Benjamin Depardon

Generic deployment of applications on heterogeneous distributed platforms

Keywords: Grid computing, deployment, mapping, middleware, heterogeneous platform Grilles de calcul, déploiement, planification, intergiciel, plate-forme hétérogène

From user's point of view Grid computing requires an easy, automatic and efficient resource selection as well as application installation and execution. This problem refers to the deployment process. A major lack of today's deployment tools lies in their inefficient planning algorithms to select and allocate resources for the applications. This paper presents several planning heuristics which aims at minimizing the communication cost between the applications, balancing the load among the processors, and maximizing the number of applications instances on the platform, for sequential and hierarchical applications. These heuristics have been implemented into the deployment tool Adage at the price of extending its generic model to support hierarchical applications. Finally, the paper presents some simulations and experimental results.

Introduction

Le calcul haute performance consiste à résoudre des problèmes nécessitant de grandes capacités de calcul. Ce sont par exemple les simulations cosmologiques, les prédictions météorologiques, la détermination de formes de protéines, etc. Ces problèmes peuvent être soit des tâches totalement indépendantes, soit un ensemble de tâches couplées entre elles et nécessitant des communications (comme par exemple des workflows). Historiquement ces calculs ont été réalisés sur des ordinateurs massivement parallèles, puis l'émergence des réseaux hautes performances a permis l'agrégation de ressources de calcul homogènes en grappes, puis de ressources hétérogènes fortement distribuées en grilles. Ces dernières permettent aux utilisateurs d'accéder à une grande puissance de calcul, mais n'offrent pas le même environnement homogène présent sur les superordinateurs. De nouvelles difficultés apparaissent alors: comment choisir les ressources sur lesquelles exécuter les applications? Entre deux placements les performances obtenues peuvent varier (variation de la puissance de calcul allouée, du coût de communication, etc.). Deux problématiques traitent ces problèmes: l'ordonnancement et le déploiement. L'ordonnancement considère le placement et l'ordre d'exécution de chaque tâche dans le temps (temps de début et de fin des tâches), alors que le déploiement s'intéresse au choix des noeuds pour beaucoup d'instances d'un ou plusieurs processus sans avoir de contraintes temporelles. Les grilles étant des environnements dynamiques très complexes, il est nécessaire d'apporter des outils simples et efficaces aidant les utilisateurs à exécuter leurs applications Le problème que nous considérons est le suivant. Nous nous intéressons à un ensemble de processus à déployer sur une grille. Ces applications peuvent être séquentielles ou hiérarchiques. Chacune d'elles possède un nombre maximum d'instances à déployer (représentant le nombre de fois que le service peut être répliqué, ou bien un nombre de licences disponibles, . . .). Chaque application peut communiquer avec une ou plusieurs autres, mais nous ne considérons pas de contraintes de précédence: toutes les applications doivent être présentes au même moment sur la plate-forme, même si des schémas de communication peuvent exister entre elles. La plate-forme est constituée de noeuds regroupés en grappes de calcul. Nous supposons que chaque noeud peut communiquer avec tous les autres, avec des coûts différents (nous avons donc un graphe complet). Notre but est le suivant: trouver un déploiement qui permette d'avoir un maximum d'instances, tout en minimisant le coût des communications et en répartissant la charge entre les noeuds, afin de répondre à un maximum d'utilisateurs tout en ne surchargeant pas la plate-forme. Le déploiement d'applications consiste à sélectionner, puis à allouer des ressources de calcul à ces applications. Actuellement, les applications scientifiques sont encore principalement déployées à la main: du choix et allocation des ressources, aux phases d'installation et de lancement. Des outils pour simplifier ce processus existent, mais restent incomplets: certains sont spécifiques à un type d'application [START_REF] Antoniu | Large-scale Deployment in P2P Experiments Using the JXTA Distributed Framework[END_REF][START_REF] Caron | GoDIET: A deployment tool for distributed middleware on Grid'5000[END_REF], d'autres plus génériques traitent de graphes de tâches acycliques représentant les dépendances entre les tâches [START_REF] Deelman | a Framework for Mapping Complex Scientific Workflows onto Distributed Systems[END_REF]. Une dernière catégorie s'occupe d'un ensemble quelconque de processus [START_REF] Bouchenak | Autonomic Management of Clustered Applications[END_REF][START_REF] Goscinski | Application deployment over heterogeneous grids using distributed ant[END_REF][START_REF] Kichkaylo | Constrained component deployment in widearea networks using AI planning techniques[END_REF][START_REF] Lacour | Generic application description model: Toward automatic deployment of applications on computational grids[END_REF][START_REF] Wang | Automating Experimentation on Distributed Testbeds[END_REF]. Ces outils ne couvrent pas tous le même spectre du processus de déploiement, et peu proposent des méthodes automatiques pour créer le plan de déploiement (un état de l'art plus précis peut être trouvé dans [START_REF] Depardon | Déploiement générique d'applications sur plates-formes hétérogènes réparties[END_REF]). C'est pourquoi nous proposons des heuristiques pour traiter ce problème. Pour commencer nous présentons en section 2 l'intergiciel de grille Diet, et deux outils de déploiement associés. Afin de créer des plans de déploiement, nous proposons en section 3 plusieurs heuristiques: une pour créer une hiérarchie, et deux types d'heuristiques pour déployer plusieurs processus. Ces heuristiques ont été implémentées dans Adage. Nous présentons des résultats de simulations et d'expérimentations en section 4. Finalement, nous dressons la conclusion de nos travaux et discutons des travaux futurs.

Diet et outils de déploiement associés

Ces travaux ont été initiés par le souci de déployer efficacement l'intergiciel de grille Diet. Nous présenterons donc rapidement dans cette section Diet, puis les outils de déploiement associés. Cependant, notons que ces travaux sont intrinsèquement valables pour tout déploiement d'applications hiérarchiques. Diet n'est pas la seule application hiérarchique, d'autres intergiciels (tel que WebCom-G [START_REF] Morrison | Webcom-G: grid enabled metacomputing[END_REF]) ou applications (de type maître/esclaves) suivent ce modèle, et peuvent bénéficier de méthodes automatiques de déploiement.

Application hiérarchique: Diet

Diet est un intergiciel de grille permettant à un client de soumettre des requêtes à un ensemble de serveurs pour résoudre un problème. Les requêtes sont envoyées des clients vers la racine de la hiérarchie: le Master Agent (MA). Ce dernier transmet les requêtes à la hiérarchie sous-jacente, elles sont propagées jusqu'aux feuilles (les Sed, Server Daemons) qui répondent en précisant leur capacité à les traiter ou non. Un choix est effectué parmi les Sed valides, et une réponse est retournée au client. La figure 1a

Outils de déploiement

Nous disposons de deux outils pour déployer Diet. Le premier, GoDiet [START_REF] Caron | GoDIET: A deployment tool for distributed middleware on Grid'5000[END_REF], a été spécialement conçu dans ce but. Il prend en entrée un fichier XML contenant à la fois la description des ressources, l'emplacement des binaires et bibliothèques sur ces ressources, ainsi que la description en extension de la hiérarchie Diet à déployer. Il ne réalise pas le transfert des binaires et bibliothèques, mais configure et lance de façon ordonnée la hiérarchie.

Le second est Adage [START_REF] Lacour | Generic application description model: Toward automatic deployment of applications on computational grids[END_REF] (<< Automatic Deployment of Applications in a Grid Environment >>), c'est un outil générique de déploiement d'applications. Il prend en entrée une description de l'application à déployer décrite en XML, suivant un schéma XML défini par l'utilisateur. Elle est ensuite traduite en description générique (GADe: Generic Application Description). À partir de cette dernière et d'un autre fichier décrivant les ressources, Adage génère un plan de déploiement à l'aide d'un plugin de planification, puis réalise le déploiement en transférant les fichiers requis, configure les applications et les lance. Cependant, Adage ne propose que deux plugins simplistes de planification: tourniquet (round-robin) et aléatoire. Une des contributions de cet article est la mise au point d'heuristiques pour déployer un ensemble de processus, ainsi qu'une pour créer une hiérarchie. Elles ont ensuite été implémentées dans Adage, avec pour seul surcoût celui d'étendre GADe pour qu'il accepte la description de hiérarchies de façon compacte comme celle de la figure 1b, avec un noeud récursif.

Heuristiques de déploiement

Nous présentons dans cette section le modèle considéré, et nos heuristiques: une pour déployer une hiérarchie, puis nous généraliserons pour déployer un ensemble de processus [START_REF] Depardon | Déploiement générique d'applications sur plates-formes hétérogènes réparties[END_REF].

Modèle

Notre but est de trouver un placement pour un groupe de processus sur un ensemble de ressources. Nous étudions notre problème en régime permanent [START_REF] Beaumont | Steady-state scheduling on heterogeneous clusters: why and how?[END_REF] (nous voulons pouvoir répondre à un maximum de requêtes de la part de clients par unité de temps). Notre approche se focalise sur le déploiement initial de l'application, c'est une approche statique. Nous ne considérons pas encore du redéploiement dynamique: tous les processus doivent être présents sur la plate-forme au même moment, sans connaître l'ordre d'exécution. Nous considérons une plate-forme constituée d'un ensemble de m noeuds p i regroupés en grappes (noeuds homogènes), chaque p i peut effectuer une certaine quantité de travail en une unité de temps. Tous les noeuds peuvent communiquer entre eux avec un certain coût de communication pour envoyer une unité de données à un autre noeud p i ′ . Nous voulons déployer un ensemble de n processus a j . Chaque a j a un nombre maximum d'instances nb max j qui peuvent être déployées (sur n'importe quel noeud), et une quantité d'opérations à effectuer en une unité de temps. Un a j peut communiquer avec un ou plusieurs autres a j ′ avec une quantité de données à transférer par unité de temps. Chaque a j a une fréquence d'utilisation f j représentant la façon dont il est utilisé par les utilisateurs. Nous définissons également une variable booléenne δ j,k i qui vaut 1 si l'instance k de a j est placée sur p i . Notre objectif est de trouver un déploiement qui répartit la charge sur les noeuds, minimise les coûts de communication, et maximise le nombre d'instances déployées. Pour mesurer la répartition de charge, nous utilisons la variance sur la charge des noeuds (V ar(charge noeud)). Le coût de communication est la somme de tous les coûts de communications engendrés par les différents processus. Nous définissons ainsi une fonction objective que nous souhaitons minimiser:

LB = V ar(charge noeud) + coût 2 communication N b

Heuristiques

Heuristiques: distribution des noeuds, et remplissage de la plate-forme L'algorithme 1 montre les principales étapes de ces heuristiques. Pour chaque a j , nous déterminons tout d'abord un sous-ensemble de noeuds p i sur lesquels nous pourrons le déployer à l'aide d'une première heuristique. Puis, un nombre maximum d'instances est placé sur ces p i en choisissant les p i dans le sous-ensemble avec une seconde heuristique. Si à la fin de cette première étape certains a j ont des instances non placées, on essaye alors d'ajouter de nouvelles instances, à l'aide d'un tourniquet sur une liste contenant les a j répliqués en fonction de leur f j (si nous avons deux processus a 1 et a 2 , avec f 1 = 2 × f 2 , alors la liste du tourniquet est {a 1 , a 1 , a 2 }, ceci afin d'obtenir une solution proche des fréquences désirées), cette étape est répétée tant que la fonction objective LB peut être améliorée. Chaque heuristique distribue les p i aux a j en leur allouant une puissance de calcul proportionnelle à leur fréquence, seule la façon de sélectionner les p i diffère (algorithme 1, ligne 2):

• Aléatoire (Aléa): p i choisis de façon aléatoire, avec priorité pour les a j avec le f j le plus haut.

• Puissance de calcul (Puis): plus puissants p i donnés en priorité aux a j ayant le plus gros w j .

• Clustering (Clus): distribution réalisée en deux étapes. Détection des sous-graphes indépendants à l'aide d'un parcours en profondeur du graphe général contenant tous les processus: obtention de groupes de a j avec des communications à l'intérieur du groupe, mais pas entre les groupes. Tri des sous-graphes par fréquence décroissante.

Tri des grappes de calcul par charge décroissante et puissance de calcul décroissante. Allocation des p i les moins chargés de la grappe la plus puissante au premier sous-graphe. Seconde étape: tri des a j du sous-graphe par besoins en communication décroissants, distribution des p i a j . Itération pour chaque sous-graphe.

Étant donné un ensemble de noeuds, il est nécessaire de choisir ceux sur lesquels placer chacune des instances (algorithme 1, lignes 3 et 9):

• Aléatoire (Aléa): p i choisi aléatoirement, une instance est placée dessus.

• Liste de charge (List): tri des p i par charge croissante. Placement des instances en suivant cet ordre, la liste est retriée lorsqu'on atteint la fin.

• Minimise communications (Comm): choix de la grappe permettant de minimiser les coûts de communication, puis choix du p i le moins chargé de cette grappe.

• Glouton (Glou): choix du p i minimisant LB.

Heuristique: Affinité

Cette heuristique est inspirée d'une heuristique d'ordonnancement sur plate-forme hétérogène pour des tâches indépendantes nécessitant des fichiers partagés en entrée [START_REF] Giersch | Scheduling tasks sharing files on heterogeneous master-slave platforms[END_REF]. L'Algorithme 2 présente l'heuristique: tout d'abord les sous-graphes indépendants sont détectés, et triés par fréquence décroissante (puis besoins en communications et calcul décroissants). Pour chaque sous-graphe, les grappes de calcul sont triées par charge croissante, et puissance de calcul décroissante, puis une instance de chacun de ses a j est placée sur la première grappe. On construit ensuite un liste d'affinité pour chaque p i : pour chaque p i et chaque a j , on calcule l'affinité entre eux, c'est-à-dire la valeur affinité(a j , p i) = V ar(charge noeud)+coût 2 communication si une instance de a j est placée sur p i . affinité prend en compte deux des métriques que nous Algorithme 1 : Heuristique, Distribution des noeuds, et remplissage de la plate-forme.

1: pour tout a j faire 2:

list nodes ← noeuds choisis pour a j

3:

Placer un nombre maximum d'instance de a j sur list nodes 4: si ∃a j | i j k δ j,k i < nb max j alors 5:

A ← {a j | i j k δ j,k i < nb max j } 6:
A f ← processus de A répliqués en fonction de leur fréquence f j 7:

tant que LB décroît et A f = ∅ faire 8:
pour tout a j ∈ A f faire 9:

si une nouvelle instance de a j améliore LB alors Choisir la grappe la moins chargée et la plus puissante placer une instance de a j sur le noeud p i le moins chargé 6: pour tout p i faire 7:

pour tout a j faire 8:

Calculer affinité(a j , p i) = V ar(charge noeud) + coût 2 Soit a j premier processus de L(p i) qui peut être placé sur p i

13:

Calculer LB si a j est placé sur p i 14:

Choisir le couple (a j , p i) qui minimise LB, et placer a j sur p i 4 Simulations et expériences La figure 3a présente la valeur moyenne de la fonction objective LB. En regardant ce graphe, les heuristiques qui semblent les plus intéressantes sont les gloutonnes, à l'opposé des heuristiques par liste de charge et aléatoire. Si l'on regarde en détail les trois valeurs à optimiser (figures 3b, 3c et 3d), toutes les heuristiques ne se comportent pas de la même façon. affinité semble la plus intéressante: elle déploie un maximum d'instances, tout en ayant un coût de communication assez bas et une des meilleures répartition de charge, alors que les heuristiques gloutonnes ont le meilleur coût de communication, mais peu d'instances déployées et une mauvaise répartition de la charge. Les heuristiques avec listes de charge ont la meilleure répartition de charge. Il faut donc choisir l'heuristique à utiliser en fonction de ce que l'on souhaite privilégier au sein de notre fonction objective: quelle combinaison de répartition de charge, coût de communication et nombre d'instances déployées? L'heuristique qui satisfait le plus les trois valeurs est affinité.

Déploiement sur Grid'5000

Afin de valider l'heuristique pour les hiérarchies, nous déployons Diet avec trois autres services: un de nommage et deux de surveillance. La description de la hiérarchie est la même que celle donnée sur la figure 1b (deux services différents sous le LA). Nous souhaitons avoir le de services possible (les Sed), il n'y a donc pas de contrainte sur le nombre d'éléments répliqués dans la hiérarchie Diet. Nous réalisons nos expériences sur la plate-forme expérimen-tale française Grid'50001 , et réservons entre 25 et 305 noeuds pour réaliser les déploiements. Afin de déployer la même hiérarchie aussi bien avec Adage qu'avec GoDiet, Adage crée la hiérarchie avec les heuristiques, puis l'écrit dans un fichier XML au format GoDiet. La figure 4 présente le temps moyen de déploiement en utilisant Adage et GoDiet. Comme GoDiet ne réalise pas le transfert des fichiers durant son processus de déploiement, nous transférons les fichiers nécessaires à l'aide d'un script qui lance des commandes scp en arrière plan sur chaque noeud afin de transférer les mêmes fichiers qu'Adage. Le temps de transfert est ensuite ajouté au temps de déploiement de la hiérarchie par GoDiet. On peut remarquer que même si Adage doit générer le plan de déploiement (incluant la forme de la hiérarchie) son temps de déploiement est bien plus faible que celui de GoDiet (il lance les processus séquentiellement, alors qu'Adage parallélise leur lancement et optimise le transfert des fichiers). La forme de la hiérarchie Diet dépend du nombre de grappes et du nombre de noeuds disponibles, ainsi que de leur puissance de calcul. Le tableau 1 présente le nombre de LA et de Sed déployés par heuristique. Nous visons le plus grand nombre de Sed afin de répondre à un maximum de requêtes. La hiérarchie a au moins un LA par grappe, parfois plus s'il y a assez de noeuds, et s'ils sont suffisamment puissants. Comme le nombre de Sed par noeud dépend de la fréquence des CPU, le nombre de ressources peut être plus petit que le nombre d'éléments Diet déployés. Vu que nous n'avons ici que trois autres processus à déployer en même temps que la hiérarchie Diet, la différence entre les hiérarchies est assez faible. Nous avons déployé des hiérarchies Diet avec trois autres processus utiles pour son utilisation. La forme des hiérarchies est adaptée au nombre de ressources: le nombre de processus sur les noeuds, ainsi que la profondeur de la hiérarchie dépend des puissances de calcul des noeuds et de leur nombre. Concernant le temps de déploiement, Adage surpasse GoDiet. GoDiet a été conçu comme un ensemble de scripts non optimisés. L'utilisation d'un outil générique de déploiement est alors une meilleure alternative. En effet, la généricité permet d'avoir des algorithmes communs de génération de plan de déploiement, ainsi qu'un processus de

Conclusion

L'utilisation de ressources hétérogènes réparties nécessite d'avoir des outils simples et efficaces pour déployer des applications. Cependant, les outils actuels manquent encore de maturité concernant leurs méthodes de sélection des ressources. Dans ce papier, nous présentons une heuristique pour déterminer la forme d'une application hiérarchique sur une plate-forme donnée, ainsi que deux types d'heuristiques: une basée sur deux sous-heuristiques (une pour définir un sous-ensemble de noeuds, et une pour choisir parmi les noeuds), et une seconde basée sur des listes d'affinité entre les noeuds et les processus. Nous tentons de satisfaire trois critères: minimiser les coûts de communication, répartir la charge entre les noeuds, et maximiser le nombre d'instances déployées. Nos simulations montrent qu'il n'y a pas une meilleure heuristique, même si la plus intéressante est affinité. Cependant en fonction du ou des critères de la fonction objective que l'on souhaite privilégier nous savons quelle heuristique mettre en oeuvre. Nous avons également déployé des centaines d'éléments Diet à l'aide d'Adage, et montré que cet outil générique était bien plus efficace que GoDiet, l'actuel outil de déploiement.

Le sujet est loin d'être clos. Les travaux futurs concerneront les applications parallèles, qui représentent une grande part des applications utilisées sur une grille. Un autre point important qui n'a pas été pris en compte est la compatibilité entre les applications et les ressources: une application peut ne pas être exécutable sur l'ensemble de la plate-forme à cause de contraintes sur la mémoire, ou encore des bibliothèques disponibles. Enfin d'autres contraintes peuvent être prises en compte: contention sur les liens de communication, redéploiement dynamique, déploiement de multi-hiérarchies, etc.

 présente un exemple de hiérarchie Diet composée d'une racine (le MA), d'un ensemble de noeuds intermédiaires (les LA, Local Agents, qui ont pour tâche de transmettre les requêtes et de réaliser l'ordonnancement des requêtes sur leurs sous-arbres), et enfin les Sed qui ont la charge de traiter les requêtes. Diet peut également se présenter sous la forme d'une multi-hiérarchie: plusieurs hiérarchies Diet reliées par la racine de façon statique ou dynamique en pair à pair.

Figure 1 :

 1 Figure 1: Exemple d'une hiérarchie Diet et sa représentation compacte Étant donné que la forme de la hiérarchie dépend des ressources disponibles, il n'est pas possible de décrire une hiérarchie qui offre un bon débit de requêtes traitées sur n'importe quelle plate-forme. C'est pourquoi il est préférable de laisser le logiciel de déploiement choisir de façon automatique la forme de la hiérarchie. On peut remarquer que ce type d'application a une partie récursive: les LA ont pour enfants des LA, ou des Sed. Nous pouvons donc représenter la hiérarchie de façon compacte comme sur la figure 1b. Cette représentation indique que le MA a pour fils des LA, et que les LA ont pour fils soit des LA, soit des SeD

Figure 2 :

 2 Figure 2: Heuristique de déploiement d'une hiérarchie.

4 :

 4 pour tout a j ∈ sous-graphe faire 5:

comm 9 :

 9 Construire et trier les listes d'affinité L(p i) 10: tant que ∃a j | m i=1 nb max j k=1 δ j,k i < nb max j et ∃p i |p i non entièrement chargé faire 11: pour tout p i non entièrement chargé faire 12:

Figure 3 :

 3 Figure 3: Résultats des simulations pour les différentes heuristiques.

Figure 4 :

 4 Figure 4: Temps de déploiement pour Adage et GoDiet.

 instances déployées3.2 Déploiement d'une hiérarchieDans[START_REF] Chouhan | Automatic middleware deployment planning on clusters[END_REF] les auteurs prouvent que le déploiement optimal (au sens du débit de requêtes traitées) pour un intergiciel hiérarchique sur une plate-forme homogène, est un CSD tree (Complete Spanning d-ary tree) un arbre couvrant complet d-aire: un arbre pour lequel tous les noeuds internes, à l'exception peut être d'un, ont exactement d enfants. Nous voulons déployer des hiérarchies sur une plate-forme hétérogène en maximisant le nombre de feuilles (de serveurs). Nous proposons une heuristique qui crée une hiérarchie proche d'un CSD tree par grappe si la hiérarchie est la seule application à déployer sur ces ressources, sinon le degré de chaque noeud est adapté en fonction de la charge des ressources. Nous nous rapprochons ainsi d'un optimum local (par grappe), et espérons tendre vers un optimum global.

Tout d'abord, le noeud le plus puissant est pris pour la racine pour qu'il supporte une grosse charge. Puis, l'heuristique traite les grappes séparément: les premiers noeuds de la hiérarchie sont placés sur des noeuds physiques jusqu'à atteindre le noeud récursif. Puis, des enfants de ce noeud récursif sont placés tant que le noeud récursif peut supporter la charge. Quand le noeud physique sur lequel est placé le noeud récursif est complètement chargé, alors un nouveau noeud récursif est ajouté au dessus, et la hiérarchie est reconstruite avec des noeuds récursifs jusqu'à atteindre la profondeur précédente (un noeud physique est choisi pour chacun d'eux), et le processus d'ajout des enfants recommence. Ceci est répété tant qu'il reste des ressources. La figure

2

présente le processus de construction sur une grappe, la description de la hiérarchie contient un noeud récursif (NR2) et un enfant (NR3). Les noeuds gris sont entièrement chargés.

10 :

 10 Placer cette instance voulons optimiser: la distribution de la charge sur les processeurs, et les coûts de communication. Les listes d'affinité sont triées par valeur croissante. Pour réaliser le placement final, tant qu'il nous reste des instances à déployer, et que les p i ne sont pas totalement chargés: pour chaque itération, le couple (a j , p i) minimisant LB est choisi (pour chaque p i seul le premier a j de la liste d'affinité est considéré), et a j est placé sur p i .

	Algorithme 2 : Heuristique, Affinité

1: Détection des sous-graphes, et tri par fréquence, besoins communication et travail décroissants 2: pour tout sous-graphe faire 3:

 Nous comparons les heuristiques à l'aide d'un simulateur. Les résultats suivants ne sont valables que pour des applications séquentielles (pas d'applications hiérarchiques). Des graphes d'applications ont été générés aléatoirement. Le nombre de processus, leur cardinalité maximum, leurs besoins en communication et calcul ont été choisis aléatoirement. Nous avons généré ainsi 1800 graphes et réalisé les simulations sur une plate-forme composées de quatre grappes de calcul contenant 10, 20, 20 et 30 noeuds de puissances variables.

		5e+08			0.6	
	Valeur moyenne de la fonction objectif LB	5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08 4e+08 4.5e+08	Clus. -comm. Clus. -glou. Clus. -list Clus. -alea Puis. -comm. Puis. -glou. Puis. -list Puis. -alea. Alea. -comm. Alea. -glou. Alea. -list Alea. -alea. Affinite	Variance moyenne de la charge des processeurs	0.3 0.35 0.4 0.45 0.5 0.55	Clus. -comm. Clus. -glou. Clus. -list Clus. -alea Puis. -comm. Puis. -glou. Puis. -list Puis. -alea. Alea. -comm. Alea. -glou. Alea. -list Alea. -alea. Affinite
		0	Heuristiques		0.25	Heuristiques
			(a) Fonction objective			(b) Charge des noeuds
		1200			180	
	Cout moyen de communication par instance	300 400 500 600 700 800 900 1000 1100	Clus. -comm. Clus. -glou. Clus. -list Clus. -alea Puis. -comm. Puis. -glou. Puis. -list Puis. -alea. Alea. -comm. Alea. -glou. Alea. -list Alea. -alea. Affinite	Nombre moyen d'instances deployees	80 100 120 140 160	Clus. -comm. Clus. -glou. Clus. -list Clus. -alea Puis. -comm. Puis. -glou. Puis. -list Puis. -alea. Alea. -comm. Alea. -glou. Alea. -list Alea. -alea. Affinite
		200	Heuristiques		60	Heuristiques
			(c) Coûts de comm.			(d) Nombre d'instances
	4.1 Simulations de planification			

Table 1 :

 1 Nombre de LA et de Sed obtenus pour les différents déploiements (LA/Sed). déploiement entièrement optimisé de bout en bout.

				1/48		1/48			1/48		1/48	1/48
	155 6 6/223	8/222	8/222	8/223	8/223	8/222
	305 8 14/490 17/492 14/492 16/493 14/492 14/491
	N b	n oe u d s N b g r a p p e s A l éa -L i s t	A	l éa -A	l éa	P	u i s -C	o m	m P	u i s -G	l o u	P	u i s -L i s t	P	u i s -A	l éa
	50 1	1/48	1/48		1/47			1/47		1/47	1/47
	155 6 8/222	8/223 10/221 10/221 10/221 10/221
	305 8 14/491 14/491 14/492 16/493 14/492 14/492

http://www.grid5000.fr