Pierre Boulet 
  
Mich Ele Dion 
  
Eric Lequiniou 
  
Tanguy Risset 
  
Reference manual of the Bouclettes parallelizer

Keywords: parallelizer, nested loops, compiler, dependence analysis, scheduling, allocation, loop rewriting, PIP R parall eliseur, nids de boucles, compilateur, analyse de d ependances, ordonnancement, allocation, r e ecriture de boucles, PIP

This documents presents the rst version of the Bouclettes automatic parallelizer developed at LIP. It gives a detailed description of the functionalities and internal mechanics of the parallelizer, from the graphical interface to the syntactical analysis, dependence analysis, scheduling, allocation and rewriting modules as well as the tools that are used.

Introduction

This document g i v es a detailed overview of the functionalities and internal mechanics of the Bouclettes parallelizer developed in the \Paradigme" group at the LIP, ENS-Lyon. Here is described the rst basic version of this parallelizer. This program is intended as a working basis for future developments.

The user can enter a simple loop nest (uniform and perfect) and transform it step by step (dependence analysis, scheduling, allocation and rewriting) into a parallel loop nest where the outer loop is sequential and the inner loops are parallel.

We rst describe the graphical user interface and its implementation and then each module constituting the program. In the appendix we p r o vide the reader with an explanation of PIP's use and with an example of rewriting.

The graphical interface

The goal of this section is to brie y describe the interface module. It has been developed so as to propose a common interface to the di erent parallelization tools under development. This interface works in the OpenWindows 3.0 and SunOs 4.1.3 environment. It has been developed in C using the XView library. This interface has the same look and feel than the other OpenWindows applications. To ful ll this goal, the developments have been done using the Guide interface generator. The interface calls binary executables and the communications between the modules is done via les.

Description of the interface

The di erent functionalities of the interface are shown below.

File Menu

This menu allows the user to load a new le (Load button) or to quit the application (Quit button). Once a le is loaded the user can edit it in the edition window a n d b y pressing the right mouse button, the traditional \textedit" menu appears.

Analysis Button

This button launches the syntactical analysis of the loaded le. The syntax of the le is veri ed and the resulting internal structure is rewritten in a new window.

Dependences Button

This button launches the dependences analysis. It prints the found dependences in a new window.

Environment Button

This button prints the environment in a new window ( a r r a ys and their size, loop indices and their depth and parameters of the problem).

Scheduling Menu

This button launches the scheduling. This menu a l l o ws to choose between di erent s c heduling techniques but at the time being, only the linear scheduling is implemented.

Rewriting Button

This button starts the rewriting stage following the chosen schedule and allocation. This menu proposes di erent allocation techniques. For the moment t h e c hosen technique is the unimodular completion of the scheduling vector. There is no use of this button for the moment as the completion is done during the rewriting.

The les

This section describes the di erent les used by t h e i n terface module. These les are in directory: /home/genievre/pboulet/Caml/Src/Parallelizer/interface parallel.G: this le describes the interface. It is written in a speci c language and is automatically generated by Guide.

parallel ui.h: include le used by parallel ui.c, generated from parallel.G. parallel ui.c: this le describes the di erent objects of the interface. It is generated from parallel.G. parallel stubs.c: this le contains the main program that activates the widgets and controls the events. This le contains particularly all the call-backs to the procedures associated with the events. This le is rebuilt at each modi cation of the interface. It can also be edited to directly modify the program.

parallel: executable le

The documentation les are in the directory:

/home/genievre/pboulet/Caml/Src/Parallelizer/interface/DOC

Communication between the modules and the interface

As stated in the introduction, the communication b e t ween the di erent modules and between the modules and the interface is done by les. There are two kinds of les: the caml objects les and the ASCII ones.

The rst ones can only be used by caml programs because the contain caml data structures. The second ones are human readable and are generated by the called caml programs and then used by t h e i n terface, they are the display.

Remark: The location of the executable les corresponding to the di erent modules is given in the le parallel stubs.c by the constant P ARALLEL HOME. The current path is "/home/genievre/pboulet/Caml/Src/Parallelizer/bin Here is the list of the les currently created and used for the communication: 

Modi cations

This section explains how to modify the interface module.

Modi cation of the components of the interface

Here is explained the method to modify the graphical interface, like to add a new button or a new window. 1. Start Guide: type guide (the executable is under /usr/local/guide/bin/guide). 2. Load the le parallel.G form the interface of Guide (File menu, Load option). 3. Modify the interface using guide's possibilities. One can add new windows, buttons, menus, etc. New functions can also be attached to events. 4. Save the changes (File menu, Save option). 5. Type make to update the les which depend on parallel.G (execution of the command gxv parallel.G which updates the source les and the eventual recompilation of these les).

Modi cation of the code

The actions relative to the di erent e v ents have to be written by the programmer. The method to follow i s summarized below: 1. Attach some functions to the events of the interface using guide (see above). 2. Either the function is simple, then its code can be entered directly with guide, or the function is more complex, only its name is given. This function has now to be coded. It is done in the le parallel stubs.c where the body of the function has to be completed. 3. Do not forget to rerun make for the compilation of the executables.

The tools module

This module contains several tools that are useful for nearly all other modules of the parallelizer Bouclettes. These tools are mainly a module of calculus over rational numbers and another module of calculus over (a ne) expressions. A third module toolbox.ml(i) contains a few general use functions that don't t anywhere else.

The les of the tools module

The les are in the directory: /home/genievre/pboulet/Caml/Src/Parallelizer/tools rational.ml (.mli): calculus using rational numbers. expressions.ml (.mli): a ne and non a ne expression manipulation. toolbox.ml (.mli): miscellaneous functions.

The documentation les are in the directory:

/home/genievre/pboulet/Caml/Src/Parallelizer/tools/DOC

The rational calculus

The type rational is de ned by: type rational == int * int

The le rational.mli de nes the functions that operate on this type:

value pgcd : int -> int -> int and pgcd_liste : int list -> int and ppcm : int -> int -> int and ppcm_liste : int list -> int and simplr : rational -> rational and addr : rational -> rational -> rational and subr : rational -> rational -> rational and multr : rational -> rational -> rational and divr : rational -> rational -> rational and invr : rational -> rational and floorr : rational -> rational and ceilr : rational -> rational and negr : rational -> rational and equalr : rational -> rational -> bool and eqr : rational -> rational -> bool and greater_thanr : rational -> rational -> bool and gtr : rational -> rational -> bool and int_of_rational : rational -> int and rational_of_int : int -> rational and outputr : out_channel -> rational -> unit and printr : rational -> unit All these functions return simpli ed rational expressions given by function simplr. The functions eqr and gtr are declared in xed by: #infix "eqr" #infix "gtr"

3.3 The expressions

The expression type

The expression type is expr and is de ned by: 

The normalized a ne form

Most of the functions de ned here deal with a ne expressions which are de ned as sums of numbers and factors of numbers and an identi er. The major function of this module is normalizeaf that takes as input an expression and returns the exception non affine is the input expression is not a ne or it returns a normalized form of the input expression if it is a ne. This normalized form is de ned as follows:

it is a comb o f PLUS each leaf is a MULT (RATIO r, VAR ident) except the last one that is a RATIO r each identi er appears only once in the expression The normalized form is built in several successive stages:

All the MINUS and The fourth stage is the transformation of the tree of PLUS's into a comb of PLUS's.

We then factorize the variables and the constants (function factorize) and remove the zero branches that may result from the previous operation (function prune). 

The functions

The toolbox

The le toolbox.mli says it all:

(* outputs a list of elements outputed by "output_fun" on channel "ch" *) value output_list : out_channel -> (out_channel -> 'a -> unit) -> 'a list -> unit (* outputs an int on channel ch *) value output_int : out_channel -> int -> unit (* executes a command "c" with arguments "a" ("a" is a string vect)*) value exe : string -> string vect -> unit (* gives the name of a file without the extension *) value base_filename : string -> string 4 The matrices module

In this section we describe the functions that have been written to do matrix computations. In the directory matrices can be found functions to compute the matrix product, the inverse of a matrix, elementary row and column operations and the Hermite form computation that leads to the unimodular completion of an integer vector.

The les of matrices

The les can be found in the directory:

/home/genievre/pboulet/Caml/Src/Parallelizer/matrices det inv.ml (.mli): output of a rational matrix, rational matrices product and rational matrix inverse computation mat elem.ml (.mli): elementary operations on integer matrices (row, column management, transpose, matrix product and output) hermite.ml (.mli): computation of the Hermite form of an integer matrix and unimodular completion of an integer vector using the Hermite form complete.ml: the source code of the executable complete that completes an integer vector into a unimodular matrix The documentation les are in the directory: /home/genievre/pboulet/Caml/Src/Parallelizer/matrices/DOC

The functions available 4.2.1 det inv

This module contains functions operating on rational matrices. identityr : int -> int -> (int * int) vect vect identity n p generates a n p identity matrix randomatr : int -> int -> (int * int) vect vect randomatr n p generates a n p \random" matrix outputvectr : out channel -> (int * int) vect -> unit outputs a rational vector on the given channel outputmatr : out channel -> (int * int) vect vect -> unit printmatr : (int * int) vect vect -> unit output a rational matrix on the given channel or the standard output prodmatr : (int * int) vect vect -> (int * int) vect vect -> (int * int) vect vect computes the product of its two matrix arguments inv matr : (int * int) vect vect -> (int * int) vect vect computes the inverse of its argument

mat elem

This module implements elementary operations on integer matrices. mat copy : int vect vect -> int vect vect mat copy a makes a copy o f m a t r i x a minus row : int vect vect -> int -> int vect vect minus row a i changes the sign of row i of a, warning: this function modi es its argument minus column : int vect vect -> int -> int vect vect minus column a j changes the sign of column j of a, warning: this function modi es its argument exchange rows : int vect vect -> int -> int -> int vect vect exchange rows a i j exchanges rows i and j of matrix a, warning: this function modi es its argument exchange columns : int vect vect -> int -> int -> int vect vect exchange columns a i j exchanges columns i and j of matrix a, warning: this function modi es its argument add row : int vect vect -> int -> int -> int -> int vect vect add row a i j x: r o w i <-row i + x row j warning: this function modi es its argument add column : int vect vect -> int -> int -> int -> int vect vect add column a i j x: column i <-column i + x column j, warning: this function modi es its argument small row : int vect vect -> int -> int small row a q nds the column number of the smallest non zero element o f r o w q of matrix a, whose column index is greater than q and returns 0 if all elements are zero unless the q th small column : int vect vect -> int -> int small column a q nds the row n umber of the smallest non zero element o f c o l u m n q of matrix a, whose row index is greater than q and returns 0 if all elements are zero unless the q th identity : int -> int -> int vect vect identity n p returns an identity ( n by p) matrix randomat : int -> int -> int vect vect randomat n p returns a random (n by p) m a t r i x outputvect : out channel -> int vect -> unit printvect : int vect -> unit prints a vector outputmat : out channel -> int vect vect -> unit printmat : int vect vect -> unit prints a matrix transpose : int vect vect -> int -> int vect vect transpose a q transposes the sub-matrix of a which indices are greater or equal to q, warning: this function modi es its argument dotij : int vect vect -> int -> int vect vect -> int -> int dotij a i b j computes the dot product of the i th row o f a by the j th column of b prodmat : int vect vect -> int vect vect -> int vect vect computes the matrix product All these functions are fairly simple vect manipulations.

hermite

The function basis de ned by value basis : int vect vect -> int vect vect * int vect vect * int vect vect computes the hermite form Dar93] of its argument. For all matrix A of Z n , there exists a unimodular matrix Q and a matrix H such t h a t :

H is upper triangular with greater or equal to 0 coe cients. each non diagonal coe cient is less than the diagonal coe cient of the same column (expect when the diagonal coe cient i s n ull). A = QH. The three matrices that basis returns are respectively H, Q and Q ;1 .

Function complete de ned by value complete : int vect -> int vect vect completes its argument ( a v ector) into a unimodular matrix Dar93].

The analysis module

This section presents the internal structure of a program and the analyzer that recognizes it. This module, developed in the directory analysis contains the de nition of the internal representation of a program and a few elementary operations on such a structure. The environment v ariable env is of type (string, attribute) hashtbl t, which means that it is a hashtable that associate an attribute to each string entry it contains. This attribute indicates which is the type of the object associated with the string and what is the object: a parameter, a variable, a loop index or an array.

The les of analysis

The exceptions of the analysis module

The le struct.mli contains the de nitions of two exceptions: outputprog, printprog, outputenv, printenv: value outputprog : out_channel -> (string, attribute) t -> prog -> unit and printprog : (string, attribute) t -> prog -> unit and outputenv : out_channel -> (string, attribute) t -> unit and printenv : (string, attribute) t -> unit These functions allow to print i n a h uman readable form a prog and a (string, attribute) t, either on a speci ed channel (output...) or on the standard output channel (print...). struct.mli contains the de nitions of: 

How d o e s i t w ork?

Basically, all the functions except the analyzer are basic manipulations of the prog type.

The analyzer is built in two phases: 1. the lexical analyzer analex that takes a char stream and returns a token stream, where a token is de ned by: 6 The dependences module

This section deals with the dependence analysis of a uniform perfect loop nest. We rst build the communication graph described in Dar93] and then use it to build the reduced dependence graph.

The les of dependences

The les are in the directory:

/home/genievre/pboulet/Caml/Src/Parallelizer/dependences graph com.ml (.mli) extraction of the communication graph from a prog graph dep.ml (.mli) construction of the dependence graph from a communication graph depend.ml the source of the executable that does the dependence analysis

The documentation les are in the directory:

/home/genievre/pboulet/Caml/Src/Parallelizer/dependences/DOC

The communication graph

We use this structure as an intermediate structure to compute the dependence graph (see section 6.3).

De nition and type

The communication graph represents the communications that are needed given an allocation of the data and the computations. The vertices are the statements of the body of the loop nest and the data arrays.

The edges are the di erence between the indices of the two v ertices they join. This graph is represented by the type:

type depend ={nomd:ident vect: expr list} type instr_dep = {nomi:ident suci:depend} type var_dep = {nomv:ident sucv:depend list} type graph_com = {instr_list: instr_dep list var_list:var_dep list}

The function and its implementation

The communication graph is computed by the function:

value gcom : prog -> graph_com
The computation of this graph is done in three phases: 1. We rst build the index of an instruction and the list of instructions (function gcom 1). 2. We then build an intermediate structure de ned by a list of instr inter: type instr_inter = {nomint:ident ecrite:depend lues:depend list} This is done by function gcom 2. 3. We then convert this intermediate structure to a graph com via gcom 3.

The dependence graph 6.3.1 De nition and type

The dependences carry the constraints on the order of evaluation of the instructions. To respect the semantic of the sequential program, we h a ve to respect the dependences. Let us note S i (I) the instance of instruction i corresponding to iteration vector I. There is a dependence between two iterations S i (I) a n d S j (J) i f : S i (I) is executed before S j (J) S i (I) a n d S j (J) both reference a same memory location and at least one of these references is a write access. See Dar93] for more details.

As here all the dependences are uniform, the dependence graph can be represented by a reduced dependence graph whose vertices are the di erent statements of the body of the loop nest and whose vertices are labeled by the dependence vectors (the di erence between the iteration vectors of the two instructions causing the dependence). This graph is represented internally by t h e t ype graph dep de ned by: type v_d = {origin:string dest:string vd:int list} type graph_dep == v_d list

The function and its implementation

As we need all the dependences positive to compute the scheduling, the function value gdep : graph_com -> graph_dep computes the dependence graph with all the dependences positive.

This computation is done in three phases: 1. Starting with the communication graph, we rst compute the ow dependences and the anti dependences. 2. We then compute the output dependences. 3. And nally we m a k e the dependences positive.

The les graph dep.ml (.mli) also contain the implementation o f t wo functions that print a graph dep on a given channel or on the standard output: This section explains how is implemented the scheduling in the parallelizer bouclettes. This module, developed in the directory scheduling, calculates the best linear schedule associated to a nested loop. The method used is described in Dar93].

The module scheduling takes in input the results of the modules analyse and dependences. It uses the software PIP and its interface implemented in the module interface PIP to calculate the best scheduling vector.

Files

The les are in the directory /home/genievre/pboulet/Caml/Src/Parallelizer/scheduling: loop to lp.ml (.mli): going from a nested loop to a linear program, scheduling.ml (.mli): going from a linear program to the scheduling using the module interface PIP, schedule.ml: generates the executable associated to the module scheduling.

The documentation les are in the directory /home/genievre/pboulet/Caml/Src/Parallelizer/scheduling/DOC.

Type

The type "scheduling" is de ned in the le scheduling.mli.

type scheduling = S IF THEN ELSE of s if then else |SCHEDULING of expr vect |S BOT and s if then else = S IF: expr S THEN: scheduling S ELSE: scheduling

The scheduling vector is represented by an expression vector which can contain parameters and conditions on parameters.

The interface PIP module

This section explains how is implemented the interface between the parallelizer bouclettes and the PIP software. This module, developed in the directory interface PIP, allows to solve a parameterized linear programming problem by using PIP. A linear programming problem (LP) is of type prog lin (described hereafter) and the solution is of type sol prog lin. A brief recall of the way P I P w orks is done in section A. The quast is the basic structure of the solution of a parameterized LP. The leaves of the quast (which a r e the possible solutions) are vectors, the rst coordinate of the solution is the value of the cost function.

Files of interface PIP

The other coordinates are the values of the variables that reach t h i s v alue for the cost function (in the order speci ed in the variable list). For the moment, the cut of the leaf of the quast described at the end of section A is not implemented 

Function of interface PIP

The only function that should be used by users is:

solve lp:

value solve lp: prog lin -> sol prog lin This function solves an LP in rational mode.

Exceptions of interface PIP

There are several types of exceptions that can be raised but that should not. These exceptions are almost all linked to the fact that the expression in LISTINEQ and CONTEXT must be a ne. These exceptions are de ned in type lin prog.ml and the name of the function where they have been raised appears at the beginning (for instance, exception get ppcm non affine in lp has been raised by t h e get ppcm function). Some problems may appear when you try to minimize (or maximize) a cost function that is not bounded. In this case we h a ve c hosen to print a W arning message on the standard output. This can be easily change into an exception.

unbounded solution

The message appearing in the non-bounded solution case is like the following:

Warning !! Unbounded solution 0

It means that the program was looking for a solution with some Big Parameters (see section A) and could not nd them. This warning is printed on the screen and the program goes on. Of course, the solution given is false (it should be unbounded).

false solution

Another type of warning may appear. As explained in the section A, Some of the branches of the Quast solution may be cut, when the condition of the quast is always veri ed for example. In this case, we should cut the \dead leaves" but it is not implemented yet (because in my opinion it will never happen). Thus, a warning is raised if this situation happens, with the following message.

Warning, coefficient of GP2 does not correspond to the sum of the coefficient of the other parameter in: n+p+0

Be careful, if this warning appears, the solution found could be false. Please, inform me if it happens.

Algorithm of interface PIP

The treatment proceeds in the following steps: translate the LP execute PIP. read and transform the solution

translating the LP

The original LP (type prog lin) is transformed into an internal structure that looks like the les for PIP (type prog lin for pip de ned in type lin prog). This phase must add adequate Big Parameters in order to obtain an equivalent LP where variables are non-negative and where the goal is to minimize the rst variable. This work is done with the program de ned in the le lp to pip.ml. First, we get the parameter that are declared (in lp.POSPAR) to be positive a n d w e perform a variable change on the other parameters: n ! n + GP 2 (function get pos para). We get a new LP where all the parameters are positive (with one more parameter: GP2) and a list that recalls the parameters that have been transformed. Then, a new variable \XCOST" is introduced to represent the cost function, and we introduce the rst inequation: XCOST; LP:COST 0 (resp if we should maximize).

Then we \format" the LP, it means that we perform the variable changes explained in section A: with a Big Parameter GP1 to ensure that the variables will be positive and we produce a pip-like LP (function format caml to pip lp). The result of this last function is given in a form which i s v ery close to the PIP format (Prog lin for pip). The coe cients of the PIP vectors (# 1 0 : : : ]) are in the following order: coe cient of the cost function (only appears in the rst inequality) variables coe cient (in the order of the variable list) constant coe cient coe cient of GP1 coe cient of GP2 coe cient of the other parameters (in the order of the list)

execute PIP

This part is done in le exec pip.ml. The internal structure is written in the le #LP PIP.p and the Unix command : pip #LP PIP.p #LP PIP.res is executed. Thus the result is in the le #LP PIP.res.

read and transform the solution

The le #LP PIP.res is analyzed and stored in an primary solution (type Sol prog lin). This work is done in le pip to sol.ml.

First, in get sol pip, w e analyze the output le of PIP (#LP PIP.res), we get the solution in a Quast, and with the variable list and the parameter list, we p u t t h e r i g h t parameter names in the condition and the leaves of the quast.

In simplify quast sol, w e remove the occurrence of the Big Parameters GP1 and GP2. If something wrong is detected, a Warning is printed (no exception raised ). Then we get the solution Quast. 9 The rewriting module This section explains how is implemented the rewriting module. This module, developed in the directory rewriting, allows to rewrite a loop after an integral transformation over the indices which is unimodular or lower triangular. The unimodulary transformation is usually indicated by t h e s c heduling and allocation modules. From these modules we get a matrix and we obtain the new indices by applying this matrix to the indices of the original loop nest. The work described here allows to enumerate all the computations of the original loop nest with another loop nest of which the indices are the new computed indices. With the usual basic modules, this module uses the scheduling module, the matrices module and the Interface PIP module. For the moment the transformation to apply to the nest is obtained by completing the scheduling vector into a unimodulary matrix with the Hermite algorithm. The rewriting after a non-unimodular transformation is not used in the interface with the compiler bouclettes.

Files of rewriting

The les are in the directory /home/genievre/pboulet/Caml/Src/Parallelizer/rewriting rewriting.ml (.mli): all the unimodular rewriting treatment and only the rewriting treatment. rewrite.ml : the executable program called from the rewriting button. Here the unimodulary completion of the scheduling vector is called.

triang rewrite.ml (.mli): The rewriting with a lower triangular integral matrix

The documentation les are in the directory:

/home/genievre/pboulet/Caml/Src/Parallelizer/rewriting/DOC

Function of rewriting

There are two functions that should be used by users:

rewrite nest:

value rewrite nest : int -> prog -> int vect vect -> prog

This function takes a nest and an integral unimodulary matrix and gives the nest which is the transformation of the nest by the matrix. The rst parameter is the identi cation number of the transformation. Indeed, as the new index names are not speci ed by t h e u s e r , w e h a ve c hosen to name them: NINDx y where x is the identi cation number of the transformation (for the moment i t i s a l w ays 1) and y is the depth of the new index (starting a 0).

tri rewrite nest:

value tri rewrite nest : int -> prog -> int vect vect -> prog This function takes a nest and an integral lower triangular matrix and gives the nest which i s t h e transformation of the nest by the matrix. Be careful, the upper triangle of the matrix is not taken into account. In practice, every integral transformation can be decomposed into the product of a unimodular and a lower triangular transformation. With the two functions described here, one can rewrite a nest after any i n tegral transformation.

Exception of rewriting

Some classical exceptions can be raised like non affine or non perfect. The exceptions de ned here are:

A ref in bound when there is an array reference in a loop bound. This exception should not happen if the analysis is done.

index not found and not enough depth are internal exceptions that should not be raised. If they do, a string indicates in which function they are raised.

Algorithm for rewriting

The rewriting of the nest uses the technique described in CFR93]. We nd the new bounds from the outermost index to the innermost index. When working on an index at depth i, the outer-more indices (at depth j < i ) are considered as parameters while the inner-more (at depth j > i ) are still indices (or variables). The domain of this nest represents a parameterized convex polyhedron of dimension n ; i + 1 i f n is the depth of the original nest. We look for the extrema (minimum and maximum) of the rst coordinate upon this polyhedron. The interface PIP module allows to perform this search. For each index and each problem (min or max) a linear programming problem is written, the constraints are the inequation de ning the domain and the cost function is the index to minimize. This problem is solved by PIP and we get the new bounds.

The function rewrite nest gets useful information (like the list of the names of the indices of the nest) and calls the recursive function rewrite loop that successively computes the bounds on the new indices. Modifying the list of instructions is just technical, one has to perform the variable change (i 1 : : : i n ) ! U ;1 (i 1 : : : i n ) (where U is the transformation to apply) in all the array references of the nest.

Writing the LP for a depth i is a little more complicated as you have to transfer all the inequalities de ning the domain in term of the new indices ( U ;1 (i 1 : : : i n )), to separate the context (inequalities involving only parameters) and the domain (other inequalities). Remember that the parameters are the original parameters plus the surrounding new indices.

Getting the solution means just to replace as indicated in CFR93] the quast given by P I P b y a maximum (resp minimum)upon its leaves if it is a lower bound (resp upper bound) the function triang rewrite is a little more simple, it just consist in algebraic manipulation but it is quite technical. The transformation is precisely described in Ris94] p 8 3 . of the variables i and j (here 0 for i a n d -1 f o r j. Then comes the coe cient of the constant term (here 0), and the coe cient of the parameters k,m and n (here 1 for m, 0 for others).

Be careful, variables and parameters are supposed to be non negative. Thus, inequalities like i 0 a r e not written explicitly.

A.2 Unix command

To get the solution with the pip software, we execute: pip ex1.p ex1.res

A.3 output le

The le ex1.res contains:

( ( (variables i j ) (parameters k m n ) m j n i i + j k m + n k here comments ) (if # -1 1 0 0] (list # 0 0 0 0] # 1 0 0 0 ] ) (list # 1 -1 0 0] # 0 1 0 0 ] ) ) )
which can be read as: if m k (i j) = ( 0 k ) else (i j) = ( k ; m m)

The vectors (# -1 1 : : : ) are read the same way, but they only concern parameters and constant term. The rst coe cients are for the parameters and the last is for the constant term.

A.4 Getting the maximum instead of the minimum

To compute the maximum over a domain D(z), we compute the minimum of GP1 ; D(z), GP 1 being a parameter as big as we w ant (Big parameter). This ensure that GP1 ; D(z) will have positive c o e c i e n t. The rule for internal PIP computations is the following: when PIP has to decide the sign of an expression, if the coe cient of the Big Parameter is not null, then it gives the sign of the whole expression. Be careful, we cannot use two B i g P arameters otherwise this last rule would become false. In particular we cannot set inequalities like n GP 1 in the context. Three stages:

A.5 Dealing with non negative v ariables

If you look carefully at the transformation that we h a ve performed in the last section, you will realize that the variables of the original LP are not any more supposed to be positive. As we h a ve performed the variable change, G ; i 1 is positive whatever the sign of i 1 is. Thus we are able to nd maxima of problems where variables are of any sign. Suppose now that we w ant to compute the minimum of a polyhedron which v ariables are not positive. We can perform a diagonal shift of all the domain. This shift must be large enough to bring the whole domain, in the positive quadrant. Thus we can use the big parameter and perform the variable change: (i 0 1 i 0 2 ::: i 0 n ) = ( GP1 + i 1 G P 1 + i 2 : : : G P 1 +i n ).

The new variables are positive (because GP1 can be as big as possible), and the lexicographic minima of the two domains are the same, except that one is shifted by ( GP 1 G P 1 : : : G P 1).

Thus we compute the minimum upon (i 0 1 : : : i 0 n ) and we subtract (GP1 G P 1 : : : G P 1) to the solution. If there remains some G is the result, then the original polyhedron was not bounded.

The last problem to solve is about parameters. As we h a ve m e n tioned before, we cannot allow t wo b i g parameters. Thus, the variable change that we just explained apply only to variables, not to parameters, and parameters are also supposed to be positive.

To allow parameter of any sign, we m ust perform the same kind of manipulation: a \change of parameter": (n 0 1 n 0 2 ::: n 0 n ) = ( GP2 + n 1 G P 2 + n 2 ::: GP2 + n n ). Where GP 2 is a new parameter which is as big as we w ant (but which has no special property for PIP). Then we compute the solution in term of the new parameters and we perform the parameter change the other way around. The only di erence with the variable treatment is that we should cut impossible leaf ourselves.

Because of the way PIP computes the solution CFR93], the nal solution will not contain any GP2 unless it is not bounded but suppose for example that a condition of the resulting quast is something like if m ; 2G 0 (i j) = ( 0 k ) else (i j) = ( k ; m m) Then we h a ve t o c hange that in (i j) = ( k ; m m) because m ; 2G cannot be positive.

I don't think this situation can happen thus it is not implemented yet

B Example of rewriting

This section illustrates by an example, the use of the rewriting module functions. The example is taken in Ris94] p 8 6 . consider the following nest: Which is exactly the nest obtained in Ris94] p90. All the commands described here are written in the le rewriting/Ex/test ex.ml.

Figure 1 :

 1 Figure 1: Global view of the interface

  type ident == string type array = {Id:ident Indices:expr list} and expr = MIN of expr list | MAX of expr list | PLUS of expr*expr | MINUS of expr*expr | MULT of expr*expr | DIV of expr*expr | MIN_UN of expr | FLOOR of expr | CEIL of expr | INT of int | RATIO of rational | VAR of ident | BOOL of bool | AREF of array It represents an expression tree.

  exception non uniform of string Which i s u s e d b y a function that expects a program with uniform dependences and nds a non uniform dependence. The string argument of this exception is used to indicate which function has raised it. exception non perfect of string Which i s u s e d b y a function that expects a perfectly nested loop nest and nds one that is not perfectly nested.The string argument of this exception is used to indicate which function has raised it. 5.4 The functions of the analysis module analysis.mli contains the de nitions of: analysis: value analysis : string -> prog * (string, attribute) tThis function takes a lename as argument and analyzes its content to return a pair: the internal representation of the program whose text is in the argument le and the environment of this program.

  extr loop: value extr_loop : loop -> index list * inst list This function extracts the indices of a loop nest and its body. extr perf prog: value extr_perf_prog : prog -> index list * inst list This function extracts the indices and the body of a perfect loop nest program.

  type token = T_FOR | T_TO | T_DO | T_EGAL | T_ENDDO | T_PARG | T_PARD | T_PLUS | T_MINUS | T_MULT | T_DIV | T_1OP of string | T_2OP of string | T_SEP | T_NL | T_EXP of string | T_MAX | T_MIN | T_INT | T_REAL | T_LOGICAL | T_PARAM2. the syntactical analyzer analysis that takes a token stream and returns the prog structure and the environment hash-table.

  value outputgd : out_channel -> graph_dep -> unit and printgd : graph_dep -> unit 7 The Scheduling Module

  sol prog lin are very close to the ones of prog lin. T w o more appear: S NBNEWPAR and S NAMENEWPAR which are now useless.

  suppose that, for a very important purpose, you sincerely want to apply the following matrix T to the nest(0+(2*max(((7/4*NIND2 0)+((-1/4*NIND2 1)+0)),0))), ... ... (0+(2*((1*m)+0))), 2 DO a(((1/2*NIND2 2)+0),((-3/4*NIND2 0)+((1/4*NIND2 1)+0)),((1*NIND2 0)+0)) = b(((1/2*NIND2 2)+0),((-3/4*NIND2 0)+((1/4*NIND2 1)+0)),((1*NIND2 0)+-1)) ENDDO ENDDO ENDDO

  .gd: caml le corresponding to the dependence analysis, produced by depend. le.graphdep: ASCII output of depend. le.sch: caml le, output of the scheduling phase, produced by schedule. le.schedule: ASCII output of schedule. le.par: caml le, output of the rewriting module, produced by rewrite. le.parallel:ASCII output of rewrite.

le.ana: caml le, output of the analyse of the input le, produced by analyse. le.analyse: ASCII output of analyse. le.env: caml le corresponding to the environment, produced by analyse. le.environment: ASCII output of the environment. le

  MIN UN nodes are removed so that the only remaining additive nodes are PLUS nodes.

	This is done by the function simpl minus.
	The second stage is a simpli cation (by function simpl nb:
	{ integers are transformed into rationals
	{ factors of a number and an identi er are transformed into MULT (RATIO r, VAR id) { quotients are computed or replaced by m ultiplications when it is possible
	The third stage is a distribution of the constants that are factors of a subexpression (by function
	distribute).

  The les are in the directory /home/genievre/pboulet/Caml/Src/Parallelizer/analysis struct.ml (.mli): exceptions and types de ned in this module and two extraction functions analysis.ml (.mli): lexical and syntactical analyzer of a program and printing functions ana .ml: de nes the executable analyzer The documentation les are in /home/genievre/pboulet/Caml/Src/Parallelizer/analysis/DOC5.2 The type de nitionsThe internal structure of a program is de ned in struct.mli: prog consists in a list of declarations (type ident is de ned in module expressions) and a list of instructions. An instruction is a loop, a conditional statement, a forall statement or an a ectation.The environment is handled by a hash table:

	type index = {Index:ident Lower_bound:expr Upper_bound:expr Stride:expr}
	type loop = {Ind_do:index Body_do:inst list}
	and cond = {Test:expr Then:inst list Else: inst list}
	and affect = {Lexpr:array Rexpr:expr}
	and forall = {Ind_forall:index list Body_forall:inst list}
	and inst = LOOP of loop
	| COND of cond
	| AFFECT of affect
	| FORALL of forall
	type prog = {Declarations:ident list Instructions:inst list}
	type fortran_type = INTEGER | REAL | LOGICAL
	type quality = PARAM of expr (*value*)
	| VARIABLE
	| INDEX of int (*depth in the loop nest*)
	| ARRAY of int*(expr list) (*dimension, bounds*)
	type attribute = {Type:fortran_type Quality:quality}

A

  The les are in the directory /home/genievre/pboulet/Caml/Src/Parallelizer/interface PIP type lin prog.ml (.mli): exceptions and types de ned in this module. a lp.ml (.mli): all the output functions needed. lp to pip.ml (.mli): going from a LP (in the prog lin type) to a problem that can be solved by P I P . exec pip.ml (.mli): executing PIP (via Unix). pip to sol.ml (.mli): going from a solution given by PIP to a solution in the sol prog lin type. Types of interface PIPThe types \prog lin" and \sol prog lin" are de ned in the le type prog lin.mli. INTORNOT indicates if the LP is to be solve i n i n tegral or rational mode. For the moment the integral mode is not implemented thus it should be always false.{ MAXORMIN indicates if the cost function must be minimized or maximized. { NBPAR indicates the number of parameters of the LP. { NAMEPAR indicates the names of the parameters of the LP { POSPAR indicates which parameters are positive. WARNING: this information should be also present in the eld CONTEXT, if the inequality indicating that a parameter is positive i s n o t i n the context, then the parameter will not be taken as positive, even if the name of the parameter is indicated in this eld.{ NAMEVAR indicates the names of the variable of the LP { POSVAR indicates which v ariable is positive. As for the parameters, this information should be also present in the eld LISTINEQ.{ CONTEXT: the list of inequalities of the LP that involve only parameters. Each inequality i s a n expression that must be positive. This expression must be a ne.

	{ LISTINEQ: the list of inequalities (a ne expression positive) involving variables and parameters (possibly).
	{ COST: the cost function of the LP.	
	{ COMMENTS: the comments set by the user (are output when outputting the LP).
	sol prog lin:	
	type quast=	
	QUAST of if then else The documentation les are in the directory: |SOL of expr vect /home/genievre/pboulet/Caml/Src/Parallelizer/interface PIP/DOC | BOT
	8.2 prog lin: and if then else=fIF: expr THEN: quast	ELSE: quastg
	type maxormin= max | min	
	type prog lin =	
	fINTORNOT: bool	
	MAXORMIN:maxormin	
	NBPAR: int	
	NAMEPAR: string list	
	POSPAR:string list	
	NBVAR: int	
	NAMEVAR: string list	
	POSVAR:string list	
	CONTEXT: expr list	
	LISTINEQ: expr list	
	COST: expr	
	COMMENTS: string	

g {

Functions

The main functions de ned in the module scheduling are: loop to lp : value v d list -> prog -> prog lin

The function loop to lp transforms the nested loop in a linear program. It takes in argument t wo objects:

{ an object of type prog calculated by t h e module analysis, it describes the nested loop, { the list of dependence vectors calculated by the module dependences. schedule : value schedule : prog lin -> scheduling

The function schedule takes in input a linear program and returns the best scheduling vector. It uses the module interface PIP and more precisely solve lp which returns the solution of a linear program.

How i t w orks

The search for the best scheduling vector Given a uniform loop nest, the total execution time for a linear schedule is given by: T = 1 + m a x (b pc p2 Dom) ; min(b qc q2 Dom)

The best linear schedule is the one that minimizes T over all rational vectors such t h a t D 1. In Dar93], Darte proposes a method to nd the optimal scheduling vector which consists in solving only a single linear program. Finding the optimal scheduling is solving the problem: min XD 1 max (Ap b Aq b) X(p ; q) And, by the duality theorem of linear programming [START_REF] Risset | Parall elisation automatique: du mod ele systolique a l a c ompilation de nids de boucles[END_REF]), the optimal scheduling is obtained by solving the following linear problem:

For more details, see Dar93]. Remark that this problem is linear in b. T h us, the search of the best scheduling vector for the family of domains Ax Nbwhere N is a parameter is reduced to the search on the domain Ax b which c a n b e done without knowing N at compile-time.

Back to the scheduling module For the moment, the scheduling module is only implemented for perfect uniform nested loop and for the family of domains Ax Nb .

The function graph dep to matrix implemented in loop to lp.ml calculates the dependence matrix D. The function get domain also implemented in loop to lp.ml calculates the matrix A, t h e v ector b and eventually a parameter N. F rom A, b, N and D, the linear program can be generated and solved with the function solve lp implemented in the module interface PIP.

A How does PIP work

This is a very brief explanation on one example, for more details please refer to FT90] o r F ea88].

Let D(m n k) be a parameterized polyhedron composed of (i j) s u c h that: 0 i n 0 j m k i + j under the constraint k n + m. Suppose that we w ant to minimi z e t h r s t v ariable (i) o ver D(m n k). This is the type of problem solved by P I P . PIP can solve this problem and give a rational or an integral solution. Here we will only deal with rational solution as the integral part of PIP software is not interfaced yet with bouclettes. First of all we must be aware of three characteristics of the PIP algorithm it computes the lexicographic minimum of the vector of variables (in particular it implies that it minimizes the rst variable), all the variables and parameters are supposed to be non-negative, the parameters are supposed to be integral (for instance, if n is a parameter, n > 7 will be written n 8).

A.1 Input le

To code this problem for PIP we write the following le (ex1.p):

signi cation of the integer row: 2 ; ; ; > two v ariables 3 ; ; ; > three parameters 3 ; ; ; > three equations on variables 1 ; ; ; > one equation on parameters -1 ; ; ; > No Big parameter (see after) 0 ; ; ; > rational solution signi cation of the vectors (# 0 1 : : : ): for example, the rst one # 0 -1 0 0 1 0 ] r e p r e s e n ts the inequality m ; j 0. The rst coe cients are those we i n troduce a new parameter GP 1 and we perform a variable change upon all the variables (without touching the parameters: (i 0 1 i 0 2 : : : i 0 n ) = ( GP1 ; i 1 G P 1 ; i 2 : : : G P 1 ; i n ), we compute the lexicographic minimum of the new polyhedron and we get the solution as a function of (p 1 : : : p m ) (the parameters) and GP1, we perform the variable change the other way around: (i 1 i 2 ::: i n ) = ( GP1;i 0 1 G P 1;i 0 2 : : : G P 1;i 0 n ) and we get the lexicographic maximum of our original polyhedron. If the solution depends upon GP1, then the polyhedron was not bounded. In practice:

we add one parameter \GP1" that we force to be a Big parameter. (the fth integer in the integer row of the input le indicates its rank in the (variable+constant+parameters) list (starting at 0).

we c hange the signs of the coe cients corresponding to variables and we set the coe cient of the new parameter to the sum of these coe cients (before having changed their sign) when we read the solution, we t a k e the opposite and we ignore the coe cient of the Big Parameter (or we c heck that it is one if we are not sure that the polyhedron is bounded). Example: the lexicographic maximum upon the previous polyhedron. ( (

and the result: ( ( (variables i j ) (parameters k m n G P 1 (Big par)) m j n i i + j k m + n k here comments ) (list # 0 0 -1 1 0] (GP 1 ; i GP 1 ; j) = ( GP1 ; n GP1 ; m) # 0 -1 0 1 0] thus: (i j) = ( n m) ) )

When working into interpreted camllight (execute pboulet/bin/cl), open all the modules by including go.ml for instance. The nest is stored in the le rewriting/Ex/test these. The rst thing to perform is the analysis: #let (p1,q1) = analyse "test these"

The we construct the matrix T : #let m0= make matrix 3 3 0 #vect assign m0.(0) 2 1 #vect assign m0.(1) 1 4 #vect assign m0.(1) 2 3 #vect assign m0.(2) 0 2 Then we decompose m0. Be careful, we need the product of a lower triangular matrix and a unimodulary one thus we h a ve to perform some transposition if we w ant to use the Hermite decomposition.