
HAL Id: hal-02102691
https://hal-lara.archives-ouvertes.fr/hal-02102691

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reference manual of the Bouclettes parallelizer
Pierre Boulet, Michèle Dion, Eric Lequiniou, Tanguy Risset

To cite this version:
Pierre Boulet, Michèle Dion, Eric Lequiniou, Tanguy Risset. Reference manual of the Bouclettes
parallelizer. [Research Report] LIP TR-94-04, Laboratoire de l’informatique du parallélisme. 1994,
2+28p. �hal-02102691�

https://hal-lara.archives-ouvertes.fr/hal-02102691
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Reference manual of the Bouclettes

parallelizer

Pierre Boulet

Mich�ele Dion
�Eric Lequiniou

Tanguy Risset

October ����

Technical Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Reference manual of the Bouclettes parallelizer

Pierre Boulet

Mich�ele Dion
�Eric Lequiniou

Tanguy Risset

October ����

Abstract

This documents presents the �rst version of the Bouclettes automatic parallelizer developed at
LIP� It gives a detailed description of the functionalities and internal mechanics of the paral�
lelizer� from the graphical interface to the syntactical analysis� dependence analysis� scheduling�
allocation and rewriting modules as well as the tools that are used�

Keywords� parallelizer� nested loops� compiler� dependence analysis� scheduling� allocation� loop rewriting�
PIP

R�esum�e

Ce document pr�esente la premi�ere version du parall�eliseur automatique Bouclettes d�evelopp�e au
sein du LIP� Il donne une description d�etaill�ee des fonctionnalit�es et des m�ecanismes internes
du parall�eliseur� de l�interface graphique aux modules d�analyse syntaxique� d�analyse de d�epen�
dances� d�ordonnancement� d�allocation et de r�e�ecriture� ainsi que les outils que ces modules
utilisent�

Mots�cl�es� parall�eliseur� nids de boucles� compilateur� analyse de d�ependances� ordonnancement� alloca�
tion� r�e�ecriture de boucles� PIP

Contents

� Introduction �

� The graphical interface �
��� Description of the interface � 	

����� File Menu � 	
����� Analysis Button � 	
����	 Dependences Button � 	
����
 Environment Button � 	
����� Scheduling Menu � 	
����� Rewriting Button � 	
���� Allocation Menu �

��� The �les �
��	 Communication between the modules and the interface �
��
 Modi�cations �

��
�� Modi�cation of the components of the interface �
��
�� Modi�cation of the code �

� The tools module �
	�� The �les of the tools module �
	�� The rational calculus �
	�	 The expressions �

	�	�� The expression type �
	�	�� The normalized a�ne form �
	�	�	 The functions �

	�
 The toolbox �

� The matrices module �

�� The �les of matrices �

�� The functions available �

���� det inv �

���� mat elem ��

���	 hermite ��

	 The analysis module ��
��� The �les of analysis ��
��� The type de�nitions ��
��	 The exceptions of the analysis module ��
��
 The functions of the analysis module ��
��� How does it work� �	

� The dependences module ��
��� The �les of dependences �	
��� The communication graph �

����� De�nition and type �

����� The function and its implementation �

��	 The dependence graph �

��	�� De�nition and type �

��	�� The function and its implementation ��

�

 The Scheduling Module �	
�� Files ��
�� Type ��
�	 Functions ��
�
 How it works ��

� The interface PIP module �

��� Files of interface PIP �
��� Types of interface PIP �
��	 Function of interface PIP ��
��
 Exceptions of interface PIP ��
��� Algorithm of interface PIP ��

����� translating the LP ��
����� execute PIP ��
����	 read and transform the solution ��

� The rewriting module ��
��� Files of rewriting ��
��� Function of rewriting ��
��	 Exception of rewriting ��
��
 Algorithm for rewriting ��

A How does PIP work ��
A�� Input �le �	
A�� Unix command �

A�	 output �le �

A�
 Getting the maximum instead of the minimum �

A�� Dealing with non negative variables ��

B Example of rewriting ��

�

� Introduction

This document gives a detailed overview of the functionalities and internal mechanics of the Bouclettes

parallelizer developed in the �Paradigme� group at the LIP� ENS�Lyon� Here is described the �rst basic
version of this parallelizer� This program is intended as a working basis for future developments�
The user can enter a simple loop nest �uniform and perfect� and transform it step by step �dependence

analysis� scheduling� allocation and rewriting� into a parallel loop nest where the outer loop is sequential
and the inner loops are parallel�
We �rst describe the graphical user interface and its implementation and then each module constituting

the program� In the appendix we provide the reader with an explanation of PIP�s use and with an example
of rewriting�

� The graphical interface

The goal of this section is to brie�y describe the interface module� It has been developed so as to propose a
common interface to the di�erent parallelization tools under development�
This interface works in the OpenWindows 	�� and SunOs
���	 environment� It has been developed in C using
the XView library� This interface has the same look and feel than the other OpenWindows applications� To
ful�ll this goal� the developments have been done using the Guide interface generator�
The interface calls binary executables and the communications between the modules is done via �les�

��� Description of the interface

The di�erent functionalities of the interface are shown below�

��� File Menu

This menu allows the user to load a new �le �Load button� or to quit the application �Quit button�� Once
a �le is loaded the user can edit it in the edition window and by pressing the right mouse button� the
traditional �textedit� menu appears�

��� Analysis Button

This button launches the syntactical analysis of the loaded �le� The syntax of the �le is veri�ed and the
resulting internal structure is rewritten in a new window�

��� Dependences Button

This button launches the dependences analysis� It prints the found dependences in a new window�

��� Environment Button

This button prints the environment in a new window �arrays and their size� loop indices and their depth and
parameters of the problem��

��	 Scheduling Menu

This button launches the scheduling� This menu allows to choose between di�erent scheduling techniques
but at the time being� only the linear scheduling is implemented�

��� Rewriting Button

This button starts the rewriting stage following the chosen schedule and allocation�

	

Figure �� Global view of the interface

��
 Allocation Menu

This menu proposes di�erent allocation techniques� For the moment the chosen technique is the unimodular
completion of the scheduling vector� There is no use of this button for the moment as the completion is done
during the rewriting�

��� The �les

This section describes the di�erent �les used by the interface module� These �les are in directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�interface

� parallelG� this �le describes the interface� It is written in a speci�c language and is automatically
generated by Guide�

� parallel uih� include �le used by parallel ui�c� generated from parallel�G�

� parallel uic� this �le describes the di�erent objects of the interface� It is generated from parallel�G�

� parallel stubsc� this �le contains the main program that activates the widgets and controls the
events� This �le contains particularly all the call�backs to the procedures associated with the events�
This �le is rebuilt at each modi�cation of the interface� It can also be edited to directly modify the
program�

� parallel� executable �le

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�interface�DOC

��� Communication between the modules and the interface

As stated in the introduction� the communication between the di�erent modules and between the modules
and the interface is done by �les� There are two kinds of �les� the caml objects �les and the ASCII ones�
The �rst ones can only be used by caml programs because the contain caml data structures� The second
ones are human readable and are generated by the called caml programs and then used by the interface�
they are the display�

Remark� The location of the executable �les corresponding to the di�erent modules is given in the �le
parallel stubs�c by the constant PARALLEL HOME� The current path is ��home�genievre�pboulet�Caml�Src�Parallelizer�bin
Here is the list of the �les currently created and used for the communication�

� �leana� caml �le� output of the analyse of the input �le� produced by analyse�

� �leanalyse� ASCII output of analyse�

� �leenv� caml �le corresponding to the environment� produced by analyse�

� �leenvironment� ASCII output of the environment�

� �legd� caml �le corresponding to the dependence analysis� produced by depend�

� �legraphdep� ASCII output of depend�

� �lesch� caml �le� output of the scheduling phase� produced by schedule�

� �leschedule� ASCII output of schedule�

� �lepar� caml �le� output of the rewriting module� produced by rewrite�

� �leparallel�ASCII output of rewrite�

�

��� Modi�cations

This section explains how to modify the interface module�

��� Modi�cation of the components of the interface

Here is explained the method to modify the graphical interface� like to add a new button or a new window�

�� Start Guide� type guide
�the executable is under �usr�local�guide�bin�guide��

�� Load the �le parallel�G form the interface of Guide �File menu� Load option��

	� Modify the interface using guide�s possibilities� One can add new windows� buttons� menus� etc� New
functions can also be attached to events�

� Save the changes �File menu� Save option��

�� Type make to update the �les which depend on parallel�G �execution of the command gxv parallel�G

which updates the source �les and the eventual recompilation of these �les��

��� Modi�cation of the code

The actions relative to the di�erent events have to be written by the programmer� The method to follow is
summarized below�

�� Attach some functions to the events of the interface using guide �see above��

�� Either the function is simple� then its code can be entered directly with guide� or the function is more
complex� only its name is given� This function has now to be coded� It is done in the �le parallel stubs�c
where the body of the function has to be completed�

	� Do not forget to rerun make for the compilation of the executables�

� The tools module

This module contains several tools that are useful for nearly all other modules of the parallelizer Bouclettes�
These tools are mainly a module of calculus over rational numbers and another module of calculus over
�a�ne� expressions� A third module toolbox�ml�i� contains a few general use functions that don�t �t
anywhere else�

��� The �les of the tools module

The �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�tools

� rationalml �mli�� calculus using rational numbers�

� expressionsml �mli�� a�ne and non a�ne expression manipulation�

� toolboxml �mli�� miscellaneous functions�

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�tools�DOC

�

��� The rational calculus

The type rational is de�ned by�

type rational �� int � int��

The �le rational�mli de�nes the functions that operate on this type�

value pgcd � int �� int �� int

and pgcd	liste � int list �� int

and ppcm � int �� int �� int

and ppcm	liste � int list �� int

and simplr � rational �� rational

and addr � rational �� rational �� rational

and subr � rational �� rational �� rational

and multr � rational �� rational �� rational

and divr � rational �� rational �� rational

and invr � rational �� rational

and floorr � rational �� rational

and ceilr � rational �� rational

and negr � rational �� rational

and equalr � rational �� rational �� bool

and eqr � rational �� rational �� bool

and greater	thanr � rational �� rational �� bool

and gtr � rational �� rational �� bool

and int	of	rational � rational �� int

and rational	of	int � int �� rational

and outputr � out	channel �� rational �� unit

and printr � rational �� unit��

All these functions return simpli�ed rational expressions given by function simplr� The functions eqr and
gtr are declared in�xed by�

infix �eqr���

infix �gtr���

��� The expressions

��� The expression type

The expression type is expr and is de�ned by�

type ident �� string��

type array � �Id�ident� Indices�expr list

and expr �

MIN of expr list

� MAX of expr list

� PLUS of expr�expr

� MINUS of expr�expr

� MULT of expr�expr

� DIV of expr�expr

� MIN	UN of expr

� FLOOR of expr

� CEIL of expr

� INT of int

� RATIO of rational

� VAR of ident

� BOOL of bool

� AREF of array��

It represents an expression tree�

��� The normalized a�ne form

Most of the functions de�ned here deal with a�ne expressions which are de�ned as sums of numbers and
factors of numbers and an identi�er� The major function of this module is normalizeaf that takes as input
an expression and returns the exception non affine is the input expression is not a�ne or it returns a
normalized form of the input expression if it is a�ne� This normalized form is de�ned as follows�

� it is a comb of PLUS

� each leaf is a MULT �RATIO r� VAR ident� except the last one that is a RATIO r

� each identi�er appears only once in the expression

The normalized form is built in several successive stages�

� All the MINUS and MIN UN nodes are removed so that the only remaining additive nodes are PLUS nodes�
This is done by the function simpl minus�

� The second stage is a simpli�cation �by function simpl nb�

� integers are transformed into rationals

� factors of a number and an identi�er are transformed into MULT �RATIO r� VAR id�

� quotients are computed or replaced by multiplications when it is possible

� The third stage is a distribution of the constants that are factors of a subexpression �by function
distribute��

� The fourth stage is the transformation of the tree of PLUS�s into a comb of PLUS�s�

� We then factorize the variables and the constants �function factorize� and remove the zero branches
that may result from the previous operation �function prune��

��� The functions

� normalizeaf � expr �� expr

normalizes its input

� is affine � expr �� bool

indicates if its input is an a�ne expression or not

� addaf � expr �� expr �� expr

computes the normalized form of the sum of two a�ne expressions

� subaf � expr �� expr �� expr

computes the normalized form of the di�erence of two a�ne expressions

� mult int af � int �� expr �� expr

computes the normalized form of the product of an a�ne expression by an integer

� outpute � out channel �� expr �� unit

and printe � expr �� unit

outputs an expression on a speci�ed output channel or on the standard output

�

� outputaf � out channel �� expr �� unit

and printaf � expr �� unit

outputs an a�ne expression on a speci�ed output channel or on the standard output

� neg expr � expr �� expr

negates an expression

��� The toolbox

The �le toolboxmli says it all�

�� outputs a list of elements outputed by �output	fun� on channel �ch� ��

value output	list � out	channel �� �out	channel �� �a �� unit� �� �a list �� unit��

�� outputs an int on channel ch ��

value output	int � out	channel �� int �� unit��

�� executes a command �c� with arguments �a� ��a� is a string vect���

value exe � string �� string vect �� unit��

�� gives the name of a file without the extension ��

value base	filename � string �� string��

� The matrices module

In this section we describe the functions that have been written to do matrix computations� In the directory
matrices can be found functions to compute the matrix product� the inverse of a matrix� elementary row
and column operations and the Hermite form computation that leads to the unimodular completion of an
integer vector�

��� The �les of matrices

The �les can be found in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�matrices

� det invml �mli�� output of a rational matrix� rational matrices product and rational matrix inverse
computation

� mat elemml �mli�� elementary operations on integer matrices �row� column management� trans�
pose� matrix product and output�

� hermiteml �mli�� computation of the Hermite form of an integer matrix and unimodular completion
of an integer vector using the Hermite form

� completeml� the source code of the executable complete that completes an integer vector into a
unimodular matrix

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�matrices�DOC

��� The functions available

��� det inv

This module contains functions operating on rational matrices�

�

� identityr � int �� int �� �int � int� vect vect

identity n p generates a n� p identity matrix

� randomatr � int �� int �� �int � int� vect vect

randomatr n p generates a n� p �random� matrix

� outputvectr � out channel �� �int � int� vect �� unit

outputs a rational vector on the given channel

� outputmatr � out channel �� �int � int� vect vect �� unit

printmatr � �int � int� vect vect �� unit

output a rational matrix on the given channel or the standard output

� prodmatr � �int � int� vect vect �� �int � int� vect vect �� �int � int� vect vect

computes the product of its two matrix arguments

� inv matr � �int � int� vect vect �� �int � int� vect vect

computes the inverse of its argument

��� mat elem

This module implements elementary operations on integer matrices�

� mat copy � int vect vect �� int vect vect

mat copy a makes a copy of matrix a

� minus row � int vect vect �� int �� int vect vect

minus row a i changes the sign of row i of a� warning � this function modi�es its argument

� minus column � int vect vect �� int �� int vect vect

minus column a j changes the sign of column j of a� warning � this function modi�es its argument

� exchange rows � int vect vect �� int �� int �� int vect vect

exchange rows a i j exchanges rows i and j of matrix a� warning � this function modi�es its argu�
ment

� exchange columns � int vect vect �� int �� int �� int vect vect

exchange columns a i j exchanges columns i and j of matrix a� warning � this function modi�es its
argument

� add row � int vect vect �� int �� int �� int �� int vect vect

add row a i j x� row i �� row i � x � row j warning � this function modi�es its argument

� add column � int vect vect �� int �� int �� int �� int vect vect

add column a i j x� column i �� column i � x � column j� warning � this function modi�es its
argument

� small row � int vect vect �� int �� int

small row a q �nds the column number of the smallest non zero element of row q of matrix a� whose
column index is greater than q and returns � if all elements are zero unless the qth

� small column � int vect vect �� int �� int

small column a q �nds the row number of the smallest non zero element of column q of matrix a�
whose row index is greater than q and returns � if all elements are zero unless the qth

� identity � int �� int �� int vect vect

identity n p returns an identity �n by p� matrix

� randomat � int �� int �� int vect vect

randomat n p returns a random �n by p� matrix

��

� outputvect � out channel �� int vect �� unit

printvect � int vect �� unit

prints a vector

� outputmat � out channel �� int vect vect �� unit

printmat � int vect vect �� unit

prints a matrix

� transpose � int vect vect �� int �� int vect vect

transpose a q transposes the sub�matrix of a which indices are greater or equal to q� warning � this
function modi�es its argument

� dotij � int vect vect �� int �� int vect vect �� int �� int

dotij a i b j computes the dot product of the ith row of a by the jth column of b

� prodmat � int vect vect �� int vect vect �� int vect vect

computes the matrix product

All these functions are fairly simple vect manipulations�

��� hermite

The function basis de�ned by

value basis � int vect vect �� int vect vect � int vect vect � int vect vect��

computes the hermite form �Dar�	� of its argument� For all matrixA of Zn� there exists a unimodular matrix
Q and a matrix H such that�

� H is upper triangular with greater or equal to � coe�cients�

� each non diagonal coe�cient is less than the diagonal coe�cient of the same column �expect when the
diagonal coe�cient is null��

� A � QH�

The three matrices that basis returns are respectively H� Q and Q���
Function complete de�ned by

value complete � int vect �� int vect vect��

completes its argument �a vector� into a unimodular matrix �Dar�	��

� The analysis module

This section presents the internal structure of a program and the analyzer that recognizes it� This module�
developed in the directory analysis contains the de�nition of the internal representation of a program and
a few elementary operations on such a structure�

��� The �les of analysis

The �les are in the directory �home�genievre�pboulet�Caml�Src�Parallelizer�analysis

� structml �mli�� exceptions and types de�ned in this module and two extraction functions

� analysisml �mli�� lexical and syntactical analyzer of a program and printing functions

� ana�ml� de�nes the executable analyzer

The documentation �les are in �home�genievre�pboulet�Caml�Src�Parallelizer�analysis�DOC

��

��� The type de�nitions

The internal structure of a program is de�ned in struct�mli�

type index � �Index�ident� Lower	bound�expr� Upper	bound�expr� Stride�expr��

type loop � �Ind	do�index� Body	do�inst list

and cond � �Test�expr� Then�inst list� Else� inst list

and affect � �Lexpr�array� Rexpr�expr

and forall � �Ind	forall�index list� Body	forall�inst list

and inst � LOOP of loop

� COND of cond

� AFFECT of affect

� FORALL of forall��

type prog � �Declarations�ident list� Instructions�inst list��

A prog consists in a list of declarations �type ident is de�ned in module expressions� and a list of instruc�
tions� An instruction is a loop� a conditional statement� a forall statement or an a�ectation�
The environment is handled by a hash table�

type fortran	type � INTEGER � REAL � LOGICAL��

type quality � PARAM of expr ��value��

� VARIABLE

� INDEX of int ��depth in the loop nest��

� ARRAY of int��expr list� ��dimension� bounds����

type attribute � �Type�fortran	type� Quality�quality��

The environment variable env is of type �string� attribute� hashtbl t� which means that it is a hash�
table that associate an attribute to each string entry it contains� This attribute indicates which is the
type of the object associated with the string and what is the object� a parameter� a variable� a loop index
or an array�

��� The exceptions of the analysis module

The �le structmli contains the de�nitions of two exceptions�

� exception non uniform of string��

Which is used by a function that expects a program with uniform dependences and �nds a non uniform
dependence� The string argument of this exception is used to indicate which function has raised it�

� exception non perfect of string��

Which is used by a function that expects a perfectly nested loop nest and �nds one that is not perfectly
nested�The string argument of this exception is used to indicate which function has raised it�

��� The functions of the analysis module

analysismli contains the de�nitions of�

� analysis�

value analysis � string �� prog � �string� attribute� t��

This function takes a �lename as argument and analyzes its content to return a pair� the internal
representation of the program whose text is in the argument �le and the environment of this
program�

� outputprog� printprog� outputenv� printenv�

��

value outputprog � out	channel �� �string� attribute� t �� prog �� unit

and printprog � �string� attribute� t �� prog �� unit

and outputenv � out	channel �� �string� attribute� t �� unit

and printenv � �string� attribute� t �� unit��

These functions allow to print in a human readable form a prog and a �string� attribute� t�
either on a speci�ed channel �output���� or on the standard output channel �print�����

structmli contains the de�nitions of�

� extr loop�

value extr	loop � loop �� index list � inst list��

This function extracts the indices of a loop nest and its body�

� extr perf prog�

value extr	perf	prog � prog �� index list � inst list��

This function extracts the indices and the body of a perfect loop nest program�

��� How does it work�

Basically� all the functions except the analyzer are basic manipulations of the prog type�
The analyzer is built in two phases�

�� the lexical analyzer analex that takes a char stream and returns a token stream� where a token is
de�ned by�

type token � T	FOR � T	TO � T	DO � T	EGAL � T	ENDDO � T	PARG � T	PARD

� T	PLUS � T	MINUS � T	MULT � T	DIV � T	�OP of string � T	�OP of string

� T	SEP � T	NL � T	EXP of string � T	MAX � T	MIN � T	INT � T	REAL

� T	LOGICAL � T	PARAM��

�� the syntactical analyzer analysis that takes a token stream and returns the prog structure and the
environment hash�table�

� The dependences module

This section deals with the dependence analysis of a uniform perfect loop nest� We �rst build the commu�
nication graph described in �Dar�	� and then use it to build the reduced dependence graph�

��� The �les of dependences

The �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�dependences

� graph comml �mli� extraction of the communication graph from a prog

� graph depml �mli� construction of the dependence graph from a communication graph

� dependml the source of the executable that does the dependence analysis

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�dependences�DOC

�	

��� The communication graph

We use this structure as an intermediate structure to compute the dependence graph �see section ��	��

��� De�nition and type

The communication graph represents the communications that are needed given an allocation of the data
and the computations� The vertices are the statements of the body of the loop nest and the data arrays�
The edges are the di�erence between the indices of the two vertices they join� This graph is represented by
the type�

type depend ��nomd�ident� vect� expr list��

type instr	dep � �nomi�ident� suci�depend��

type var	dep � �nomv�ident� sucv�depend list��

type graph	com � �instr	list� instr	dep list�

var	list�var	dep list��

��� The function and its implementation

The communication graph is computed by the function�

value gcom � prog �� graph	com��

The computation of this graph is done in three phases�

�� We �rst build the index of an instruction and the list of instructions �function gcom ���

�� We then build an intermediate structure de�ned by a list of instr inter�

type instr	inter � �nomint�ident� ecrite�depend� lues�depend list��

This is done by function gcom ��

	� We then convert this intermediate structure to a graph com via gcom ��

��� The dependence graph

��� De�nition and type

The dependences carry the constraints on the order of evaluation of the instructions� To respect the semantic
of the sequential program� we have to respect the dependences� Let us note Si�I� the instance of instruction
i corresponding to iteration vector I� There is a dependence between two iterations Si�I� and Sj�J� if�

� Si�I� is executed before Sj�J�

� Si�I� and Sj�J� both reference a same memory location and at least one of these references is a write
access�

See �Dar�	� for more details�
As here all the dependences are uniform� the dependence graph can be represented by a reduced de�

pendence graph whose vertices are the di�erent statements of the body of the loop nest and whose vertices
are labeled by the dependence vectors �the di�erence between the iteration vectors of the two instructions
causing the dependence�� This graph is represented internally by the type graph dep de�ned by�

type v	d � �origin�string� dest�string� vd�int list��

type graph	dep �� v	d list��

�

��� The function and its implementation

As we need all the dependences positive to compute the scheduling� the function

value gdep � graph	com �� graph	dep��

computes the dependence graph with all the dependences positive�
This computation is done in three phases�

�� Starting with the communication graph� we �rst compute the �ow dependences and the anti depen�
dences�

�� We then compute the output dependences�

	� And �nally we make the dependences positive�

The �les graph depml �mli� also contain the implementation of two functions that print a graph dep

on a given channel or on the standard output�

value outputgd � out	channel �� graph	dep �� unit

and printgd � graph	dep �� unit��

� The Scheduling Module

This section explains how is implemented the scheduling in the parallelizer bouclettes� This module� de�
veloped in the directory scheduling� calculates the best linear schedule associated to a nested loop� The
method used is described in �Dar�	��
The module scheduling takes in input the results of the modules analyse and dependences� It uses the

software PIP and its interface implemented in the module interface PIP to calculate the best scheduling
vector�

	�� Files

The �les are in the directory
�home�genievre�pboulet�Caml�Src�Parallelizer�scheduling�

� loop to lpml �mli�� going from a nested loop to a linear program�

� schedulingml �mli�� going from a linear program to the scheduling using the module interface PIP�

� scheduleml� generates the executable associated to the module scheduling�

The documentation �les are in the directory
�home�genievre�pboulet�Caml�Src�Parallelizer�scheduling�DOC�

	�� Type

The type �scheduling� is de�ned in the �le scheduling�mli�
type scheduling �

S IF THEN ELSE of s if then else

�SCHEDULING of expr vect

�S BOT

and s if then else � S IF� expr� S THEN� scheduling� S ELSE� scheduling��

The scheduling vector is represented by an expression vector which can contain parameters and conditions
on parameters�

��

	�� Functions

The main functions de�ned in the module scheduling are�

� loop to lp �

value v d list �� prog �� prog lin��

The function loop to lp transforms the nested loop in a linear program� It takes in argument two
objects�

� an object of type prog calculated by the module analysis� it describes the nested loop�

� the list of dependence vectors calculated by the module dependences�

� schedule �

value schedule � prog lin �� scheduling��

The function schedule takes in input a linear program and returns the best scheduling vector� It
uses the module interface PIP and more precisely solve lp which returns the solution of a linear
program�

	�� How it works

The search for the best scheduling vector Given a uniform loop nest� the total execution time for a
linear schedule � is given by�

T�� � � �max�b�pc� p � Dom� �min�b�qc� q � Dom�

The best linear schedule is the one that minimizes T�� over all rational vectors � such that �D � ��
In �Dar�	�� Darte proposes a method to �nd the optimal scheduling vector which consists in solving only

a single linear program� Finding the optimal scheduling is solving the problem�

min
XD��

max
�Ap�b�Aq�b�

X�p � q�

And� by the duality theorem of linear programming ��Sch����� the optimal scheduling is obtained by
solving the following linear problem�

��������
�������

XD � �
X�A � X

X�A � �X
X� � �
X� � �
min�X� �X��b

For more details� see �Dar�	��
Remark that this problem is linear in b� Thus� the search of the best scheduling vector for the family

of domains Ax � Nb where N is a parameter is reduced to the search on the domain Ax � b which can be
done without knowing N at compile�time�

Back to the scheduling module For the moment� the scheduling module is only implemented for
perfect uniform nested loop and for the family of domains Ax � Nb�
The function graph dep to matrix implemented in loop to lp�ml calculates the dependence matrix D�

The function get domain also implemented in loop to lp�ml calculates the matrix A� the vector b and
eventually a parameter N � From A� b� N and D� the linear program can be generated and solved with the
function solve lp implemented in the module interface PIP�

��

� The interface PIP module

This section explains how is implemented the interface between the parallelizer bouclettes and the PIP
software� This module� developed in the directory interface PIP� allows to solve a parameterized linear
programming problem by using PIP� A linear programming problem �LP� is of type prog lin �described
hereafter� and the solution is of type sol prog lin� A brief recall of the way PIP works is done in section A�

�� Files of interface PIP

The �les are in the directory
�home�genievre�pboulet�Caml�Src�Parallelizer�interface PIP

� type lin progml �mli�� exceptions and types de�ned in this module�

� a� lpml �mli�� all the output functions needed�

� lp to pipml �mli�� going from a LP �in the prog lin type� to a problem that can be solved by PIP�

� exec pipml �mli�� executing PIP �via Unix��

� pip to solml �mli�� going from a solution given by PIP to a solution in the sol prog lin type�

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�interface PIP�DOC

�� Types of interface PIP

The types �prog lin� and �sol prog lin� are de�ned in the �le type prog lin�mli�

� prog lin�

type maxormin� max � min ��

type prog lin �

fINTORNOT� bool�

MAXORMIN�maxormin�

NBPAR� int�

NAMEPAR� string list�

POSPAR�string list�

NBVAR� int�

NAMEVAR� string list�

POSVAR�string list�

CONTEXT� expr list�

LISTINEQ� expr list�

COST� expr�

COMMENTS� string

g��

� INTORNOT indicates if the LP is to be solve in integral or rational mode� For the moment the
integral mode is not implemented thus it should be always false�

� MAXORMIN indicates if the cost function must be minimized or maximized�

� NBPAR indicates the number of parameters of the LP�

� NAMEPAR indicates the names of the parameters of the LP

�

� POSPAR indicates which parameters are positive� WARNING� this information should be also
present in the �eld CONTEXT� if the inequality indicating that a parameter is positive is not in
the context� then the parameter will not be taken as positive� even if the name of the parameter
is indicated in this �eld�

� NAMEVAR indicates the names of the variable of the LP

� POSVAR indicates which variable is positive� As for the parameters� this information should be
also present in the �eld LISTINEQ�

� CONTEXT� the list of inequalities of the LP that involve only parameters� Each inequality is an
expression that must be positive� This expression must be a�ne�

� LISTINEQ� the list of inequalities �a�ne expression positive� involving variables and parameters
�possibly��

� COST� the cost function of the LP�

� COMMENTS� the comments set by the user �are output when outputting the LP��

� sol prog lin�

type quast�

QUAST of if then else

�SOL of expr vect

� BOT

and if then else�fIF� expr� THEN� quast � ELSE� quastg��

The quast is the basic structure of the solution of a parameterized LP� The leaves of the quast �which are
the possible solutions� are vectors� the �rst coordinate of the solution is the value of the cost function�
The other coordinates are the values of the variables that reach this value for the cost function �in the
order speci�ed in the variable list�� For the moment� the cut of the leaf of the quast described at the
end of section A is not implemented

type sol prog lin �

fS INTORNOT� bool�

S MAXORMIN�maxormin�

S NBPAR� int�

S NAMEPAR� string list�

S NBNEWPAR�int�

S NAMENEWPAR�string list�

S NBVAR�int�

S NAMEVAR�string list�

S SOL� quast�

S COMMENTS� string

g��

The �elds of sol prog lin are very close to the ones of prog lin� Two more appear� S NBNEWPAR
and S NAMENEWPAR which are now useless�

�� Function of interface PIP

The only function that should be used by users is�

� solve lp�
value solve lp� prog lin �� sol prog lin ��

This function solves an LP in rational mode�

��

�� Exceptions of interface PIP

There are several types of exceptions that can be raised but that should not� These exceptions are almost
all linked to the fact that the expression in LISTINEQ and CONTEXT must be a�ne� These exceptions
are de�ned in type lin prog�ml and the name of the function where they have been raised appears at the
beginning �for instance� exception get ppcm non affine in lp has been raised by the get ppcm function��
Some problems may appear when you try to minimize �or maximize� a cost function that is not bounded�

In this case we have chosen to print a Warning message on the standard output� This can be easily change
into an exception�

� unbounded solution
The message appearing in the non�bounded solution case is like the following�
Warning �� Unbounded solution

�

It means that the program was looking for a solution with some Big Parameters �see section A� and
could not �nd them� This warning is printed on the screen and the program goes on� Of course� the
solution given is false �it should be unbounded��

� false solution
Another type of warning may appear� As explained in the section A� Some of the branches of the
Quast solution may be cut� when the condition of the quast is always veri�ed for example� In this case�
we should cut the �dead leaves� but it is not implemented yet �because in my opinion it will never
happen�� Thus� a warning is raised if this situation happens� with the following message�
Warning� coefficient of GP� does not correspond to

the sum of the coefficient of the other parameter in�

n�p��

Be careful� if this warning appears� the solution found could be false� Please� inform me if it happens�

�� Algorithm of interface PIP

The treatment proceeds in the following steps�

� translate the LP

� execute PIP�

� read and transform the solution

�	� translating the LP

The original LP �type prog lin� is transformed into an internal structure that looks like the �les for PIP
�type prog lin for pip de�ned in type lin prog�� This phase must add adequate Big Parameters in order
to obtain an equivalent LP where variables are non�negative and where the goal is to minimize the �rst
variable� This work is done with the program de�ned in the �le lp to pip�ml�
First� we get the parameter that are declared �in lp�POSPAR� to be positive and we perform a variable

change on the other parameters� n � n � GP� �function get pos para�� We get a new LP where all the
parameters are positive �with one more parameter� GP�� and a list that recalls the parameters that have
been transformed� Then� a new variable �XCOST� is introduced to represent the cost function� and we
introduce the �rst inequation� XCOST � LP�COST � � �resp � if we should maximize��
Then we �format� the LP� it means that we perform the variable changes explained in section A� with

a Big Parameter GP� to ensure that the variables will be positive and we produce a pip�like LP �function
format caml to pip lp�� The result of this last function is given in a form which is very close to the PIP
format �Prog lin for pip�� The coe�cients of the PIP vectors � � � � � � � �� are in the following order�
coe�cient of the cost function �only appears in the �rst inequality�
variables coe�cient �in the order of the variable list�
constant coe�cient

��

coe�cient of GP�
coe�cient of GP�
coe�cient of the other parameters �in the order of the list�

�	� execute PIP

This part is done in �le exec pip�ml� The internal structure is written in the �le
LP PIP�p and the Unix
command �
pip
LP PIP�p
LP PIP�res

is executed� Thus the result is in the �le
LP PIP�res�

�	� read and transform the solution

The �le
LP PIP�res is analyzed and stored in an primary solution �type Sol prog lin�� This work is done
in �le pip to sol�ml�
First� in get sol pip� we analyze the output �le of PIP �
LP PIP�res�� we get the solution in a Quast�

and with the variable list and the parameter list� we put the right parameter names in the condition and the
leaves of the quast�
In simplify quast sol� we remove the occurrence of the Big Parameters GP� and GP�� If something

wrong is detected� a Warning is printed �no exception raised �� Then we get the solution Quast�

� The rewriting module

This section explains how is implemented the rewriting module� This module� developed in the directory
rewriting� allows to rewrite a loop after an integral transformation over the indices which is unimodular
or lower triangular� The unimodulary transformation is usually indicated by the scheduling and allocation
modules� From these modules we get a matrix and we obtain the new indices by applying this matrix to the
indices of the original loop nest� The work described here allows to enumerate all the computations of the
original loop nest with another loop nest of which the indices are the new computed indices� With the usual
basic modules� this module uses the scheduling module� the matrices module and the Interface PIP

module� For the moment the transformation to apply to the nest is obtained by completing the schedul�
ing vector into a unimodulary matrix with the Hermite algorithm� The rewriting after a non�unimodular
transformation is not used in the interface with the compiler bouclettes�

��� Files of rewriting

The �les are in the directory
�home�genievre�pboulet�Caml�Src�Parallelizer�rewriting

� rewritingml �mli�� all the unimodular rewriting treatment and only the rewriting treatment�

� rewriteml � the executable program called from the rewriting button� Here the unimodulary
completion of the scheduling vector is called�

� triang rewriteml �mli�� The rewriting with a lower triangular integral matrix

The documentation �les are in the directory�
�home�genievre�pboulet�Caml�Src�Parallelizer�rewriting�DOC

��� Function of rewriting

There are two functions that should be used by users�

��

� rewrite nest�
value rewrite nest � int �� prog �� int vect vect �� prog��

This function takes a nest and an integral unimodulary matrix and gives the nest which is the transfor�
mation of the nest by the matrix� The �rst parameter is the identi�cation number of the transformation�
Indeed� as the new index names are not speci�ed by the user� we have chosen to name them� NINDx y

where x is the identi�cation number of the transformation �for the moment it is always �� and y is the
depth of the new index �starting a ���

� tri rewrite nest�
value tri rewrite nest � int �� prog �� int vect vect �� prog��

This function takes a nest and an integral lower triangular matrix and gives the nest which is the
transformation of the nest by the matrix� Be careful� the upper triangle of the matrix is not taken into
account�

In practice� every integral transformation can be decomposed into the product of a unimodular and a lower
triangular transformation� With the two functions described here� one can rewrite a nest after any integral
transformation�

��� Exception of rewriting

Some classical exceptions can be raised like non affine or non perfect� The exceptions de�ned here are�

� A ref in bound when there is an array reference in a loop bound� This exception should not happen
if the analysis is done�

� index not found and not enough depth are internal exceptions that should not be raised� If they
do� a string indicates in which function they are raised�

��� Algorithm for rewriting

The rewriting of the nest uses the technique described in �CFR�	�� We �nd the new bounds from the
outermost index to the innermost index� When working on an index at depth i� the outer�more indices
�at depth j � i� are considered as parameters while the inner�more �at depth j � i� are still indices �or
variables�� The domain of this nest represents a parameterized convex polyhedron of dimension n� i� � if
n is the depth of the original nest� We look for the extrema �minimum and maximum� of the �rst coordinate
upon this polyhedron� The interface PIP module allows to perform this search� For each index and each
problem �min or max� a linear programming problem is written� the constraints are the inequation de�ning
the domain and the cost function is the index to minimize� This problem is solved by PIP and we get the
new bounds�
The function rewrite nest gets useful information �like the list of the names of the indices of the nest�

and calls the recursive function rewrite loop that successively computes the bounds on the new indices�
The algorithm of rewrite loop is�

� if it is a real loop

� writes the LP for the lower bound

� solves the LP and get the lower bound

� writes the LP for the upper bound

� solves the LP and get the upper bound

� recursive call for the loop body

� else modify the list of instruction with the new indices�

��

Modifying the list of instructions is just technical� one has to perform the variable change �i�� � � � � in��
U���i�� � � � � in� �where U is the transformation to apply� in all the array references of the nest�
Writing the LP for a depth i is a little more complicated as you have to transfer all the inequalities de�ning

the domain in term of the new indices � U���i�� � � � � in��� to separate the context �inequalities involving only
parameters� and the domain �other inequalities�� Remember that the parameters are the original parameters
plus the surrounding new indices�
Getting the solution means just to replace as indicated in �CFR�	� the quast given by PIP by a maximum

�resp minimum�upon its leaves if it is a lower bound �resp upper bound�
the function triang rewrite is a little more simple� it just consist in algebraic manipulation but it is

quite technical� The transformation is precisely described in �Ris�
� p�	�

��

A How does PIP work

This is a very brief explanation on one example� for more details please refer to �FT��� or �Fea����
Let D�m�n� k� be a parameterized polyhedron composed of �i� j� such that�
� � i � n

� � j � m

k � i� j

under the constraint k � n�m�
Suppose that we want to minimize th �rst variable �i� over D�m�n� k�� This is the type of problem solved

by PIP� PIP can solve this problem and give a rational or an integral solution� Here we will only deal with
rational solution as the integral part of PIP software is not interfaced yet with bouclettes� First of all we
must be aware of three characteristics of the PIP algorithm

� it computes the lexicographic minimum of the vector of variables �in particular it implies that it
minimizes the �rst variable��

� all the variables and parameters are supposed to be non�negative�

� the parameters are supposed to be integral �for instance� if n is a parameter� n � will be written
n � ���

A�� Input �le

To code this problem for PIP we write the following �le �ex��p��

� �
�variables i j�
�parameters k m n�
m � j

n � i

i� j � k

m� n � k

here comments
�
� 	 	 � �� �
�
 �� �� � � � � �
 ��� � � � � � �
 �� � � �� � � �
�
�
 ��� � � ��
�
�

signi�cation of the integer row�
� �� � � two variables
	 �� � � three parameters
	 �� � � three equations on variables
� �� � � one equation on parameters
�� � �� � No Big parameter �see after�
� �� � � rational solution

signi�cation of the vectors � �� � � � � ��
for example� the �rst one �� �� � � � � � represents the inequality m� j � �� The �rst coe�cients are those

�	

of the variables i and j �here � for i and �� for j� Then comes the coe�cient of the constant term �here ���
and the coe�cient of the parameters k�m and n �here � for m� � for others��

Be careful� variables and parameters are supposed to be non negative� Thus� inequalities like i � � are
not written explicitly�

A�� Unix command

To get the solution with the pip software� we execute�
pip ex��p ex��res

A�� output �le

The �le ex��res contains�

� �
�variables i j�
�parameters k m n�
m � j

n � i

i� j � k

m� n � k

here comments
�
�if � �� � � ��

�list � � � � ��
 � � � � ��

�
�list � � �� � ��
 � � � � ��

�
�
�

which can be read as�

if m � k

�i� j� � ��� k�
else
�i� j� � �k �m�m�

The vectors � ��� � � � � � are read the same way� but they only concern parameters and constant term�
The �rst coe�cients are for the parameters and the last is for the constant term�

A�� Getting the maximum instead of the minimum

To compute the maximum over a domain D�z�� we compute the minimum of GP� � D�z�� GP� being a
parameter as big as we want �Big parameter�� This ensure that GP��D�z� will have positive coe�cient�
The rule for internal PIP computations is the following� when PIP has to decide the sign of an expression�
if the coe�cient of the Big Parameter is not null� then it gives the sign of the whole expression� Be careful�
we cannot use two Big Parameters otherwise this last rule would become false� In particular we cannot set
inequalities like n � GP� in the context�
Three stages�

�

� we introduce a new parameter GP� and we perform a variable change upon all the variables �without
touching the parameters� �i��� i

�
�� ���� i

�
n� � �GP�� i�� GP�� i�� ���� GP�� in��

� we compute the lexicographic minimum of the new polyhedron and we get the solution as a function
of �p�� ���� pm� �the parameters� and GP��

� we perform the variable change the other way around� �i�� i�� ���� in� � �GP��i��� GP��i
�
�� ���� GP��i

�
n�

and we get the lexicographic maximum of our original polyhedron� If the solution depends upon GP��
then the polyhedron was not bounded�

In practice�

� we add one parameter �GP�� that we force to be a Big parameter� �the �fth integer in the integer row
of the input �le indicates its rank in the �variable�constant�parameters� list �starting at ���

� we change the signs of the coe�cients corresponding to variables and we set the coe�cient of the new
parameter to the sum of these coe�cients �before having changed their sign�

� when we read the solution� we take the opposite and we ignore the coe�cient of the Big Parameter �or
we check that it is one if we are not sure that the polyhedron is bounded��

Example� the lexicographic maximum upon the previous polyhedron�

� �
�variables i j�
�parameters k m n GP� �Big par��
m � j

n � i

i� j � k

m� n � k

here comments
�
�
 	 � � �
�
 �� � � � � � �� � m � GP�� j

 �� � � � � � ��� n � GP�� i

 ��� �� � �� � � �� �GP�� i� j � k

�
�
 ��� � � � �� m� n � k

� �

and the result�

� �
�variables i j�
�parameters k m n GP� �Big par��
m � j

n � i

i� j � k

m� n � k

here comments
�
�list � � � �� � �� �GP�� i� GP�� j� � �GP�� n�GP��m�
 � � �� � � �� thus� �i� j� � �n�m�
� �

��

A�� Dealing with non negative variables

If you look carefully at the transformation that we have performed in the last section� you will realize that
the variables of the original LP are not any more supposed to be positive� As we have performed the variable
change� G � i� is positive whatever the sign of i� is� Thus we are able to �nd maxima of problems where
variables are of any sign�
Suppose now that we want to compute the minimum of a polyhedron which variables are not positive�

We can perform a diagonal shift of all the domain� This shift must be large enough to bring the whole
domain� in the positive quadrant� Thus we can use the big parameter and perform the variable change�
�i��� i

�
�� ���� i

�
n� � �GP� � i�� GP�� i�� ���� GP�� in��

The new variables are positive �because GP� can be as big as possible�� and the lexicographic minima
of the two domains are the same� except that one is shifted by �GP�� GP�� � � �� GP���
Thus we compute the minimum upon �i��� � � � � i

�
n� and we subtract �GP�� GP�� � � �� GP�� to the solution�

If there remains some G is the result� then the original polyhedron was not bounded�
The last problem to solve is about parameters� As we have mentioned before� we cannot allow two big

parameters� Thus� the variable change that we just explained apply only to variables� not to parameters�
and parameters are also supposed to be positive�
To allow parameter of any sign� we must perform the same kind of manipulation� a �change of parameter��

�n��� n
�
�� ���� n

�
n� � �GP� � n�� GP� � n�� ���� GP�� nn�� Where GP� is a new parameter which is as big as

we want �but which has no special property for PIP�� Then we compute the solution in term of the new
parameters and we perform the parameter change the other way around� The only di�erence with the
variable treatment is that we should cut impossible leaf ourselves�
Because of the way PIP computes the solution �CFR�	�� the �nal solution will not contain any GP�

unless it is not bounded but suppose for example that a condition of the resulting quast is something like

if m� �G � �
�i� j� � ��� k�

else
�i� j� � �k �m�m�

Then we have to change that in �i� j� � �k �m�m� because m � �G cannot be positive�
I don�t think this situation can happen thus it is not implemented yet

B Example of rewriting

This section illustrates by an example� the use of the rewriting module functions� The example is taken
in �Ris�
� p���
consider the following nest�

DO i � � � m

DO j � � � n

DO k � � � i�j

S�i� j� k�
ENDDO

ENDDO

ENDDO

and suppose that� for a very important purpose� you sincerely want to apply the following matrix T to
the nest�

T �

�
�
� � �
�
 	
� � �

�
A

��

When working into interpreted camllight �execute pboulet�bin�cl�� open all the modules by including
go�ml for instance� The nest is stored in the �le rewriting�Ex�test these� The �rst thing to perform is
the analysis�

let �p��q�� � analyse �test these���

The we construct the matrix T �

let m�� make matrix � � ���

vect assign m����� � ���

vect assign m����� � ���

vect assign m����� � ���

vect assign m����� � ���

Then we decompose m�� Be careful� we need the product of a lower triangular matrix and a unimodu�
lary one thus we have to perform some transposition if we want to use the Hermite decomposition�

open �mat elem���

let m��transpose m� ���

let �m���m���m���� basis m���

let m��transpose m�� ���

let m��transpose m�� ���

Now we have T�m��m� with�

m	 �

�
�
� � �
	
 �
� � �

�
A and m� �

�
�
� � �
� � �
� � �

�
A

We �rst apply m� to the nest�

let p�� rewrite nest � p� m���

rewriting the loop ���

p� � prog � fDeclarations���� Instructions��LOOP ���

printprog q� p���

FOR NIND� � � ������n������m����� DO

FOR NIND� � � max��������m������NIND� �������� ����n���� DO

FOR NIND� � � max�����NIND� ��������NIND� ���������� ����m���� DO

a�����NIND� ����������NIND� ����������NIND� ������ �

b�����NIND� ����������NIND� ����������NIND� �������

ENDDO

ENDDO

ENDDO

Which is exactly the result obtained in �Ris�
� p��� Apply now the lower triangular matrix m��

let p�� tri rewrite nest � p� m���

p� � prog � fDeclarations���� Instructions��LOOP ���

printprog q� p���

FOR NIND� � � ���������� ����������n������m������� DO

FOR NIND� � � �����NIND� ���������max��������m������NIND� �������������

��������NIND� �������������n������� � DO

�

FOR NIND� � �������max�������NIND� ����������NIND� ������������ ���

��� ����������m������� � DO

a�������NIND� �������������NIND� ���������NIND� �����������NIND� ������ �

b�������NIND� �������������NIND� ���������NIND� �����������NIND� �������

ENDDO

ENDDO

ENDDO

Which is exactly the nest obtained in �Ris�
� p��� All the commands described here are written in the
�le rewriting�Ex�test ex�ml�

References

�CFR�	� J�F� Collard� P� Feautrier� and T� Risset� Construction of DO loops from systems of a�ne con�
straints� Technical Report �	���� LIP� Lyon � France� ���	�

�Dar�	� Alain Darte� Techniques de parall�elisation automatique de nids de boucle� PhD thesis� Ecole
Normale Sup�erieure de Lyon� ���	�

�Fea��� P� Feautrier� Parametric integer programming� RAIRO Recherche Op�erationnelle� ����
	!����
September �����

�FT��� Paul Feautrier and Nadia Tawbi� R�esolution de syst�emes d�in�equations lin�eaires" mode d�emploi
du logiciel pip� Technical Report ����� Institut Blaise Pascal� UPMC� Laboratoire MASI� January
�����

�Ris�
� Tanguy Risset� Parall�elisation automatique� du mod�ele systolique �a la compilation de nids de

boucles� PhD thesis� ENS�Lyon� February ���
�

�Sch��� Alexander Schrijver� Theory of Linear and Integer Programming� John Wiley and Sons� New York�
�����

��

