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Abstract

This documents presents the �rst version of the Bouclettes automatic parallelizer developed at
LIP� It gives a detailed description of the functionalities and internal mechanics of the paral�
lelizer� from the graphical interface to the syntactical analysis� dependence analysis� scheduling�
allocation and rewriting modules as well as the tools that are used�

Keywords� parallelizer� nested loops� compiler� dependence analysis� scheduling� allocation� loop rewriting�
PIP

R�esum�e

Ce document pr�esente la premi�ere version du parall�eliseur automatique Bouclettes d�evelopp�e au
sein du LIP� Il donne une description d�etaill�ee des fonctionnalit�es et des m�ecanismes internes
du parall�eliseur� de l�interface graphique aux modules d�analyse syntaxique� d�analyse de d�epen�
dances� d�ordonnancement� d�allocation et de r�e�ecriture� ainsi que les outils que ces modules
utilisent�

Mots�cl�es� parall�eliseur� nids de boucles� compilateur� analyse de d�ependances� ordonnancement� alloca�
tion� r�e�ecriture de boucles� PIP
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� Introduction

This document gives a detailed overview of the functionalities and internal mechanics of the Bouclettes

parallelizer developed in the �Paradigme� group at the LIP� ENS�Lyon� Here is described the �rst basic
version of this parallelizer� This program is intended as a working basis for future developments�
The user can enter a simple loop nest �uniform and perfect� and transform it step by step �dependence

analysis� scheduling� allocation and rewriting� into a parallel loop nest where the outer loop is sequential
and the inner loops are parallel�
We �rst describe the graphical user interface and its implementation and then each module constituting

the program� In the appendix we provide the reader with an explanation of PIP�s use and with an example
of rewriting�

� The graphical interface

The goal of this section is to brie�y describe the interface module� It has been developed so as to propose a
common interface to the di�erent parallelization tools under development�
This interface works in the OpenWindows 	�� and SunOs 
���	 environment� It has been developed in C using
the XView library� This interface has the same look and feel than the other OpenWindows applications� To
ful�ll this goal� the developments have been done using the Guide interface generator�
The interface calls binary executables and the communications between the modules is done via �les�

��� Description of the interface

The di�erent functionalities of the interface are shown below�

��� File Menu

This menu allows the user to load a new �le �Load button� or to quit the application �Quit button�� Once
a �le is loaded the user can edit it in the edition window and by pressing the right mouse button� the
traditional �textedit� menu appears�

��� Analysis Button

This button launches the syntactical analysis of the loaded �le� The syntax of the �le is veri�ed and the
resulting internal structure is rewritten in a new window�

��� Dependences Button

This button launches the dependences analysis� It prints the found dependences in a new window�

��� Environment Button

This button prints the environment in a new window �arrays and their size� loop indices and their depth and
parameters of the problem��

��	 Scheduling Menu

This button launches the scheduling� This menu allows to choose between di�erent scheduling techniques
but at the time being� only the linear scheduling is implemented�

��� Rewriting Button

This button starts the rewriting stage following the chosen schedule and allocation�

	



Figure �� Global view of the interface






��
 Allocation Menu

This menu proposes di�erent allocation techniques� For the moment the chosen technique is the unimodular
completion of the scheduling vector� There is no use of this button for the moment as the completion is done
during the rewriting�

��� The �les

This section describes the di�erent �les used by the interface module� These �les are in directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�interface

� parallelG� this �le describes the interface� It is written in a speci�c language and is automatically
generated by Guide�

� parallel uih� include �le used by parallel ui�c� generated from parallel�G�

� parallel uic� this �le describes the di�erent objects of the interface� It is generated from parallel�G�

� parallel stubsc� this �le contains the main program that activates the widgets and controls the
events� This �le contains particularly all the call�backs to the procedures associated with the events�
This �le is rebuilt at each modi�cation of the interface� It can also be edited to directly modify the
program�

� parallel� executable �le

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�interface�DOC

��� Communication between the modules and the interface

As stated in the introduction� the communication between the di�erent modules and between the modules
and the interface is done by �les� There are two kinds of �les� the caml objects �les and the ASCII ones�
The �rst ones can only be used by caml programs because the contain caml data structures� The second
ones are human readable and are generated by the called caml programs and then used by the interface�
they are the display�

Remark� The location of the executable �les corresponding to the di�erent modules is given in the �le
parallel stubs�c by the constant PARALLEL HOME� The current path is ��home�genievre�pboulet�Caml�Src�Parallelizer�bin
Here is the list of the �les currently created and used for the communication�

� �leana� caml �le� output of the analyse of the input �le� produced by analyse�

� �leanalyse� ASCII output of analyse�

� �leenv� caml �le corresponding to the environment� produced by analyse�

� �leenvironment� ASCII output of the environment�

� �legd� caml �le corresponding to the dependence analysis� produced by depend�

� �legraphdep� ASCII output of depend�

� �lesch� caml �le� output of the scheduling phase� produced by schedule�

� �leschedule� ASCII output of schedule�

� �lepar� caml �le� output of the rewriting module� produced by rewrite�

� �leparallel�ASCII output of rewrite�

�



��� Modi�cations

This section explains how to modify the interface module�

��� Modi�cation of the components of the interface

Here is explained the method to modify the graphical interface� like to add a new button or a new window�

�� Start Guide� type guide
�the executable is under �usr�local�guide�bin�guide��

�� Load the �le parallel�G form the interface of Guide �File menu� Load option��

	� Modify the interface using guide�s possibilities� One can add new windows� buttons� menus� etc� New
functions can also be attached to events�


� Save the changes �File menu� Save option��

�� Type make to update the �les which depend on parallel�G �execution of the command gxv parallel�G

which updates the source �les and the eventual recompilation of these �les��

��� Modi�cation of the code

The actions relative to the di�erent events have to be written by the programmer� The method to follow is
summarized below�

�� Attach some functions to the events of the interface using guide �see above��

�� Either the function is simple� then its code can be entered directly with guide� or the function is more
complex� only its name is given� This function has now to be coded� It is done in the �le parallel stubs�c
where the body of the function has to be completed�

	� Do not forget to rerun make for the compilation of the executables�

� The tools module

This module contains several tools that are useful for nearly all other modules of the parallelizer Bouclettes�
These tools are mainly a module of calculus over rational numbers and another module of calculus over
�a�ne� expressions� A third module toolbox�ml�i� contains a few general use functions that don�t �t
anywhere else�

��� The �les of the tools module

The �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�tools

� rationalml �mli�� calculus using rational numbers�

� expressionsml �mli�� a�ne and non a�ne expression manipulation�

� toolboxml �mli�� miscellaneous functions�

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�tools�DOC

�



��� The rational calculus

The type rational is de�ned by�

type rational �� int � int��

The �le rational�mli de�nes the functions that operate on this type�

value pgcd � int �� int �� int

and pgcd	liste � int list �� int

and ppcm � int �� int �� int

and ppcm	liste � int list �� int

and simplr � rational �� rational

and addr � rational �� rational �� rational

and subr � rational �� rational �� rational

and multr � rational �� rational �� rational

and divr � rational �� rational �� rational

and invr � rational �� rational

and floorr � rational �� rational

and ceilr � rational �� rational

and negr � rational �� rational

and equalr � rational �� rational �� bool

and eqr � rational �� rational �� bool

and greater	thanr � rational �� rational �� bool

and gtr � rational �� rational �� bool

and int	of	rational � rational �� int

and rational	of	int � int �� rational

and outputr � out	channel �� rational �� unit

and printr � rational �� unit��

All these functions return simpli�ed rational expressions given by function simplr� The functions eqr and
gtr are declared in�xed by�


infix �eqr���


infix �gtr���

��� The expressions

��� The expression type

The expression type is expr and is de�ned by�

type ident �� string��

type array � �Id�ident� Indices�expr list

and expr �

MIN of expr list

� MAX of expr list

� PLUS of expr�expr

� MINUS of expr�expr

� MULT of expr�expr

� DIV of expr�expr

� MIN	UN of expr

� FLOOR of expr

� CEIL of expr

� INT of int

� RATIO of rational

� VAR of ident





� BOOL of bool

� AREF of array��

It represents an expression tree�

��� The normalized a�ne form

Most of the functions de�ned here deal with a�ne expressions which are de�ned as sums of numbers and
factors of numbers and an identi�er� The major function of this module is normalizeaf that takes as input
an expression and returns the exception non affine is the input expression is not a�ne or it returns a
normalized form of the input expression if it is a�ne� This normalized form is de�ned as follows�

� it is a comb of PLUS

� each leaf is a MULT �RATIO r� VAR ident� except the last one that is a RATIO r

� each identi�er appears only once in the expression

The normalized form is built in several successive stages�

� All the MINUS and MIN UN nodes are removed so that the only remaining additive nodes are PLUS nodes�
This is done by the function simpl minus�

� The second stage is a simpli�cation �by function simpl nb�

� integers are transformed into rationals

� factors of a number and an identi�er are transformed into MULT �RATIO r� VAR id�

� quotients are computed or replaced by multiplications when it is possible

� The third stage is a distribution of the constants that are factors of a subexpression �by function
distribute��

� The fourth stage is the transformation of the tree of PLUS�s into a comb of PLUS�s�

� We then factorize the variables and the constants �function factorize� and remove the zero branches
that may result from the previous operation �function prune��

��� The functions

� normalizeaf � expr �� expr

normalizes its input

� is affine � expr �� bool

indicates if its input is an a�ne expression or not

� addaf � expr �� expr �� expr

computes the normalized form of the sum of two a�ne expressions

� subaf � expr �� expr �� expr

computes the normalized form of the di�erence of two a�ne expressions

� mult int af � int �� expr �� expr

computes the normalized form of the product of an a�ne expression by an integer

� outpute � out channel �� expr �� unit

and printe � expr �� unit

outputs an expression on a speci�ed output channel or on the standard output
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� outputaf � out channel �� expr �� unit

and printaf � expr �� unit

outputs an a�ne expression on a speci�ed output channel or on the standard output

� neg expr � expr �� expr

negates an expression

��� The toolbox

The �le toolboxmli says it all�

�� outputs a list of elements outputed by �output	fun� on channel �ch� ��

value output	list � out	channel �� �out	channel �� �a �� unit� �� �a list �� unit��

�� outputs an int on channel ch ��

value output	int � out	channel �� int �� unit��

�� executes a command �c� with arguments �a� ��a� is a string vect���

value exe � string �� string vect �� unit��

�� gives the name of a file without the extension ��

value base	filename � string �� string��

� The matrices module

In this section we describe the functions that have been written to do matrix computations� In the directory
matrices can be found functions to compute the matrix product� the inverse of a matrix� elementary row
and column operations and the Hermite form computation that leads to the unimodular completion of an
integer vector�

��� The �les of matrices

The �les can be found in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�matrices

� det invml �mli�� output of a rational matrix� rational matrices product and rational matrix inverse
computation

� mat elemml �mli�� elementary operations on integer matrices �row� column management� trans�
pose� matrix product and output�

� hermiteml �mli�� computation of the Hermite form of an integer matrix and unimodular completion
of an integer vector using the Hermite form

� completeml� the source code of the executable complete that completes an integer vector into a
unimodular matrix

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�matrices�DOC

��� The functions available

��� det inv

This module contains functions operating on rational matrices�
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� identityr � int �� int �� �int � int� vect vect

identity n p generates a n� p identity matrix

� randomatr � int �� int �� �int � int� vect vect

randomatr n p generates a n� p �random� matrix

� outputvectr � out channel �� �int � int� vect �� unit

outputs a rational vector on the given channel

� outputmatr � out channel �� �int � int� vect vect �� unit

printmatr � �int � int� vect vect �� unit

output a rational matrix on the given channel or the standard output

� prodmatr � �int � int� vect vect �� �int � int� vect vect �� �int � int� vect vect

computes the product of its two matrix arguments

� inv matr � �int � int� vect vect �� �int � int� vect vect

computes the inverse of its argument

��� mat elem

This module implements elementary operations on integer matrices�

� mat copy � int vect vect �� int vect vect

mat copy a makes a copy of matrix a

� minus row � int vect vect �� int �� int vect vect

minus row a i changes the sign of row i of a� warning � this function modi�es its argument

� minus column � int vect vect �� int �� int vect vect

minus column a j changes the sign of column j of a� warning � this function modi�es its argument

� exchange rows � int vect vect �� int �� int �� int vect vect

exchange rows a i j exchanges rows i and j of matrix a� warning � this function modi�es its argu�
ment

� exchange columns � int vect vect �� int �� int �� int vect vect

exchange columns a i j exchanges columns i and j of matrix a� warning � this function modi�es its
argument

� add row � int vect vect �� int �� int �� int �� int vect vect

add row a i j x� row i �� row i � x � row j warning � this function modi�es its argument

� add column � int vect vect �� int �� int �� int �� int vect vect

add column a i j x� column i �� column i � x � column j� warning � this function modi�es its
argument

� small row � int vect vect �� int �� int

small row a q �nds the column number of the smallest non zero element of row q of matrix a� whose
column index is greater than q and returns � if all elements are zero unless the qth

� small column � int vect vect �� int �� int

small column a q �nds the row number of the smallest non zero element of column q of matrix a�
whose row index is greater than q and returns � if all elements are zero unless the qth

� identity � int �� int �� int vect vect

identity n p returns an identity �n by p� matrix

� randomat � int �� int �� int vect vect

randomat n p returns a random �n by p� matrix
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� outputvect � out channel �� int vect �� unit

printvect � int vect �� unit

prints a vector

� outputmat � out channel �� int vect vect �� unit

printmat � int vect vect �� unit

prints a matrix

� transpose � int vect vect �� int �� int vect vect

transpose a q transposes the sub�matrix of a which indices are greater or equal to q� warning � this
function modi�es its argument

� dotij � int vect vect �� int �� int vect vect �� int �� int

dotij a i b j computes the dot product of the ith row of a by the jth column of b

� prodmat � int vect vect �� int vect vect �� int vect vect

computes the matrix product

All these functions are fairly simple vect manipulations�

��� hermite

The function basis de�ned by

value basis � int vect vect �� int vect vect � int vect vect � int vect vect��

computes the hermite form �Dar�	� of its argument� For all matrixA of Zn� there exists a unimodular matrix
Q and a matrix H such that�

� H is upper triangular with greater or equal to � coe�cients�

� each non diagonal coe�cient is less than the diagonal coe�cient of the same column �expect when the
diagonal coe�cient is null��

� A � QH�

The three matrices that basis returns are respectively H� Q and Q���
Function complete de�ned by

value complete � int vect �� int vect vect��

completes its argument �a vector� into a unimodular matrix �Dar�	��

� The analysis module

This section presents the internal structure of a program and the analyzer that recognizes it� This module�
developed in the directory analysis contains the de�nition of the internal representation of a program and
a few elementary operations on such a structure�

��� The �les of analysis

The �les are in the directory �home�genievre�pboulet�Caml�Src�Parallelizer�analysis

� structml �mli�� exceptions and types de�ned in this module and two extraction functions

� analysisml �mli�� lexical and syntactical analyzer of a program and printing functions

� ana�ml� de�nes the executable analyzer

The documentation �les are in �home�genievre�pboulet�Caml�Src�Parallelizer�analysis�DOC
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��� The type de�nitions

The internal structure of a program is de�ned in struct�mli�

type index � �Index�ident� Lower	bound�expr� Upper	bound�expr� Stride�expr��

type loop � �Ind	do�index� Body	do�inst list

and cond � �Test�expr� Then�inst list� Else� inst list

and affect � �Lexpr�array� Rexpr�expr

and forall � �Ind	forall�index list� Body	forall�inst list

and inst � LOOP of loop

� COND of cond

� AFFECT of affect

� FORALL of forall��

type prog � �Declarations�ident list� Instructions�inst list��

A prog consists in a list of declarations �type ident is de�ned in module expressions� and a list of instruc�
tions� An instruction is a loop� a conditional statement� a forall statement or an a�ectation�
The environment is handled by a hash table�

type fortran	type � INTEGER � REAL � LOGICAL��

type quality � PARAM of expr ��value��

� VARIABLE

� INDEX of int ��depth in the loop nest��

� ARRAY of int��expr list� ��dimension� bounds����

type attribute � �Type�fortran	type� Quality�quality��

The environment variable env is of type �string� attribute� hashtbl t� which means that it is a hash�
table that associate an attribute to each string entry it contains� This attribute indicates which is the
type of the object associated with the string and what is the object� a parameter� a variable� a loop index
or an array�

��� The exceptions of the analysis module

The �le structmli contains the de�nitions of two exceptions�

� exception non uniform of string��

Which is used by a function that expects a program with uniform dependences and �nds a non uniform
dependence� The string argument of this exception is used to indicate which function has raised it�

� exception non perfect of string��

Which is used by a function that expects a perfectly nested loop nest and �nds one that is not perfectly
nested�The string argument of this exception is used to indicate which function has raised it�

��� The functions of the analysis module

analysismli contains the de�nitions of�

� analysis�

value analysis � string �� prog � �string� attribute� t��

This function takes a �lename as argument and analyzes its content to return a pair� the internal
representation of the program whose text is in the argument �le and the environment of this
program�

� outputprog� printprog� outputenv� printenv�
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value outputprog � out	channel �� �string� attribute� t �� prog �� unit

and printprog � �string� attribute� t �� prog �� unit

and outputenv � out	channel �� �string� attribute� t �� unit

and printenv � �string� attribute� t �� unit��

These functions allow to print in a human readable form a prog and a �string� attribute� t�
either on a speci�ed channel �output���� or on the standard output channel �print�����

structmli contains the de�nitions of�

� extr loop�

value extr	loop � loop �� index list � inst list��

This function extracts the indices of a loop nest and its body�

� extr perf prog�

value extr	perf	prog � prog �� index list � inst list��

This function extracts the indices and the body of a perfect loop nest program�

��� How does it work�

Basically� all the functions except the analyzer are basic manipulations of the prog type�
The analyzer is built in two phases�

�� the lexical analyzer analex that takes a char stream and returns a token stream� where a token is
de�ned by�

type token � T	FOR � T	TO � T	DO � T	EGAL � T	ENDDO � T	PARG � T	PARD

� T	PLUS � T	MINUS � T	MULT � T	DIV � T	�OP of string � T	�OP of string

� T	SEP � T	NL � T	EXP of string � T	MAX � T	MIN � T	INT � T	REAL

� T	LOGICAL � T	PARAM��

�� the syntactical analyzer analysis that takes a token stream and returns the prog structure and the
environment hash�table�

� The dependences module

This section deals with the dependence analysis of a uniform perfect loop nest� We �rst build the commu�
nication graph described in �Dar�	� and then use it to build the reduced dependence graph�

��� The �les of dependences

The �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�dependences

� graph comml �mli� extraction of the communication graph from a prog

� graph depml �mli� construction of the dependence graph from a communication graph

� dependml the source of the executable that does the dependence analysis

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�dependences�DOC
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��� The communication graph

We use this structure as an intermediate structure to compute the dependence graph �see section ��	��

��� De�nition and type

The communication graph represents the communications that are needed given an allocation of the data
and the computations� The vertices are the statements of the body of the loop nest and the data arrays�
The edges are the di�erence between the indices of the two vertices they join� This graph is represented by
the type�

type depend ��nomd�ident� vect� expr list��

type instr	dep � �nomi�ident� suci�depend��

type var	dep � �nomv�ident� sucv�depend list��

type graph	com � �instr	list� instr	dep list�

var	list�var	dep list��

��� The function and its implementation

The communication graph is computed by the function�

value gcom � prog �� graph	com��

The computation of this graph is done in three phases�

�� We �rst build the index of an instruction and the list of instructions �function gcom ���

�� We then build an intermediate structure de�ned by a list of instr inter�

type instr	inter � �nomint�ident� ecrite�depend� lues�depend list��

This is done by function gcom ��

	� We then convert this intermediate structure to a graph com via gcom ��

��� The dependence graph

��� De�nition and type

The dependences carry the constraints on the order of evaluation of the instructions� To respect the semantic
of the sequential program� we have to respect the dependences� Let us note Si�I� the instance of instruction
i corresponding to iteration vector I� There is a dependence between two iterations Si�I� and Sj�J� if�

� Si�I� is executed before Sj�J�

� Si�I� and Sj�J� both reference a same memory location and at least one of these references is a write
access�

See �Dar�	� for more details�
As here all the dependences are uniform� the dependence graph can be represented by a reduced de�

pendence graph whose vertices are the di�erent statements of the body of the loop nest and whose vertices
are labeled by the dependence vectors �the di�erence between the iteration vectors of the two instructions
causing the dependence�� This graph is represented internally by the type graph dep de�ned by�

type v	d � �origin�string� dest�string� vd�int list��

type graph	dep �� v	d list��

�




��� The function and its implementation

As we need all the dependences positive to compute the scheduling� the function

value gdep � graph	com �� graph	dep��

computes the dependence graph with all the dependences positive�
This computation is done in three phases�

�� Starting with the communication graph� we �rst compute the �ow dependences and the anti depen�
dences�

�� We then compute the output dependences�

	� And �nally we make the dependences positive�

The �les graph depml �mli� also contain the implementation of two functions that print a graph dep

on a given channel or on the standard output�

value outputgd � out	channel �� graph	dep �� unit

and printgd � graph	dep �� unit��

� The Scheduling Module

This section explains how is implemented the scheduling in the parallelizer bouclettes� This module� de�
veloped in the directory scheduling� calculates the best linear schedule associated to a nested loop� The
method used is described in �Dar�	��
The module scheduling takes in input the results of the modules analyse and dependences� It uses the

software PIP and its interface implemented in the module interface PIP to calculate the best scheduling
vector�

	�� Files

The �les are in the directory
�home�genievre�pboulet�Caml�Src�Parallelizer�scheduling�

� loop to lpml �mli�� going from a nested loop to a linear program�

� schedulingml �mli�� going from a linear program to the scheduling using the module interface PIP�

� scheduleml� generates the executable associated to the module scheduling�

The documentation �les are in the directory
�home�genievre�pboulet�Caml�Src�Parallelizer�scheduling�DOC�

	�� Type

The type �scheduling� is de�ned in the �le scheduling�mli�
type scheduling �

S IF THEN ELSE of s if then else

�SCHEDULING of expr vect

�S BOT

and s if then else � S IF� expr� S THEN� scheduling� S ELSE� scheduling��

The scheduling vector is represented by an expression vector which can contain parameters and conditions
on parameters�
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	�� Functions

The main functions de�ned in the module scheduling are�

� loop to lp �

value v d list �� prog �� prog lin��

The function loop to lp transforms the nested loop in a linear program� It takes in argument two
objects�

� an object of type prog calculated by the module analysis� it describes the nested loop�

� the list of dependence vectors calculated by the module dependences�

� schedule �

value schedule � prog lin �� scheduling��

The function schedule takes in input a linear program and returns the best scheduling vector� It
uses the module interface PIP and more precisely solve lp which returns the solution of a linear
program�

	�� How it works

The search for the best scheduling vector Given a uniform loop nest� the total execution time for a
linear schedule � is given by�

T�� � � �max�b�pc� p � Dom� �min�b�qc� q � Dom�

The best linear schedule is the one that minimizes T�� over all rational vectors � such that �D � ��
In �Dar�	�� Darte proposes a method to �nd the optimal scheduling vector which consists in solving only

a single linear program� Finding the optimal scheduling is solving the problem�

min
XD��

max
�Ap�b�Aq�b�

X�p � q�

And� by the duality theorem of linear programming ��Sch����� the optimal scheduling is obtained by
solving the following linear problem�

��������
�������

XD � �
X�A � X

X�A � �X
X� � �
X� � �
min�X� �X��b

For more details� see �Dar�	��
Remark that this problem is linear in b� Thus� the search of the best scheduling vector for the family

of domains Ax � Nb where N is a parameter is reduced to the search on the domain Ax � b which can be
done without knowing N at compile�time�

Back to the scheduling module For the moment� the scheduling module is only implemented for
perfect uniform nested loop and for the family of domains Ax � Nb�
The function graph dep to matrix implemented in loop to lp�ml calculates the dependence matrix D�

The function get domain also implemented in loop to lp�ml calculates the matrix A� the vector b and
eventually a parameter N � From A� b� N and D� the linear program can be generated and solved with the
function solve lp implemented in the module interface PIP�

��



� The interface PIP module

This section explains how is implemented the interface between the parallelizer bouclettes and the PIP
software� This module� developed in the directory interface PIP� allows to solve a parameterized linear
programming problem by using PIP� A linear programming problem �LP� is of type prog lin �described
hereafter� and the solution is of type sol prog lin� A brief recall of the way PIP works is done in section A�


�� Files of interface PIP

The �les are in the directory
�home�genievre�pboulet�Caml�Src�Parallelizer�interface PIP

� type lin progml �mli�� exceptions and types de�ned in this module�

� a� lpml �mli�� all the output functions needed�

� lp to pipml �mli�� going from a LP �in the prog lin type� to a problem that can be solved by PIP�

� exec pipml �mli�� executing PIP �via Unix��

� pip to solml �mli�� going from a solution given by PIP to a solution in the sol prog lin type�

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�interface PIP�DOC


�� Types of interface PIP

The types �prog lin� and �sol prog lin� are de�ned in the �le type prog lin�mli�

� prog lin�

type maxormin� max � min ��

type prog lin �

fINTORNOT� bool�

MAXORMIN�maxormin�

NBPAR� int�

NAMEPAR� string list�

POSPAR�string list�

NBVAR� int�

NAMEVAR� string list�

POSVAR�string list�

CONTEXT� expr list�

LISTINEQ� expr list�

COST� expr�

COMMENTS� string

g��

� INTORNOT indicates if the LP is to be solve in integral or rational mode� For the moment the
integral mode is not implemented thus it should be always false�

� MAXORMIN indicates if the cost function must be minimized or maximized�

� NBPAR indicates the number of parameters of the LP�

� NAMEPAR indicates the names of the parameters of the LP

�



� POSPAR indicates which parameters are positive� WARNING� this information should be also
present in the �eld CONTEXT� if the inequality indicating that a parameter is positive is not in
the context� then the parameter will not be taken as positive� even if the name of the parameter
is indicated in this �eld�

� NAMEVAR indicates the names of the variable of the LP

� POSVAR indicates which variable is positive� As for the parameters� this information should be
also present in the �eld LISTINEQ�

� CONTEXT� the list of inequalities of the LP that involve only parameters� Each inequality is an
expression that must be positive� This expression must be a�ne�

� LISTINEQ� the list of inequalities �a�ne expression positive� involving variables and parameters
�possibly��

� COST� the cost function of the LP�

� COMMENTS� the comments set by the user �are output when outputting the LP��

� sol prog lin�

type quast�

QUAST of if then else

�SOL of expr vect

� BOT

and if then else�fIF� expr� THEN� quast � ELSE� quastg��

The quast is the basic structure of the solution of a parameterized LP� The leaves of the quast �which are
the possible solutions� are vectors� the �rst coordinate of the solution is the value of the cost function�
The other coordinates are the values of the variables that reach this value for the cost function �in the
order speci�ed in the variable list�� For the moment� the cut of the leaf of the quast described at the
end of section A is not implemented

type sol prog lin �

fS INTORNOT� bool�

S MAXORMIN�maxormin�

S NBPAR� int�

S NAMEPAR� string list�

S NBNEWPAR�int�

S NAMENEWPAR�string list�

S NBVAR�int�

S NAMEVAR�string list�

S SOL� quast�

S COMMENTS� string

g��

The �elds of sol prog lin are very close to the ones of prog lin� Two more appear� S NBNEWPAR
and S NAMENEWPAR which are now useless�


�� Function of interface PIP

The only function that should be used by users is�

� solve lp�
value solve lp� prog lin �� sol prog lin ��

This function solves an LP in rational mode�

��




�� Exceptions of interface PIP

There are several types of exceptions that can be raised but that should not� These exceptions are almost
all linked to the fact that the expression in LISTINEQ and CONTEXT must be a�ne� These exceptions
are de�ned in type lin prog�ml and the name of the function where they have been raised appears at the
beginning �for instance� exception get ppcm non affine in lp has been raised by the get ppcm function��
Some problems may appear when you try to minimize �or maximize� a cost function that is not bounded�

In this case we have chosen to print a Warning message on the standard output� This can be easily change
into an exception�

� unbounded solution
The message appearing in the non�bounded solution case is like the following�
Warning �� Unbounded solution

�

It means that the program was looking for a solution with some Big Parameters �see section A� and
could not �nd them� This warning is printed on the screen and the program goes on� Of course� the
solution given is false �it should be unbounded��

� false solution
Another type of warning may appear� As explained in the section A� Some of the branches of the
Quast solution may be cut� when the condition of the quast is always veri�ed for example� In this case�
we should cut the �dead leaves� but it is not implemented yet �because in my opinion it will never
happen�� Thus� a warning is raised if this situation happens� with the following message�
Warning� coefficient of GP� does not correspond to

the sum of the coefficient of the other parameter in�

n�p��

Be careful� if this warning appears� the solution found could be false� Please� inform me if it happens�


�� Algorithm of interface PIP

The treatment proceeds in the following steps�

� translate the LP

� execute PIP�

� read and transform the solution

�	� translating the LP

The original LP �type prog lin� is transformed into an internal structure that looks like the �les for PIP
�type prog lin for pip de�ned in type lin prog�� This phase must add adequate Big Parameters in order
to obtain an equivalent LP where variables are non�negative and where the goal is to minimize the �rst
variable� This work is done with the program de�ned in the �le lp to pip�ml�
First� we get the parameter that are declared �in lp�POSPAR� to be positive and we perform a variable

change on the other parameters� n � n � GP� �function get pos para�� We get a new LP where all the
parameters are positive �with one more parameter� GP�� and a list that recalls the parameters that have
been transformed� Then� a new variable �XCOST� is introduced to represent the cost function� and we
introduce the �rst inequation� XCOST � LP�COST � � �resp � if we should maximize��
Then we �format� the LP� it means that we perform the variable changes explained in section A� with

a Big Parameter GP� to ensure that the variables will be positive and we produce a pip�like LP �function
format caml to pip lp�� The result of this last function is given in a form which is very close to the PIP
format �Prog lin for pip�� The coe�cients of the PIP vectors � � � � � � � �� are in the following order�
coe�cient of the cost function �only appears in the �rst inequality�
variables coe�cient �in the order of the variable list�
constant coe�cient

��



coe�cient of GP�
coe�cient of GP�
coe�cient of the other parameters �in the order of the list�

�	� execute PIP

This part is done in �le exec pip�ml� The internal structure is written in the �le 
LP PIP�p and the Unix
command �
pip 
LP PIP�p 
LP PIP�res

is executed� Thus the result is in the �le 
LP PIP�res�

�	� read and transform the solution

The �le 
LP PIP�res is analyzed and stored in an primary solution �type Sol prog lin�� This work is done
in �le pip to sol�ml�
First� in get sol pip� we analyze the output �le of PIP �
LP PIP�res�� we get the solution in a Quast�

and with the variable list and the parameter list� we put the right parameter names in the condition and the
leaves of the quast�
In simplify quast sol� we remove the occurrence of the Big Parameters GP� and GP�� If something

wrong is detected� a Warning is printed �no exception raised �� Then we get the solution Quast�

� The rewriting module

This section explains how is implemented the rewriting module� This module� developed in the directory
rewriting� allows to rewrite a loop after an integral transformation over the indices which is unimodular
or lower triangular� The unimodulary transformation is usually indicated by the scheduling and allocation
modules� From these modules we get a matrix and we obtain the new indices by applying this matrix to the
indices of the original loop nest� The work described here allows to enumerate all the computations of the
original loop nest with another loop nest of which the indices are the new computed indices� With the usual
basic modules� this module uses the scheduling module� the matrices module and the Interface PIP

module� For the moment the transformation to apply to the nest is obtained by completing the schedul�
ing vector into a unimodulary matrix with the Hermite algorithm� The rewriting after a non�unimodular
transformation is not used in the interface with the compiler bouclettes�

��� Files of rewriting

The �les are in the directory
�home�genievre�pboulet�Caml�Src�Parallelizer�rewriting

� rewritingml �mli�� all the unimodular rewriting treatment and only the rewriting treatment�

� rewriteml � the executable program called from the rewriting button� Here the unimodulary
completion of the scheduling vector is called�

� triang rewriteml �mli�� The rewriting with a lower triangular integral matrix

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�rewriting�DOC

��� Function of rewriting

There are two functions that should be used by users�

��



� rewrite nest�
value rewrite nest � int �� prog �� int vect vect �� prog��

This function takes a nest and an integral unimodulary matrix and gives the nest which is the transfor�
mation of the nest by the matrix� The �rst parameter is the identi�cation number of the transformation�
Indeed� as the new index names are not speci�ed by the user� we have chosen to name them� NINDx y

where x is the identi�cation number of the transformation �for the moment it is always �� and y is the
depth of the new index �starting a ���

� tri rewrite nest�
value tri rewrite nest � int �� prog �� int vect vect �� prog��

This function takes a nest and an integral lower triangular matrix and gives the nest which is the
transformation of the nest by the matrix� Be careful� the upper triangle of the matrix is not taken into
account�

In practice� every integral transformation can be decomposed into the product of a unimodular and a lower
triangular transformation� With the two functions described here� one can rewrite a nest after any integral
transformation�

��� Exception of rewriting

Some classical exceptions can be raised like non affine or non perfect� The exceptions de�ned here are�

� A ref in bound when there is an array reference in a loop bound� This exception should not happen
if the analysis is done�

� index not found and not enough depth are internal exceptions that should not be raised� If they
do� a string indicates in which function they are raised�

��� Algorithm for rewriting

The rewriting of the nest uses the technique described in �CFR�	�� We �nd the new bounds from the
outermost index to the innermost index� When working on an index at depth i� the outer�more indices
�at depth j � i� are considered as parameters while the inner�more �at depth j � i� are still indices �or
variables�� The domain of this nest represents a parameterized convex polyhedron of dimension n� i� � if
n is the depth of the original nest� We look for the extrema �minimum and maximum� of the �rst coordinate
upon this polyhedron� The interface PIP module allows to perform this search� For each index and each
problem �min or max� a linear programming problem is written� the constraints are the inequation de�ning
the domain and the cost function is the index to minimize� This problem is solved by PIP and we get the
new bounds�
The function rewrite nest gets useful information �like the list of the names of the indices of the nest�

and calls the recursive function rewrite loop that successively computes the bounds on the new indices�
The algorithm of rewrite loop is�

� if it is a real loop

� writes the LP for the lower bound

� solves the LP and get the lower bound

� writes the LP for the upper bound

� solves the LP and get the upper bound

� recursive call for the loop body

� else modify the list of instruction with the new indices�
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Modifying the list of instructions is just technical� one has to perform the variable change �i�� � � � � in��
U���i�� � � � � in� �where U is the transformation to apply� in all the array references of the nest�
Writing the LP for a depth i is a little more complicated as you have to transfer all the inequalities de�ning

the domain in term of the new indices � U���i�� � � � � in��� to separate the context �inequalities involving only
parameters� and the domain �other inequalities�� Remember that the parameters are the original parameters
plus the surrounding new indices�
Getting the solution means just to replace as indicated in �CFR�	� the quast given by PIP by a maximum

�resp minimum�upon its leaves if it is a lower bound �resp upper bound�
the function triang rewrite is a little more simple� it just consist in algebraic manipulation but it is

quite technical� The transformation is precisely described in �Ris�
� p�	�
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A How does PIP work

This is a very brief explanation on one example� for more details please refer to �FT��� or �Fea����
Let D�m�n� k� be a parameterized polyhedron composed of �i� j� such that�
� � i � n

� � j � m

k � i� j

under the constraint k � n�m�
Suppose that we want to minimize th �rst variable �i� over D�m�n� k�� This is the type of problem solved

by PIP� PIP can solve this problem and give a rational or an integral solution� Here we will only deal with
rational solution as the integral part of PIP software is not interfaced yet with bouclettes� First of all we
must be aware of three characteristics of the PIP algorithm

� it computes the lexicographic minimum of the vector of variables �in particular it implies that it
minimizes the �rst variable��

� all the variables and parameters are supposed to be non�negative�

� the parameters are supposed to be integral �for instance� if n is a parameter� n �  will be written
n � ���

A�� Input �le

To code this problem for PIP we write the following �le �ex��p��

� �
�variables i j�
�parameters k m n�
m � j

n � i

i� j � k

m� n � k

here comments
�
� 	 	 � �� �
�
 �� �� � � � � �
 ��� � � � � � �
 �� � � �� � � �
�
�
 ��� � � ��
�
�

signi�cation of the integer row�
� �� � � two variables
	 �� � � three parameters
	 �� � � three equations on variables
� �� � � one equation on parameters
�� � �� � No Big parameter �see after�
� �� � � rational solution

signi�cation of the vectors � �� � � � � ��
for example� the �rst one  �� �� � � � � � represents the inequality m� j � �� The �rst coe�cients are those

�	



of the variables i and j �here � for i and �� for j� Then comes the coe�cient of the constant term �here ���
and the coe�cient of the parameters k�m and n �here � for m� � for others��

Be careful� variables and parameters are supposed to be non negative� Thus� inequalities like i � � are
not written explicitly�

A�� Unix command

To get the solution with the pip software� we execute�
pip ex��p ex��res

A�� output �le

The �le ex��res contains�

� �
�variables i j�
�parameters k m n�
m � j

n � i

i� j � k

m� n � k

here comments
�
�if  � �� � � ��

�list  � � � � ��
 � � � � ��

�
�list  � � �� � ��
 � � � � ��

�
�
�

which can be read as�

if m � k

�i� j� � ��� k�
else
�i� j� � �k �m�m�

The vectors � ��� � � � � � are read the same way� but they only concern parameters and constant term�
The �rst coe�cients are for the parameters and the last is for the constant term�

A�� Getting the maximum instead of the minimum

To compute the maximum over a domain D�z�� we compute the minimum of GP� � D�z�� GP� being a
parameter as big as we want �Big parameter�� This ensure that GP��D�z� will have positive coe�cient�
The rule for internal PIP computations is the following� when PIP has to decide the sign of an expression�
if the coe�cient of the Big Parameter is not null� then it gives the sign of the whole expression� Be careful�
we cannot use two Big Parameters otherwise this last rule would become false� In particular we cannot set
inequalities like n � GP� in the context�
Three stages�

�




� we introduce a new parameter GP� and we perform a variable change upon all the variables �without
touching the parameters� �i��� i

�
�� ���� i

�
n� � �GP�� i�� GP�� i�� ���� GP�� in��

� we compute the lexicographic minimum of the new polyhedron and we get the solution as a function
of �p�� ���� pm� �the parameters� and GP��

� we perform the variable change the other way around� �i�� i�� ���� in� � �GP��i��� GP��i
�
�� ���� GP��i

�
n�

and we get the lexicographic maximum of our original polyhedron� If the solution depends upon GP��
then the polyhedron was not bounded�

In practice�

� we add one parameter �GP�� that we force to be a Big parameter� �the �fth integer in the integer row
of the input �le indicates its rank in the �variable�constant�parameters� list �starting at ���

� we change the signs of the coe�cients corresponding to variables and we set the coe�cient of the new
parameter to the sum of these coe�cients �before having changed their sign�

� when we read the solution� we take the opposite and we ignore the coe�cient of the Big Parameter �or
we check that it is one if we are not sure that the polyhedron is bounded��

Example� the lexicographic maximum upon the previous polyhedron�

� �
�variables i j�
�parameters k m n GP� �Big par��
m � j

n � i

i� j � k

m� n � k

here comments
�
� 
 	 � � �
�
 �� � � � � � �� � m � GP�� j

 �� � � � � � ��� n � GP�� i

 ��� �� � �� � � �� �GP�� i� j � k

�
�
 ��� � � � �� m� n � k

� �

and the result�

� �
�variables i j�
�parameters k m n GP� �Big par��
m � j

n � i

i� j � k

m� n � k

here comments
�
�list  � � � �� � �� �GP�� i� GP�� j� � �GP�� n�GP��m�
 � � �� � � �� thus� �i� j� � �n�m�
� �

��



A�� Dealing with non negative variables

If you look carefully at the transformation that we have performed in the last section� you will realize that
the variables of the original LP are not any more supposed to be positive� As we have performed the variable
change� G � i� is positive whatever the sign of i� is� Thus we are able to �nd maxima of problems where
variables are of any sign�
Suppose now that we want to compute the minimum of a polyhedron which variables are not positive�

We can perform a diagonal shift of all the domain� This shift must be large enough to bring the whole
domain� in the positive quadrant� Thus we can use the big parameter and perform the variable change�
�i��� i

�
�� ���� i

�
n� � �GP� � i�� GP�� i�� ���� GP�� in��

The new variables are positive �because GP� can be as big as possible�� and the lexicographic minima
of the two domains are the same� except that one is shifted by �GP�� GP�� � � �� GP���
Thus we compute the minimum upon �i��� � � � � i

�
n� and we subtract �GP�� GP�� � � �� GP�� to the solution�

If there remains some G is the result� then the original polyhedron was not bounded�
The last problem to solve is about parameters� As we have mentioned before� we cannot allow two big

parameters� Thus� the variable change that we just explained apply only to variables� not to parameters�
and parameters are also supposed to be positive�
To allow parameter of any sign� we must perform the same kind of manipulation� a �change of parameter��

�n��� n
�
�� ���� n

�
n� � �GP� � n�� GP� � n�� ���� GP�� nn�� Where GP� is a new parameter which is as big as

we want �but which has no special property for PIP�� Then we compute the solution in term of the new
parameters and we perform the parameter change the other way around� The only di�erence with the
variable treatment is that we should cut impossible leaf ourselves�
Because of the way PIP computes the solution �CFR�	�� the �nal solution will not contain any GP�

unless it is not bounded but suppose for example that a condition of the resulting quast is something like

if m� �G � �
�i� j� � ��� k�

else
�i� j� � �k �m�m�

Then we have to change that in �i� j� � �k �m�m� because m � �G cannot be positive�
I don�t think this situation can happen thus it is not implemented yet

B Example of rewriting

This section illustrates by an example� the use of the rewriting module functions� The example is taken
in �Ris�
� p���
consider the following nest�

DO i � � � m

DO j � � � n

DO k � � � i�j

S�i� j� k�
ENDDO

ENDDO

ENDDO

and suppose that� for a very important purpose� you sincerely want to apply the following matrix T to
the nest�

T �

�
�
� � �
� 
 	
� � �

�
A

��



When working into interpreted camllight �execute pboulet�bin�cl�� open all the modules by including
go�ml for instance� The nest is stored in the �le rewriting�Ex�test these� The �rst thing to perform is
the analysis�


let �p��q�� � analyse �test these���

The we construct the matrix T �


let m�� make matrix � � ���


vect assign m����� � ���


vect assign m����� � ���


vect assign m����� � ���


vect assign m����� � ���

Then we decompose m�� Be careful� we need the product of a lower triangular matrix and a unimodu�
lary one thus we have to perform some transposition if we want to use the Hermite decomposition�


open �mat elem���

let m��transpose m� ���

let �m���m���m���� basis m���

let m��transpose m�� ���

let m��transpose m�� ���

Now we have T�m��m� with�

m	 �

�
�
� � �
	 
 �
� � �

�
A and m� �

�
�
� � �
� � �
� � �

�
A

We �rst apply m� to the nest�

let p�� rewrite nest � p� m���

rewriting the loop ���

p� � prog � fDeclarations���� Instructions��LOOP ���


printprog q� p���

FOR NIND� � � ������n������m����� DO

FOR NIND� � � max��������m������NIND� �������� ����n���� DO

FOR NIND� � � max�����NIND� ��������NIND� ���������� ����m���� DO

a�����NIND� ����������NIND� ����������NIND� ������ �

b�����NIND� ����������NIND� ����������NIND� �������

ENDDO

ENDDO

ENDDO

Which is exactly the result obtained in �Ris�
� p��� Apply now the lower triangular matrix m��


let p�� tri rewrite nest � p� m���

p� � prog � fDeclarations���� Instructions��LOOP ���


printprog q� p���

FOR NIND� � � ���������� ����������n������m������� DO

FOR NIND� � � �����NIND� ���������max��������m������NIND� �������������

��������NIND� �������������n������� � DO

�



FOR NIND� � �������max�������NIND� ����������NIND� ������������ ���

��� ����������m������� � DO

a�������NIND� �������������NIND� ���������NIND� �����������NIND� ������ �

b�������NIND� �������������NIND� ���������NIND� �����������NIND� �������

ENDDO

ENDDO

ENDDO

Which is exactly the nest obtained in �Ris�
� p��� All the commands described here are written in the
�le rewriting�Ex�test ex�ml�
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