meantime you cannot do any other
send or isend communication calls�

void bip�swait�int id	

waits for the last send request to complete� it requires as argument the value
returned by the last bip�tisend� When the function returns� the bu�er can be

�

used for something else� and a new send call can be done�

int bip�stest�int id	

tests if the last bip�tisend has completed� takes the id returned by isend�
Returns � if the bu�er can be reused� � otherwise�

int bip�tirecv�int tag�int
buf� int maxlength	

this is an asynchronous receive call� tag identi�es the receive queue on which
this call applies� buf gives the target bu�er where the message will be stored
at completion� maxlength is the maximum size the bu�er is able to receive�
The �rst message that arrives �or has already arrived� for this queue from the
network will go into this bu�er� it is an error if a message longer than this size
arrives� The bu�er contents are invalid until completion �as told by bip�rwait��
and should not be modi�ed until that� This function returns an identi�cator
that should be passed to bip�rwait� This function returns immediately but
you cannot do any other recv or irecv call with the same tag until the receive
has completed �so after calling bip�rwait�bip�rtest��

int bip�rwait�int id	

waits for an asynchronous receive to complete� it requires as argument the value
returned by the corresponding bip�tirecv� It returns the size �in words� of the
message that has been received and stored in the user bu�er�

int bip�rwaitx�int id�int
node	

same thing as bip�rwait but it returns the source node of the message in the
variable pointed by node�

int bip�rtest�int id	

similar to bip�rwait� but if the reception has not completed� it does nothing
and returns ��� It never blocks�

int bip�rtestx�int id�int
node	

similar to bip�rtest expect that if the receive has completed� it also gives the
source node of the message in node�

int bip�tprobe�int tag	

if a short message can be received without blocking� it will return the size of
this message� else it will return ��� It cannot be used to detect the presence of
a long message �will always return �� if a long message is the �rst to arrive��

int bip�tnrecv�int tag� int
buf�int maxlength	

It is a non�blocking receive� if a short message is ready on the queue given by
tag� it does not block and is equivalent to bip�trecv� else it is a
no�op� call
and returns �� �not zero because that is a valid message size�� Warning� you

�

cannot receive a long message with this call� it will always return �� if a long

message is arriving to the head of the queue

int bip�tnrecvx�int tag� int
buf�int maxlength�int
node	

similar to bip�tnrecv� expect that if a message is received� the source of the
message is also returned via node�

int
bip�tgetmsg�int tag� int
length� int
node	

This function receives a message on queue tag and returns a pointer to the
contents �the message is in a statically allocated bu�er�� the message size is
returned via the parameter length� and the source of the message is returned
in node� When the user has �nished using the message contents� it must free it
explicitely via bip�tfreemsg�tag	�

int
bip�tngetmsg�int tag� int
length�int
node	

similar to bip�tgetmsg except it is non�blocking� If no message is available� it
returns a null pointer and has no side�e�ect�

void bip�tfreemsg�int tag	

frees the older bu�er received by bip�tgetmsg or bip�tngetmsg on queue tag�
There is a static circular queue of bu�ers for each tag and bu�ers of a queue
are freed� in the order they were received� You can receive several messages
via bip�tgetmsg before freeing them �in the limit of the bu�er queue for the
corresponding tag� You can not do any other kind of receive call on this queue
�such as bip�trecv� before having freed the bu�ers of all messages received via
this call for the corresponding tag�

int bip�taginit�int tag� int nbufs� int size	

Allows to override the default bu�er size allocated to the queue speci�ed by
tag� the bu�er will be able to store nbufs messages of length size without any
receive occuring� If the message are smaller� they can be more of them� But
note that you have to take into account for each message not only the payload
but also a few words �currently �� of head information for internal purpose�
This procedure can be called at most one time for each queue� and it must be
called before the bip�init function� This procedure is optional� default values
are taken� if not explicitely de�ned�

��� Blocking calls

The following functions can be semantically de�ned in terms of the previous one�
They are provided both for convenience and also because their implementation
is sometimes faster that using the basic primitives of BIP�

int bip�trecv�int tag� int
buf�int maxlength	

blocking receive� semantically equivalent to bip�rwait�bip�tirecv�tag�buf�maxlength	�

�

int bip�trecvx�int tag� int
buf�int maxlength�int
node	

blocking receive� semantically equivalent to bip�rwaitx�bip�tirecv�tag� buf�maxlength	�

int bip�tsend�int dst� int tag� int
buf�int length	

blocking send� semantically equivalent to bip�swait�bip�tisend�dst� tag�

buf�length	�

��� Non tagged message

There exists an
untagged� version of all BIP calls to maintain compatibility
with previous versions� and for convenience for applications that just need one
queue�

The functions are�

bip�isend�int dst� int
buf� int length	

equivalent to bip�tisend�dst���buf�length	

int bip�irecv�int
buf� int maxlength	

equivalent to bip�tirecv���buf�maxlength	

int bip�nrecv�int
buf�int maxlength	

equivalent to bip�tnrecv���buf�maxlength	

int bip�nrecvx�int
buf�int maxlength�int
node	

equivalent to bip�tnrecvx���buf�maxlength�node	

int
bip�getmsg�int
length� int
node	

equivalent to bip�tgetmsg���length�node	

int
bip�ngetmsg�int
length� int
node	

equivalent to bip�tngetmsg���length�node	

void bip�freemsg�void	

equivalent to bip�freemsg��	

int bip�probe�void	

equivalent to bip�tprobe��	

int bip�recv�int
buf�int maxlength	

equivalent to bip�trecv���buf�maxlength	

�

int bip�recvx�int
buf�int maxlength�int
node	

equivalent to bip�trecvx���buf�maxlength�node	

int bip�send�int dst� int
buf�int length	

equivalent to bip�tsend�dst� �� buf�length	�

��� Comments

Note that a bip�tirecv must be followed by a bip�rwait�bip�rtest� On the
other hand� the bip�swait�bip�stest is not mandatory after a bip�tisend�
but you should not reuse the bu�er or issue another send before you are sure
the message has been received at the other side �for example because you have
received an answer��

Note that in the current implementation� passing a value of maxlengthmuch
larger than the �nal message length can have a signi�cant impact on perfor�
mance�

� BIP utilization

��� Note for MPI

The scripts describes below are used for pure BIP programs as well as for MPI
programs� when using the MPI�BIP implementation�

��� Warning

As BIP relies on direct access to the hardware� bugs in either the BIP library or
in programs using BIP may crash the system� corrupt the system memory� so
use BIP at your own risk� We have tried to design BIP so that these problems
are very unlikely to occur by accident� but as the Copyright says� the software

is provided as�is� without any express or implied warranty� In no event will the

author be held liable for any damages�
But still note we are con�dent enough to run regularly BIP programs on a

machine that is the Web and mail server for our team� and have never experiment
any crash�

��� General requirements

To use BIP you must ensure the Myricom IP driver �or the BIP IP driver�
has been shutdown �with ifconfig myri� down for instance� it must still be
present so do not
rmmod� it�� This must be done on all nodes you want to use
for BIP� but BIP will work with no problem with other nodes running the IP
driver on the same Myrinet network�

The scripts bipload� biproute� bipconf can be run from any machine even
one that does not have a Myrinet board� but you must be sure that you can

rsh� from this machine to every BIP node� So you should have another network
under IP in addition to the Myrinet network on the BIP nodes� Check either
you have a suited �etc�hosts�equiv �le or adapt your �rhosts �le�

�

All Myrinet and BIP software should be available at the same location on
every machine �for instance by NFS�� The scripts also assume you have the same
NFS home directory mounted on every machine accessible by the same path�

The Myrinet board used by BIP should be the unit � �so in fact the �rst
�dev�mlanaix on which the user has permissions access��

If any one on these conditions are not ful�lled� look at the following section
� to see how to con�gure and start a BIP application manually�

��� Con�guration

To use BIP successfully� you just need to ensure that the directory of Myricom
programs �probably something like ����myrinet�bin�intel�linux�� and the
directory with BIP scripts utilities �something like ����bip�bin� are in your
PATH environment variable�

Eventually you can try to de�ne the MYRI�HOME environment variable to the
toplevel Myricom software directory if BIP scripts cannot �nd automatically
the Myricom utilities and libraries� but this is normally not required�

The structure of the BIP distribution should not be changed� so that the
scripts are able to �nd the �les they need�

��� Creating the routing database

The �rst time you want to use BIP or each time the Myrinet network topology
change you have to run the program biproute passing as arguments the names
of the machines you may want to use� biproute will determine the Myrinet
network sub�topology consisting of the machines you want to use as BIP nodes
in an application �note that biproute relies on the Myricom tool print�routes
and the Myricom MCP to accomplish this task��

The results of biproute will be stored in the �le �HOME��bip�bipdatabase�
Example� � biproute lhpca lhpcb lhpcc lhpcd lhpcg lhpch

��	 Specifying a BIP con�guration

Before running a BIP application� you need to specify a set of machines on which
to run it with bipconf� This will create a con�guration �le read at run�time
by each node� Just pass as arguments the names of the machines to use� The
order of the arguments will determine the numbering of the processes in the
BIP application�

Example� �bipconf lhpca lhpcd

bipconf store the con�guration info in �HOME��bip�bipconf� you can use
the option �f �file� to store the information in an another �le �in this latter
case you will then have to pass the same option to bipload also� the rationale
is to be able to keep some often used con�guration �les��

��
 Compiling the application

The simplest way to compile an application is to use bipcc� which is a script that
will take care of adding the appropriate
include� directory� library directory in
the search path as well as adding all BIP and Myrinet libraries required� all
arguments are passed as is to the real compiler�

��

For instance in the bip�test directory�
bipcc jeton�c �o jeton will create the executable jeton�

For MPI programs� just add �lmpi at the end of the compilation line at link
time�

If you want to use directly the normal C compiler�

� add the ����bip�include directory to the include search path �option
�I��

� add the ����bip�lib directory to the library search path �option �L�

� add the myrinet�lib�intel�linux directory to the library search path
�option �L�

� link the program with the libraries �lbip� �ldio� �lLanaiDevice�

��� Running the application

Syntax� bipload ��sz �n�
 � �f �configfile�
 � �q
 prog �args
 ����
To start an application� use the script bipload� pass to it the name of

the executable and the application arguments� If you want to use a di�erent
executable for each BIP node� you will have to start them manually on each
machine in the con�guration�

The option �sz �n� of bipload means the use of only the n �rst machines
of the con�guration de�ned with bipconf� so n must be less or equal to the
number of machines speci�ed with bipconf� The option �q means to suppress
a few messages that are normallywritten at initialization and termination by the
BIP library� The option �f �file� allows to specify explicitly the �le describing
the con�guration of BIP nodes to use for the run instead of using the default
�le creating by bipconf� �HOME��bip�bipconf�

When starting an application manually the e�ect of the option �q and �sz

can be achieved by setting the environment variable BIP�OPTS� For instance
BIP�OPTS�n�q is equivalent to having the option �q and �sz �� The option �f

is replaced with the environment variable BIPCONF�

� De�nition of the BIP con�guration �le format

You do not need to read or understand this section if the general requirements
of the last section are ful�lled� but in case you have any problem� it could be
useful to check the contents of the con�guration �le that have been automatically
generated�

The con�guration of a BIP application relies on a con�guration �le that must
be read by every process of the application� this �le is by default �HOME��bip�bipconf�
but can be overridden by the environment variable BIPCONF�

You may write manually the con�guration �le for some peculiar con�gura�
tion� for instance using a unit di�erent of � or if you have problems using the
scripts biproute� bipload� and bipconf� The only strong restrictions of BIP is
that two machines must be separated by at most � switches� and only one board
can be used by BIP on each machine �this last restriction could be removed�
but it has not been done yet as it seems unlikely to be really useful��

The con�guration �le is organized by lines�

��

� the �rst line contains the number of nodes n for the BIP application�

� Then for each node there is�

� one line giving the hostname of the machine that will be this node
and the unit of the Myrinet board to use for communication�

� and n lines which are the routes in Myrinet topology to reach the
other nodes� these routes consist in � to � numbers depending on the
number of switches to cross� As a special case a line with a single
��� means no switch �and is also used to �ll the route to itself��

So in summary a con�guration �le will contain ���n���n� lines� Moreover all
blank lines and lines starting with � are ignored and can be used for comments�
See �le bip�examples�bipconf�ex to see an example of a con�guration �le� �le
bip�examples�bipconf�noswitch is an example when using two nodes linked
directly without any switch�

At BIP initialization �in fact in bip�init�� a process �rst gets its BIP log�
ical number by searching the name of the machine �as given by uname �n� in
the con�guration �le� reads the following routing information� and initialize the
bip�mynode and bip�numnodes variables� And then will execute a small syn�
chronization algorithm to synchronize with the other nodes� so that the processes
can be started in any order and with any delay between them�

� Installation

Read the README �le in BIP distribution to see how to install the
dio� kernel
module on each machine�

Install the bip directories anywhere in your �le�system and just add bip�bin

directory to your search path� That	s all if all goes well ��	�

References

�BCF���� Boden� Cohen� Feldermann� Kulwik� Seitz� Seizovic� and Su�
MYRINET� A Gigabit per second Local Area Network� IEEE�

Micro� ��������� February �����

�FDCF��� R� Felderman� A� DeSchon� D� Cohen� and G� Finn� ATOMIC�
A high speed local communication architecture� Journal of High

Speed Networks� ����� Ios Press�

�GBD���� Al Geist� Adam Beguelin� Jack Dongarra� Weicheng Jiang� Robert
Mancheck� and Vaidy Sunderam� PVM� Parallel Virtual Machine�
Scienti�c and Engineering Computation� MIT Press� �����

�LS��� Charles L� Seitz� Mosaic C � An experimental �ne�grain multi�
computer� Technical report� California Institute of Technology�
Pasadena� CA� �����

�Myr��� Myricom� Myrinet link and routing speci�cation� �����
http���www�myri�com�myricom�document�html�

��

�SBSS��� Charles L� Seitz� Nanette J� Boden� Jakov Seizovic� and Wen�King
Su� The design of Caltech Mosaic C Multicomputer� In Proceedings

of the University of Washington Symposium on Integrated Systems�
�����

�SOHL���� Marc Snir� Steve Otto� Steven Huss�Lederman� David Walker� and
Jack Dongarra� MPI� The Complete Reference� MIT Press� �����

��

