Loic Prylli

Bernard Tourancheau

BIP Messages User Manual

Keywords: Message-passing interface, BIP, Myrinet, Communication Protocol, High-speed networks BIP, Myrinet, Protocole de communication, R seaux haut-d bits

BIP stands for Basic Interface for Parallelism. It is a messagepassing system implementation on top of Myrinet. It achieves one Gigabit/s bandwidth and less than 5 s latency. T h i s m a n ual describes the whole BIP API, as well as the tools used to compile and run BIP programs on a Myrinet platform. The BIP API de nition is still evolving in function of user requirements. Still backwards compatibility has always been maintained until now.

BIP utilization

Our objective i s t o p r o vide for the Myrinet BCF + 95, Myr95, SBSS93, LS92, FDCF94] network a basic interface for message-passing, targeted towards parallel computing. Of course there are standard API well established: MPI SOHL + 95] and PVM GBD + 94], but to begin with we c hoose to implement our own simpler interface: BIP (for Basic Interface for Parallelism). One of BIP main goal is to really achieve the maximal performance of the hardware, but with a su cient abstraction level, to hide the hardware details.

Currently BIP messages has only been implemented for cluster of x86/Linux workstations, linked by Myrinet boards with the LANAI4.1 processor.

The base principle of BIP messages is to implement a l l c o m m unication in a user-level library with zero-memory copies and direct access the network hardware without system calls. Our current implementation achieves less than 5 microseconds latency for small messages and more than 125Mbytes/s bandwidth (so more than 1Gigabit/s if you take G i g a = 10 9).

BIP message-passing model and semantics

Overview of the BIP API

The BIP API consists in several variants of send and receive primitives that should meet any need, with both blocking and non-blocking versions.

BIP ensures reliable and ordered transmission of messages in the absence of network fault (cf. 2.2).

It is an error to send a message to yourself. All messages consist of a contiguous array o f w ords (multiple of 4 bytes, properly aligned in memory). Bu ers can be located anywhere in the process address space: either global data, or data allocated with malloc, or data on the stack.

Reliability

In general a Myrinet network is reliable enough so that error recovery is not strongly necessary. Still sometimes a network error can happen, in this case it will be detected. Either an application terminates correctly, o r i t m a y b e aborted in case of network error. In any case, BIP ensures that no messages can be silently lost and no corrupt message can arrive to the application.

Implementing error recovery is ongoing work. If the gain is worth, we will make it a compile-time option, because from our experience, we h a ve n e v er been able to show evidence of a network error on our platform.

Quick start example

Here is a small example before going into the details of BIP: #include "bip.h" int main(int argc,char*argv]) { int token bip_init() if (bip_mynode == 0) { token = 333 printf("token start on 0\n") bip_send(1,&token,1) bip_recv(&token,1) printf("token arrived\n") } else { bip_recv(&token,1) printf("token %d received on %d\n",token, bip_mynode) bip_send((bip_mynode+1)%bip_numnodes,&token,1) } return 0 } This example can be run on 3 machines (here lhpca, lhpcb, lhpcc) by doing: % bipcc token.c -o token % bipconf lhpca lhpcb lhpcc % bipload token token start on 0 token 333 received on 1 token 333 received on 2 token arrived % 2.4 BIP short and long messages semantics BIP calls have some semantic di erences between short and long messages, the same send and receive calls are used for both, so in simple cases, the user can ignore the semantic distinctions.

long messages sends and receives have a rendez-vous semantic where a receive need to be posted before or at least not too long after the matching send has begun. This is a requirement similar to the ready send mode of MPI. It is in fact a bit more permissive, the precise restriction is that the receive should be posted no longer than about 50 ms after the send (after which a message blocked on the network could be dropped in some cases), but note that the receive should preferably be posted before or very soon after the send to avoid blocking communication paths in the Myrinet network (which c o u l d severely a ect performance of other communications).

On the opposite short messages are stored into an circular queue, so that the send calls will not block e v en if no matching receive has been posted, (except if the destination receive bu ers are full, the amount o f b u e r i n g c a n b e controlled with bip_taginit).

The limit between short and long messages is speci ed by BIPSMALLSIZE (and depending on the release is between 100 and 400 bytes).

BIP queues

Each message is sent to a particular queue of a particular node. Each di erent q u e u e o n a n o d e i s i d e n ti ed with a tag between 0 and NTAGS-1 (NTAGS is 200 in the current release). The token example shown above use the default queue by not specifying any tag.

Communication bu ers for small messages are allocated at initialization for each receive queue, you can override the default amount of bu ers independantly for each queue before the call to bip_init with the primitive bip_taginit.

As small messages are bu ered on reception, it is not mandatory for the user to receive these messages in the sending order. On the contrary, f o r a l o n g message, the application must be ready to receive s u c h a message when it is sent, and messages for other queues cannot be received before the user has provided a bu er for such a long message.

On one process send and receive functions are completely independent. At one time, you can have at most one send call in progress, and one receive call per tag posted. Receives on di erent tags, and a send can be done at the same time in di erent threads and are thread-safe (but note that blocking calls will not automatically generate a thread switch). Two receives with the same tag, or two sends cannot be done concurrently by t wo threads.

De nition of BIP variables and functions

Each C module using BIP must include the le bip.h.

Basic primitives and variables of BIP

extern int bip_mynode,bip_numnodes respectively give the logical number of the current process and the total number of processes.

void bip_init(void) should be called once before any other BIP primitive except bip_taginit, a n d will initialize the system. Note that bip_mynode and bip_numnodes are only valid after this call. int bip_tisend(int dst,int tag,int *buf, int length) this is an asynchronous tagged send call, length is the size of the message to be sent i n words (not bytes), buf points on the message data, the destination node number is given by dst, the message is sent to queue tag. This function returns immediately but the bu er should not be changed until the send has completed as ensured by bip_swait, in the meantime you cannot do any other send or isend communication calls. void bip_swait(int id) waits for the last send request to complete, it requires as argument t h e v alue returned by the last bip_tisend. When the function returns, the bu er can be used for something else, and a new send call can be done. int bip_stest(int id) tests if the last bip_tisend has completed, takes the id returned by i s e n d . Returns 1 if the bu er can be reused, 0 otherwise. int bip_tirecv(int tag,int *buf, int maxlength) this is an asynchronous receive call. tag identi es the receive queue on which this call applies, buf gives the target bu er where the message will be stored at completion, maxlength is the maximum size the bu er is able to receive. The rst message that arrives (or has already arrived) for this queue from the network will go into this bu er, it is an error if a message longer than this size arrives. The bu er contents are invalid until completion (as told by bip_rwait), and should not be modi ed until that. This function returns an identi cator that should be passed to bip_rwait. This function returns immediately but you cannot do any other recv or irecv call with the same tag until the receive has completed (so after calling bip_rwait/bip_rtest). int bip_rwait(int id) waits for an asynchronous receive to complete, it requires as argument t h e v alue returned by the corresponding bip_tirecv. It returns the size (in words) of the message that has been received and stored in the user bu er.

int bip_rwaitx(int id,int *node) same thing as bip_rwait but it returns the source node of the message in the variable pointed by node. int bip_rtest(int id) similar to bip_rwait, but if the reception has not completed, it does nothing and returns -1. It never blocks.

int bip_rtestx(int id,int *node) similar to bip_rtest expect that if the receive has completed, it also gives the source node of the message in node. int bip_tprobe(int tag) if a short message can be received without blocking, it will return the size of this message, else it will return -1. It cannot be used to detect the presence of a long message (will always return -1 if a long message is the rst to arrive). int bip_tnrecv(int tag, int *buf,int maxlength) It is a non-blocking receive, if a short message is ready on the queue given by tag, it does not block and is equivalent t o bip_trecv, else it is a no-op call and returns -1 (not zero because that is a valid message size). Warning: you cannot receive a long message with this call: it will always return -1 if a long message is arriving to the head of the queue int bip_tnrecvx(int tag, int *buf,int maxlength,int *node) similar to bip_tnrecv, expect that if a message is received, the source of the message is also returned via node. int *bip_tgetmsg(int tag, int *length, int *node)

This function receives a message on queue tag and returns a pointer to the contents (the message is in a statically allocated bu er), the message size is returned via the parameter length, and the source of the message is returned in node. When the user has nished using the message contents, it must free it explicitely via bip_tfreemsg(tag). int *bip_tngetmsg(int tag, int *length,int *node) similar to bip_tgetmsg except it is non-blocking. If no message is available, it returns a null pointer and has no side-e ect.

void bip_tfreemsg(int tag) frees the older bu er received by bip_tgetmsg or bip_tngetmsg on queue tag. There is a static circular queue of bu ers for each tag and bu ers of a queue are freed, in the order they were received. You can receive several messages via bip_tgetmsg before freeing them (in the limit of the bu er queue for the corresponding tag. Y ou can not do any other kind of receive call on this queue (such a s bip_trecv) before having freed the bu ers of all messages received via this call for the corresponding tag. int bip_taginit(int tag, int nbufs, int size) Allows to override the default bu er size allocated to the queue speci ed by tag, the bu er will be able to store nbufs messages of length size without any receive occuring. If the message are smaller, they can be more of them. But note that you have to take i n to account for each message not only the payload but also a few words (currently 4) of head information for internal purpose. This procedure can be called at most one time for each queue, and it must be called before the bip_init function. This procedure is optional, default values are taken, if not explicitely de ned.

Blocking calls

The following functions can be semantically de ned in terms of the previous one. They are provided both for convenience and also because their implementation is sometimes faster that using the basic primitives of BIP.

Non tagged message

There exists an untagged version of all BIP calls to maintain compatibility with previous versions, and for convenience for applications that just need one queue.

The functions are: All Myrinet and BIP software should be available at the same location on every machine (for instance by NFS). The scripts also assume you have the same NFS home directory mounted on every machine accessible by the same path.

The Myrinet board used by BIP should be the unit 0 (so in fact the rst /dev/mlanaix on which the user has permissions access).

If any one on these conditions are not ful lled, look at the following section 5 t o s e e h o w to con gure and start a BIP application manually.

Con guration

To use BIP successfully, y ou just need to ensure that the directory of Myricom programs (probably something like .../myrinet/bin/intel_linux), and the directory with BIP scripts utilities (something like .../bip/bin) are in your PATH environment v ariable.

Eventually you can try to de ne the MYRI_HOME environment v ariable to the toplevel Myricom software directory if BIP scripts cannot nd automatically the Myricom utilities and libraries, but this is normally not required.

The structure of the BIP distribution should not be changed, so that the scripts are able to nd the les they need.

Creating the routing database

The rst time you want to use BIP or each time the Myrinet network topology change you have to run the program biproute passing as arguments the names of the machines you may w ant t o u s e , biproute will determine the Myrinet network sub-topology consisting of the machines you want to use as BIP nodes in an application (note that biproute relies on the Myricom tool print_routes and the Myricom MCP to accomplish this task).

The results of biproute will be stored in the le $HOME/.bip/bipdatabase. Example: % biproute lhpca lhpcb lhpcc lhpcd lhpcg lhpch 4.6 Specifying a BIP con guration Before running a BIP application, you need to specify a set of machines on which to run it with bipconf. This will create a con guration le read at run-time by e a c h node. Just pass as arguments the names of the machines to use. The order of the arguments will determine the numbering of the processes in the BIP application.

Example: %bipconf lhpca lhpcd bipconf store the con guration info in $HOME/.bip/bipconf, y ou can use the option -f <file> to store the information in an another le (in this latter case you will then have to pass the same option to bipload also, the rationale is to be able to keep some often used con guration les).

Compiling the application

The simplest way to compile an application is to use bipcc, which is a script that will take care of adding the appropriate include directory, library directory in the search path as well as adding all BIP and Myrinet libraries required, all arguments are passed as is to the real compiler.

For instance in the bip/test directory: bipcc jeton.c -o jeton will create the executable jeton.

For MPI programs, just add -lmpi at the end of the compilation line at link time.

If you want to use directly the normal C compiler, add the .../bip/include directory to the include search path (option -I).

add the .../bip/lib directory to the library search path (option -L) add the myrinet/lib/intel_linux directory to the library search p a t h (option -L) link the program with the libraries -lbip, -ldio, -lLanaiDevice.

Running the application

Syntax: bipload -sz <n>] -f <configfile>] -q] prog args] To start an application, use the script bipload, pass to it the name of the executable and the application arguments. If you want t o u s e a d i e r e n t executable for each BIP node, you will have to start them manually on each machine in the con guration.

The option -sz <n> of bipload means the use of only the n rst machines of the con guration de ned with bipconf, s o n must be less or equal to the numb e r o f m a c hines speci ed with bipconf. The option -q m e a n s t o s u p p r e s s a few messages that are normally written at initialization and termination by t h e BIP library. The option -f <file> allows to specify explicitly the le describing the con guration of BIP nodes to use for the run instead of using the default le creating by bipconf: $HOME/.bip/bipconf. When starting an application manually the e ect of the option -q and -sz can be achieved by setting the environment v ariable BIP_OPTS. F or instance BIP_OPTS=n5q is equivalent t o h a ving the option -q and -sz 5. The option -f is replaced with the environment v ariable BIPCONF.

5 De nition of the BIP con guration le format You do not need to read or understand this section if the general requirements of the last section are ful lled, but in case you have a n y problem, it could be useful to check the contents of the con guration le that have been automatically generated.

The con guration of a BIP application relies on a con guration le that must be read by e v ery process of the application, this le is by default $HOME/.bip/bipconf, but can be overridden by the environment v ariable BIPCONF.

You may write manually the con guration le for some peculiar con guration, for instance using a unit di erent of 0 or if you have problems using the scripts biproute, bipload, and bipconf. The only strong restrictions of BIP is that two machines must be separated by at most 4 switches, and only one board can be used by BIP on each m a c hine (this last restriction could be removed, but it has not been done yet as it seems unlikely to be really useful).

The con guration le is organized by lines:

the rst line contains the numb e r o f n o d e s n for the BIP application. Then for each node there is: one line giving the hostname of the machine that will be this node and the unit of the Myrinet board to use for communication, and n lines which are the routes in Myrinet topology to reach t h e other nodes, these routes consist in 1 to 4 numbers depending on the numb e r o f s w i t c hes to cross. As a special case a line with a single 256 means no switch (and is also used to ll the route to itself). So in summary a con guration le will contain (1 + n 1 + n) lines. Moreover all blank lines and lines starting with # are ignored and can be used for comments. See le bip/examples/bipconf.ex to see an example of a con guration le, le bip/examples/bipconf.noswitch is an example when using two nodes linked directly without any switch.

At BIP initialization (in fact in bip_init), a process rst gets its BIP logical number by searching the name of the machine (as given by uname -n) i n the con guration le, reads the following routing information, and initialize the bip_mynode and bip_numnodes variables. And then will execute a small synchronization algorithm to synchronize with the other nodes, so that the processes can be started in any order and with any delay b e t ween them.

Installation

Read the README le in BIP distribution to see how to install the dio kernel module on each m a c hine.

Install the bip directories anywhere in your le-system and just add bip/bin directory to your search path. That's all if all goes well :-).

4. 1

 1 N o t e f o r M P I . 4.2 Wa r n i n g . 4.3 General requirement s . 4.4 C o n g u r a t i o n . 4.5 Creating the routing database . 4.6 Specifying a BIP con guration 4.7 Compiling the application . 4.8 Running the application . 5 De nition of the BIP con guration le format 6 Installation 1 Introduction

 BIP Messages User Manual for BIP 0.92 Overview of the BIP API . 2.2 Reliability . 2.3 Quick s t a r t e x a m p l e . 2.4 BIP short and long messages semantics 2.5 BIP queues . 3 De nition of BIP variables and functions 3.1 Basic primitives and variables of BIP bip_taginit(int tag, int nbufs, int size) 3.2 Blocking calls . int bip_trecv(int tag, int *buf,int maxlength) int bip_trecvx(int tag, int *buf,int maxlength,int *node) 8 int bip_tsend(int dst, int tag, int *buf,int length) . . 3.3 Non tagged message . bip_send(int dst, int *buf,int length) 3.4 Comment s .

	Lo c PRYLLI
	September 29, 1997
	Contents
	1 Introduction
	2 BIP message-passing model and semantics 2.1

extern int bip_mynode,bip_numnodes void bip_init(void) . int bip_tisend(int dst,int tag,int *buf, int length) . . void bip_swait(int id) . int bip_stest(int id) . int bip_tirecv(int tag,int *buf, int maxlength) int bip_rwait(int id) . int bip_rwaitx(int id,int *node) int bip_rtest(int id) . int bip_rtestx(int id,int *node) int bip_tprobe(int tag) . int bip_tnrecv(int tag, int *buf,int maxlength) int bip_tnrecvx(int tag, int *buf,int maxlength,int *node) 7 int *bip_tgetmsg(int tag, int *length, int *node) int *bip_tngetmsg(int tag, int *length,int *node) void bip_tfreemsg(int tag) int bip_isend(int dst, int *buf, int length) int bip_irecv(int *buf, int maxlength) int bip_nrecv(int *buf,int maxlength) int bip_nrecvx(int *buf,int maxlength,int *node) 1 int *bip_getmsg(int *length, int *node) int *bip_ngetmsg(int *length, int *node) void bip_freemsg(void) . int bip_probe(void) . int bip_recv(int *buf,int maxlength) int bip_recvx(int *buf,int maxlength,int *node) int

int bip_recvx(int *buf,int maxlength,int *node) equivalent t o bip_trecvx(0,buf,maxlength,node) int bip_send(int dst, int *buf,int length) equivalent t o bip_tsend(dst, 0, buf,length).

Comments

Note that a bip_tirecv must be followed by a bip_rwait/bip_rtest. O n t h e other hand, the bip_swait/bip_stest is not mandatory after a bip_tisend, but you should not reuse the bu er or issue another send before you are sure the message has been received at the other side (for example because you have received an answer).

Note that in the current implementation, passing a value of maxlength much larger than the nal message length can have a signi cant impact on performance.

BIP utilization 4.1 Note for MPI

The scripts describes below are used for pure BIP programs as we l l a s f o r M P I programs, when using the MPI-BIP implementation.

Warning

As BIP relies on direct access to the hardware, bugs in either the BIP library or in programs using BIP may crash the system, corrupt the system memory, s o use BIP at your own risk. W e h a ve tried to design BIP so that these problems are very unlikely to occur by a c c i d e n t, but as the Copyright s a ys: the software is provided as-is, without any express or implied w a r r anty. In no event will the author be held liable for any damages.

But still note we are con dent enough to run regularly BIP programs on a machine that is the Web and mail server for our team, and have n e v er experiment any crash.

General requirements

To use BIP you must ensure the Myricom IP driver (or the BIP IP driver) has been shutdown (with ifconfig myri0 down for instance, it must still be present so do not rmmod it). This must be done on all nodes you want t o u s e for BIP, but BIP will work with no problem with other nodes running the IP driver on the same Myrinet network.

The scripts bipload, biproute, bipconf can be run from any m a c hine even one that does not have a Myrinet board, but you mu s t b e s u r e t h a t y ou can rsh from this machine to every BIP node. So you should have another network under IP in addition to the Myrinet network on the BIP nodes. Check e i t h e r you have a suited /etc/hosts.equiv le or adapt your .rhosts le.