St Ephane Ub

Eda Xavier Vigouroux

Parallel image quantization using LAN of workstations

Keywords: Image processing, quantization, parallel processing R traitement d'images, quanti cation, traitement parall ele

This report presents the work done to parallelize a quantization algorithm of color images on a LAN of workstations. The quantization consists in reducing the number of colors in order to reduce the length of an image. This problem belongs to the NPcomplete problems (comparable to the construction of an optimal decision tree). The communications between the di erent parts of the system have been managed by PVM. One important point is the use of the distributed storage that represents a set of workstations. This distribution allows the complete parallelization of the Read/Write operations. Furthermore an interface has been realized to make this parallel algorithm available to any kind of people.

Introduction

The aim of color quantization is to reduce the number of colors in an image according to a speci c criterion. An usual criterion is the conservation of the aspect of the remaining picture according to visual human perception. E ectively, after such a preprocessing, the di erent algorithms applied to the image are all the more e cient the some noises are reduced. A lot of studies have been done to succeed in the research of a set of colors that is smaller than the original set and such that the new image is as \close" as possible to the original one.

Obviously, this is a problem of minimization of an energy function and thus the resolution of this problem is NP-complete. The classical method to solve s u c h problems is to use an heuristic that leads to a nearly optimal solution. We present here one of these heuristics which is sequential and then transcript it to make it parallel.

First, let us explain the sequential formalism and the algorithm.

Formalism

This formalism (and the sequential algorithm) is extracted from WPW90]. Its advantage is to be simple, and nevertheless powerful. Let = f(r g b)j0 r g b 255g be the RGB color space.

We c hoose this color space among the di erent ones (see Poy94] for a list, or GW93, P age 227]) for the sake of simplicity. Furthermore, the information is distributed among each axis without predilection the algorithms using this space are therefore much more simple. Let (x y) 2 I I be the coordinates of the pixels in the original image. I is an integer set. A digital image is de ned as a mapping which assigns a color to each pixel:

h : I I ! C (1)
where C = fc 1 c2 : : : cN g is the palette and N is the total number of colors in the original image. A quantized image is de ned as a mapping which assigns a new color to each pixel:

f : I I ! R (2)
You can notice that R is not necessarily a subset of C: R = fr 1 r2 : : : rK g with K N.

The replacement of a color ci by a representative color r(c i) = (r 0 g 0 b 0) 2 R will generate an error de ned as:

jjc i ; r(c i)jj 2 = (r ; r 0) 2 + (g ; g 0) 2 + (b ; b 0) 2

(3) Now, we can compute the total error on the quantization of an image of size jjIjj jjIjj

= M 2 with D(h f) = 1 M 2 X (x y)2I I jjh(x y) ; f(x y)jj 2 (4)
If 8i 2 f 1 : : : N g p (c i) denotes the relative occurrence frequencies of the colors in the original image. The last equation may be rewritten as

D(h f) = N X i=1 p(c i)jjc i ; r(c i)jj 2 (5) 1
Obviously, in the set of colors R, w e c hoose the best color rj to substitute an original color ci 2 C. The best color means the color that minimizes the equation 3. with these de nitions and notations, the problem of quantization may be expressed as: the objective of quantization is to nd a set of K colors to substitute with the best accuracy the N colors (N K) of an original image. Still according to WPW90], this problem is at least as di cult as the construction of an optimal binary decision tree. This latter is known as to be NP-Complete, thus the former problem too. Now, let us see the sequential algorithm that leads to a parallel algorithm.

Sequential algorithm WPW90]

The idea is to construct, for the original image, the 3D histogram of the occurrence frequency of each color. In other terms, we construct a RGB-cube that has in the box (r 0 g 0 b 0) the number of pixels with this color. At once this cube is constructed, the algorithm consists in creating a set of boxes that will be associated with one and only one color: the representative color. Di erent solutions exist to get a color from a box (r 1 g 1 b 1) ; (r 2 g 2 b 2): rst, we h a ve t o c hoose the color that will represent the box. We can take { the mean of the colors (r2;r1 2 g2;g1 2 b2;b1 2), { the median, { : : : then we h a ve t o c hoose the part of the RGB-space that will be reduced to this color { the box itself, { the element of the 3D Voronoi partition of the space, { : : : . The solutions are numerous. We test di erent solutions and the result is always (perceptibly) similar. After having seen the way t o m a k e correspond an original color to a representative color, the table 1 shows how to construct these boxes.

This algorithm is very easy to implement o n a s e q u e n tial computer. But, on a parallel computer, the amount o f d a t a t o e x c hange is prohibitive. Thus, the parallel version is slightly di erent than the sequential one generally, it has been simpli ed.

2 Distributed Algorithm

Model

A Local Area Network of workstations is not at all a parallel machine. This is a set of processors, but the communication network is a bus. First, it implies that there is only one communication at a time second, there is no topology. The model is thus clear, the global communication time is the sum of all the communication times.

Usually, w e consider the cost (in time units) of communications as a + l: function. l is the length of the message (in information units), is the \bandwidth" (ie. the number of information 1. For the number of wanted Colors do 1.1 Select the sub-box with the largest variance (the one which division will separate the larger number of points in the RGB-Space), 1.2 For Each Dimension do 1.2.1 Project the distribution according this dimension, 1.2.2 Select the optimal threshold that will create the most di erent two sub-boxes (with the most di erent representative color), 1.2.3 Compute the weighted sum of the variance of the two intervals 1.3 The division plane is the one that is perpendicular to the axis with the minimum weighted sum of projected variances and passes through the optimal threshold. 1.4 Divide the box i n t o t wo sub-boxes.

Table 1: Sequential algorithm units per time units) and is the startup time due to the bu er allocation. Here, this model is enhanced by another term in the sum because the startup time is not a constant but also depends on the length of the message. Indeed, the bu er allocations seems to be implemented as a linked list of small bu ers, thus the bu er construction is built up from several parts. This implies that the communication costs is now 1 + bl=size(small buffer)c 2 + L

PVM

We decide to use PVM with Sun WorkStations. PVM (stands for \Parallel Virtual Machine") BDG + 91, BDG + 92, GS91] is a widely used package with two main properties: portability a n d heterogeneity. It can be installed and used by a n ybody without any privileges. It can be used on one workstation as well as on a set of parallel machines. All these points make PVM as attractible for a newcomer in parallel processing, as for an expert: they can use their usual programming environment to test their program before execute them on one of the architectures they are used to. As we h a ve already written, the problem of PVM on a LAN (Local Area Network) of workstations 1 resides in the network itself. First, the network is a shared bus, thus only one communication takes place at a time on the entire network. The second problem is that there is no topology. Thus no optimization may be done to make the communications faster. These remarks lead us not to optimize the communication phase, because it would be a lack of time. The communication layout is therefore very simple (see gure 1). This point i s v ery important for the design of the algorithm, because we m ust minimize the communications in the system not to make them sequential. Be careful that , is not the band width because the time to send 20 Mb i taccording to equation 6 is not 1 second but a lot more: 1.6 second.

First tries to measure communication times

If we w ant to use a simple evaluation of the communication time, we can try to nd the line crossing the middle of each segment. The equation of such a line is y = 0 :074x + 812 where x unit is bits and y sec. The band width is then more realistic with 13:5 Mbits:s ;1 . T h i s v alue is nevertheless too large. The gure 3 is the same test with the same conditions but at a di erent m o m e n ts (few seconds after the gure 2). It shows how the behavior of PVM may c hange with the network occupation.

The band width is 6:5 Mb i t s : s ;1 and the startup 1500 sec. does not use the XDR library to encode the data. This strategy is worse than the rst one as long as the size of the message is greater than 1024 integers (ie. 4096 bytes). The formula expressing the communication time is then time = 1 + bl=65536c 2 + L (7) where 1 3000 sec 2 100 sec 14 sec:bit ;1) 71 Mb i t : s ;1 this band width is larger than the theoretical maximum Internet band width. These values are greater than the Internet theoretical band width: 10Mbits:s ;1 . In fact, the size of the messages makes this result not signi cant (they are too short). When we c hoose a larger scale, we can see that the band width is not larger than the theoretical but rather 6:5Mbit:s ;1 (see gure 5) in the standard case and 8Mbit:s ;1 (see gure 6) with the option DataInPlace..

Real

Resulting choices and algorithm

The central idea of the distributed algorithm is the same as the sequential one, but two things must be distributed: the data and the computation. concerning the data, the image is distributed on the di erent processors, and even on di erent hard disks. E ectively, using PVM on workstations makes it possible to use their disks. This way, the load phase, which i s v ery costly for image processing problems, becomes lighter. The distribution is made along horizontal blocks (see gure 7). the computation is also distributed: each processor computes one part of the box division.

Parallel I/O

As we h a ve already said in the previous section, the workstations o er di erent sites where to put data. Thanks to this, we distribute the image on the di erent hard disks. We c hoose to divide the image horizontally because of the fact that a scene is usually divided this way. F or instance, the sky is at the top, the ground at the bottom, ... Then, the number of di erent colors on each machine will be reduced. At the end of the treatment, the image slice is also stored on the local disk. A merging phase is then added to the execution to create the global quantized image. We test the speed of the Read/Write operations to see what was the behavior of the remote disk operation. Figure 8 shows the result of this test.

Data structure

Three structures are very important in this algorithm: the RGB-Cube, the box and, obviously, the image.

The cube is a 3D array o f i n tegers (see gure 9). Each cell contains the number of pixels with this color. The problem of this cube is that it may b e v ery spare. The rst optimization consists in reducing the number of bits assigned to each colors: for instance, if each color is coded on 8 bits in the original image, we c a n c hoose a cube with only 5 bits. Then each cell is no more 1 color but (2 8;5) 3 = 512.

Image

Red Green Blue

Figure 9: Cube structure

The second optimization we c hoose to reduce the amount of empty cells, is to make l o c a l bounds (see gure 10): { the red dimension is limited by a R min and R max , { each p l a n r 2 R min R max] as green local bounds G min (r) and G max(r) , { Finally each line r 2 R min R max] and g 2 G min (r) G max (r)] has blue local bounds B min (r g) a n d B max (r g).

Gmax (r) Bmax (r g) B min (r g) G min (r) R min Rmax
The domain of computation is then greatly reduced. A test with a 5 bits RGB-cube has shown a gain of 85% !!! The order in which w e consider the color must not have a n y consequence in the compression rate because the information is equally distributed amongst the three axes. This way, in mean, the results must be the same with the six di erent axes enumeration: RGB, RBG, GBR, GRB, BRG, BGR. beside this remark, the compression rate is not the best we should obtain because of this RGB space see section 4.2.2 for further information.

Lastly, the third optimization, is to consider a cell with the value as a void cell. This optimization increase the performance of the second one. But, this optimization should reduce the quality of the produced image in fact, the result is not (perceptibly) di erent.

the Box: once the cube of frequencies is constructed, a box only consists of three intervals: one for red, one for green and one for blue. The frequencies are shared with the cube thus, the information is not repeated. Other elds are added to make it possible to compute the necessary information for the segmentation algorithm. Typically, w e h a ve the projection along each direction (sum, weight, array of projected values) and the mean.

the Images: the source image is a raster le with 8 bits per color, the resulting image is also written in such a format.

Communication with the RGB-cube

As we h a ve seen in the previous section, the cube is optimized not to send large message and thus to reduce the communication cost. In practice, we exchanged only the interesting data (ie. a subset of each color interval). This optimization has shown its e ciency by greatly reducing the communication cost. As we h a ve to merge the cube, we could think that a merging binary tree would have been the best solution (see gure 11). With PVM on a set of workstations, this is a worse solution than merging everything on a single processor.

First, the number of communications is larger in the tree. We h a ve seen the communications are sequential on a set of workstations, thus the number of communication corresponds to the time spend by the global system. Let us count the number of communications int the both cases.

the case of the tree: if p represents the number of processors, then, whatever the shape of the merging tree, the number of internal nodes is equal to p ; 1. As each i n ternal node needs two communications (for the both entries), the number of communications is equal to 2(p ; 1), the case of the local merging: the number of communication is obviously p ; 1. Furthermore, the messages length in the rst case is larger than in the second, because, as we merge the data, the cube becomes larger and larger. Intuitively, the better is the linear merge. The algorithm is now clear (see table 2). Let us choose one processor among the p = 2 n . Its number i written in binary is i 0 i 1 : : : i n;1 .

Who computes What

This number is the code of the tree branch to compute: each b o x is divided into two sub-boxes.

The lowest is the number 0 and the highest the number 1. Obviously, s e v eral processors compute the same part, but at the end, they conclude by a unique calculus (g 12) The problem of this method comes from the fact that some boxes may b e c o m e v oid. Then, it is impossible to divide them. Thus, the number of colors a processor obtains is less than the expected number. Furthermore, it is very di cult to avoid this problem without exchanging a lot of data (all to all) In fact, this problem is not very important because if a box can not be divided, it implies that no division is really needed, so such a division would have been with no e ect on the resulting image.

Performances

First, the di erent optimizations on the structures lead to very good performances (even in sequential). For instance, on a single processor, the time to execute the program on a 600 303 image with a 6 bits cube and a 64 colors palette is 5 sec on a Sparc5!!! But, as the computation is very sharp, the communication cost is very important in the total time, thus, with 2 hosts the total time is 4.5 sec. This algorithm has been implemented to make it easy to use. We designed a window to manage easily the distributed program: image split and merge, processes spawn, : : : . 1. the number of bits assigned to each dimension in the RGB-cube, 2. the number of expected colors, 3. the algorithm the user wants to use (at this time, there is only one, but others will be added), 4. load is used to load an image, 5. Split : When the image is loaded you can split it among the di erent hosts, 6. Go must be pushed to execute the algorithm, 7. merge allows to merge the resulting slices of image, 8. quit behavior is obvious, 9. This square is used to make the link with pvm. It allows to add a new host, or to suppress it, or to refresh the con guration list.

Future Work

The error criterion

The error we h a ve c hosen (see Sec. 1.1), in the RGB space, has not a perceptive reality but this is the most intuitive. Nevertheless TCL94] explains that this error is insu cient because it does not take i n to accounts the spatial correlation between two adjacent pixels. We could de ne an error which is not a simple pixel to pixel comparison. For instance, if we t a k e i n to account the di erence between two adjacent pixels color we w ould be closer to the perception. Such an error may b e de ned by applying a 3 3 c o n volution mask on each pixel in both images and then making the di erence between these two results. The mask may be as for the edge detection: u 0 = 2 6 4 0 ;1 0 ;1 4 ;1 0 ;1 0 As the sum of the weights of these lters is 0, these lters make e a c h pixel totally relative t o i t s environment. By this way, one image a little bit more red than another will be very close to this last one.

The color space

The second optimization consisting of considering only the interval of value with non empty cells is inherently not the best one in the RGB space because of the cube itself. E ectively, a scene is composed of di erent objects. Each object will have its own color with di erent brightnesses due to the light re ection angles. Thus, in the RGB space, each object will create a segment of colors representing the color of the object with the di erent b r i g h tness. This segment, as we can see in gure 14 is not following one dimension but is rather parallel to the line r = g = b: r = g+ g = b+ b (this is a simplistic formalization). And such a segment m a k es the optimization less e cient.

Conclusion

The implementation of this algorithm has shown how the communications are costly with PVM on a LAN of workstations. However, the segmentation algorithm described in this paper must have a v ery good behavior on a multi-processor machine. But, we h a ve n o t y et tried to translate it. Another future work concerns the implementation of di erent image processing algorithms with the same distribution methods (for instance, a Filter-Expectation-Minimization algorithm to segment a image).

Figure 1 :

 1 Figure 1: Communication layout with PVM

Figure 2 :

 2 Figure 2: Communication time with PVM 3.3.7 and Solaris 2.4 (option DataDefault)The gure 2 shows the internal behavior of PVM by displaying evidently the bu er allocation. Each bu er size is 32768 bits (ie. 4096 bytes). time = 1 + bl=32768c 2 + L (6) where 1

 The communication time of the gure 4 shows the behavior of PVM when the programmer use the DataInPlace strategy. First, this strategy avoids to copy the bu er to send and second,

Figure 3 :

 3 Figure 3: Communication time with PVM 3.3.7 and Solaris 2.4 (option DataDefault) with network load

Figure 4 :

 4 Figure 4: Communication time with PVM 3.3.7 and Solaris 2.4 (option DataInPlace)

Figure 5 :

 5 Figure 5: Communication time with PVM 3.3.7 and Solaris 2.4 on very large messages

Figure 6 :

 6 Figure 6: Communication time with PVM 3.3.7 and Solaris 2.4 (option DataInPlace) on very large messages

FigureFigure 8 :

 8 Figure 7: Image division

Figure 10 :

 10 Figure 10: Example of cube compression

Figure 11 :

 11 Figure 11: Example of merging binary tree

For

 the sake o f c o m m unication reduction, we d o n o t w ant t o h a ve m o r e e x c hanges than two broadcasts (one for image, one for cube). This implies during the color computation that no processor 1. distribute the source image if necessary 2. the parameters (size of the cube, number of wanted colors) 3. For each Processor D o 3.1 compute the RGB-cube 3.2 send it to the master who merges it 3.3 receive the complete one 3.4 compute a part of the colors (ie. some boxes) 3.5 send them to the master who merges them 3.6 receive the complete set of colors 3.7 compute the new palette 3.8 apply it to the part of the image 4. merge the global quantized image

Figure 13 :

 13 Figure 13: View of the Software InterfaceIn g 13 : 1. the number of bits assigned to each dimension in the RGB-cube, 2. the number of expected colors, 3. the algorithm the user wants to use (at this time, there is only one, but others will be added), 4. load is used to load an image,

 Figure 14: set of colors re ected by one object

Table 2 :

 2 Parallel Algorithm exchanges data. Thus, every one must have a coordinated behavior. This is done by n umbering each processor. Each processor only knows how m a n y processors are in the machine and the number of wanted colors.

and even more for a WAN (Wide Area Network)