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Abstract

In this paper, we consider the problem of scheduling distributed biological se-
quence comparison applications. This problem lies in the divisible load frame-
work with negligible communication costs. Thus far, very few results have
been proposed in this model. We discuss and select relevant metrics for this
framework: namely max-stretch and sum-stretch. We explain the relation-
ship between our model and the preemptive uni-processor case, and we show
how to extend algorithms that have been proposed in the literature for the
uni-processor model to the divisible multi-processor problem domain. We re-
call known results on closely related problems, we show how to minimize the
max-stretch on unrelated machines either in the divisible load model or with
preemption, we derive new lower bounds on the competitive ratio of any on-line
algorithm, we present new competitiveness results for existing algorithms, and
we develop several new on-line heuristics. We also address the Pareto opti-
mization of max-stretch. Then, we extensively study the performance of these
algorithms and heuristics in realistic scenarios. Our study shows that all pre-
viously proposed guaranteed heuristics for max-stretch for the uni-processor
model prove to be inefficient in practice. In contrast, we show our on-line
algorithms based on linear programming to be near-optimal solutions for max-
stretch. Our study also clearly suggests heuristics that are efficient for both
metrics, although a combined optimization is in theory not possible in the
general case.

Keywords: Bioinformatics, heterogeneous computing, scheduling, divisible load, linear
programming, stretch

Résumé



Dans ce rapport, nous nous intéressons à l’ordonnancement d’applications com-
parant de manière distribuée des séquences biologiques. Ce problème se situe
dans le domaine des tâches divisibles avec coûts de communications négli-
geables. Jusqu’à présent, très peu de résultats ont été publiés pour ce modèle.
Nous discutons et sélectionnons des métriques appropriées pour notre cadre de
travail, à savoir le max-stretch et le sum-stretch. Nous expliquons les relations
entre notre modèle et le cadre mono-processeur avec préemption, et nous mon-
trons comment étendre au cadre des tâches divisibles sur multi-processeur les
algorithmes proposés dans la littérature pour le cas mono-processeur avec pré-
emption. Nous rappelons les résultats connus pour des problématiques proches,
nous montrons comment minimiser le max-stretch sur des machines non cor-
rélées (que les tâches soient divisibles ou simplement préemptibles), nous ob-
tenons de nouvelles bornes inférieures de compétitivité pour tout algorithme
on-line, nous présentons de nouveaux résultats de compétitivité pour des al-
gorithms de la littérature, et nous proposons de nouvelles heuristiques on-line.
Nous nous intéressons également au problème de la minimisation Pareto du
max-stretch. Ensuite, nous étudions, de manière extensive, les performances
de tous ces algorithmes et de toutes ces heuristiques, et ce dans un cadre réa-
liste. Notre étude montre que les solutions garanties existantes minimisant le
max-stretch sur un processeur sont inefficaces dans notre cadre de travail. Ce-
pendant, nous montrons que nos algorithmes on-line basés sur la programma-
tion linéaire ont des performances proches de l’optimal pour le max-stretch. En
outre, notre étude suggère clairement les heuristiques qui sont efficaces pour
les deux métriques, bien que l’optimisation simultanée pour ces deux métriques
soit en théorie impossible dans le cas général.

Mots-clés: Bioinformatique, ordonnancement, tâches divisibles, programmation linéaire, flot
pondéré, plates-formes hétérogènes
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1 Introduction

The problem of searching large-scale genomic and proteomic sequence databanks is an increasingly
important bioinformatics problem. The results we present in this paper concern the deployment
of such applications in heterogeneous parallel computing environments. In the genomic sequence
comparison scenario, the presence of the required databank on a particular node is the sole factor
that constrains task placement decisions. This application is thus part of a larger class of appli-
cations, in which each task in the application workload exhibits an “affinity” for particular nodes
of the targeted computational platform. In this context, task affinities are determined by location
and replication of the sequence databanks in the distributed platform.

Numerous efforts to parallelize biological sequence comparison applications have been realized
(e.g., [13, 15, 32]). These efforts are facilitated by the fact that such biological sequence compari-
son algorithms are typically computationally intensive, embarrassingly parallel workloads. In the
scheduling literature, this computational model is effectively a divisible workload scheduling prob-
lem [9, 11] with negligible communication overheads. The work presented in this paper concerns
this application model, particularly in the context of online scheduling (i.e., in which the scheduler
has no knowledge of any job in the workload in advance of its release date). Thus far, this specific
problem has not been considered in the scheduling literature.

Aside from divisibility, the main difference with classical scheduling problems lies in the fact
that the platforms we target are shared by many users. Consequently, we need to ensure a certain
degree of fairness between the different users and requests. Defining a fair objective that accounts
for the various job characteristics (release date, processing time) is thus the first difficulty to
overcome. After having presented our motivating application and our framework in Section 2, we
review various classical metrics in Section 3 and conclude that the stretch of a job is an appropriate
basis for evaluation. As a consequence, we mainly focus on the max-stretch and sum-stretch
metrics. To have a good background on related objectives functions and results, in Section 4 we
focus on the max-flow and sum-flow metrics. Then in Section 5 we study sum-stretch optimization,
in Section 6 offline max-stretch optimization, and in Section 7 Pareto offline optimization of max-
stretch. Building on the previous sections, we focus in Section 8 on the online optimization of
max-stretch. This paper contains no section devoted to the related work as the related work will
be discussed throughout this article. However, we summarize in the conclusion the known and new
results on complexity. Finally, we present in Section 9 an experimental evaluation of the different
solutions proposed, and we conclude in Section 10.

The main contributions of this work are:� offline sum-flow and sum-stretch. We show that sum-flow minimization is NP-
complete on unrelated machines under the divisible load model (〈R|rj , div|

∑
Fj〉 is NP-

complete). We also show that sum-stretch minimization is NP-complete on one machine
without preemption and also on unrelated machines under the divisible load model (〈1|rj |

∑
Sj〉

and 〈R|rj , div|
∑

Sj〉 are NP-complete).� offline max weighted flow. We present polynomial-time algorithms to solve the mini-
mization of max weighted flow, offline, on unrelated machines, in the divisible load model and
in the preemptive model: 〈R|rj ; div|max wjFj〉 and 〈R|rj ; pmtn|max wjFj〉 are polynomial.

We also propose heuristics to solve the offline Pareto minimization of max weighted flow,
either on one machine or on unrelated machines. We present some cases in which these
heuristics are optimal and we prove that the offline Pareto minimization of max-flow on
unrelated machines is NP-complete.� online sum-stretch and max-stretch. We show that First come, first served (FCFS)
is ∆2-competitive for sum-stretch minimization and ∆-competitive for max-stretch, where
∆ denotes the ratio of the sizes of the largest and shortest jobs submitted to the system. We
also prove that no online algorithm has simultaneously better competitive ratios for these
two metrics.
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We show that no online algorithm has a competitive ratio less than or equal to 1.19484 for

the minimization of sum-stretch, or less than or equal to 1
2∆

√
2−1 for the minimization of

max-stretch. (The previous known bounds were respectively 1.036 and 1
2∆

1
3 .)

For minimizing the sum-stretch on one machine with preemption, we show that Smith’s ratio
rule —which is then equivalent to shortest processing time— is not a competitive algorithm
and that shortest weighted remaining processing time is at best 2-competitive.

Finally, we propose new heuristics for the online optimization of max-stretch. Through
extensive simulations we compare them with solutions found in the literature and we show
their very good performance.

2 Motivating Application and Framework

2.1 Motivating Application

The only purpose of this section is to present the application that originally motivated this work,
the GriPPS [10, 20] protein comparison application. The GriPPS framework is based on large
databases of information about proteins; each protein is represented by a string of characters
denoting the sequence of amino acids of which it is composed. Biologists need to search such se-
quence databases for specific patterns that indicate biologically significant structures. The GriPPS
software enables such queries in grid environments, where the data may be replicated across a dis-
tributed heterogeneous computing platform.

As a matter of fact, there seems to be two common usages in protein comparison applications.
In the first case, a biologist working on a set of proteins builds a pattern to search for similar
sequences on the servers (this is the case for the GriPPS framework). In the second case, canonical
patterns are known and should be used for comparison with daily updates of the databanks. This
is the only case we are aware of where a very large set of motifs is sent to all databanks. This is
however a typical background process whereas the first case is a typical online problem as many
biologists concurrently use the servers. Therefore in this first case, the motifs are very small
and communication cost they incur can really be neglected. To develop a suitable application
model for the GriPPS application scenario, we performed a series of experiments to analyze the
fundamental properties of the sequence comparison algorithms used in this code. Here we report
on the conclusions of this study whose details can be found in Legrand, Su and Vivien [26, 25].

From our modeling perspective, the critical components of the GriPPS application are:

1. protein databanks: the reference databases of amino acid sequences, located at fixed
locations in a distributed heterogeneous computing platform.

2. motifs: compact representations of amino acid patterns that are biologically important and
serve as user input to the application.

3. sequence comparison servers: computational processes co-located with protein data-
banks that accept as input sets of motifs and return as output all matching entries in any
subset of a particular databank.

The main characteristics of the GriPPS application are:

1. negligible communication costs. A motif is a relatively compact representation of an
amino acid pattern. Therefore, the communication overhead induced while sending a motif
to any processor is negligible compared to the processing time of a comparison.

2. divisible loads. The processing time required for sequence comparisons against a subset of
a particular databank is linearly proportional to the size of the subset. This property allows
us to distribute the processing of a request among many processors at the same time without
additional cost.
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The GriPPS protein databank search application is therefore an example of a linear divisible
workload without communication costs.

In the classical scheduling literature, preemption is defined as the ability to suspend a job
at any time and to resume it, possibly on another processor, at no cost. Our application
implicitly falls in this category. Indeed, we can easily halt the processing of a request on a
given processor and continue the pattern matching for the unprocessed part of the database
on a different processor (as it only requires a negligible data transfer operation to move
the pattern to the new location). From a theoretical perspective, divisible load without
communication costs can be seen as a generalization of the preemptive execution model that
allows for simultaneous execution of different parts of a same job on different machines.

3. uniform machines with restricted availabilities. A set of jobs is uniform over a set of
processors if the relative execution times of jobs over the set of processors does not depend
on the nature of the jobs. More formally, for any job Jj , the time pi,j needed to process
job Jj on processor i is equal to Wj · ci, where ci describes the speed of processor i and Wj

represents the size of Jj . Our experiments indicated a clear constant relationship between
the computation time observed for a particular motif on a given machine, compared to the
computation time measured on a reference machine for that same motif. This trend supports
the hypothesis of uniformity. However, in practice a given databank may not be available on
all sequence comparison servers. Our model essentially represents a uniform machines with
restricted availabilities scheduling problem, which is a specific instance of the more general
unrelated machines scheduling problem.

2.2 Framework and Notations

Formally, an instance of our problem is defined by n jobs, J1, ..., Jn and m machines (or processors),
M1, ..., Mm. The job Jj arrives in the system at time rj (expressed in seconds), which is its release
date; we suppose that jobs are numbered by increasing release dates.

The value pi,j denotes the amount of time it would take for machine Mi to process job Jj . Note
that pi,j can be infinite if the job Jj cannot be executed on the machine Mi, e.g., for our motivating
application, if job Jj requires a databank that is not present on the machine Mi. Finally, each job
is assigned a weight or priority wj .

As we have seen, for the particular case of our motivating application, we could replace the
unrelated times pi,j by the expression Wj · ci, where Wj denotes the size (in Mflop) of the job
Jj and ci denotes the computational capacity of machine Mi (in second·Mflop−1). To maintain
correctness for the biological sequence comparison application, we separately maintain a list of
databanks present at each machine and enforce the constraint that a job Jj may only be executed
on a machine that has a copy of all data upon which job Jj depends. However, since the theoretical
results we present do not rely on these restrictions, we retain the more general scheduling problem
formulation that is, we address the unrelated machines framework in this article. As a consequence,
all the values we consider in this article are nonnegative rational numbers (except the previously
mentioned case in which pi,j is infinite if Jj cannot be processed on Mi).

The time at which job Jj is completed is denoted as Cj . Then, the flow time of the job Jj ,
defined as Fj = Cj − rj , is essentially the time the job spends in the system.

Due to the divisible load model, each job may be divided into an arbitrary number of sub-
jobs, of any size. Furthermore, each sub-job may be executed on any machine at which the data
dependences of the job are satisfied. Thus, at a given moment, many different machines may be
processing the same job (with a master scheduler ensuring that these machines are working on
different parts of the job). Therefore, if we denote by αi,j the fraction of job Jj processed on Mi,
we enforce the following property to ensure each job is fully executed: ∀j,∑i αi,j = 1.

When a size Wj can be defined for each job Jj —e.g., in the single processor case— we denote

by ∆ the ratio of the sizes of the largest and shortest jobs submitted to the system: ∆ =
maxj Wj

minj Wj
.
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2.3 Relationships with the Single Processor Case with Preemption

We first prove that any schedule in the uniform machines model with divisibility has a canonical
corresponding schedule in the single processor model with preemption. This is especially important
as many interesting results in the scheduling literature only hold for the preemptive computation
model (denoted pmtn).

Lemma 1. For any platform M1, ..., Mm composed of uniform processors, i.e., such that for any
job Jj, pi,j = Wj · ci, one can define a platform made of a single processor M̃ with c̃ = 1/

∑
i

1
ci

,
such that:

For any divisible schedule of J1, ..., Jn on {M1, ...,Mm} there exists a preemptive schedule of

J1, ..., Jn on M̃ with smaller or equal completion times.

Conversely, for any preemptive schedule of J1, ..., Jn on M̃ there exists a divisible schedule of
{M1, ...,Mm} with equal completion times.

Proof. The main idea is that our m heterogeneous processors can be seen as an equivalent processor
of power 1/

∑
i

1
ci

. Figure 1 illustrates this idea. More formally, given an instance composed of

n jobs J1, ..., Jn and m machines P1, ..., Pm such that pi,j = Wj · ci, we define J̃1, ..., J̃n with
the same release date as the initial jobs and a processing time p̃j = Wj/(

∑
i

1
ci

). Let us denote

by s(t) the time of the t-th preemption and by ∆(t) the length of time interval before the next

preemption. Last, if we define α
(t)
i,j the fraction of job Jj processed on Mi between the t-th and

the (t + 1)-th preemption (i.e., during the time interval [s(t), s(t) + ∆(t)[), by construction we have

for all Pi:
∑

j α
(t)
i,jpi,j 6 ∆(t), then

∑
j α

(t)
i,jWjci 6 ∆(t), hence

∑
j α

(t)
i,jWj 6

∆(t)

ci
. Therefore, we

have
∑

i

∑
j α

(t)
i,jWj 6 ∆(t)

∑
i

1
ci

and
∑

j

(∑
i α

(t)
i,j

)
Wj

P

i
1
ci

=
∑

j

(∑
i α

(t)
i,j

)
p̃j 6 ∆(t).

It is thus possible to process (
∑

i α
(t)
i,j ) of job J̃j in time interval [s(t), s(t+1)[, hence defining a

valid schedule for our new instance. As preemptions in the new schedule only occur within the
ones of the old schedule, no completion time is ever increased.

As a consequence, any complexity result for the preemptive single processor model also holds
for the uniform divisible model. Thus, throughout this article, in addition to addressing the
multi-processor case, we will also closely examine the single processor case.

Unfortunately, this line of reasoning is no longer valid when the computational platform exhibits
restricted availability, as defined in Section 2. In the single processor case, a schedule can be seen
as a priority list of the jobs (see the article of Bender, Muthukrishnan, and Rajaraman [7] for
example). For this reason, whenever we will present heuristics for the uniprocessor case they will
follow the same basic approach: maintain a priority list of the jobs and at any moment, execute the
one with the highest priority. In the multi-processor case with restricted availability, an additional
scheduling dimension must be resolved: the spatial distribution of each job.

The example in Figure 2 explains the difficulty of this last problem. In the uniform situation,
it is always beneficial to fully distribute work across all available resources: each job’s completion
time in situation B is strictly better than the corresponding job’s completion time in situation A.
However, introducing restricted availability confounds this process. Consider a case in which tasks
may be limited in their ability to utilize some subset of the platform’s resources (e.g., their requisite
data are not present throughout the platform). In situation C of Figure 2, one task is subject to
restricted availability: the P2 computational resource is not able to service this task. Deciding
between various scheduling options in this scenario is non-trivial in the general case (for example
schedule A has a better max flow than schedule C, but schedule C has a better max stretch than
schedule A), so we apply the following simple rule to build a schedule for general platforms from
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Figure 1: Geometrical transformation of a divisible uniform problem into a preemptive single
processor problem

P2

{
P2

{
P2

{
P1

{
P1

{
P1

{

C: restricted availabilityA: initial schedule B: uniform processing

Figure 2: Illustrating the difference between the uniform model and the restricted availability
model.

single processor heuristics:

Algorithm 1: Converting a single-processor schedule to a divisible one with restricted avail-
ability

while some processors are idle do1

Select the job with the highest priority and distribute its processing on all available2

processors that are capable of processing it.

An other important characteristic of our problem is that we target a platform shared by many
users. As a consequence, we need to ensure a certain degree of fairness between the different
requests. Given a set of requests, how should we share resources amongst the different requests?
The next section examines objective functions that are well-suited to achieve this notion of fairness.

3 Objective Functions

We first recall several common objective functions in the scheduling literature and highlight those
that are most relevant to our work (Section 3.1). Then, we show that the optimization of certain
objectives are mutually exclusive (Section 3.2).

3.1 Looking for a Fair Objective Function

The most common objective function in the parallel scheduling literature is the makespan: the
maximum of the job termination times, or maxj Cj . Makespan minimization is conceptually a
system-centric approach, seeking to ensure efficient platform utilization. Makespan minimization
is meaningful when there is only one user and when all jobs are submitted simultaneously. However,
individual users sharing a system are typically more interested in job-centric metrics, such as job
flow time (also called response time): the time an individual job spends in the system. Optimizing
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the average (or total) flow time,
∑

j Fj , suffers from the limitation that starvation is possible,
i.e., some jobs may be delayed to an unbounded extent [5]. By contrast, minimization of the
maximum flow time, maxj Fj , does not suffer from this limitation, but it tends to favor long jobs
to the detriment of short ones. To overcome this problem, one common approach [14] focuses
on the weighted flow time, using job weights to offset the bias against short jobs. Sum weighted
flow and maximum weighted flow metrics can then be analogously defined. Note however that the
starvation problem identified for sum-flow minimization is inherent to all sum-based objectives,
so the sum weighted flow suffers from the same weakness. The stretch is a particular case of
weighted flow, in which a job’s weight is inversely proportional to its size: wj = 1/Wj [5]. On a
single processor, the stretch of a job can be seen as the slowdown it experiences when the system
is loaded. In a network context, the stretch can be seen as the inverse of the overall bandwidth
allocated to a given transfer (i.e., the amount of data to transfer divided by the overall time
needed to complete the transfer). However this kind of definition does not account for the affinity
of some tasks with some particular machines (e.g., the scarcity of a particular database). That is
why we think a slightly different definition should be used in an unrelated machines context. The
stretch is originally defined to represent the slowdown a job experiences when the system is loaded.
In the remaining of this article, we will thus define the stretch as a particular case of weighted
flow, in which a job’s weight is inversely proportional to its processing time when the system is
empty: wj =

∑
i

1
pi,j

in our divisible load model. This definition matches the previous one in a

single processor context and is thus a reasonably fair measure of the level of service provided to
an individual job. It is more relevant than the flow in a system with highly variable job sizes.
Consequently, this article focuses mainly on the sum-stretch (

∑
Sj) and the max-stretch (max Sj)

metrics.

3.2 Simultaneous Online Optimization of Sum-Stretch and Max-Stretch
is Impossible

We prove that simultaneously optimizing the objectives we have defined earlier (sum-stretch and
max-stretch) may be impossible in certain situations1. In this section, we only consider the single
processor case.

Theorem 1. Consider any online algorithm which has a competitive ratio of ρ(∆) for the sum-
stretch. We assume that this competitive ratio is not trivial, i.e., that ρ(∆) < ∆2. Then, there
exists for this algorithm a sequence of jobs that leads to starvation, and thus for which the obtained
max-stretch is arbitrarily greater than the optimal max-stretch.

Note that the currently best known online algorithm for sum-stretch is 2-competitive (see
Section 5.3). Using the exact same construction, we can show that for any online algorithm which
has a non-trivial competitive ratio of ρ(∆) < ∆ for the sum-flow, there exists a sequence of jobs
leading to starvation and where the obtained max-flow is arbitrarily greater than the optimal one.

We must comment on our assumption about non-trivial competitive ratios. This comes from
the fact that ignoring job sizes leads on a single processor to a ∆2-competitive online algorithm
for sum-stretch and ∆-competitive online algorithm for sum-flow:

Theorem 2. FCFS is:� ∆2-competitive for the online minimization of sum-stretch,� ∆-competitive for the online minimization of max-stretch,� ∆-competitive for the online minimization of sum-flow, and� optimal for the online minimization of max-flow (classical result, see Bender et al. [5] for
example).

1Note that the following two theorems have been incorrectly stated in [27].
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Proof. We first prove the result for sum-stretch, then for max-stretch, and finally for sum-flow.

1. FCFS is ∆2 competitive for sum-stretch minimization.

We first show that FCFS is at worst ∆2 competitive, then we show that this bound is tight.
In this proof, SΘ(I) will denote the sum-stretch achieved by the schedule Θ on instance I.
S∗(I) will denote the optimal sum-stretch for instance I.
We show by recurrence on n that for any instance I = {J1 = (r1, p1), ..., Jn = (rn, pn)}:
SFCFS(I) 6 ∆2S∗(I). This property obviously holds for n = 1. Let us assume that it has
been proved for n and prove that it holds true for n +1.

Let us consider I = {J1 = (r1, p1), ..., Jn+1 = (rn+1, pn+1)} an instance with n + 1 jobs.
Without loss of generality, we assume that minj pj = 1. We know that, without loss of
generality, we may only consider priority list based schedules (see the article of Bender,
Muthukrishnan, and Rajaraman [7] for example). Thus let Θ denote the optimal priority
list for I. In the following, we denote by A1 the set of jobs that have a lower priority than
Jn+1 and A2 the set of jobs that have a higher priority than Jn+1. ρΘ(Jk) denotes the
remaining processing time of Jk at time rn+1 under scheduling Θ.

Thus we have:

SΘ(J1, . . . , Jn+1) = SΘ(J1, . . . , Jn) +
1

pn+1

(
pn+1 +

∑

k∈A1

ρΘ(k)

)

︸ ︷︷ ︸
The stretch of Jn+1

+
∑

k∈A2

pn+1

pk

︸ ︷︷ ︸
The cost incurred by Jn+1

We also have:

SFCFS(J1, . . . , Jn+1) = SFCFS(J1, . . . , Jn) +
1

pn+1


pn+1 +

∑

k6n

ρFCFS(k)




︸ ︷︷ ︸
The stretch of Jn+1

6 ∆2S∗(J1, . . . , Jn) +
1

pn+1


pn+1 +

∑

k6n

ρFCFS(k)


 (by recurrence hypothesis)

6 ∆2SΘ(J1, . . . , Jn) +
1

pn+1


pn+1 +

∑

k6n

ρFCFS(k)




= ∆2SΘ(J1, . . . , Jn) +
1

pn+1


pn+1 +

∑

k6n

ρΘ(k)




Indeed, for a priority-based scheduling, at any given time step, the remaining processing
time of jobs is independent of the priorities.

SFCFS(J1, . . . , Jn+1) 6 ∆2SΘ(J1, . . . , Jn) +
1

pn+1

(
pn+1 +

∑

k∈A1

ρΘ(k)

)
+
∑

k∈A2

ρΘ(k)

pn+1

As we have ρΘ(k)
pn+1

6 ∆ 6 ∆2

∆ 6 ∆2 pn+1

pk
, we get

SFCFS(J1, . . . , Jn+1) 6 ∆2SΘ(J1, . . . , Jn) + ∆2

(
1

pn+1

(
pn+1 +

∑

k∈A1

ρΘ(k)

)
+
∑

k∈A2

pn+1

pk

)

6 ∆2SΘ(J1, . . . , Jn+1) = ∆2S∗(J1, . . . , Jn+1)
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FCFS is thus ∆2 competitive for sum-stretch.

We now show that the previous bound is tight by using almost the same construction as in
Theorem 1. At date 0 arrives n jobs, J1, ..., Jn, of size ∆. Then, for any 1 6 j 6 n2, at
time j − 1 + 1

n arrives job Jn+j of size 1. A possible schedule would be to process job J1

during [0, 1
n ], then each of the jobs Jn+j , ..., Jn+n2 at its release date, and to wait for the

completion of the last of these jobs before completing the jobs J1, ..., Jn. The sum-stretch

would then be n2 × 1 + n2+∆
∆ + ... + n2+n∆

∆ =
(

n(n+1)
2 + nn2

∆

)
+ n2 = 2n3+3n2∆+n∆

2∆ . The

sum-stretch achieved by FCFS on this instance would be:

∆

∆
+ ... +

n∆

∆
+ n2

(
1 + n∆− 1

n

)
=

n(n + 1)

2
+ n3∆ + n2 − n =

2n3∆ + 3n2 − n

2
.

Therefore, the competitive ratio ρ(n) of FCFS on this instance is:

ρ(n) >

2n3∆+3n2−n
2

2n3+3n2∆+n∆
2∆

=
∆(2n2∆ + 3n− 1)

2n2 + 3n∆ + ∆
.

Therefore, limn→+∞ ρ(n) = ∆2. This is all we need to conclude.

2. FCFS is ∆ competitive for max-stretch minimization

We first show that FCFS is at worst ∆ competitive, then we show that this bound is tight.

Let us consider a problem instance J1, ..., Jn. We denote by Cj the completion time of job
Jj under FCFS. We consider any optimal schedule Θ∗ for max-stretch. Under this schedule,
let C∗

j be the completion time of job Jj , and S∗j its stretch. Then, we consider any job Jl

which has a larger stretch under FCFS than under Θ∗. Let t be the last time before Cl at
which the processor was idle under FCFS. Then, by definition of FCFS, t is the release date
ri of some job Ji and, during the time interval [ri, Cl], FCFS as exactly executed the jobs Ji,
Ji+1, ..., Jl−1, Jl. Furthermore, by definition of t, during that time interval FCFS neither
let the processor idle nor processed, even partially, other jobs. Therefore, as Θ∗ completes
Jl strictly earlier than Cl, there is a job Jk, i 6 k 6 l − 1 that completes at the earliest at
time Cl. Then:

max
j
S∗j > S∗k =

C∗
k − rk

pk
>

Cl − rl

pk
=

Cl − rl

pl

pl

pk
> Sl ×

1

∆

Therefore, for any job Jl which has a stretch larger under FCFS than under the optimal
schedule Θ∗, Sl 6 ∆ ×maxj S∗j . This inequality obviously holds for the other jobs. Hence
the upper bound on the competitiveness of FCFS.

To show that this bound is tight, we use a pretty simple example with two jobs: J1 arrives
at r1 = 0 and has a size of p1 = ∆, and J2 which arrives at r2 = ε and has a size of p2 = 1.
We will have 0 < ε≪ 1. FCFS achieves on this example a max-stretch of 1+∆− ε. SRPT

achieves a max-stretch of ∆+1
∆ , as ∆ > 1. Hence a competitive ratio for FCFS which is at

best:
1 + ∆− ε

∆+1
∆

= ∆− ε
∆

∆ + 1
> ∆− ε.

Hence the desired result.

3. FCFS is ∆ competitive for sum-flow minimization. This proof follows the same lines than
the proof for sum-stretch minimization.

We first show that FCFS is at worst ∆ competitive, then we show that this bound is tight.
In this proof, FΘ(I) will denote the sum-flow achieved by the schedule Θ on instance I.
F∗(I) will denote the optimal sum-flow for instance I.
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We show by recurrence on n that for any instance I = {J1 = (r1, p1), ..., Jn = (rn, pn)}:
FFCFS(I) 6 ∆F∗(I). This property obviously holds for n = 1. Let us assume that it has
been proved for n and prove that it holds true for n +1.

Let us consider I = {J1 = (r1, p1), ..., Jn+1 = (rn+1, pn+1)} an instance with n + 1 jobs.
Without loss of generality, we assume that minj pj = 1. We know that, without loss of
generality, we may only consider priority list based schedules (see the article of Bender,
Muthukrishnan, and Rajaraman [7] for example). Thus let Θ denote the optimal priority
list for I. In the following, we denote by A1 the set of jobs that have a lower priority than
Jn+1 and A2 the set of jobs that have a higher priority than Jn+1. ρΘ(Jk) denotes the
remaining processing time of Jk at time rn+1 under scheduling Θ.

Thus we have:

FΘ(J1, . . . , Jn+1) = FΘ(J1, . . . , Jn) + pn+1 +
∑

k∈A1

ρΘ(k)

︸ ︷︷ ︸
The flow of Jn+1

+
∑

k∈A2

pn+1

︸ ︷︷ ︸
The cost incurred by Jn+1

We also have:

FFCFS(J1, . . . , Jn+1) = FFCFS(J1, . . . , Jn) + pn+1 +
∑

k6n

ρFCFS(k)

︸ ︷︷ ︸
The flow of Jn+1

6 ∆F∗(J1, . . . , Jn) + pn+1 +
∑

k6n

ρFCFS(k) (by recurrence hypothesis)

6 ∆FΘ(J1, . . . , Jn) + pn+1 +
∑

k6n

ρFCFS(k)

= ∆FΘ(J1, . . . , Jn) + pn+1 +
∑

k6n

ρΘ(k)

Indeed, for a priority-based scheduling, at any given time step, the remaining processing
time of jobs is independent of the priorities.

FFCFS(J1, . . . , Jn+1) 6 ∆FΘ(J1, . . . , Jn) + pn+1 +
∑

k∈A1

ρΘ(k) +
∑

k∈A2

ρΘ(k)

As we have ρΘ(k) 6 ∆ 6 ∆pn+1, we get

FFCFS(J1, . . . , Jn+1) 6 ∆FΘ(J1, . . . , Jn) + pn+1 +
∑

k∈A1

ρΘ(k) +
∑

k∈A2

∆pn+1

6 ∆FΘ(J1, . . . , Jn) + ∆pn+1 + ∆
∑

k∈A1

ρΘ(k) + ∆
∑

k∈A2

pn+1

6 ∆FΘ(J1, . . . , Jn+1) = ∆F∗(J1, . . . , Jn+1)

We now show that the previous bound is tight by using almost the same construction as
in Theorem 1. At date 0 arrives n jobs, J1, ..., Jn, of size ∆. Then, for any 1 6 j 6 n2,
at time j − 1 + 1

n arrives job Jn+j of size 1. A possible schedule would be to process job
J1 during [0, 1

n ], then each of the jobs Jn+j , ..., Jn+n2 at its release date, and to wait for
the completion of the last of these jobs before completing the jobs J1, ..., Jn. The sum-flow

would then be n2× 1 + n2 + ∆ + ... + n2 + n∆ = n3 + n2 + n(n+1)
2 ∆. The sum-flow achieved

by FCFS on this instance would be:

∆+ ...+n∆+n2(1+n∆− 1

n
) =

n(n + 1)

2
∆+n3∆+n2−n =

2n3∆ + n2(2 + ∆) + n(∆− 2)

2
.
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Therefore, the competitive ratio ρ(n) of FCFS on this instance is:

ρ(n) >

2n3∆+n2(2+∆)+n(∆−2)
2

n3 + n2 + n(n+1)
2 ∆

=
2n3∆ + n2(2 + ∆) + n(∆− 2)

2n3 + 2n2 + n(n + 1)∆

Therefore, limn→+∞ ρ(n) = ∆. This is all we need to conclude.

We now prove Theorem 1.

Proof. Let us consider the case of an online algorithm for the sum-stretch optimization problem
that achieves a competitive ratio of ρ(∆) < ∆2. We arbitrarily take a value for ∆ > 1. Then,
there exists ε > 0, such that ρ(∆) < ∆2−ε. Finally, let α be any integer such that 1+α∆

1+ α
∆

> ∆2− ε
2

(note that this is the case for any value of α which is large enough).
At date 0 arrives α jobs, J1, ..., Jα, of size ∆. Let k be any integer. Then, at any time unit t,

0 6 t 6 k − 1, arrives a job Jα+t+1 of size 1.
A possible schedule would be to process each of the k jobs of size 1 at its release date, and

to wait for the completion of the last of these jobs before processing the jobs J1, ..., Jα. The

sum-stretch would then be k × 1 + k+∆
∆ + ... + k+α∆

∆ = α(α+1)
2 + k

(
1 + α

∆

)
and the max-stretch

would be α + k
∆ . Even if it is not optimal for neither one nor the other criteria, we can still use it

as an upper-bound.
In fact, with our hypotheses, the online algorithm cannot complete the execution of all the jobs

J1, ..., Jα as long as there are jobs of size 1 arriving at each time unit. Otherwise, suppose that
at some date t1, jobs J1, ..., Jα have all been completed. Then, a certain number k1 of unit-size
jobs were completed before time t1. The scenario which minimizes the sum-stretch under these
constraints is to schedule first the k1 jobs Jα+1, ..., Jα+k1

at their release dates, then to schedule
J1, ..., Jα, and then the remaining k − k1 jobs of size 1. The sum-stretch of the actual schedule
can therefore not be smaller than the sum-stretch of this schedule, which is equal to:

k1×1+
k1 + ∆

∆
+ ...+

k1 + α∆

∆
+(k−k1)(1+α∆) =

(
α(α + 1)

2
+

αk1

∆

)
+k1 +(k−k1)(1+α∆).

However, as, by hypothesis, we consider a ρ(∆)-competitive algorithm, the obtained schedule must
at most be ρ(∆) times the optimal schedule. This implies that:

(
α(α + 1)

2
+

αk1

∆

)
+ k1 + (k − k1)(1 + α∆) 6 ρ(∆)

(
α(α + 1)

2
+ k

(
1 +

α

∆

))
⇔

−α∆k1 +
α(α + 1)

2
(1− ρ(∆)) +

αk1

∆
6 k

(
ρ(∆)

(
1 +

α

∆

)
− (1 + α∆)

)
.

Once the approximation algorithm has completed the execution of the jobs J1, ..., Jα we can
keep sending unit-size jobs for k to become as large as we wish. Therefore, for the inequality not
to be violated, we must have ρ(∆)

(
1 + α

∆

)
− (1 + α∆) > 0. However, we have by hypothesis

ρ(∆) < ∆2 − ε. Therefore, we must have ∆2 − ε > 1+α∆
1+ α

∆
, which contradicts the definition of α.

Therefore, the only possible behavior for the approximation algorithm is to delay the execution of
at least one of the jobs J1, ..., Jα until after the end of the arrival of the unit-size jobs, whatever the
number of these jobs. This leads to the starvation of at least one of these jobs. Furthermore, the

ratio of the obtained max-stretch to the optimal one is
α+ k

∆

1+α∆ = α∆+k
∆(α∆+a) , which may be arbitrarily

large.

Intuitively, algorithms targeting max-based metrics ensure that no job is left behind. Such an
algorithm is thus extremely “fair” in the sense that everybody’s cost (in our context the weighted
flow or the stretch of each job) is made as close to the other ones as possible. Sum-based metrics
tend to optimize instead the utilization of the platform. The previous theorem establishes that
these two objectives can be in opposition on particular instances. As a consequence, it should be
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noted that any algorithm optimizing a sum-based metric has the particularly undesirable property
of potential starvation. This observation, combined with the fact that the stretch is more relevant
than the flow in a system with highly variable job sizes, motivates max-stretch as the metric of
choice in designing scheduling algorithms in the GriPPS setting.

4 Flow Optimization

On a single processor, the max-flow is optimized by FCFS (see Bender et al. [5] for example).
Using the remarks of Section 2.3, we can thus easily derive an online optimal algorithm for
〈Q|rj ; div|Fmax〉. We will see in Section 6 that 〈R|rj ; div|max wjFj〉 can be solved in polynomial
time using linear programing techniques.

Regarding, sum-flow, it was proved by Baker [1], using exchange arguments, that SRPT (short-
est remaining processing time first) is optimal for the 〈1|rj ; pmtn|∑Cj〉 problem. It is thus also
optimal for 〈1|rj ; pmtn|∑Fj〉 and, using the remarks of Section 2.3, we can easily derive an online
optimal algorithm for 〈Q|rj ; div|

∑
Fj〉. We will however see in this section that under the uniform

machines with restricted availabilities model, this problem is much harder.
Many of the reduction we propose in this article rely on the following strongly NP-hard prob-

lem [18]:

Definition 1 (3-Dimensional Matching (3DM)). Given three sets U = {u1, . . . , um}, V = {v1, . . . , vm},
and W = {w1, . . . , wm}, and a subset S ⊂ U × V ×W of size n > m, does S contain a perfect
matching, that is, a set S′ ⊆ S of cardinality m that covers every element in U ∪ V ∪W ?

Theorem 3. The scheduling problem 〈R|rj , div|
∑

Fj〉 is NP-complete.

Proof. In this section, we present a reduction from 3-Dimensional Matching to 〈R|div; rj |
∑

Fj〉.
We use the same idea as Sitters [35] used to prove the strong NP-hardness of 〈R|pmtn|∑Cj〉.
It should be noted that in the reduction we propose, the machines are uniform machines with
restricted availabilities. That is why we use Wj for the amount of workload of job j (in Mflop), ci

for the processing capability of machine i (in s per Mflop) and δi,j for the availability of machine
i to process job j (δi,j ∈ {1,+∞}). Therefore, for all i, j, we have pi,j = Wj .ci.δi,j .

Scheduling instance. Given an instance of the 3DM problem, we define one machine Ui for
each element ui of the set U . This set of machines is denoted by U as well, and we proceed in
the same way for V and W . We also define an additional machine Z. The processing capability
of each machine Pi of U ∪ V ∪W ∪ Z is defined by:

ci =

{
1 if Pi ∈ U ∪ V ∪W ,

K/3 if Pi = Z (the exact value of K will be precised later).

We define a set of jobs, (Jj)06j6n−1, corresponding to the set S. For each element sj =
(uαj

, vβj
, wγj

) of S, we define a corresponding job Jj . The size of job Jj is equal to 3 and the
processing time of Jj is small on the machines that correspond to the related triplet and on machine
Z, and is infinite on all the other ones:

δ
(J)
i,j =

{
1 if Pi ∈ {Uαj

, Vβj
,Wγj

, Z}
∞ otherwise

, W
(J)
j = 3, r

(J)
j = 0.

Hence, we have

p
(J)
i,j =





3 if Pi ∈ {Uαj
, Vβj

,Wγj
}

K if Pi = Z

∞ otherwise

, r
(J)
j = 0.
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Beside the set J , we also introduce two more sets of jobs: A and B. The set A contains many
small jobs that can only be processed on machine Z and whose purpose is to prevent any job of J
from using machine Z before time 2. Therefore, we have 2M jobs (Aj)06j62M−1 that are defined
as follows (the exact value of M will be defined later):

δ
(A)
i,j =

{
1 if Pi = Z

∞ otherwise
, W

(A)
j =

3

KM
, r

(A)
j =

j

M
.

Hence, we have

p
(A)
i,j =

{
1/M if Pi = Z

∞ otherwise
, r

(A)
j =

j

M
.

The set B contains many small jobs that can only be processed on specific machines of U , V ,
and W and whose purpose is to prevent jobs J from using machines of U , V , and W after time 1.
Each machine u ∈ U ∪ V ∪W will be associated to a set of jobs that can only be executed on u.
Therefore, we have N = 3m(nK + 2)L jobs (Bu

j )06j6(nK+2)L−1,
u∈U∪V ∪W

that are defined as follows (the

exact value of L will be defined later):

δ
(Bu)
i,j =

{
1 if Pi = u

∞ otherwise
, W

(Bu)
j =

1

L
, r

(Bu)
j = 1 +

j

L
.

Hence, we have

p
(Bu)
i,j =

{
1
L if Pi = u

∞ otherwise
, r

(B)
j = 1 +

j

L
.

We now show that the original instance of 3DM has a solution if and only if there is a divisible
schedule of the previous instance with sum-flow smaller than or equal to

SFopt = 2M · 1

M
︸ ︷︷ ︸

A-jobs

+ m · 1
︸ ︷︷ ︸

J-jobs from the partition

+

n−m∑

k=1

(2 + k.K)

︸ ︷︷ ︸
J-jobs not from the partition

+ 3m(nK + 2)L · 1

L
︸ ︷︷ ︸

B-jobs

= 2 + 2n−m +
(n−m).(n−m + 1).K

2
+ 3m(nK + 2)

Equivalence of both problems. Let us start with the easy part:

⇒ Suppose we have a perfect matching S′ ⊂ S. Then, we can process all jobs Jj for sj ∈ S′

on the corresponding machines between time 0 and 1 (see Figure 3). Meanwhile all A-jobs
are processed on machine Z between time 0 and 2. The remaining jobs Jj are processed on
Z one after the other from time 2 to time (n − m)K + 2 and all B-jobs are processed on
U ∪ V ∪W in parallel, one after the other, on their corresponding machines. It is then easy
to check that the sum-flow of this schedule is equal to SFopt :





F
(J)
j =

{
1 if j ∈ S′

2 + kK if j 6∈ S′ and is the k-th job to be executed on Z

F
(A)
j = 1

M

F
(B)
j = 1

L

⇐ Let us assume that there is a schedule whose sum-flow is smaller than SFopt. We will first
prove that without loss of generality, we can assume that:
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10 (n−m)K + 22K + 2K + 2 . . .2 nK + 3

U2

U3

U1

W2

W3

W1

V2

V3

V1

A-jobs

B-jobs

J-jobs

Z

                  











Figure 3: Sketch of the optimal schedule.

1. All B-jobs are processed on machines in U ∪V ∪W during time interval [1, nK +3]. As
all B-jobs have the same processing time, we can freely assume that on each processor,
they are processed in the order of their release dates. Therefore, as these jobs arrive
right after each others, if a machine u ∈ U ∪V ∪W is not used to process B-jobs during
a time interval of length delta, it will delay all following Bu-jobs by delta.

First we have to see that, even by processing sequentially on Z all tasks that can be
processed on Z, any J-job has a completion time smaller than nK + 2. Therefore if
α Mflop of J-jobs are processed on u ∈ U ∪ V ∪W between time 1 and nK + 2 they
necessarily delay at least L B-jobs (the ones that have been released in [nK + 2, nK +
3])of α. The sum-flow incurred by this processing is therefore larger than α.L. By
processing this load on Z rather than on u, at most n J-jobs and 2M A-jobs would
be delayed of α.K/3. Therefore as soon as L is larger than (n + 2M)K/3, we can
assume that only B-jobs can be processed on machines U ∪V ∪W during time interval
[1, nK + 3].

2. J-jobs are processed on machines U ∪V ∪W during time interval [0, 1] and on Z during
time interval [0, (n−m)K + 2]; A-jobs are processed by order of their release dates on
Z during [0, (n −m)K + 2]. This is a consequence of the fact that B-jobs are always
executed at their release dates. Therefore during the time interval [1, (n −m)K + 2],
A-jobs and J-jobs are processed on Z as if there was no other machine. Therefore,
we can freely assume that they are scheduled by increasing order of their remaining
workload, starting at time 1 (SRPT is optimal on a single processor).

3. The completion time of J-jobs is at least 1. Indeed, let us assume that there is a J-job
Jj whose completion time equals to 1 − ε < 1. This means that 3ε units of Jj are
processed on Z during [0, 1− ε] (and therefore we have ε 6 1/(K + 1) < 1/K).

If Uαj
is unused during [1 − ε, 1], then by moving ε units of Jj from Z to Uαj

, we
increase the completion time of Jj by ε but we also decrease the completion time of at
least M jobs by εK/3. Therefore, we strictly decrease the sum-flow as soon as K > 3.

If Uαj
is used during [1− ε, 1] to process a job Jj′ , then the remaining workload of Jj′
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0 1 2 3

Uαj

Z

Wγj

Vβj

(a) Original schedule

0 1 2 3

Uαj

Z

Wγj

Vβj

(b) Better schedule

Figure 4: No J-job completes before time 1.

at time 1 is larger than

3−
((

2 +
3

K

)
(1− ε) +

(
3 +

3

K

)
ε

)
= 1− 3

K
− ε

> 1− 4

K
>

3

KM
(as soon as M > 3/(K − 4)).

From time 1, only J-jobs and A-jobs are processed on Z. As these jobs are not processed
on other machines, we know that these jobs should be processed by increasing size of
the remaining workload. Using above results on the remaining processing workload of
J-jobs whose completion time is larger than 1, we can freely assume that all A-jobs
are processed first. Therefore (cf. Figure 4) by 1) moving ε units of Jj from Z to Uαj

,
by 2) sliding ε units of A jobs to the left on Z and by 3) moving the units of load of
other J-jobs that were processed on Uαj

during [1 − ε, 1] next to their corresponding
J-jobs on Z, we get a new schedule where 1) the completion of Jj is increased by ε,
2) the completion time of at least M A-jobs is decreased by at least ε.K

3 , and 3) the
completion time of other J-jobs is unchanged. Hence, this new schedule has a sum flow
at least −ε + M.ε.K

3 smaller than the original one.

4. All A-jobs are processed on machine Z during time interval [0, 2].

We have just seen that any J-jobs processed on Z has a completion time larger than
1. If α units of Jj are consecutively processed on Z during [0, 1], we can improve the
total flow time by moving these units to the last interval where Jj is processed and
sliding previous jobs to the left. Therefore we do not increase any completion time and
decrease the completion time of at least ⌈α.MK/3⌉ A-jobs by α.K/3, hence a strictly
smaller total flow time. We can therefore freely assume that no J-jobs are processed
on Z during [0, 1].

From time 1, we can freely assume that A-jobs and J-jobs are scheduled by increasing
order of their remaining workload. If a J-job is processed on Z during [1, 2], it means
that its remaining workload is smaller than 3/KM . Therefore, it has heavily used Uαj

,
Vβj

, and Wγj
and using the same transformation as in Figure 4, we can get a schedule

with strictly smaller total flow time. We can therefore assume that only A-jobs are
processed on Z during [0, 2].

Therefore by assuming that K > 3, M > 3/(K − 4), and L > (n + 2M)K/3, we can freely
assume that A-jobs and B-jobs are executed at their release dates on their corresponding
processors. Therefore, J-jobs are executed on U ∪ V ∪ W during [0, 1] and on Z during
[2, (n−m)K + 2].

Let us now show that our scheduling problem has a solution only if there is a perfect matching
for the original 3DM instance. More precisely, we will show that if there is no perfect
matching, then the sum-flow is strictly larger than the bound.
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Let us denote by xj the amount of workload of job Jj processed on machines in U ∪ V ∪W
during time interval [0, 1]. We can suppose without loss of generality that:

3 > x1 > x2 > · · · > xn > 0.

We also have:
n∑

j=1

xj 6 3m.

The sum-flow of the J-jobs is then equal to:

SF (x1, . . . , xn) =
n∑

j=1

(
1 +

⌈
3− xj

3

⌉
+

j∑

k=1

K
3− xk

3

)
.

It is easy to show (using exchange techniques) that under the constraints on the xj ’s, SF (X)
is strictly minimized for X = (3, . . . , 3︸ ︷︷ ︸

m times

, 0, 0, . . . , 0︸ ︷︷ ︸
n − m times

). Therefore, the sum-flow of a schedule

can be equal to SFopt only if SF (X) = n + (n−m) + K(n−m)(n−m + 1)/2, i.e., only if
X = (3, . . . , 3, 0, 0, . . . , ), which means that there exists a perfect matching for the original
3DM instance.

5 Sum-Stretch Optimization

In this section, we give various results regarding sum-stretch optimization. In Section 5.1, we
establish the complexity of this problem in our framework. In the remaining sections, we focus on
the one processor setting and study the competitiveness of “classical” heuristics.

5.1 Complexity of the Offline Problem

In the general case, without preemption and divisibility, minimizing the sum-stretch is an NP-
complete problem:

Theorem 4. The scheduling problem 〈1|rj |
∑

Sj〉 is NP-complete.

Proof. This NP-completeness result is proved by reduction from the version of Partition where
the two partitions have same size [18]. We first remark that this problem is obviously in NP. Then,
let us take an instance I1 of Partition, i.e., a set {a1, a2, . . . , an} of n integers. Let us denote
B = 1

2

∑
16j6n aj . The question is: is there a subset J of [1;n] such that

∑
j∈J aj = B and such

that |J | = n
2 ?

From this instance I1 of Partition, we build the following instance I2 of 〈1|rj |
∑

Sj〉 :� We have n jobs, each of them corresponding to one of the integers in I1: for j ∈ [1;n], Jj

has size Wj = B + aj and arrives at time rj = 0.� We have a job Jn+1 of size Wn+1 = 1
14n2 and which arrives at time rn+1 = n+2

2 B.� We have 4n2 jobs, such that job Jn+1+j , 1 6 j 6 4n2, has size 1
14n2 and arrives at time

rn+1+j = (n + 2)B + 1
14n2 + (j − 1)B.

The question is: is there a schedule of the set of jobs {Jj}16j64n2+n+1 such that
∑

Sj 6 19
4 n2 +

2n + 1? Note that the size of I2 is polynomial in the size of I1.
We first prove that I2 has a solution if I1 has one. Therefore, we suppose that there exists a

subset J of [1;n] such that
∑

j∈J aj = B and |J | = n
2 . Then, we build a solution of I2 has follows:

1. We greedily execute the jobs {Jj}16j6n;j∈J in the time interval [0; n+2
2 B]. For any such job

Jj , we have: Sj 6 1
Wj
· n+2

2 B 6 1
B

n+2
2 B = n+2

2 .
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2. We execute the job Jn+1 at time rn+1 = n+2
2 B. Its stretch is then 1.

3. We greedily execute the jobs {Jj}16j6n;j /∈J in the time interval [n+2
2 B+ 1

14n2 ; (n+2)B+ 1
14n2 ].

For any such job Jj we have: Sj 6 1
Wj
·
(
(n + 2)B + 1

14n2

)
6 1

B ·((n + 2)B + 1) 6 (n+2)+1.

4. We execute each of the jobs Jn+1+j , 1 6 j 6 4n2 at their release date, and each has a stretch
of one.

This way we obtain a schedule whose sum-stretch satisfies:

∑
Sj 6

n

2
· n + 2

2
+ 1 +

n

2
· (n + 3) + 4n2 =

19

4
n2 + 2n + 1.

Hence we have a solution to problem I2.
Conversely, let us assume that problem I2 has a solution. We first show that each of the first

n jobs must be completed before the release time of the last job, Jn+1+4n2 . We prove this result
by contradiction. So, assume that there is a job Jj , with 1 6 j 6 n, which is completed no earlier
than time rn+1+4n2 . As the stretch of each of the n + 4n2 other jobs must be at least equal to 1,
we derive from our hypothesis:

∑
Sj > n + 4n2 +

(n+2)B+ 1
14n2 +(4n2−1)B

Wj

> n + 4n2 + (4n2+n+1)B
2B

= 6n2 + 3
2n + 1

2
> 19

4 n2 + 2n + 1

Hence our desired contradiction.
We now show that any job, except the first n ones, cannot be delayed by as much as 1

2 time
unit. Indeed, such a delay would induce an increase of stretch of:

1
2
1

14n2

= 7n2 >
19

4
n2 + 2n + 1.

We now define as J the set of the indices of the jobs which are completed before job Jn+1.
Obviously, J only contains indices of jobs among the first n ones. As job Jn+1 must be completed
before the date n+2

2 B + 1
14n2 + 1

2 , |J | 6 n
2 . Furthermore, |J | = n

2 if, and only if,
∑

j∈J aj 6 B. Let
J ′ be the set of the indices of the jobs which are completed after job Jn+1 is completed and before
job Jn+2 is. From what we have previously shown on the jobs Jn+1+j , with 1 6 j 6 4n2, we infer
that J∪J ′ = {1, ..., n}. Job Jn+1 is completed at the earliest at time rn+1 +Wn+1 = n+2

2 B+ 1
14n2 .

Job Jn+2 is completed no later than at time rn+2+Wn+2+ 1
2 = (n+2)B+ 2

14n2 + 1
2 . Therefore, the

set of jobs whose indices are in J ′ must be executed in a time interval which is shorter than or equal
to n+2

2 B + 1
2 + 1

14n2 . Therefore |J ′| 6 n
2 . Furthermore, |J ′| = n

2 if, and only if,
∑

j∈J ′ aj 6 B. We

thus have |J | = |J ′| = n
2 ,
∑

j∈J aj =
∑

j∈J ′ aj = B, and J defines a solution to instance I1.

The complexity of the offline minimization of the sum-stretch with preemption is still an open
problem. At the very least, this is a hint at the difficulty of this problem. In the framework with
preemption, Bender, Muthukrishnan, and Rajaraman [7] present a Polynomial Time Approxima-
tion Scheme (PTAS) for minimizing the sum-stretch with preemption. Chekuri and Khanna [14]
present an approximation scheme for the more general sum weighted flow minimization problem.
As these approximation schemes cannot be extended to work in an online setting, we will not
discuss them further.

Moving to the divisible load framework, we can easily say that the complexity of 〈Q|rj ; div|
∑

Sj〉
is open (using the remarks of Section 2.3). The minimization of the sum-stretch is however NP-
complete on unrelated machines:

Theorem 5. The scheduling problem 〈R|rj , div|
∑

Sj〉 is NP-complete.
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Proof. In this section, we present a reduction from 3-Dimensional Matching to 〈R|div; rj |
∑

Sj〉.
We use the same idea as Sitters [35] used to prove the strong NP-hardness of 〈R|pmtn|∑Cj〉.
It should be noted that in the reduction we propose, the machines are uniform machines with
restricted availabilities. That is why we use Wj for the amount of workload of job j (in Mflop), ci

for the processing capability of machine i (in s per Mflop) and δi,j for the availability of machine
i to process job j (δi,j ∈ {1,+∞}). Therefore, for all i, j, we have pi,j = Wj .ci.δi,j .

Scheduling instance. Given an instance of the 3DM problem, we define one machine Ui for
each element ui of the set U . This set of machines is denoted by U as well and we proceed in the
same way for V and W . We also define an additional machine Z. The processing capability of
each machine Pi of U ∪ V ∪W ∪ Z is defined by:

ci =

{
1 if Pi ∈ U ∪ V ∪W ,

K/3 if Pi = Z.

We define a set of jobs, (Jj)06j6n−1, corresponding to the set S. For each element sj =
(uαj

, vβj
, wγj

) of S, we define a corresponding job Jj . The size of job Jj is equal to 3 and the
processing time of Jj is small on the machines that correspond to the related triplet and on machine
Z, and is infinite on all the other ones:

δ
(J)
i,j =

{
1 if Pi ∈ {Uαj

, Vβj
,Wγj

, Z}
∞ otherwise

, W
(J)
j = 3, r

(J)
j = 0.

Hence, we have

p
(J)
i,j =





3 if Pi ∈ {Uαj
, Vβj

,Wγj
}

K if Pi = Z

∞ otherwise

, r
(J)
j = 0, w

(J)
j =

1 + 1 + 1 + 3/K

3
=

K + 1

K
.

Beside the set J , we also introduce two more sets of jobs: A and B. The set A contains many
small jobs that can only be processed on machine Z and whose purpose is to prevent any job of
J from using machine Z before time 1. Therefore, we have M jobs (Aj)06j6M−1 that are defined
as follows:

δ
(A)
i,j =

{
1 if Pi = Z

∞ otherwise
, W

(A)
j =

3

KM
, r

(A)
j =

j

M
.

Hence, we have

p
(A)
i,j =

{
1/M if Pi = Z

∞ otherwise
, r

(A)
j =

j

M
, w

(A)
j = M.

The set B contains many small jobs that can only be processed on machines U , V , and W and
whose purpose is to prevent jobs J from using machines of U , V , and W after time 1. Therefore,
we have (n−m)NK jobs (Bj)06j6(n−m)NK−1 that are defined as follows:

δ
(B)
i,j =

{
∞ if Pi = Z

1 otherwise
, W

(B)
j =

3m

N
, r

(B)
j = 1 +

j

N
.

Hence, we have

p
(B)
i,j =

{
∞ if Pi = Z

3m/N otherwise
, r

(B)
j = 1 +

j

N
, w

(A)
j = N.
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We now show that the original instance of 3DM has a solution if and only if there is a divisible
schedule of the previous instance with sum-stretch smaller than or equal to

SSopt = M

︸ ︷︷ ︸
A-jobs

+ m
K + 1

K
︸ ︷︷ ︸

J-jobs from the partition

+

n−m∑

k=1

(1 + k.K) · K + 1

K
︸ ︷︷ ︸

J-jobs not from the partition

+ (n−m)NK

︸ ︷︷ ︸
B-jobs

= M + n
K + 1

K
+

(n−m)(n−m + 1)(K + 1)

2
+ (n−m)NK

Equivalence of both problems. Let us start with the easy part:

⇒ Suppose we have a perfect matching S′ ⊂ S. Then, we can process all jobs Jj for sj ∈ S′ on
the corresponding machines between time 0 and 1 (see Figure 5). Meanwhile all A-jobs are
processed on machine Z. The remaining jobs Jj are processed on Z one after the other from
time 1 to time (n −m)K + 1 and all B-jobs are processed on U ∪ V ∪W in order of their
release dates, each one being executed in parallel on all the processors of U ∪ V ∪W . It is

1 (n−m)K + 12K + 1K + 10 . . .

U2

U3

U1

W2

W3

W1

V2

V3

V1

A-jobs

B-jobs

Z

J-jobs











                  

Figure 5: Sketch of the optimal schedule.

then easy to check that the sum-stretch of this schedule is equal to SSopt :




S
(J)
j =

{
K+1

K if j ∈ S′

(1 + kK)K+1
K if j 6∈ S′ and is the k-th job to be executed on Z

S
(A)
j = 1

S
(B)
j = 1

⇐ Let us assume that there is a schedule whose sum-stretch is no greater than SSopt. We will
first prove that without loss of generality, we can assume that:

1. All A-jobs are processed on machine Z during time interval [0, 1].

Indeed, let us prove that if we have a schedule where some J-jobs are processed on
Z during [0, 1], we can transform this schedule in such a way than only A-jobs are
processed on Z in [0, 1] and the sum-stretch is strictly decreased.
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10

. . .

l

10

. . .

l

ZZ

Situation 2Situation 1

Figure 6: All A-jobs are processed on machine Z during time interval [0, 1].

In Figure 6 situation 1, some A-jobs are delayed by J-jobs during l > 0 units of time.
Let us consider the stretch difference between situation 1 and 2. In situation 1, at
least ⌈lM⌉ A-jobs are delayed of l units of time, which implies that the sum-stretch of
these jobs is at least ⌈lM⌉ lKM

3 larger than the sum-stretch of these jobs in situation 2.
In situation 2, the completion-time of J-jobs is at most l units of times larger than
in situation 1. The sum-stretch of J-jobs is therefore increased of at most nlK+1

K .

Situation 1 is thus better than situation 2 only if ⌈lM⌉ lKM
3 < nl(K+1)

K , i.e., only if

⌈lM⌉ < 3n(K+1)
K2M . We will therefore assume in the following that 6n < KM , hence for

situation 1 to be better than situation 2 we must have ⌈lM⌉ < 1, which is impossible as
l > 0. Therefore, delaying A-jobs for executing J-jobs always results in a strict increase
of the sum-stretch.

2. All B-jobs are processed on machines in U∪V ∪W during time interval [1, (n−m)K+1].

B-jobs being all equivalent with regards to processing characteristics, they should be
executed in the same order as their release dates. They may however be locally pre-
empted by J-jobs. Let us consider Bj , the first B-job that is preempted and is therefore

not completely processed during [r
(B)
j , r

(B)
j+1] (see Figure 7 situation 1).

10

. . .

l

10

. . .

l

ZZ

Situation 2Situation 1

Figure 7: All A-jobs are processed on machine Z during time interval [0, 1].

In Situation 2, all J-jobs that were executed on U ∪V ∪W during [r
(B)
j , r

(B)
j+1] have been

transfered on Z. Let us denote by α the amount of J-jobs that has been transfered. The
completion time of all J-jobs is therefore at most increased of αK/3. The sum-stretch
of J-jobs is therefore at most increased of nαK

3
K+1

K . Likewise, the completion time

of Bj is decreased of at least α
3m , hence the stretch of Bj is decreased of at least αN

3m .
Therefore, if we assume in the following that N > nm(K + 1), Situation 2 has always
a better sum-stretch than situation 1.

Therefore by assuming that {
6n < KM

nm(K + 1) < N
,

we can freely assume that A-jobs are executed at their release dates on Z and B-jobs are
executed at their release dates on U ∪ V ∪W . Therefore, J-jobs are executed on U ∪ V ∪W
during [0, 1] and on Z during [1, (n−m)K + 1].
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Let us now show that our scheduling problem has a solution only if there is a perfect matching
for the original 3DM instance. More precisely, we will show that if there is no perfect
matching, then the sum-stretch is strictly larger than the bound.

Let us denote by xj the amount of workload of job Jj processed on machines in U ∪ V ∪W
during the time interval [0, 1]. We can suppose without loss of generality that:

3 > x1 > x2 > · · · > xn > 0.

We also have:
n∑

j=1

xj 6 3m

As J-jobs all have the same release date, they should be scheduled by increasing size of the
remaining workload. Therefore, the sum-stretch of the J-jobs is equal to:

SS(x1, . . . , xn) =

n∑

j=1

(
1 +

j∑

k=1

K
3− xj

3

)
K + 1

K

It is easy to show (using exchange techniques) that under the constraints on the xj ’s, SS(X)
is strictly minimized for X = (3, . . . , 3︸ ︷︷ ︸

m times

, 0, 0, . . . , 0︸ ︷︷ ︸
n − m times

). Therefore, the sum-stretch of a schedule

can be equal to SSopt only if SS(X) = n(K+1)
K + (n−m)(n−m+1)(K+1)

2 , i.e., only if X =
(3, . . . , 3, 0, 0, . . . , ), which means that there exists a perfect matching for the original 3DM
instance.

5.2 Lower Bound on the Competitiveness of Online Algorithms

Muthukrishnan, Rajaraman, Shaheen, and Gehrke [33] propose an optimal online algorithm when
there are only two job sizes. Mainly, they prove that there is no optimal online algorithm for the
sum-stretch minimization problem when there are three or more distinct job sizes. Furthermore,
they give a lower bound of 1.036 on the competitive ratio of any online algorithm. The following
theorem improves this bound:

Theorem 6 ([27]). No online algorithm minimizing the sum-stretch with preemption on a single
processor has a competitive ratio less than or equal to 1.19484.

Proof. We first present the adversary and the analysis of the different possible behaviors for the
online algorithms. Finally we will give the optimal values of the different parameters defining
the adversary behavior (α, β, γ, n, k, p, ε1, ε2, ε3, and ε4). The final numerical resolution will
show that some of these parameters are not necessary. We decided to present the proof in all its
generality rather than to simplify it.

At time r0 = 0 arrives job J0 of size p0 = αβγn.

At time r1 = αβγn− ε1 arrives job J1 of size p1 = βγn.

We consider the system at time αβγn + βγn − ε1 − ε2, and whether the execution of J0 has
been completed at that time.

1. If the execution of J0 has not yet been completed, we do not send any more jobs. To evaluate
what is the best achievable sum-stretch in these conditions, we need to study two cases:

(a) J0 is completed before J1. Then, by hypothesis, J0 cannot be completed earlier than at
time αβγn + βγn− ε1 − ε2. In any case, J1 is completed at best at time αβγn + βγn.
Therefore, the sum-stretch is greater than or equal to:

αβγn + βγn− ε1 − ε2

αβγn
+

(αβγn + βγn)− (αβγn− ε1)

βγn
= 2 +

1

α
− ε1 + ε2

αβγn
+

ε1

βγn
.
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(b) J1 is completed before J0. Then J1 is completed at the earliest at time r1 + p1 =
αβγn+βγn− ε1. In any case, J0 is completed at best at time αβγn+βγn. Therefore,
the sum-stretch is greater than or equal to:

1 +
(αβγn + βγn)

αβγn
= 2 +

1

α
.

Therefore, under our hypotheses, the best achievable sum-stretch is:

2 +
1

α
+ min

{
0,−ε1 + ε2

αβγn
+

ε1

βγn

}
.

However, one could have completed first J0 before starting the processing of J1, hence
reaching a sum-stretch of:

2 +
ε1

βγn
.

We suppose that (i.e., we will ensure that the chosen values of the parameters are such that):

2 +
ε1

βγn
< 2 +

1

α
+ min

{
0,−ε1 + ε2

αβγn
+

ε1

βγn

}
.

Then, the competitive ratio attained is greater than or equal to:

2 + 1
α + min

{
0, ε1

βγn − ε1+ε2

αβγn

}

2 + ε1

βγn

.

2. We now consider the complementary case: at time αβγn + βγn − ε1 − ε2 the execution of
J0 has been completed. Then, we send another job to the system. As J0 is the first job to
be completed, the most favorable case is that J0 is fully processed during the time interval
[0;αβγn]. We thus assume in the following that this is the case.

At time r2 = αβγn + βγn− ε1 − ε2 arrives job J2 of size p2 = γn.

We consider the system at time αβγn + βγn + γn− ε1− ε2− ε3, and whether the execution
of J1 has been completed at that time.

(a) If the execution of J1 has not yet been completed, we do not send any more jobs. To
evaluate what is the best achievable sum-stretch in these conditions, we need to study
two cases:

i. J1 is completed before J2. Then, by hypothesis, J1 cannot be completed earlier
than αβγn + βγn + γn− ε1 − ε2 − ε3. In any case, J2 is completed at best at time
αβγn + βγn + γn. Therefore, the sum-stretch is greater than or equal to:

1 +
(αβγn + βγn + γn− ε1 − ε2 − ε3)− (αβγn− ε1)

βγn

+
(αβγn + βγn + γn)− (αβγn + βγn− ε1 − ε2)

γn
=

3 +
1

β
− ε2 + ε3

βγn
+

ε1 + ε2

γn
.

ii. J2 is completed before J1. Then J2 is completed at the earliest at time r2 +
p2 = αβγn + βγn + γn − ε1 − ε2. In any case, J1 is completed at best at time
αβγn + βγn + γn. Therefore, the sum-stretch is greater than or equal to:

1 +
(αβγn + βγn + γn− ε1 − ε2)− (αβγn + βγn− ε1 − ε2)

γn

+
(αβγn + βγn + γn)− (αβγn− ε1)

βγn

= 3 +
1

β
+

ε1

βγn
.
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Therefore, in that case, the best achievable sum-stretch is

3 +
1

β
+ min

{
ε1 + ε2

γn
− ε2 + ε3

βγn
,

ε1

βγn

}
.

However, with only these three jobs, one could have reached a better sum-stretch by
first fully execute J0 and then fully execute J1. The sum-stretch obtained this way is
equal to:

1 +

(
1 +

ε1

βγn

)
+

(
1 +

ε1 + ε2

γn

)
= 3 +

ε1

βγn
+

ε1 + ε2

γn
.

Of course, this is a better solution only if:

ε1

βγn
+

ε1 + ε2

γn
<

1

β
+ min

{
ε1 + ε2

γn
− ε2 + ε3

βγn
,

ε1

βγn

}
,

what we will ensure through the choice of the parameters. In that case, the competitive
ratio is greater than or equal to:

3 + 1
β + min

{
ε1+ε2

γn − ε2+ε3

βγn , ε1

βγn

}

3 + ε1

βγn + ε1+ε2

γn

.

(b) We now consider the complementary case: at time αβγn + βγn + γn − ε1 − ε2 − ε3

the execution of J1 has been completed. Then, we send another job to the system. As
J0 is the first job to be completed and J1 the second, the most favorable case is that
J0 is fully processed during the time interval [0;αβγn] and J1 during the time interval
[αβγn;αβγn + βγn]. We thus assume in the following that this is the case.

At time r3 = αβγn + βγn + γn− ε1 − ε2 − ε3 arrives job J3 of size p3 = n

We consider the system at time αβγn + βγn + γn + n− ε1 − ε2 − ε3 − ε4, and whether
the execution of J2 has been completed at that time.

i. If the execution of J2 has not yet been completed, we do not send any more jobs.
To evaluate what is the best achievable sum-stretch in these conditions, we need
to study two cases:

A. J2 is completed before J3. Then, by hypothesis, J2 cannot be completed earlier
than αβγn + βγn + γn + n− ε1 − ε2 − ε3 − ε4. In any case, J3 is completed at
best at time αβγn + βγn + γn + n. Therefore, the sum-stretch is greater than
or equal to:

1 +

(
1 +

ε1

βγn

)

+
(αβγn + βγn + γn + n− ε1 − ε2 − ε3 − ε4)− (αβγn + βγn− ε1 − ε2)

γn

+
(αβγn + βγn + γn + n)− (αβγn + βγn + γn− ε1 − ε2 − ε3)

n
=

4 +
1

γ
+

ε1

βγn
− ε3 + ε4

γn
+

ε1 + ε2 + ε3

n
.

B. J3 is completed before J2. Then J3 is completed at the earliest at time r3+p3 =
αβγn + βγn + γn + n − ε1 − ε2 − ε3. In any case, J2 is completed at best at
time αβγn+βγn+γn+n. Therefore, the sum-stretch is greater than or equal
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to:

1 +

(
1 +

ε1

βγn

)

+
(αβγn + βγn + γn + n− ε1 − ε2 − ε3)− (αβγn + βγn + γn − ε1 − ε2 − ε3)

n

+
(αβγn + βγn + γn + n)− (αβγn + βγn− ε1 − ε2)

γn

= 4 +
1

γ
+

ε1

βγn
+

ε1 + ε2

γn
.

Therefore, in that case, the best achievable sum-stretch is

4 +
1

γ
+

ε1

βγn
+ min

{
ε1 + ε2 + ε3

n
− ε3 + ε4

γn
,
ε1 + ε2

γn

}
.

However, with only these four jobs, one could have reached a better sum-stretch
by first fully execute J0, then fully execute J1, and then fully execute J2. The
sum-stretch obtained this way is equal to:

1+

(
1 +

ε1

βγn

)
+

(
1 +

ε1 + ε2

γn

)
+

(
1 +

ε1 + ε2 + ε3

n

)
= 4+

ε1

βγn
+

ε1 + ε2

γn
+

ε1 + ε2 + ε3

n
.

Of course, this is a better solution only if:

4+
ε1

βγn
+

ε1 + ε2

γn
+

ε1 + ε2 + ε3

n
< 4+

1

γ
+

ε1

βγn
+min

{
ε1 + ε2 + ε3

n
− ε3 + ε4

γn
,
ε1 + ε2

γn

}
,

what we will ensure through the choice of the parameters. In that case, the com-
petitive ratio is greater than or equal to:

4 + 1
γ + ε1

βγn + min
{

ε1+ε2+ε3

n − ε3+ε4

γn , ε1+ε2

γn

}

4 + ε1

βγn + ε1+ε2

γn + ε1+ε2+ε3

n

.

ii. We now consider the complementary case: at time αβγn+βγn+γn+n−ε1−ε2−
ε3 − ε4 the execution of J2 has been completed. Then, we send a series of jobs to
the system, as defined below. As J0 is the first job to be completed, J1 the second,
and J2 the third, the most favorable case is that J0 is fully processed during the
time interval [0;αβγn], J1 during the time interval [αβγn;αβγn + βγn], and J2

during the time interval [αβγn + βγn;αβγn + βγn + γn]. We thus assume in the
following that this is the case.
We send to the system a series of k jobs, of same size p, the inter-arrival time of
these jobs being equal to p:
At time r3+j = αβγn + βγn + γn + n− ε1 + (j − 1)p arrives job J3+j of size

p3+j = p, for 1 6 j 6 k.
Obviously, all the k jobs of size p should be executed in the order of their arrival.
The only question to settle is when does the execution of J3 ends ? We have three
cases to consider:

A. The execution of J3 is completed before the execution of any of the jobs J3+j ,
1 6 j 6 k. Then the best achievable sum-stretch is equal to:

4 +
ε1

βγn
+

ε1 + ε2

γn
+

ε1 + ε2 + ε3

n
+ k

(
1 +

ε1

p

)
.

B. The execution of J3 is completed after the execution of any of the jobs J3+j ,
1 6 j 6 k. Then the best achievable sum-stretch is equal to:

4 +
ε1

βγn
+

ε1 + ε2

γn
+

ε1 + ε2 + ε3

n
+

kp

n
+ k.
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C. The execution of J3 is completed between the completion of the jobs J3+j and
J3+j+1, for some j ∈ [1; k − 1]. Then the best achievable sum-stretch is equal
to:

4 +
ε1

βγn
+

ε1 + ε2

γn
+

ε1 + ε2 + ε3

n
+

jp

n
+ j + (k − j)

(
1 +

ε1

p

)
.

This value is obviously a linear combination of the two previous ones, and we
do not need to consider that case but just the two extremal ones.

We would like the optimal completion order of the jobs to be J1, J2, J3, J3+1, ...,
J3+k, J0. The sum-stretch for such a schedule is (terms listed in the completion
order):

1 +

(
1 +

ε2

γn

)
+

(
1 +

ε2 + ε3

n

)
+ k +

αβγn + βγn + γn + n + kp

αβγn

= k + 4 +
ε2

γn
+

ε2 + ε3

n
+

1

α
+

1

αβ
+

1

αβγ
+

kp

αβγn
.

Therefore, we want that:

k +
kp

αβγn
+ 4 +

1

α
+

1

αβ
+

1

αβγ
+

ε2

γn
+

ε2 + ε3

n

< min

{
4 + ε1

βγn + ε1+ε2

γn + ε1+ε2+ε3

n + k
(
1 + ε1

p

)
,

4 + ε1

βγn + ε1+ε2

γn + ε1+ε2+ε3

n + kp
n + k.

As we will let k tend to infinity, only the coefficients of k in the different terms
matter. Anyway, the competitive ratio in this case is:

min
{

4 + ε1

βγn + ε1+ε2

γn + ε1+ε2+ε3

n + k
(
1 + ε1

p

)
, 4 + ε1

βγn + ε1+ε2

γn + ε1+ε2+ε3

n + kp
n + k

}

k + kp
αβγn + 4 + 1

α + 1
αβ + 1

αβγ + ε2

γn + ε2+ε3

n

=
k
(
1 + min

{
ε1

p , p
n

})
+ 4 + ε1

βγn + ε1+ε2

γn + ε1+ε2+ε3

n

k + kp
αβγn + 4 + 1

α + 1
αβ + 1

αβγ + ε2

γn + ε2+ε3

n

.

Therefore, to find with our construction the largest upper bound on the competitive ratio of
online algorithms minimizing the sum-stretch, we need to find values of α, β, γ, n, k, p, ε1, ε2,
and ε3, which maximize:

min





2 + 1
α + min

{
0, ε1

βγn − ε1+ε2

αβγn

}

2 + ε1

βγn

,

3 + 1
β + min

{
ε1+ε2

γn − ε2+ε3

βγn , ε1

βγn

}

3 + ε1

βγn + ε1+ε2

γn

,

4 + 1
γ + ε1

βγn + min
{

ε1+ε2+ε3

n − ε3+ε4

γn , ε1+ε2

γn

}

4 + ε1

βγn + ε1+ε2

γn + ε1+ε2+ε3

n

,

k
(
1 + min

{
ε1

p , p
n

})
+ 4 + ε1

βγn + ε1+ε2

γn + ε1+ε2+ε3

n

k + kp
αβγn + 4 + 1

α + 1
αβ + 1

αβγ + ε2

γn + ε2+ε3

n

.

Using Mathematica [30], we found the values α = 1.93716, β = 1.29941, γ = 1, n = 1
ε1
≈

2.69598, k = 1012, p = 1, ε1 = 0.370923, and ε2 = ε3 = ε4 = 0 and hence a ratio of 1.19485.
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5.3 Shortest Processing Time Rules: SRPT, SWPT, SWRPT

In the previous section, we have recalled that shortest remaining processing time (SRPT) is
optimal for minimizing the sum-flow. When SRPT takes a scheduling decision, it only considers
the remaining processing time of a job, and not its original processing time. Therefore, from the
point of view of the sum-stretch minimization, SRPT does not take into account the weight of the
jobs in the objective function. Nevertheless, Muthukrishnan, Rajaraman, Shaheen, and Gehrke
have shown [33] that SRPT is 2-competitive for sum-stretch.

Another well studied algorithm is the Smith’s ratio rule [37] also known as shortest weighted
processing time (SWPT). This is a preemptive list scheduling where the available jobs are exe-
cuted in increasing value of the ratio

pj

wj
. Whatever the weights, SWPT is 2-competitive [34] for

the minimization of the sum of weighted completion times (
∑

wjCj). Note that a ρ-competitive
algorithm for the sum weighted flow minimization (

∑
wj(Cj − rj)) is ρ-competitive for the sum

weighted completion time (
∑

wjCj). However, the reverse is not true: a guarantee on the sum
weighted completion time (

∑
wjCj) does not induce any guarantee on the sum weighted flow

(
∑

wj(Cj − rj)). Therefore, the previous ratio on the minimization of the sum of weighted com-
pletion times gives us no result on the efficiency of SWPT for the minimization of the sum-stretch.
Furthermore, we can even prove that SWPT is not an approximation algorithm for minimizing
the sum-stretch. Indeed, SWPT schedules the available jobs by increasing values of 1

p2
j

and has

thus exactly the same behavior as the shortest processing time first heuristic (SPT). The following
theorem states that SPT (and thus SWPT) is not a competitive algorithm for minimizing the
sum-stretch.

Theorem 7 ([27]). For any value ρ > 1, there is an instance on which the sum-stretch realized
by SPT is at least ρ times the optimal. Furthermore, we can impose that in this instance ∆, the
ratio of the sizes of the largest and shortest jobs submitted to the system, is equal to 2.

Proof. Without loss of generality, we assume that ρ is a non-null integer. Then, the instance is
made of 4ρ + 1 jobs where job Jk is defined by:

∀k ∈ [0; 4ρ], rk = 8ρk − k(k + 1)

2
and pk = 8ρ− k.

This instance is built such that SPT preempts the execution of job Jk, for 0 6 k 6 4ρ−1 one time
unit before its completion. Thus the completion of all the jobs is delayed after the completion of
J4ρ. Then SPT completes the execution of the jobs in the reverse order of their release dates, one
every time unit. Therefore, J4ρ has a stretch of 1 and is completed at the date 24ρ2 + 2ρ. Then,
job Jk, for 0 6 k 6 4ρ− 1, is completed at time (24ρ2 + 2ρ) + (4ρ− k) and has a stretch of:

((
24ρ2 + 2ρ

)
+ (4ρ− k)

)
−
(
8ρk − k(k+1)

2

)

8ρ− k
>

24ρ2 + 6ρ− (8ρ + 1)k

4ρ

(we roughly bounded the denominator and we just dropped the k(k+1)
2 term). Therefore, the

sum-stretch reached by SPT on this instance is greater than:

1 +

4ρ−1∑

k=0

24ρ2 + 6ρ− (8ρ + 1)k

4ρ
= 1 +

24ρ2 + 6ρ

4ρ
(4ρ)− 8ρ + 1

4ρ

(4ρ− 1)4ρ

2
= 8ρ2 + 8ρ +

3

2
.

We now need to evaluate the optimal sum-stretch. This optimal is greater than, or equal to,
the sum-stretch realized by FIFO scheduling. Under the FIFO scheduling, the job Jk is completed
at time rk + pk + k and has thus a stretch of 1 + k

pk
= 1 + k

8ρ−k 6 2. Therefore, the optimal

sum-stretch for this instance is no larger than 2(4ρ + 1). Finally, the ratio of the sum-stretch
realized by SPT on this instance and of the optimal sum-stretch is greater than or equal to:

8ρ2 + 8ρ + 3
2

8ρ + 2
> ρ.

Note that the largest job, p0, as a size of 8ρ and the smallest, p4ρ, a size of 4ρ. Hence, ∆ = 2.
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The weakness of the SWPT heuristics is obviously that it does not take into account the
remaining processing times: it may preempt a job when it is almost completed. To address the
weaknesses of both SRPT and SWPT, one might consider a heuristic that takes into account both
the original and the remaining processing times of the jobs. This is what the shortest weighted re-
maining processing time heuristic (SWRPT) does. In the framework of sum-stretch minimization,
at any time t, SWRPT schedules the job Jj which minimizes pjρt(j). Muthukrishnan, Rajara-
man, Shaheen, and Gehrke [33] prove that SWRPT is actually optimal when there are only two
job sizes.

Neither of the proofs of competitiveness of SRPT or SWPT can be extended to SWRPT.
SWRPT has apparently been studied by Megow [31], but only in the scope of the sum weighted
completion time. So far, there is no guarantee on the efficiency of SWRPT for sum-stretch
minimization. Intuitively, we would think that SWRPT is more efficient than SRPT for the
sum-stretch minimization. However, the following theorem shows that the worst case for SWRPT

for the sum-stretch minimization is no better than that of SRPT.

Theorem 8 ([27]). For any real ε, 1 > ε > 0, there exists an instance such that SWRPT is not
(2− ε)-competitive for the minimization of the sum-stretch.

Proof. The problematic instance is composed of two sequences of jobs. In the first sequence, the
jobs are of decreasing sizes, the size of a job being the square root of the size of its immediate
predecessor. In the second sequence, all the jobs are of unit-size. Each job arrives at a date equal
to the release date of its predecessor plus the execution time of this predecessor, except for the
second and third jobs which arrive at dates critical for SWRPT.

Let α = 1− ε
3 , n =

⌈
log2

(
log2

3(1+α)
ε

)⌉
, and k = ⌈− log2(− log2 α)⌉. Let l be an integer that

will be defined later on. Then, we formally build the instance J as follows:

1. Job J0 arrives at time r0 = 0 and is of size p0 = 22n

.

2. Job J1 arrives at time r1 = 22n − 22n−2

and is of size p1 = 22n−1

.

3. Job J2 arrives at time r2 = r1 + 22n−1 − α and is of size p2 = 22n−2

.

4. Job Jj , for 3 6 j 6 n, arrives at time rj = rj−1 + pj−1 and is of size pj = 22n−j

.

5. Job Jn+j , for 1 6 j 6 k, is of size pn+j = 22−j

and arrives at time rn+j = rn+j−1 + pn+j−1.

6. Job Jn+k+j , for 1 6 j 6 l, is of size pn+k+j = 1 and arrives at time rn+k+j = rn+k+j−1 +
pn+k+j−1.

We first study the behavior of SRPT on this instance: this gives us an upper bound on the
optimal sum-stretch. Then, we will study the sum-stretch of SWRPT.

Study of SRPT.� The first date at which SRPT must choose between two jobs is r1. At r1 the remaining
processing time (RPT) of J0 is ρr1

(J0) = 22n−2

, when ρr1
(J1) = 22n−1

. Therefore,

SRPT continues to execute J0 at date r1, until r1 + 22n−2

< r2, at which date the
execution of job J0 is completed.� We now consider the date r2.

ρr2
(J1) = 22n−1 −

(
r2 −

(
r1 + 22n−2

))
=

22n−1 −
((

r1 + 22n−1 − α
)
−
(
r1 + 22n−2

))

= 22n−1 − (22n−1 − 22n−2 − α) = 22n−2

+ α.

ρr2
(J2) = 22n−2

. Therefore, SRPT executes the job J2 starting at its release date.



Minimizing the stretch when scheduling flows of divisible requests 27� The job J2+j , for 1 6 j 6 n+k+ l−2, is executed at its release date. We can indeed see
that at the release date r2+j the only job previously released whose execution was not

completed is J1 whose remaining processing time is ρ(J1) = 22n−2

+ α which is strictly
greater than J2+j (the jobs are released in decreasing order of their sizes).� Once the execution of all the jobs J2+j , for 1 6 j 6 n + k + l− 2, is completed, SRPT

completes the execution of job J1 which ends at time tf equals to the sum of the sizes
of all the jobs:

tf =
∑

06i6n

22i

+
∑

16i6k

22−i

+ l.� From what precedes, the stretch realized by SRPT on this example is equal to one for
all the jobs, except for job J1. Therefore, the sum-stretch realized by SRPT on this
instance is equal to:

n + k + l − 1 +
tf −

(
22n − 22n−2

)

22n−1 .

Study of SWRPT.� The first date at which SWRPT must choose between two jobs is r1. At r1 the weighted
remaining processing time (WRPT, denoted by ωt(J)) of J0 is ωr1

(J0) = 22n−2 × 22n

,

when ωr1
(J1) = 22n−1 × 22n−1

= 22n

. Therefore, SWRPT preempts job J0 at date r1

and executes job J1 instead.� We now consider the date r2.

– ωr2
(J0) = ωr1

(J0) = 22n−2 × 22n

.

– ωr2
(J1) =

(
22n−1 − (r2 − r1)

)
× 22n−1

=
(
22n−1 −

(
22n−1 − α

))
× 22n−1

= α ×
22n−1

.

– ωr2
(J2) = 22n−2 × 22n−2

= 22n−1

.

Then, whatever the value of α ∈]0; 1[, SWRPT continues to execute the job J1 at the
date r2, until its completion at date r2 +α. Starting from the date r2 +α and until the
next release date, r3, SWRPT executes the job J2.� We now show by induction that at the date r1+j , for 1 6 j 6 n−1, the only jobs released
earlier than r1+j and whose execution are not yet completed are J0 with ρr1+j

(J0) =

22n−2

, and Jj with ρr1+j
(Jj) = α. We have seen that these properties hold for j = 1.

We now suppose that the properties hold until some value of j included. Then, by
induction hypotheses:

– ωr1+j
(J0) = ωr1

(J0) = 22n−2 × 22n

.

– ωr1+j
(Jj) = α× 22n−j

.

– ωr1+j
(J1+j) = 22n−1−j × 22n−1−j

= 22n−j

.

Then, whatever the value of α ∈]0; 1[, SWRPT continues to execute the job Jj at the
date r1+j , until its completion at date r1+j + α. Starting from the date r1+j + α and
until the next release date, r2+j , SWRPT executes the job J1+j . Then the desired
properties also hold for j + 1.� Exactly as previously, we can show by induction that at the date rn+j , for 1 6 j 6 k−1,
the only jobs released earlier than rn+j and whose execution are not yet completed are

J0 with ρrn+j
(J0) = 22n−2

, and Jn+j−1 with ρrn+j
(Jn+j−1) = α.� We now consider the date rn+k+1.

– ωrn+k+1
(J0) = ωr1

(J0) = 22n−2 × 22n

.

– ωrn+k+1
(Jn+k) = α× 22−k

.
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– ωrn+k+1
(Jn+k+1) = 1× 1 = 1.

Obviously, we want SWRPT to take the wrong decision and to continue to execute job
Jn+k at date rn+k+1. SWRPT will do that if and only if

α× 22−k

< 1⇔ α <
1

22−k
.

Therefore, we let k = ⌈− log2(− log2 α)⌉.� We can easily show by induction that at the date rn+k+j , for 1 6 j 6 l, the only jobs
released earlier than rn+k+j and whose execution are not yet completed are J0 with

ρrn+k+j
(J0) = 22n−2

, and Jn+k+j−1 with ρrn+k+j
(Jn+k+j−1) = α.� Finally, SWRPT executes the job Jn+k+l during the time interval [rn+k+l + α; 1 +

rn+k+l + α], and then completes the execution of the job J0 during the time interval
[1 + rn+k+l + α; tf ].� The sum-stretch realized by SWRPT is a bit more complicated to compute than the one
realized by SRPT. SWRPT stretches the execution of job J0 over all the execution of
the schedule; job J1 as a stretch of 1; and the execution of all the other jobs is increased
by α. Therefore, the sum-stretch realized by SWRPT on this instance is equal to:

tf
22n + 1 +

n+k∑

j=2

(
1 +

α

22n−j

)
+ l×

(
1 +

α

1

)
= n + k − 1 + l(1 + α) +

tf
22n + α

n+k∑

j=2

1

22n−j .

We denote by R the ratio of the sum-stretch realized by SWRPT on this instance to the optimal
sum-stretch. From what precedes, we have:

R >
n + k − 1 + l (1 + α) +

tf

22n + α
∑n+k

j=2
1

22n−j

n + k + l − 1 +
tf−(22n−22n−2)

22n−1

>
l (1 + α)

n + k + l − 1 +
tf−(22n−22n−2)

22n−1

However, tf = l +

n+k∑

i=0

22n−j

= l + f(n, k). We then have,

R >
l (1 + α)

n + k + l − 1 +
tf−(22n−22n−2)

22n−1

=
l (1 + α)

l
(
1 + 1

22n−1

)
+ n + k − 1 +

f(k,n)−(22n−22n−2)
22n−1

We then choose for n a value large enough to have 1

22n−1 < ε
3(1+α) = ε

6−ε . α, k, and n are now all

defined. Then,

lim
l→+∞

l (1 + α)

l
(
1 + 1

22n−1

)
+ n + k − 1 +

f(k,n)−(22n−22n−2)
22n−1

=
1 + α

1 + 1

22n−1

.

Therefore, we can choose l large enough to have

l (1 + α)

l
(
1 + 1

22n−1

)
+ n + k − 1 +

f(k,n)−(22n−22n−2)
22n−1

>
1 + α

1 + 1

22n−1

− ε

3
.

Then,

R >
1 + α

1 + 1

22n−1

−ε

3
> (1 + α)

(
1− 1

22n−1

)
−ε

3
> (1 + α)

(
1− ε

3 (1 + α)

)
−ε

3
= 1+α−ε

3
−ε

3
= 2−ε.
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6 Offline Max-Stretch Optimization

Bender, Chakrabarti, and Muthukrishnan [5] have shown that the problem of max-stretch mini-
mization on one machine without preemption, i.e., problem 〈1|rj |Smax〉, cannot be approximated
within a factor O(n1−ε) for arbitrarily small ε > 0, unless P=NP. In this section, we show that
if we allow either divisible loads or preemptions, we are able to minimize the maximum weighted
flow in polynomial time even on unrelated machines.

In Section 6.1, we state the relationship between minimization of the maximum weighted
flow problem and deadline scheduling. Then we present a solution to maximum weighted flow
minimization in the divisible load framework, on unrelated machines. By adapting some of these
techniques, we then describe a solution to the minimization of the maximum weighted flow when
preemption (but not load divisibility) is allowed, once again on unrelated machines. These results
are given in Section 6.2.

It should be noted that, prior to our work, at least two solutions were known for minimizing the
max-stretch on one machine with preemption. Baker, Lawler, Lenstra, and Rinnooy Kan [2] pre-
sented an O(n2) algorithm to solve an even more general problem: 〈1|pmtn, prec, rj |fmax〉 (where
fmax is the maximum of the costs of the jobs and the cost of a job is a non-decreasing function
of its completion time). This algorithm determines the job of least priority and then iterates.
Another solution using network flow maximization techniques was known2. In our divisible load
framework, we do not know how to extend this flow maximization technique to solve the case of
uniform machines with restricted availabilities, much less the more general case of unrelated pro-
cessors. Nevertheless, for the sake of completeness, we recall this solution in Section 6.1.4. Finally,
let us mention that the article [23] by Lawler and Labetoulle contains explicitly, or implicitly, most
(if not all) of the techniques used in this section. We nevertheless fully expose the max-stretch
minimization algorithm as these techniques may not be so widely known3 and as a good knowledge
of the algorithm is necessary to understand the content of Sections 7 and 8.

6.1 Minimizing the Maximum Weighted Flow in the Divisible Model

6.1.1 Max Weighted Flow Minimization and Deadline Scheduling

Let us assume that we are looking for a schedule S under which the maximum weighted flow is less
than or equal to some objective value F . The weighted flow of any job Jj is equal to wj(Cj − rj).
Then, we should have:

max
16j6n

wj(Cj − rj) 6 F ⇔ ∀j ∈ [1;n], wj(Cj − rj) 6 F ⇔ ∀j ∈ [1;n], Cj 6 rj + F/wj .

Thus, the execution of Jj must be completed before time dj(F) = rj + F/wj for schedule S to
satisfy the bound F on the maximum weighted flow. Therefore, looking for a schedule which
satisfies a given upper bound on the maximum weighted flow is equivalent to an instance of the
deadline scheduling problem. We now show how to solve such a deadline scheduling problem in
the divisible load framework.

In deadline scheduling, each job Jj has not only a release date rj but also a deadline dj . The
problem is then to find a schedule such that each job Jj is executed within its executable time
interval [rj , dj ]. We consider the set of all job release dates and deadlines: {r1, . . . , rn, d1, . . . , dn}.
We define an epochal time as a time value at which one or more points in this set occur; there
are between 2 (when all jobs are released at the same date and have the same deadline) and 2n
(when all job release dates and deadlines are distinct) such values. When ordered in absolute
time, adjacent epochal times define a set of time intervals. We denote each time interval It by

It = [inf It, sup It[. Finally, we denote by α
(t)
i,j the fraction of job Jj processed by machine Mi

during the time interval It. In this framework, System (1) lists the constraints that should hold
true in any valid schedule:

2We do not know any reference to this technique who was presented to us by Michael Bender.
3For instance, Bender, Chakrabarti, and Muthukrishnan proved in [5] the existence of a PTAS for a problem

that is solved in polynomial-time in this section.
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a. release date: job Jj cannot be processed before it is released (Equation (1a));

b. deadline: job Jj cannot be processed after its deadline (Equation (1b));

c. resource usage: during a time interval, a machine cannot be used longer than the duration
of this time interval (Equation (1c));

d. job completion: each job must be processed to completion (Equation (1d)).





(1a) ∀i,∀j,∀t, rj > sup It ⇒ α
(t)
i,j = 0

(1b) ∀i,∀j,∀t, dj 6 inf It ⇒ α
(t)
i,j = 0

(1c) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j 6 sup It − inf It

(1d) ∀j,
∑

t

∑

i

α
(t)
i,j = 1

(1)

Lemma 2. System (1) has a solution if, and only if, there exists a solution to the deadline
scheduling problem.

System (1) can be solved in polynomial time by any linear solver system as all its variables are
rational. Building a valid schedule from any solution of System (1) is straightforward as for any

time interval It, and on any machine Mi, the job fractions α
(t)
i,j can be scheduled in any order.

One may think that by applying a binary search on possible values of the objective value F ,
one would be able to find the optimal maximum weighted flow, and an optimal schedule. However,
a binary search on rational values will not terminate. By setting a limit on the precision of the
binary search, the number of process iterations is bounded, and the quality of the approximation
can be guaranteed. However, as we now show, we can adapt our search to always find the optimal
in polynomial time.

6.1.2 Solving on a Range.

So far we have used System (1) to check whether our problem has a solution whose maximum
weighted flow is no greater than some objective value F . We now show that we can use it to check
whether our problem has a solution for some particular range of objective values. Later we show
how to divide the whole search space into a polynomial number of search ranges.

First, let us suppose there exist two values F1 and F2, F1 < F2, such that the relative
order of the release dates and deadlines, r1, . . . , rn, d1(F), . . . , dn(F), when ordered in absolute
time, is independent of the value of F ∈]F1;F2[. Then, on the objective interval ]F1,F2[,
as before, we define an epochal time as a time value at which one or more points in the set
{r1, . . . , rn, d1(F), . . . , dn(F)} occurs. Note that an epochal time which corresponds to a deadline
is no longer a constant but an affine function in F . As previously, when ordered in absolute time,
adjacent epochal times define a set of time intervals, that we denote by I1, . . . , Inint(F). The du-
rations of time intervals are now affine functions in F . Using these new definitions and notations,
we can solve our problem on the objective interval [F1,F2] using System (1) with the additional
constraint that F belongs to [F1,F2] (F1 6 F 6 F2), and with the minimization of F as the
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objective. This gives us System (2).

Minimize F ,
under the constraints



(2a) ∀i,∀j,∀t, rj > sup It ⇒ α
(t)
i,j = 0

(2b) ∀i,∀j,∀t, dj 6 inf It ⇒ α
(t)
i,j = 0

(2c) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j 6 sup It − inf It

(2d) ∀j,
∑

t

∑

i

α
(t)
i,j = 1

(2e) F1 6 F 6 F2

(2)

6.1.3 Particular Objectives.

The relative ordering of the release dates and deadlines only changes for values of F where one
deadline coincides with a release date or with another deadline. We call such a value of F a
milestone4. In our problem, there are at most n distinct release dates and as many distinct

deadlines. Thus, there are at most n(n−1)
2 milestones at which a deadline function coincides with

a release date. There are also at most n(n−1)
2 milestones at which two deadline functions coincides

(two affine functions intersect in at most one point). Let nq be the number of distinct milestones.
Then, 1 6 nq 6 n2 − n. We denote by F1,F2, ...,Fnq

the milestones ordered by increasing
values. To solve our problem we just need to perform a binary search on the set of milestones
F1,F2, ...,Fnq

, each time checking whether System (2) has a solution in the objective interval
[Fi,Fi+1] (except for i = nq in which case we search for a solution in the range [Fnq

,+∞[). There
is a polynomial number of milestones and System (2) can be solved in polynomial time. Therefore:

Theorem 9 ([26]). The problem of minimizing the maximum weighted flow time in the divisible
load model 〈R|rj ; div|max wjFj〉 can be solved in polynomial time.

6.1.4 A Network Flow Approach for Uniform Machines

In section 6.1.1, we presented Linear program 1 to check whether there exists a schedule whose
maximum weighted flow is no greater than a given objective. This linear program solves this
problem in the unrelated machines case, that is, the most general one. In fact, in the uniform
machines framework, one can solve this problem using a network flow maximization approach.
The graph is built as follows:

Vertices. The graph contains:� A source;� A sink;� One vertex Jj , for each job Jj , 1 6 j 6 n;� One vertex (It,Mi) for each ordered pair made of a time interval It, 1 6 t 6 nint, and
of a machine Mi, 1 6 i 6 m.

Edges. The graph contains:� One edge from the source to each node Jj of capacity Wj , the size of the job. This edge
represents the amount of work that must be done for the job Jj .� One edge from each node Jj to each node (It,Mi) if, and only if, job Jj can be executed
during the time interval It (i.e., rj 6 inf It and sup t 6 dj). This edge is also of capacity
Wj (and is thus not constraining).

4Labetoulle, Lawler, Lenstra, and Rinnooy Kan [22] call such a value a “critical trial value”.
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(I1,M1)
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(I1,M3)
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(I2,M3)

(I3,M1)

(I3,M2)

(I3,M3)
J2
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sup I1−inf I1
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sup I2−inf I2
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c3

sup I2−inf I2
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sup I3−inf I3
c1

sup I3−inf I3
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Figure 8: Graph used to check, on uniform machines and through network flow maximization,
whether there exists a schedule of a given maximum weighted flow. This example has two jobs,
three machines, and three time intervals defined by the epochal times r1 < r2 < d1 < d2.� One edge from each node (It,Mi) to the sink, of capacity sup It−inf It

ci
: this is the amount

of work that machine Mi can perform during the time interval It.

Figure 8 presents an example of such a graph.
There exists a schedule whose maximum weighted flow is no greater than a given objective

F if the network flow maximization problem for the graph defined above (for the time intervals
corresponding to F) has a solution whose flow is equal to

∑
j Wj . As previously, one can just check

the feasibility of the network flow problem for the milestones defined in the previous section. Then,
when it is known between which two milestones lies the optimal, the ordering of deadlines is known,
and an Earliest Deadline First scheduling leads to an optimal solution. However, this scheme
only works in the uniform machines setting as EDF is no longer optimal for uniform machines
with restricted availabilities (see the example of Figure 2). Therefore, we do not know how to
use the network flow approach to minimize the max-stretch on uniform machines with restricted
availabilities, but this approach can obviously be used in such a framework to check whether a
given objective is feasible. Furthermore, this network flow approach cannot be straightforwardly
extended to deal with the general case of unrelated machines (even for the problem of uniform
machines with restricted availabilities).

6.2 Minimizing the Maximum Weighted Flow with Preemption (but no
Divisibility)

In this section, we focus on the more classical problem with preemption but without the divisible
load assumption. We show that combining the linear programming approach of the previous
section with the work of Lawler and Labetoulle [23] leads to a polynomial-time algorithm to solve
this problem on unrelated machines. Note that the network flow approach we just recalled enables
to minimize the max-stretch with preemption on one machine.

Following the work of Gonzalez and Sahni [19], Lawler and Labetoulle [23] present a scheme
to build in polynomial-time a preemptive schedule of makespan C for a set of jobs J1, ..., Jn of null
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release dates (∀j, rj = 0), under the condition that Linear System (3) has a solution. This system
simply states that:

a. all jobs must be fully processed (Equation (3a));

b. the whole processing of a job cannot take a time larger than C (Equation (3b));

c. the whole utilization time of a machine cannot be longer than a time C (Equation (3c)).

Obviously, these constraints must be satisfied by any preemptive schedule whose makespan is no
longer than C. The constructive result obtained by Lawler and Labetoulle shows that such a
schedule exists if, and only if, this set of constraints has a solution.





(3a) ∀j,
m∑

i=1

αi,j = 1

(3b) ∀j,
m∑

i=1

αi,j · pi,j 6 C

(3c) ∀i,
n∑

j=1

αi,j · pi,j 6 C

(3)

Our problem is slightly more general in that we allow arbitrary release dates. Additionally, our
objective is to minimize the maximum weighted flow rather than the makespan. Let us consider
a maximum weighted flow objective F . As we did in Section 6.1.1, we use this objective value
to define for each job Jj a deadline dj(F) = rj + F/wj . As before, the set of release dates
and deadlines defines a set of epochal times which, in turn, defines a set of time intervals that
we denote by I1, . . . , Inint(F). Then, we claim that there exists a preemptive schedule whose
maximum weighted flow is no greater than F if, and only if, Linear System (4) has a solution.
Linear System (4) simply states that:

a. each job must be processed to completion (Equation (4a) which corresponds to Equation (3a));

b. the processing of a job during the time interval It cannot take a time larger than the length
of It as, in the current framework, a job cannot be simultaneously processed by two different
machines (Equation (4b) which corresponds to Equation (3b));

c. the utilization of a machine during a time interval cannot exceed its capacity (Equation (4c)
which corresponds to Equation (3c));

d. the processing of a job cannot start before it is released (Equation (4d));

e. a job must be processed before its deadline (Equation (4e)).





(4a) ∀j,
∑

t

∑

i

α
(t)
i,j = 1

(4b) ∀t,∀j,
∑

i

α
(t)
i,j .pi,j 6 sup It − inf It

(4c) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j 6 sup It − inf It

(4d) ∀i,∀j,∀t, rj > sup It ⇒ α
(t)
i,j = 0

(4e) ∀i,∀j,∀t, dj 6 inf It ⇒ α
(t)
i,j = 0

(4)

Any preemptive schedule whose maximum weighted flow is no greater than F must obviously
satisfy Linear System (4). Conversely, suppose that Linear System (4) has a solution. Then,
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following Lawler and Labetoulle [23], we note that the whole system effectively decomposes into a
set of linear sub-systems, one for each of the time intervals, and that the sub-system corresponding
to interval It is exactly equivalent to Linear System (3) where the objective is the length of the
time interval (i.e., C = sup It − inf It). Therefore, starting from a solution of Linear System (4)
we use the polynomial-time reconstruction scheme of Lawler and Labetoulle to build a preemptive
schedule for each of the time intervals It. The concatenation of these partial schedules gives us a
solution to our problem.

Thus far, we have shown that we are able to check the feasibility of a specific objective value for
maximum weighted flow in polynomial time. Moreover, if such an objective is feasible a schedule
that achieves this maximum weighted flow can also be built in polynomial time. To finally solve
our problem, we recall the methodology presented in Section 6.1: Linear System (4) can be used to
search for a solution in a range of objective values, defined by consecutive milestones, over which
the linear system is valid (i.e., the relative order of release dates and deadlines does not change).
Similarly, a binary search over the milestones —which are in polynomial number— enables us to
find and build an optimal solution in polynomial time. Therefore:

Theorem 10. The problem of minimizing the maximum weighted flow time in the single processor
with preemption model 〈R|rj ; pmtn|max wjFj〉 can be solved in polynomial time.

7 Pareto Minimization of Max-Stretch and Max Flow

In this section we present a few game theory notions and how they translate to our context. This
enables us to understand a major flaw of the previous max-based metric in a general framework
and how to correctly define a new metric.

Game theory provides a general framework to model situations where many users compete for
resources. Each user (in our context, a job) is characterized by a utility function uj . The utility
functions represent the satisfaction perceived by the user (typically function of the delay or of the
capacity). The goal is to find scheduling strategies such that the utility of each user is maximized.
In our context it is more relevant to consider cost functions rather than utility functions. Indeed,
scheduling problems are typically minimization problems as we try to minimize the completion
time, the flow or the stretch of each job. We will therefore assume in the following that the cost
γj of job Jj is a function of the completion times C. However, as these users may compete for
the same resources, it is generally not possible to simultaneously minimize the cost of each user.
In a multi-user context, optimality is not defined as simply as in the single-user context, and it is
common to use Pareto-optimality, defined as follows:

Definition 2 (Pareto-optimality). A vector of completion times C = (C1, . . . , Cn) is Pareto-
optimal if and only if:

∀C̃,∃i, γi(C̃) < γi(C)⇒ ∃j, γj(C) < γj(C̃)

In other words, C is Pareto optimal if it is impossible to strictly decrease the cost of a player
without strictly increasing that of another. Any non-Pareto-optimal schedule can thus be consid-
ered as non-efficient as strictly a better usage of resources could be done. Let us consider the cost
set Γ ⊆ (R∗

+)n defined as the set of all feasible cost vectors:

Γ = {(γ1(C), . . . , γn(C)|there exist a valid schedule with completion times C}

Figure 9 depicts on each subfigure, for a simple scheduling instance the various cost sets associated
to the completion time, flow time and stretch metrics. The dashed-dotted line is the optimal
isoline for the considered max-based metric (maxj Cj for Figure 9(b), maxj Fj for Figure 9(c),
and maxj Sj for Figure 9(d)). Any point (the bold lines) belonging to both the isoline and the
cost set is thus optimal for the max-based metric . However we can see that very few of them are
Pareto-optimal. This is due to the fact that only the first maximum has been minimized. It is
well-known in the network community (see for example [8, 29]) that max-min fairness should be
recursively defined. In our setting, this means that the first maximum should be minimized, then



Minimizing the stretch when scheduling flows of divisible requests 35

0 1 2 3 4 5 6

instance
Scheduling

schedules
Various

σ1

σ2

σ3

σ4

r2 = 2, p2 = 1

r1 = 0, p1 = 4





{

(a) Scheduling instance and various feasible schedules.

σ4

σ3

σ1

σ2

C1

C2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(b) Cost set for Cj . Bold lines depict optimal sched-
ule (hence σ1, σ2 and σ3) for the maxj Cj metric.
However, only σ1 and σ2 are Pareto-optimal.
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(c) Cost set for Fj . σ1 and any schedule such that
F1 and F2 are smaller than 4 is optimal for maxj Fj .
However, only σ1 is Pareto-optimal for maxj Fj .
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However, only σ2 is Pareto-optimal for maxj Sj .

Figure 9: Most optimal solutions to max-based metrics are not Pareto-optimal.

the second should be minimized, and so on. Sum-based metrics obviously do not suffer from this
flaw and always produce Pareto-optimal schedules. That is why we propose to consider the new
metrics Cmax Pareto, Fmax Pareto, and Smax Pareto. These scheduling metrics are likely to be
much more difficult (but also much more meaningful) than the previous ones as we do not have
to only optimize the cost of the more constraining job but to optimize the cost of all jobs at the
same time.

7.1 Heuristic Pareto Minimization of Max-Stretch on One Machine

Algorithm 2 is an obvious algorithm which recursively tries to minimize the stretch of jobs: first it
minimizes the max-stretch, then the number of jobs whose stretch is equal to the max-stretch, then
the maximum stretch of the other jobs, and so on. This algorithm relies on the fact that Earliest
Deadline First (EDF) always finds a schedule satisfying all deadlines if one exists [16]5. We show
that in some cases Algorithm 2 produces Pareto optimal schedules for stretch minimization.

Theorem 11. Algorithm 2 presented below produces a Pareto optimal schedule for max-stretch
minimization on one machine with preemption if at no iteration of the while loop there are two
jobs whose deadlines, defined at Steps 6 or 8, are equal.

Proof. We will prove the correction of Algorithm 2 in two steps. First we will show that the
algorithm always terminates. Then we will show that it produces an optimal schedule if at no

5On one processor, this property can even be extended to the case of tasks with general dependence relations [12].



36 A. Legrand , A. Su , F. Vivien

Algorithm 2: Heuristic Pareto minimization of max-stretch on one machine.

FixedStretch ← ∅1

FreeStretch ← {J1, ..., Jn}2

while FreeStretch 6= ∅ do3

Compute the minimum maximum stretch S of the jobs in FreeStretch taking into4

account that for any job Jj such that (Jj ,Sj) ∈ FixedStretch, Jj has exactly a stretch of
Sj .
foreach Jj ∈ FreeStretch do5

Let dj ← rj + S × pj6

foreach (Jj ,Sj) ∈ FixedStretch do7

Let dj ← rj + Sj × pj8

Schedule Earliest Deadline First (EDF) all the jobs (breaking ties randomly); Let Cj be9

the completion time of job Jj under this schedule
foreach Jj ∈ FreeStretch do10

if Cj = dj then11

FreeStretch ← FreeStretch \ {Jj}12

FixedStretch ← FixedStretch ∪ {(Jj ,S)}13

foreach (Jj ,Sj) ∈ FixedStretch do14

Let dj ← rj + Sj × pj15

Schedule Earliest Deadline First (EDF) all the jobs16

iteration of the while loop there are two jobs whose deadlines, defined at Steps 6 and/or 8, are
equal.

1. We first show that all algorithms steps are feasible and that the algorithms terminates.

Initially, FixedStretch is empty and the max-stretch minimization of Step 4 is absolutely
equivalent to what we have done in Section 6 and is thus trouble-less. Later on, the problem
solved at Step 4 of a given iteration of the while loop has, as a solution, the schedule found
by EDF at the previous iteration of the while loop, because of the way we fix the stretch
values for jobs in FixedStretch. Therefore, the problem at Step 4 is always feasible.

The algorithm terminates as the size of FreeStretch strictly decreases with each iteration of
the while loop. Indeed, at Step 11 the condition is true for at least one job at each iteration
of the while loop. Otherwise, using EDF we would have found a schedule under which the
max-stretch of the jobs in FreeStretch would be strictly smaller than the value found at
Step 4 which is impossible.

2. We now suppose that, whatever the iteration of the while loop, there does not exist two jobs
whose deadlines, defined at Steps 6 and/or 8, are equal. We then prove by induction that
the computed schedule is Pareto optimal.

Initially, the set FixedStretch is empty and Step 4 computes the minimum max-stretch S∗
achievable. The only question we have to answer is thus: is the number of jobs whose stretch
is fixed to S∗ minimal? We will prove a stronger result: if our algorithm sets the stretch of a
job Jj to S∗, then in all schedules whose max-stretch is less than or equal to S∗, the stretch of
Jj is actually equal to S∗. We prove this by contradiction. We thus assume that there exists
some schedule Θ whose max-stretch is less than or equal to S∗, and under which the stretch

of Jj is equal to S(Θ)
j < S∗. Then we define the following instance of deadline scheduling:

the deadline of any job Ji 6= Jj is the same as under our algorithm, i.e., di = ri + S∗ × pi,
and the deadline of Ji is equal to di = ri + (S∗ − ε) × pi, where ε > 0 is chosen smaller

enough such that S(Θ)
j 6 S∗ − ε, and such that the order of the deadlines we just defined,

sorted by non-decreasing values, is the same as for the ones defined by Step 6 (which is the
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order found when ε = 0). Such an ε exists because we have made the hypothesis that no two
jobs have the same deadline at the first iteration of the while loop. Our instance of deadline
scheduling is feasible as it admits Θ as a solution. Now, we schedule our instance using EDF.
As EDF always finds a valid schedule if one exists [16], it finds a solution for this instance.
EDF schedules the jobs under this instance exactly as it did in Algorithm 2, as the order
of the deadlines did not change, and thus finds the same stretches. Therefore, EDF finds a
stretch of S∗ for Jj which is impossible looking at the definition of Jj ’s deadline, dj . Hence
a contradiction.

The general case of the induction is proven the same way as it also relies on the facts that 1)
each time a stretch is fixed, it is the minimal maximum due to Step 4; and 2) EDF succeeds
whenever there is a valid schedule.

We conjecture that Algorithm 2 always produces a Pareto optimal schedule for max-stretch
minimization on one machine with preemption. This conjecture is based on the facts that 1)
the function which associates to a schedule the vector of the stretch of the jobs, sorted in non-
decreasing order, is a continuous function; 2) we believe that the set of the instances for which
Theorem 11 holds is dense in the space of all instances.

7.2 Heuristic Pareto Minimization of Max Weighted Flow on Unrelated
Machines

Here, we target the more general case of the max weighted flow as we will need to look at the
special case of max-flow minimization.

Algorithm 3 presents the solution we propose for the general case. The solution for single pro-
cessor case cannot be straightforwardly extended to the general case as the Earliest Deadline First
algorithm is obviously not optimal for non-uniform machines. Once again we (try to) recursively
optimize the max weighted flow of the jobs. We compute the best achievable max weighted flow
for the jobs whose weighted flow is not yet fixed, and we (try to) minimize the number of jobs
whose weighted flow is equal to this maximum. As always the objective max weighted flow gives a
deadline per FreeWeightedFlow job, i.e., per job whose weighted flow has not yet been fixed. We
first minimize the number of distinct deadlines d such that there always is a job whose deadline is
d and which is completed at date d. Then we minimize the number of (problematic) jobs, i.e., of
jobs which are completed at their deadline.

We can show that Algorithm 3 is correct.

Lemma 3. Algorithm 3 produces a valid schedule.

Proof. The proof of correction of Algorithm 3 follows from the proof of correction for Algorithm 2,
except for the loop at Step 10. We have therefore to prove two properties: 1) System 5 has a
null solution for deadline d if and only if, whatever the schedule, there exists a job Jj such that
Cj = dj = d (we then say d is a “tight” deadline); 2) there exists a valid schedule under which,
whatever the deadline d which is not tight, there is no job Jj such that Cj = dj = d.

We now prove the first property. Suppose d ∈ D is not a tight deadline. Then there exists a
schedule Θ such that all jobs whose deadline is d complete strictly before the date d. We consider
the time interval Itd

which ends at date d (see Section 6), and any processor Pi. As no jobs whose
deadline is d completes at date d, right before that date either:

1. Pi is idle, and then:

sup Itd
− inf Itd

>
∑

j

α
(t)
i,j .pi,j >

∑

j|dj=d

α
(t)
i,j .pi,j .

2. Pi processes a job whose deadline is strictly greater than d, and then:
∑

j|dj=d

α
(t)
i,j .pi,j <

∑

j

α
(t)
i,j .pi,j 6 sup Itd

− inf Itd
.
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Algorithm 3: Heuristic Pareto minimization of max weighted flow.

FixedWeightedFlow ← ∅1

FreeWeightedFlow ← {J1, ..., Jn}2

while FreeWeightedFlow 6= ∅ do3

Compute the minimum max weighted flow S of the jobs in FreeWeightedFlow taking4

into account that for any job Jj such that (Jj ,Sj) ∈ FixedWeightedFlow , Jj has exactly
a stretch of Sj

foreach Jj ∈ FreeWeightedFlow do5

dj ← rj + S × pj6

foreach (Jj ,Sj) ∈ FixedWeightedFlow do7

dj ← rj + Sj × pj8

D ← {dj | Sj ∈ FreeWeightedFlow}9

foreach d ∈ D do10

In the set of time intervals defined by the release dates and deadlines (see11

Section 6.1.1), let Itd
be the time interval ending at date d: sup Itd

= d
Solve System (5) (which attempts to complete strictly before d all jobs of deadline d)12

Maximize δ ,
under the constraints



∀i,∀j,∀t, rj > sup It ⇒ α
(t)
i,j = 0

∀i,∀j,∀t, dj 6 inf It ⇒ α
(t)
i,j = 0

∀t,∀i, ∑j α
(t)
i,j .pi,j 6 sup It − inf It

∀j, ∑t

∑
i α

(t)
i,j = 1

∀i, ∑j|dj=d α
(t)
i,j .pi,j 6 (sup Itd

− inf Itd
)− δ

(5)

if δ = 0 then13

Sd ← {Jj ∈ FreeWeightedFlow | dj = d}14

Compute a subset S′
d of Sd such that all jobs in S′

d have a max weighted flow of15

S, and such that all the other jobs in Sd can simultaneously have a max
weighted flow strictly smaller than S.
foreach Jj ∈ S′

d do16

FreeWeightedFlow ← FreeWeightedFlow \ {Jj}17

FixedWeightedFlow ← FixedWeightedFlow ∪ {(Jj ,S)}18

foreach (Jj ,Sj) ∈ FixedWeightedFlow do19

dj ← rj + Sj × pj20

Build a schedule according to the solution of Linear Program 1.21
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In all cases:
sup Itd

− inf Itd
−
∑

j|dj=d

α
(t)
i,j .pi,j > 0

Thus, we can pick for δ the strictly positive value:

min
i


sup Itd

− inf Itd
−
∑

j|dj=d

α
(t)
i,j .pi,j


 .

Therefore, if δ = 0, d is a tight schedule.
Conversely, if δ > 0, we take any solution to System (5), and then, on each processor, and

during each time interval, we schedule earliest deadline first the fractions α
(t)
i,j . As δ > 0, whatever

the processor, inf Itd
+
∑

j|dj=d α
(t)
i,j .pi,j < sup Itd

and, thus, all jobs those deadlines are d are
completed strictly before the date d.

We now prove the second property. Let d1 and d2 be two deadlines in D. Let Θ1 and Θ2

be two schedules such that under Θ1 (resp. Θ2) no job Jj is such that Cj = dj = d1 (resp.

Cj = dj = d2). We denote by α
(t,1)
i,j (resp. α

(t,2)
i,j ) the fraction of job Jj processed on processor Pi

during the time interval It under the schedule Θ1 (resp. Θ2). We then define a third schedule,

Θ3, by α
(t,3)
i,j = 1

2 (α
(t,1)
i,j + α

(t,2)
i,j ), and by scheduling, on each processor, and during each interval,

the fractions Earliest Deadline First. One can easily check that Θ3 is a valid schedule and that
under Θ3, there is no job Jj such that Cj = dj = d1 or Cj = dj = d2. An immediate induction
gives us the desired property.

Step 15 does not explicit how the set “S′
d” of jobs whose completion date equals the deadline

should be computed, especially as we would like this set to be as small as possible. In fact, in the
general case this problem is NP-complete. The next theorem states the complexity of the Pareto
max-flow minimization, and thus of the general case.

Theorem 12. The Pareto minimization of max-flow on unrelated machines, 〈R|div|FmaxPareto〉,
is NP-complete.

As we do not have any release dates in the above theorem, we in fact prove that 〈R|div|CmaxPareto〉,
is NP-complete. In fact we prove an even stronger result, that is that minimizing the number of
jobs whose completion date is equal to the makespan is NP-complete on unrelated machines, and
under the divisible model.

Proof. This result is proved with a reduction from Minimum Hitting Set [18].
Let us consider any instance I1 of Minimum Hitting Set. I1 is defined by a collection

C = {S1, ..., S|C|} of subsets of a finite set S and by an integer K. The question is: is there a
subset S′ of S, such that |S′| 6 K and such that S′ contains at least one element from each subset
in C: for each i ∈ [1, |C|], Si ∩ S′ 6= ∅. Without loss of generality we assume that S = ∪iSi.

From instance I1 of Minimum Hitting Set, we now build an instance I2 of our problem. I2
is made of n = |S| jobs and we identify the jobs J1, ..., J|S| with the elements x1, ..., x|S| of S.
The size Wj of job Jj is equal to the number of subsets containing xj : WJ = |{Si ∈ C | xj ∈ Si}|.
We will have to schedule these jobs on m = |C| processors and we identify the processors with the
subsets S1, ..., S|C|. We define the computational characteristics of the processors as follows:

pi,j =

{ 1
|Si| if xj ∈ Si,

∞ otherwise.
.

Here the question is: is there a schedule for which the number of jobs whose flow is equal to the
optimal max-flow is less than or equal to K?

We first remark that the optimal maximum flow is equal to 1. Indeed, the total load to be
processed is

∑
j Wj =

∑
j |{Si ∈ C | xj ∈ Si}| =

∑
i |Si| and, at best, processor Pi can process

a load of size |Si| during a unit of time. Therefore the optimal max-flow is greater than or equal
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to 1. A max-flow of 1 is realized by any schedule under which processor Pi devotes a fraction
1

|Si| of the time interval [0, 1] to any job Jj such that xj ∈ Si. Indeed, under such a schedule,

the share of job Jj processed during the time interval [0, 1] by processor Pi such that xj ∈ Si is
equal to 1. Therefore, the overall share of job Jj process during that time interval is equal to∑

i|xj∈Si
1 = |{Si ∈ C | xj ∈ Si}| = Wj .

Furthermore, this proof shows that if any processor is (at least) partially idle during the time
interval [0, 1] then the max-flow achieved will be strictly greater than one. Therefore, under any
schedule achieving the optimal max-flow there is, on each processor, a job which is run until the
date 1, and thus which has a max-flow of 1. The set of jobs whose max-flow is one in I2 then
equivalently defines a hitting set of S in I1.

Minimum hitting set is equivalent to Minimum set cover [17]. Therefore, one of the best
polynomial time algorithm to approximate Minimum hitting set is the greedy algorithm which
at each step picks the element which belongs to the largest number of still un-hit subsets. This
greedy algorithm has an approximation ratio of 1 + ln |S| [21, 36], where |S| is the size of the set.

We do not know what is the complexity of the Pareto minimization of the max-stretch. Seeing
how efficient is the greedy heuristic for the minimum hitting set problem, we simply suggest to use
it to solve in practice Step 15. Furthermore, one can easily see that when the set Sd at Step 14 is
always reduced to a singleton, Algorithm 3 produces an optimal schedule. Therefore:

Theorem 13. Algorithm 3 produces a Pareto optimal schedule for max weighted flow minimization
on unrelated machines under the divisible load model if the set Sd at Step 14 is always reduced to
a singleton.

We believe that, in practice, the set Sd will always be reduced to a singleton, and thus that
Algorithm 3 will always produce optimal schedules in practice. (Note that the case of jobs of same
size and same release date is not a problem.)

8 Online Max-Stretch Optimization

In this section, we first improve a lower bound on the competitive ratio of online algorithms for
max-stretch minimization established by Bender, Chakrabarti, and Muthukrishnan [5]. Then we
present the two competitive algorithms that have previously been proposed in the literature [5, 6].
Last we highlight some practical limitations of these algorithms and propose new heuristics that
circumvent these limitations.

8.1 Lower Bound on the Competitiveness of Online Algorithms

Theorem 14 ([27]). There is no 1
2∆

√
2−1-competitive preemptive online algorithm minimizing

max-stretch if we restrict to instance with at least three different processing times.

This result is an improvement from the bound of 1
2∆

1
3 established by Bender, Chakrabarti, and

Muthukrishnan [5]. In fact, we establish this new bound by doing a more precise analysis of the
exact same adversary. In their proof, Bender, Chakrabarti, and Muthukrishnan implicitly assumed
that the algorithm knew in advance the ratio ∆ of the sizes of the largest and shortest jobs. We
will see in the next section that there exist some O(

√
∆)-competitive algorithms. Therefore, we

have roughly bridged half of the gap between the previous lower bound and the best existing
algorithms.

Proof. We prove this result by contradiction. Therefore, let us assume that there exists a 1
2∆

√
2−1-

competitive preemptive online algorithm A minimizing max-stretch. An adversary sends the
following series of jobs:

Phase 1: Jobs 1 and 2 have both a size of δ and arrive at time 0, i.e., p1 = p2 = δ and r1 = r2 = 0.
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Phase 2: Starting at time 2δ−k, and every k time units, a job of size k (with k < δ) arrives. There
are x such jobs. In other words, for 1 6 j 6 x, job J2+j arrives at time r2+j = 2δ + (j − 2)k
and is of size p2+j = k.

A first come, first served (FCFS) ordering of all the jobs has a stretch of 2. Algorithm A is

by hypothesis 1
2∆

√
2−1-competitive and, as a stretch of 2 can be achieved, the date C1 at which

the execution of J1 ends must satisfy: C1−r1

p1
6 1

2∆
√

2−1 × 2 (same constraint on C2). So far,

∆ = δ
k (remember that ∆ is the ratio of the sizes of the largest and shortest jobs in the system) 6.

Therefore, the constraint on C1 can be rewritten:

C1 6
1

2
∆

√
2−1 × 2× δ =

δ
√

2

k
√

2−1
.

The most favorable case for algorithm A is when it is able to (partially) delay the execution of J1

and J2 and to execute each of the jobs J3, ..., J2+x at its release date. To forbid such a behavior,
we choose x, the number of jobs of size k, to be large enough for A not to be able to delay the
completion of J1 and/or J2 after the completion of all the jobs of size k. If each of the jobs J3, ...,
J2+x is executed at its release date, then C2+x = 2δ + (x− 1)k. We define x as follows:

x =

⌊
2 +

(
δ

k

)√
2

− 2δ

k

⌋
.

Then the execution of C1 and C2 must be completed by the date 2δ + (x − 1)k. Otherwise, the
algorithm A fails to achieve its guarantee as the adversary would then send at time 2δ + (x− 1)k
a job of size k+δ

2 to be exactly under the conditions stated by the theorem. So, algorithm A must
complete the execution of C1 and C2 by the date 2δ + (x − 1)k. Then the adversary sends the
following third series of jobs.

Phase 3: Starting at time 2δ + (x − 1)k, and every time unit, arrives a job of size 1. There
are y such jobs. In other words, for 1 6 j 6 y, job J2+x+j arrives at time r2+x+j =
2δ + (x− 1)k + (j − 1) and is of size p2+x+j = 1.

The optimal max-stretch is then less than or equal to 2δ+xk+y
δ (obtained when delaying the com-

pletion of J1 or J2 after the completion of all smaller jobs). The max-stretch that algorithm A
can achieve is greater than or equal to k + 1 when we let y = ⌈k(k − 1)⌉. Indeed, the last job
completed by algorithm A is either of size 1 or k and, whatever its size, its stretch is thus the

max-stretch of A. Finally, when we pick k = δ2−
√

2, we obtain the desired contradiction on the
competitive ratio of Algorithm A.

8.2 Competitive Online Heuristics

We have already seen in Section 3.2 that FCFS, the optimal algorithm for the online minimization
of max-flow, is only ∆-competitive for the online minimization of max-stretch. This seemingly bad
result is obviously partially explained by Theorem 14.

We now recall two existing online algorithms for max-stretch minimization before introducing
a new one. Bender, Muthukrishnan, and Rajaraman [6] defined, for any job Jj , a pseudo-stretch

Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

if 1 6 pj 6
√

∆,

t−rj

∆ if
√

∆ < pj 6 ∆.

6Our bound is tighter than the one established by Bender, Chakrabarti, and Muthukrishnan because we remark
that ∆ = δ

k
, when they used ∆ = δ

1
= δ, as if they had assumed that the algorithm knew in advance that the ratio

of the sizes of the largest and shortest jobs submitted to the system would be δ.
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Then, they scheduled the jobs by decreasing pseudo-stretches, potentially preempting running
jobs each time a new job arrives in the system. They demonstrated that this method is a O(

√
∆)-

competitive online algorithm.

Bender, Chakrabarti, and Muthukrishnan [5] had previously described another O(
√

∆)-competitive
online algorithm for max-stretch. This algorithm works as follows: each time a new job arrives,
the currently running job is preempted. Then, they compute the optimal (offline) max-stretch
S∗ of all jobs having arrived up to the current time. Next, a deadline is computed for each job
Jj : dj(F) = rj + α × S∗/pj Finally, a schedule is realized by executing jobs according to their
deadlines, using the Earliest Deadline First strategy. To optimize their competitive ratio, Bender
et al. set their expansion factor α to

√
∆. For both heuristics, the ratio ∆ of the sizes of the

largest and shortest jobs submitted to the system is thus assumed to be known in advance.

When they designed their algorithm, Bender et al. did not know how to compute the (offline)
optimal maximum stretch. This problem is now overcome. The main remaining problem in this
approach, from our point of view, is that such an algorithm tries only to optimize the stretch of the
most constraining jobs. This problem is common to all algorithms minimizing a max objective.
Indeed, such an algorithm may very easily schedule all jobs so that their stretch is equal to the
objective, even if most of them could have been scheduled to achieve far lower stretches. This
problem is far from being merely theoretical, as we will see in Section 9. We will try to circumvent
it when designing our own heuristics.

8.3 Practical Online Heuristics

The basic online heuristic we could derive from our offline algorithm would be along the same line
as the algorithm of Bender, Chakrabarti, and Muthukrishnan: each time a new job arrives we
would preempt the running job (if any), compute the optimal max-stretch, and schedule the jobs
according to the solution of System 2. The solution of System 2 specifies what fraction of each
job should be executed on each processor during each time interval. We would implement this
solution by breaking arbitrarily the ties that may appear in each time interval.

Our first modification to this scheme is that, rather than computing the“optimal max-stretch”,
we compute the “best achievable max-stretch considering the decisions already made”. In other
words, we take into account our knowledge of which jobs were already (partially) executed, and
when. The underlying idea being that we cannot change the past. Also, such an optimization will
greatly simplify the linear system. This modification is implemented by making trivial modifica-
tions to System 2.

Our second modification to the above scheme is more important: we want to optimize more
than the max-stretch. The first possibility would be to use in an online framework our offline
heuristic for the Pareto minimization of max-stretch. To do so, instead of using a binary search
and System 2 to compute the best achievable max-stretch, we use Algorithm 3 where, at Step 4,
we compute the best achievable max-stretch rather than the optimal one. This way we define our
Online-Pareto heuristics.

Another possible approach would be to specify that each job should be scheduled in a manner
that minimizes its own stretch value, while maintaining the overall maximal stretch value obtained.
For example, one could theoretically try to minimize the sum-stretch under the condition that the
max-stretch be optimal. However, as we have seen, minimizing the sum-stretch is an open problem.
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So we consider a heuristic approach expressed by System (6).

Minimize

n∑

j=1

wj

((
∑

t

(
m∑

i=1

α
(t)
i,j

)
sup It(S∗) + inf It(S∗)

2

)
− rj

)
,

under the constraints



(6a) ∀i,∀j,∀t, rj > sup It(S∗)⇒ α
(t)
i,j = 0

(6b) ∀i,∀j,∀t, dj(S∗) 6 inf It(S∗)⇒ α
(t)
i,j = 0

(6c) ∀t,∀i,
∑

j

α
(t)
i,j .pi,j 6 sup It(S∗)− inf It(S∗)

(6d) ∀j,
∑

t

∑

i

α
(t)
i,j = 1

(6)

This system ensures that each job is completed no later than the deadline defined by the optimal
(offline) max-stretch S∗. Then, under this constraint, this system attempts to minimize an objec-
tive that resembles a rational relaxation of the sum-stretch (or more generally of the sum weighted
flow) using as an approximation of the completion time, the weighted sum of the average execution
times of a job. As we do not know the precise time within an interval when a part of a job will
be scheduled, we approximate it by the mean time of the interval. (This heuristic obviously offers
no guarantee on the sum-stretch achieved.) This way, we obtain the following online algorithm.
Each time a new job arrives:

1. Preempt the running job (if any).

2. Compute the best achievable max-stretch S∗, considering the decisions already made.

3. With the deadlines and intervals defined by the max-stretch S∗, solve System (6).

At this point, we define three variants to produce the schedule. The first, which we call Online,
assigns work simply using the values found by the linear program for the α variables:

4. For a given processor Pi, and a given interval It(S∗), all jobs Jj that complete their fraction

on that processor during the same interval (i.e., all jobs Jj such that
∑

t′>t α
(t′)
i,j = 0) are

scheduled under the SWRPT policy in that interval. We call these jobs terminal jobs (for Pi

and It(S∗)). The non-terminal jobs scheduled on Pi during interval It(S∗) are only executed
in It(S∗) after all terminal jobs have finished.

The second variant we consider, Online-EDF, attempts to make changes to the schedule at the
processor level to improve the overall max- and sum-stretch attained:

4. Consider a processor Pi. The fractions αi,j of the jobs that must be partially executed on Pi

are processed on Pi under a list scheduling policy based on the following order: the jobs are
ordered according to the interval in which their share is completed (according to the solution
of the linear program), with ties being broken by the SWRPT policy.

Finally, we propose a third variant, Online-EGDF, that creates a global priority list:

4. The (active) jobs are processed under a list scheduling policy, using the strategy outlined
in Section 2.3 to deal with restricted availabilities. Here, the jobs are totally ordered by
the interval in which their total work is completed, with ties being broken by the SWRPT

policy.

The validity of these heuristic approaches will be assessed through simulations in the section 9.
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9 Simulations

To evaluate the efficacy of various scheduling strategies when optimizing stretch-based metrics,
we implemented a simulator using the SimGrid toolkit [24], based on the biological sequence
comparison scenario. The application and platform models used in the resulting simulator are
derived from our initial observations of the GriPPS system, described in Section 2. Our primary
goal is to evaluate the proposed heuristics in realistic conditions that include partial replication of
target sequence databases across the available computing resources. The remainder of this section
outlines the experimental variables we considered and presents results describing the behavior of
the heuristics in question under various parametrizations of the platform and application models.

9.1 Simulation Settings

The platform and application models that we address in this work are quite flexible, resulting
in innumerable variations in the range of potentially interesting combinations. To facilitate our
studies, we concretely define certain features of the system that we believe to be useful in describing
realistic execution scenarios. We consider in particular six such features.

Platform size: Typically, a given biological database such as those considered in this work,
would be replicated at various sites, at which comparisons against this database may be performed.
Generally, the number of sites in a simulated system provides a basic measure of the aggregate
power of the platform. This parameter specifies the exact number of sites in the simulated platform.
Without loss of generality, we arbitrarily define each site to contain 10 processors.

Processor power: Our model assumes that all the processors at any given site are equivalent,
and each processor is assumed to have access to all databases located there. Thus for each site,
a single processor value represents the processing power at that site. We choose processor power
values using benchmark results from our previous work.

Number of databases: Applications such as GriPPS can accommodate multiple reference
databases. Our model allows for any number of distinct databases to exist throughout the system.

Database size: Our previous work demonstrated that the processing time needed to service
a user request targeting a particular database varies linearly according to the number of sequences
found in the database in question. We choose such values from a continuous range of realistic
database sizes, with the job size for jobs targeting a particular database scaled accordingly.

Database availability: A particular database may be replicated at multiple sites, and a single
site may host copies of multiple databases. We account for these two eventualities by associating
with each database a probability of existence at each site. The same database availability applies
to all databases in the system. We further ensure that each database is available at at least one
site, and each site hosts at least one database.

Workload density: For a particular database, we define the workload density of a system
to be the ratio, on average, of the aggregate job size of user requests against that database to
the aggregate computational power available to serve such requests. Workload density expresses
a notion of the “load” of the system. This parameter, along with the size of the database, define
the frequency of job arrivals in the system.

We define a simulation configuration as a set of specific values for each of these six properties.
Once defined, concrete simulation instances are constructed by realizing random series for any
random variables in the system. In particular, two models are created for each instance: a platform
model and a workload model. The former is specified first by defining the appropriate number
of 10-node sites and assigning corresponding processor power values. Next, a size is assigned to
each database, and it is replicated according to the simulation’s database availability parameter.
Finally, the workload model is realized by first generating a series of jobs for each database, using
a Poisson process for job inter-arrival times, with a mean that is computed to attain the desired
workload density. The database-specific workloads are then merged and sorted to obtain the
final workload. Jobs may arrive between the time at which the simulation starts and 15 minutes
thereafter.



Minimizing the stretch when scheduling flows of divisible requests 45

In this simulation study, we use empirical values observed in the GriPPS system logs to define
a realistic range of database sizes and to generate appropriate values for processor speeds. The
remaining four parameters – platform size, number of distinct databases, database availability,
and workload density – are the simulation values that vary in our study. We discuss further the
specifics of the experimental design and our simulation results in Section 9.3.

9.2 Optimization of the Online Heuristic

To motivate the variants of our online heuristic described in Section 8, we conduct a series of
experiments to evaluate their effect. In particular, we consider a non-optimized version of the
online heuristic, which stops after Step 2. We consider job workloads of average density varying
between 0.0125 to 4.00, over a range of average job lengths between 15 and 60 seconds. For each
job size/workload density combination evaluated, we simulate the execution of 5000 instances,
recording the maximum and sum stretch of jobs in the workload achieved with both the optimized
and non-optimized versions of the online heuristic. The max-stretch of each is then divided by the
max-stretch achieved by the optimal algorithm, yielding a degradation factor for both heuristics
on that run. Since the optimal sum-stretch is not known, we observe the sum-stretch of the
optimized online heuristic relative to the non-optimized version. Figures 10(a) and 10(b) present
the max-stretch and sum-stretch results, respectively. In the first plot, the average max-stretch
degradation, compared to the optimal result, for both versions of the heuristic over the 5000 runs
of a given configuration is plotted against the workload density of that configuration. The second
plot depicts the gain for the sum-stretch metric for the optimized heuristic, relative to the non-
optimized version. These results strongly motivate the use of the optimizations encoded by the
linear program depicted in System (6).
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Figure 10: Comparison of the optimized and non-optimized versions of the online heuristic.

9.3 Simulation Results and Analysis

We have implemented in our simulator a number of scheduling heuristics that we plan to compare.
First, we have implemented Offline, corresponding to the algorithm described in Section 6
that solves the optimal max-stretch problem. Three versions of the online heuristic are also
implemented, designated as Online, Online-EDF, and Online-EGDF. Next, we consider the
SWRPT, SRPT, and SPT heuristics discussed in Section 5. Then, we consider the two online
heuristics proposed by Bender et al. that were briefly described in Section 8.2. We also include
two greedy strategies. First, MCT (“minimum completion time”) simply schedules each job as it
arrives on the processor that would offer the best job completion time. The FCFS-Div heuristic
extends this approach to take advantage of the fact that jobs are divisible, by employing all
resources that are able to execute the job (using the strategy laid out in Section 2.3). Note
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Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4051 0.2784 2.6685
OfflinePareto 1.0000 0.0000 1.0000 1.2986 0.2605 3.5090

Online 1.0039 0.0145 1.2420 1.0458 0.0439 1.5069
Online-EDF 1.0040 0.0156 1.6886 1.0450 0.0432 1.5016

Online-EGDF 1.0331 0.0622 1.6613 1.0024 0.0052 1.1095
SWRPT 1.0386 0.0729 2.0566 1.0003 0.0014 1.0384

SRPT 1.0596 0.1027 2.1012 1.0048 0.0074 1.1179
SPT 1.0576 0.1032 2.1297 1.0020 0.0048 1.1263

Bender98 1.0415 0.0971 2.1521 1.0028 0.0075 1.1393
Bender02 2.9859 2.7071 23.5446 1.2049 0.3087 6.6820
FCFS-Div 5.1353 6.6792 65.9073 1.3767 0.7224 15.4213

MCT 38.4276 24.2626 156.3778 51.9606 36.5202 154.1519
RAND 4.6568 6.9107 87.9141 1.2355 0.4827 10.8549

Table 1: Aggregate statistics over all 162 platform/application configurations.

that neither MCT nor FCFS-Div makes any changes to work that has already been scheduled.
Finally, as a basic reference, we consider a list-scheduling heuristic with random job order denoted
RAND. This heuristic works as follows: initially, we randomly build an order on the jobs that may
arrive; then RAND list-schedules the jobs while using this list to define priorities, and while using
the divisibility property. All the single processor heuristics (SWRPT, SRPT, SPT, and Bender
et al.’s) are extended to the multi-processor case using the Algorithm 1 previously described in
Section 2.3.

As mentioned earlier, two of the six parameters of our model reflect empirical values determined
in our previous work with the GriPPS system [26]. Processor speeds are chosen randomly from
one of the six reference platforms we studied, and we let database sizes vary continuously over a
range of 10 megabytes to 1 gigabyte, corresponding roughly to GriPPS database sizes. Thus, our
experimental results examine the behaviors of the aforementioned heuristics as we vary our four
experimental parameters:

platforms of 3, 10, and 20 clusters (sites) with 10 processors each;
applications with 3, 10, and 20 distinct databases;
database availabilities of 30%, 60%, and 90% for each database; and
workload density factors of 0.75, 1.0, 1.25, 1.5, 2.0, and 3.0.
The resulting experimental framework has 162 configurations. For each configuration, 200

platforms and application instances are randomly generated and the simulation results for each of
the studied heuristics is recorded. Table 1 presents the aggregate results from these simulations;
finer-grained results based on various partitionings of the data may be found in the Appendix A.

Above all, we note that the MCT heuristic – effectively the policy in the current GriPPS
system – is unquestionably inappropriate for max-stretch optimization: MCT was over 38 times
worse on average than the best heuristic. Its deficiency might arguably be tolerable on small
platforms but, in fact, MCT yielded max-stretch performance over 16 times worse than the best
heuristic in all simulation configurations. Even after addressing the primary limitation that the
divisibility property is not utilized, the results are still disappointing: FCFS-Div is on average
5.1 times worse in terms of max-stretch than the best approach we found. One of the principal
failings of the MCT and FCFS-Div heuristics is that they are non-preemptive. By forcing a small
task that arrives in a heavily loaded system to wait, non-preemptive schedulers cause such a task
to be inordinately stretched relative to large tasks that are already running.

Experimentally, we find that the first two of the three online heuristics we propose are con-
sistently near-optimal (within 4� on average) for max-stretch optimization. The third heuristic,
Online-EGDF, actually achieves consistently good sum-stretch (within 3� of the best observed

6Bender98 results are limited to 3-cluster platforms, due to prohibitive overhead costs (discussed in Section 9.3).
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Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.0413 0.0593 1.6735
Online 1.0016 0.0149 1.6344 1.0549 0.0893 1.8134

SWRPT 1.1316 0.2071 3.1643 1.0001 0.0009 1.0398
SRPT 1.1242 0.2003 3.0753 1.0139 0.0212 1.2576

SPT 1.1961 0.2667 3.9752 1.0229 0.0296 1.3573
Bender98 1.1200 0.1766 2.5428 1.0194 0.0279 1.4466
Bender02 3.5422 2.4870 21.4819 2.9872 1.9599 15.0019
FCFS-Div 8.7762 9.1900 80.7465 6.8979 7.7409 88.2449

RAND 11.3059 11.1981 125.3726 5.8227 6.3942 68.0009

Table 2: Aggregate statistics for a single machine for all application configurations.

sum-stretch), but at the expense of its performance for the max-stretch metric (within 4% of
the optimal). This is not entirely surprising as this heuristic ignores a significant portion of the
fine-tuned schedule generated by the linear program designed to optimize the max-stretch. Fur-
thermore, our three online heuristics have far better sum-stretch than the OfflinePareto (which
is on average almost 30% away of the best observed sum-stretch). This result validates our heuris-
tic optimization of sum-stretch as expressed by Linear Program 6. As forecasted, OfflinePareto

has a significantly better average sum-stretch than Offline.

We also observe that SWRPT, SRPT, and SPT are all quite effective at sum-stretch opti-
mization. Each is on average within 5� of the best observed sum-stretch for all configurations.
In particular, SWRPT produces a sum-stretch that is on average 0.3� within the best observed
sum-stretch, and attaining a sum-stretch within 4% of the best sum-stretch in all of the roughly
32,000 instances. However, it should be noted that these heuristics may lead to starvation. Jobs
may be delayed for an arbitrarily long time, particularly when a long series of small jobs is sub-
mitted sequentially (the (n + 1)th job being released right after the termination of the nth job).
Our analysis of the GriPPS application logs has revealed that such situations occur fairly often
due to automated processes that submit jobs at regular intervals. By optimizing max-stretch in
lieu of sum-stretch, the possibility of starvation is eliminated.

Next, we find that the Bender98 and Bender02 heuristics are not practically useful in our
scheduling context. The results shown in Table 1 for the Bender98 heuristic comprise only 3-
cluster platforms; simulations on larger platforms were practically infeasible, due to the algorithm’s
prohibitive overhead costs. Effectively, for an n-task workload, the Bender98 heuristic solves
n optimal max-stretch problems, many of which are computationally equivalent to the full n-
task optimal solution. In several cases the desired workload density required thousands of tasks,
rendering the Bender98 algorithm intractable. To roughly compare the overhead costs of the
various heuristics, we ran a small series of simulations using only 3-cluster platforms. The results
of these tests indicate that the scheduling time for a 15-minute workload was on average under
0.28 s for any of our online heuristics, and 0.54 s for the offline optimal algorithm (with 0.35
s spent in the resolution of the linear program and 0.19 s spent in the online phases of the
scheduler); by contrast, the average time spent in the Bender98 scheduler was 19.76 s. The
scheduling overhead of Bender02 is far less costly (on average 0.23 s of scheduling time in our
overhead experiments), but in realistic scenarios for our application domain, the competitive ratios
it guarantees are ineffective compared with our online heuristics for max-stretch optimization. Note
that the bad performance of Bender02 is not due to the way we adapt single-machine algorithms
to unrelated machines configurations (see Section 2.3). Indeed, similar observations can be done
when restricting to single-machine configurations (see Table 2).

Finally, we remark that the RAND heuristic is slightly better than the FCFS-Div for both
metrics. Moreover, RAND is only 24% away from the best observed sum-stretch on average. This
leads us to think that the sum-stretch may not be a discriminating objective for our problem.
Indeed, it looks as if, whatever the policy, any list-scheduling heuristic delivers good performance
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for this metric.

10 Conclusion

Our initial goal was to minimize the maximum stretch. We have presented a polynomial-time
algorithm to solve this problem offline. We have also proposed some heuristics to solve this
problem online. Through simulations we have shown that these heuristics are far more efficient
than the pre-existing guaranteed heuristics, and do not have the risk of job starvation present in
classical simple scheduling heuristics like shortest remaining processing time. Along the way we
have established some NP-completeness and competitiveness results. Table 3 summarizes the main
complexity results presented in this document as well as related work. Minimizing max wjFj is
polynomial as soon as divisibility or preemption is allowed whereas

∑
wjFj is always strongly NP-

hard.
∑

Fj is easy only on simple settings (one processor with preemption of related processors
with divisibility) and is strongly NP-hard in all other settings. The main problem whose complexity
is still open is 〈1|rj , pmtn|∑Sj〉 even if (as we already have mentioned in Section 5.1) Polynomial
Time Approximation Scheme (PTAS) have been proposed for this problem. Some other questions
remain open, like:

β = ∅ β = pmtn β = div

〈1|rj ;β|max wjFj〉 NP ([5]) ↓ ↓
〈P |rj ;β|max wjFj〉 ↑ ↓ ↓
〈Q|rj ;β|max wjFj〉 ↑ ↓ ↓
〈R|rj ;β|max wjFj〉 ↑ P (Lin. Prog. Sec. 6.2) P (Lin. Prog. Sec. 6.1)

〈1|rj ;β|
∑

Fj〉 NP ([28]) P (SRPT [1]) ↓
〈P |rj ;β|

∑
Fj〉 ↑ NP (Numerical-3DM [3]) ↓

〈Q|rj ;β|
∑

Fj〉 ↑ ↑ P (SRPT + Sec. 2.3)
〈R|rj ;β|

∑
Fj〉 ↑ ↑ NP (3DM, Sec. 4)

〈1|rj ;β|
∑

Sj〉 NP (Sec. 5.1) ? ?
〈P |rj ;β|

∑
Sj〉 ↑ ? ?

〈Q|rj ;β|
∑

Sj〉 ↑ ? ?
〈R|rj ;β|

∑
Sj〉 ↑ ? NP (3DM, Sec. 5.1)

〈1|rj ;β|
∑

wjFj〉 NP ([28]) NP (Numerical-3DM [22]) �

〈P |rj ;β|
∑

wjFj〉 ↑ ↑ ↑
〈Q|rj ;β|

∑
wjFj〉 ↑ ↑ ↑

〈R|rj ;β|
∑

wjFj〉 ↑ ↑ ↑

Table 3: Summary of complexity results.� What is the complexity of 〈R|div; rj |ParetoSmax〉, the Pareto minimization of max-stretch
on unrelated machines under the divisible load model� Are there some approximation algorithms minimizing the sum-stretch on unrelated machines
under the divisible load model ?� Are there some algorithms with a better competitivity factor than 2 for the minimization of
sum-stretch on a single processor ?� Processor Sharing is a scheduling policy where time units are divided arbitrarily finely be-
tween jobs and where all jobs currently in the system get an equal share of the machine.
In [5, 4], Bender et al. claim that Processor Sharing has a competitive ratio of Ω(n) for
max-stretch where n is the number of jobs. This is thus very bad compared to the known
O(
√

∆) competitive algorithms. However in the instance they use, ∆ grows with n (more
precisely ∆ = 2n). Therefore, Processor Sharing may not be such a bad algorithm for the
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max-stretch minimization. It is not hard (at least numerically) to see that the competitive
ratio is Ω(

√
∆). The open question is therefore: what is the competitive ratio of Processor

Sharing for max-stretch ?

Beside all the theoretical considerations, we think that the study presented in this article clearly
demonstrates the superiority of our algorithms in terms of fairness and efficiency compared to
currently implemented scheduling algorithm in the GriPPS application. In particular, we hope
that this study has shown the major importance of divisibility and preemption in this framework
and that such techniques will soon be used in practice.
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A Detailed simulation results

In each of the following sections, we show the aggregate results when the value of one of the
parameters is fixed. Remember that we were only able to run the Bender98 heuristic on platforms
containing 3 clusters, as this heuristic is too computationally intensive.

A.1 Platform size

A.1.1 Platforms with 3 clusters

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.1934 0.2117 2.0849
OfflinePareto 1.0000 0.0000 1.0000 1.1629 0.2007 2.4167

Online 1.0022 0.0125 1.2329 1.0288 0.0399 1.4475
Online-EDF 1.0022 0.0126 1.2329 1.0279 0.0391 1.4475

Online-EGDF 1.0229 0.0591 1.6279 1.0020 0.0066 1.1095
SWRPT 1.0255 0.0663 1.7311 1.0005 0.0022 1.0384

SRPT 1.0507 0.1127 2.1012 1.0049 0.0105 1.1179
SPT 1.0427 0.1010 1.9851 1.0023 0.0067 1.1263

Bender98 1.0415 0.0971 2.1521 1.0028 0.0075 1.1393
Bender02 2.7108 2.8683 23.5016 1.2243 0.4165 6.6820
FCFS-Div 4.8494 7.2024 65.9073 1.4674 1.0245 15.4213

MCT 16.2155 5.5397 30.0000 17.7990 5.0400 30.0000
RAND 4.1853 7.1538 87.9141 1.2946 0.6966 10.8549

A.1.2 Platforms with 10 clusters

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4593 0.2421 2.4886
OfflinePareto 1.0000 0.0000 1.0000 1.3473 0.2591 3.0291

Online 1.0046 0.0153 1.1975 1.0536 0.0451 1.5069
Online-EDF 1.0046 0.0156 1.1975 1.0528 0.0443 1.5016

Online-EGDF 1.0392 0.0671 1.6613 1.0026 0.0046 1.0681
SWRPT 1.0437 0.0746 2.0566 1.0003 0.0008 1.0167

SRPT 1.0644 0.0987 1.7033 1.0048 0.0057 1.0568
SPT 1.0635 0.1044 2.0859 1.0019 0.0037 1.0513

Bender02 3.0944 2.6586 23.5446 1.2018 0.2546 4.4912
FCFS-Div 5.3170 6.6710 60.6809 1.3502 0.5426 10.3497

MCT 37.1225 13.1180 84.7029 48.1056 15.9570 86.6350
RAND 4.8273 6.8049 82.3571 1.2173 0.3516 8.0251
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A.1.3 Platforms with 20 clusters

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.5682 0.2342 2.6685
OfflinePareto 1.0000 0.0000 1.0000 1.3886 0.2600 3.5090

Online 1.0050 0.0154 1.2420 1.0552 0.0415 1.3094
Online-EDF 1.0052 0.0181 1.6886 1.0547 0.0407 1.3063

Online-EGDF 1.0372 0.0585 1.5324 1.0025 0.0039 1.0848
SWRPT 1.0469 0.0756 1.6396 1.0002 0.0005 1.0096

SRPT 1.0638 0.0951 2.0346 1.0047 0.0046 1.0510
SPT 1.0668 0.1025 2.1297 1.0017 0.0033 1.0876

Bender02 3.1581 2.5592 20.8232 1.1880 0.2130 3.6582
FCFS-Div 5.2432 6.0910 63.0661 1.3103 0.4447 7.8857

MCT 62.7559 22.2005 156.3778 91.2881 32.1588 154.1519
RAND 4.9682 6.7365 80.3708 1.1931 0.2817 6.1012

A.2 Number of distinct databases

A.2.1 Platforms with 3 databases

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.3520 0.2849 2.3428
OfflinePareto 1.0000 0.0000 1.0000 1.2504 0.2771 3.5090

Online 1.0029 0.0132 1.2118 1.0517 0.0498 1.5069
Online-EDF 1.0029 0.0130 1.1998 1.0500 0.0484 1.5016

Online-EGDF 1.0185 0.0457 1.4802 1.0020 0.0053 1.0908
SWRPT 1.0240 0.0592 1.6396 1.0002 0.0013 1.0384

SRPT 1.0317 0.0729 1.6315 1.0033 0.0065 1.1175
SPT 1.0336 0.0827 2.1297 1.0014 0.0050 1.1263

Bender98 1.0154 0.0531 1.6056 1.0014 0.0065 1.1393
Bender02 2.0723 1.9789 23.5446 1.1397 0.2869 6.6820
FCFS-Div 2.9572 4.3925 58.8448 1.2357 0.6365 15.4213

MCT 35.8498 22.7400 156.3778 54.4989 36.6439 151.2562
RAND 2.9943 4.6475 82.3571 1.1607 0.3873 10.8549
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A.2.2 Platforms with 10 databases

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4447 0.2776 2.4588
OfflinePareto 1.0000 0.0000 1.0000 1.3162 0.2522 2.8048

Online 1.0039 0.0139 1.2329 1.0448 0.0419 1.4350
Online-EDF 1.0041 0.0170 1.6886 1.0445 0.0416 1.4350

Online-EGDF 1.0347 0.0626 1.6279 1.0026 0.0053 1.0962
SWRPT 1.0409 0.0753 1.7311 1.0003 0.0014 1.0370

SRPT 1.0660 0.1088 2.1012 1.0053 0.0078 1.1179
SPT 1.0630 0.1073 1.9922 1.0022 0.0048 1.0790

Bender98 1.0484 0.1032 1.9917 1.0032 0.0077 1.0703
Bender02 3.2553 2.8130 23.5016 1.2311 0.3220 5.1271
FCFS-Div 5.7449 6.9147 56.0481 1.4302 0.7718 12.9306

MCT 38.3122 24.2523 143.0782 50.6120 36.4375 154.1519
RAND 5.0415 7.0975 87.9141 1.2591 0.5000 7.9752

A.2.3 Platforms with 20 databases

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4197 0.2638 2.6685
OfflinePareto 1.0000 0.0000 1.0000 1.3299 0.2439 2.8683

Online 1.0049 0.0162 1.2420 1.0407 0.0386 1.4002
Online-EDF 1.0050 0.0166 1.2420 1.0406 0.0385 1.3988

Online-EGDF 1.0463 0.0723 1.6613 1.0025 0.0049 1.1095
SWRPT 1.0511 0.0800 2.0566 1.0004 0.0015 1.0273

SRPT 1.0815 0.1152 2.0346 1.0057 0.0077 1.0795
SPT 1.0765 0.1126 2.0859 1.0024 0.0047 1.0532

Bender98 1.0607 0.1171 2.1521 1.0037 0.0080 1.1032
Bender02 3.6456 2.9765 21.6589 1.2449 0.3060 4.2454
FCFS-Div 6.7412 7.7074 65.9073 1.4667 0.7320 11.0253

MCT 41.1657 25.4546 146.8094 50.7278 36.3478 149.9733
RAND 5.9632 8.1914 80.3708 1.2879 0.5399 9.2433
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A.3 Availability of databases

A.3.1 Database probability of existence on a given site : 30%

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.3581 0.2587 2.2841
OfflinePareto 1.0000 0.0000 1.0000 1.2841 0.2540 2.6015

Online 1.0046 0.0161 1.2118 1.0489 0.0483 1.4475
Online-EDF 1.0047 0.0164 1.1998 1.0475 0.0471 1.4475

Online-EGDF 1.0409 0.0756 1.6613 1.0035 0.0065 1.1095
SWRPT 1.0400 0.0771 2.0566 1.0004 0.0015 1.0363

SRPT 1.0533 0.0964 1.9885 1.0047 0.0070 1.0754
SPT 1.0477 0.0925 2.0859 1.0010 0.0037 1.0790

Bender98 1.0418 0.0993 1.7959 1.0030 0.0079 1.0766
Bender02 1.9136 1.6272 21.0106 1.1266 0.2504 6.6820
FCFS-Div 2.9050 4.1687 49.5045 1.2209 0.6108 15.4213

MCT 26.8324 14.3040 105.4049 32.5961 18.8311 106.0436
RAND 2.7292 4.1327 62.2086 1.1471 0.3745 9.2433

A.3.2 Database probability of existence on a given site : 60%

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4386 0.2715 2.3428
OfflinePareto 1.0000 0.0000 1.0000 1.3296 0.2631 3.5090

Online 1.0045 0.0148 1.2152 1.0457 0.0433 1.5069
Online-EDF 1.0045 0.0150 1.2152 1.0452 0.0427 1.5016

Online-EGDF 1.0432 0.0666 1.6279 1.0025 0.0050 1.0711
SWRPT 1.0495 0.0794 1.7311 1.0004 0.0017 1.0384

SRPT 1.0730 0.1114 2.1012 1.0052 0.0082 1.1179
SPT 1.0650 0.1044 1.7630 1.0017 0.0040 1.1263

Bender98 1.0511 0.1053 2.1521 1.0029 0.0076 1.1032
Bender02 2.7151 2.1341 22.6242 1.1873 0.2532 5.2889
FCFS-Div 4.2405 5.0733 65.9073 1.3093 0.5814 12.6835

MCT 40.2477 22.6503 143.0158 51.1382 30.3078 132.1245
RAND 3.7615 4.9658 70.5644 1.1944 0.4015 10.8549
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A.3.3 Database probability of existence on a given site : 90%

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4188 0.2973 2.6685
OfflinePareto 1.0000 0.0000 1.0000 1.2821 0.2616 2.8683

Online 1.0027 0.0123 1.2420 1.0427 0.0396 1.2859
Online-EDF 1.0028 0.0155 1.6886 1.0425 0.0395 1.2881

Online-EGDF 1.0152 0.0310 1.4232 1.0011 0.0032 1.0848
SWRPT 1.0263 0.0585 1.6396 1.0001 0.0009 1.0265

SRPT 1.0524 0.0983 1.9462 1.0044 0.0070 1.0909
SPT 1.0601 0.1111 2.1297 1.0033 0.0061 1.1103

Bender98 1.0316 0.0847 1.8670 1.0025 0.0070 1.1393
Bender02 4.3291 3.4285 23.5446 1.3008 0.3788 4.9344
FCFS-Div 8.2602 8.6705 65.7140 1.5999 0.8809 12.9306

MCT 48.2124 28.5495 156.3778 72.1569 44.0959 154.1519
RAND 7.4794 9.4362 87.9141 1.3649 0.6093 8.7905

A.4 Workload density

A.4.1 Workload density : 0.75

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.2801 0.2674 2.2841
OfflinePareto 1.0000 0.0000 1.0000 1.1438 0.1559 2.2035

Online 1.0014 0.0074 1.1357 1.0162 0.0180 1.1828
Online-EDF 1.0014 0.0073 1.1357 1.0161 0.0179 1.1828

Online-EGDF 1.0203 0.0450 1.4494 1.0006 0.0022 1.0455
SWRPT 1.0199 0.0434 1.4129 1.0001 0.0008 1.0137

SRPT 1.0438 0.0959 1.8683 1.0022 0.0056 1.0644
SPT 1.0304 0.0688 1.6665 1.0009 0.0036 1.0790

Bender98 1.0142 0.0547 1.7128 1.0007 0.0039 1.0455
Bender02 2.2023 2.0774 21.4543 1.0885 0.1688 3.6209
FCFS-Div 3.2313 4.6825 52.5566 1.1574 0.4197 10.7484

MCT 46.1444 28.4131 149.0169 53.7529 37.2958 153.5969
RAND 2.5803 4.0175 57.0567 1.0882 0.2643 6.7062
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A.4.2 Workload density : 1.00

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.3484 0.2671 2.4860
OfflinePareto 1.0000 0.0000 1.0000 1.2003 0.1775 2.4172

Online 1.0021 0.0094 1.1496 1.0247 0.0249 1.4350
Online-EDF 1.0024 0.0163 1.6886 1.0245 0.0247 1.4350

Online-EGDF 1.0252 0.0518 1.5236 1.0012 0.0042 1.0962
SWRPT 1.0240 0.0485 1.3421 1.0002 0.0014 1.0296

SRPT 1.0497 0.0976 1.7626 1.0032 0.0069 1.0754
SPT 1.0381 0.0806 1.8903 1.0012 0.0037 1.0662

Bender98 1.0227 0.0682 1.6922 1.0014 0.0063 1.1032
Bender02 2.5722 2.3838 18.6330 1.1233 0.1956 3.6656
FCFS-Div 4.0575 5.6768 53.8849 1.2242 0.5140 10.5719

MCT 42.1590 25.2691 156.3778 52.9989 36.7355 151.2562
RAND 3.3140 5.0684 55.2393 1.1338 0.3623 8.7905

A.4.3 Workload density : 1.25

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4044 0.2710 2.3251
OfflinePareto 1.0000 0.0000 1.0000 1.2529 0.2038 2.5708

Online 1.0029 0.0112 1.1525 1.0329 0.0260 1.1958
Online-EDF 1.0029 0.0112 1.1525 1.0325 0.0256 1.1958

Online-EGDF 1.0299 0.0573 1.4889 1.0016 0.0042 1.1095
SWRPT 1.0312 0.0616 1.5831 1.0003 0.0014 1.0370

SRPT 1.0535 0.0957 2.1012 1.0038 0.0071 1.1179
SPT 1.0476 0.0913 2.1297 1.0015 0.0041 1.0549

Bender98 1.0324 0.0826 1.6792 1.0018 0.0058 1.0483
Bender02 2.7579 2.4948 23.5016 1.1512 0.2165 4.0540
FCFS-Div 4.6405 6.1812 65.7140 1.2674 0.4642 7.9678

MCT 39.4621 23.7237 132.3292 52.5537 36.6968 154.1519
RAND 3.9857 5.9133 87.9141 1.1661 0.3474 7.9752
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A.4.4 Workload density : 1.50

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4350 0.2705 2.3428
OfflinePareto 1.0000 0.0000 1.0000 1.2949 0.2242 2.3558

Online 1.0035 0.0141 1.2152 1.0417 0.0302 1.2517
Online-EDF 1.0036 0.0144 1.2152 1.0411 0.0298 1.2517

Online-EGDF 1.0308 0.0601 1.6362 1.0018 0.0039 1.0529
SWRPT 1.0348 0.0654 1.5092 1.0003 0.0013 1.0265

SRPT 1.0573 0.1003 1.9462 1.0045 0.0071 1.0997
SPT 1.0534 0.0952 1.8600 1.0019 0.0044 1.0523

Bender98 1.0390 0.0847 1.6065 1.0026 0.0068 1.0479
Bender02 3.0125 2.6603 21.2104 1.1909 0.2826 6.6820
FCFS-Div 5.1603 6.5734 60.6809 1.3429 0.6295 12.9306

MCT 37.5267 22.9176 152.2681 52.4090 36.6438 153.5365
RAND 4.4656 6.3925 64.8062 1.2130 0.4239 8.3472

A.4.5 Workload density : 2.00

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4778 0.2685 2.6685
OfflinePareto 1.0000 0.0000 1.0000 1.3896 0.2653 2.8683

Online 1.0045 0.0143 1.1372 1.0619 0.0406 1.5069
Online-EDF 1.0046 0.0146 1.1595 1.0609 0.0403 1.5016

Online-EGDF 1.0379 0.0638 1.6279 1.0031 0.0052 1.0711
SWRPT 1.0487 0.0838 2.0566 1.0004 0.0016 1.0233

SRPT 1.0670 0.1051 1.9885 1.0064 0.0077 1.0795
SPT 1.0723 0.1141 2.0859 1.0026 0.0055 1.1103

Bender98 1.0585 0.1133 1.7959 1.0038 0.0092 1.1393
Bender02 3.4478 2.9101 22.6242 1.2673 0.3276 5.2889
FCFS-Div 6.1465 7.1506 49.1167 1.4880 0.7725 12.6835

MCT 34.5835 21.4815 146.4795 51.2886 36.3000 148.6051
RAND 5.6647 7.3904 67.0283 1.3118 0.5286 10.8549
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A.4.6 Workload density : 3.00

Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4908 0.2670 2.4588
OfflinePareto 1.0000 0.0000 1.0000 1.5239 0.3155 3.5090

Online 1.0095 0.0239 1.2420 1.1006 0.0535 1.4046
Online-EDF 1.0096 0.0242 1.2420 1.0983 0.0531 1.3982

Online-EGDF 1.0558 0.0834 1.6613 1.0061 0.0079 1.0908
SWRPT 1.0752 0.1043 1.6654 1.0005 0.0017 1.0384

SRPT 1.0877 0.1153 2.0346 1.0090 0.0081 1.0909
SPT 1.1067 0.1380 1.9922 1.0039 0.0066 1.1263

Bender98 1.0823 0.1378 2.1521 1.0064 0.0099 1.0766
Bender02 3.9848 3.2275 23.5446 1.4213 0.4546 6.4105
FCFS-Div 7.7369 8.3781 65.9073 1.8065 1.1211 15.4213

MCT 30.1744 19.2291 108.2445 48.5547 35.1438 150.7321
RAND 8.1438 9.9159 82.3571 1.5172 0.7187 9.2433
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