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Abstract
Grid computing has recently emerged as a response to thengralemand for re-
sources (processing power, storage, etc.) exhibited leynsiic applications. We ad-
dress the challenge of sharing large amounts of data on sfrelstructures, typically
consisting of a federation of node clusters. We claim thairsg, accessing, updating
and sharing such data should be considered by applicatioansexternal serviceWe
propose an architecture for such a service, whose goal ieotade transparent ac-
cessto mutabledata, while enhancing data persistence and consistenpjtelesde
disconnections or failures. Our approach leverages oninwgawgether previous re-
sults in the areas of distributed shared memory systems;tpgeer systems, and
fault-tolerant systems.

Keywords: Data sharing, grid computing, transparent access, mudialtde peer-to-peer systems, fault
tolerance, consistency protocols

Résumé
Le calcul sur les grilles a récemment émergé comme une régansdemandes crois-
santes de ressources (puissance de traitement, de stpet@pesues des applications
scientifiques. Nous nous intéressons ici au défi du partagienieées dans une telle
infrastructure, qui est constituée classiquement d’'udérgition de nceuds provenant
de diverses grappes. Nous souhaitons que le stockageed'@tdes mises a jour de
ces données soient considérées par les applications comssruice externeNous
proposons une architecture qui fournit un tel service, tohjectif est d’offrir unac-
ces transparenaux données modifiableslisposant de mécanismes de persistance et
de cohérence de données méme en cas de déconnexion ou de petreeapproche
vient fédérer nos précédents résultats dans les domaisaystémes distribués a me-
moire partagée, des systemes pairs a pairs et des systdénastaux pannes.

Mots-clés: Partage de données, Calcul sur grille, Acces transparenipées modifiables, Systemes
pairs a pairs, Tolérance aux pannes, protocoles de coleérenc
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1 Introduction

Data management in grid environments Data management in grid environments is currently a topic
of major interest to the grid computing community. Howe\as,of today, no approach has been widely
established fotransparent data sharingn grid infrastructures. Currently, the most widely-uspgraach

to data management for distributed grid computation rediesxplicit data transferdetween clients and
computing servers: the client has to specify where the idpt4 is located and to which server it has to be
transferred. Then, at the end of the computation, the ieatdteventually transferred back to the client. As
an example, the Globu4& ] platform provides data access mechanisms based on thET&idrotocol 1].
Though this protocol provides authentication, parali@hsfers, checkpoint/restart mechanisms, etc., it still
requires explicit data localization.

It has been shown that providing data with some degree ofgpense may considerably improve the
performance of series of successive computations. There®lobus has proposed to provide so-called
data catalogg 1] on top of GridFTP, which allow multiple copies of the saméed@ be manually recorded
on various sites. However, the consistency of these repimmains the burden of the user.

In another direction, a large-scale data storage systenoisded by IBP [], as a set of so-called
buffersdistributed over Internet. The user can “rent” these siagas and use them as temporary buffers
for optimizing data transfers across a wide-area networlkngfer management still remains the burden
of the user, and no consistency mechanism is provided foragiag multiple copies of the same data.
Finally, Stork [L8] is another recent example of system providing mechanisnegilicitly locate, move
and replicate data according to the needs of a sequence gfutations. It provides the user with an
integrated interface to schedule data movement actioh$ijescomputational jobs. Again, data location
and transfer have to be explicitly handled by the user.

Our approach: transparent access to data A growing number of applications make use of larger and
larger amounts of distributed data. We claim tigplicit management of data locatiobg the programmer
arises as a major limitation with respect to the efficient ofsmodern, large-scale computational grids.
Such a low-level approach makes grid programming extretnaig to manage. In contrast, the concept
of adata-sharing servicéor grid computing P] opens an alternative approach to the problem of grid data
management. Its ultimate goal is to provide the user wihsparent access to dat#t has been illustrated

by the experimentalux MEM [2] software platform: the user only accesses datgglagbal handles The
service takes care of data localization and transfer withoy help from the external user. The service also
transparently applies adequate replication strategidsansistency protocols to ensure data persistence
and consistency in spite of node failures. These mechan&est a large-scale, dynamic grid architecture,
where nodes may unexpectedly fail and recover.

Required properties The target applications under consideration are scierdifiilations, typically
involving multiple weakly-coupled codes running on diffat sites, and cooperating via periodic data
exchanges. Transparent access to remote data throughesinadxdata-sharing service arises as a major
feature in this context. Such a service should provide theviing properties.

Persistence.Since grid applications can handle large masses of data,tdaisfer among sites can be
costly, in terms of both latency and bandwidth. In order toitlithese data exchanges, the data-
sharing service has to provide persistent data storages &osave data transfers. It should rely on
strategies able to: 1) reuse previously produced data, didiag repeated data transfers between the
different components of the grid; 2) trigger “smart” préefgéing actions to anticipate future accesses;
and 3) provide useful information on data location to thé tesheduler, in order to optimize the
global execution cost.

Fault tolerance. The data-sharing service must match the dynamic charatteeqrid infrastructure.
In particular, the service has to support events such aaggaresources joining and leaving, or
unexpectedly failing. Replication techniques and faildetection mechanisms are thus necessary.
Based on such mechanisms, sophisticated fault-tolersimitalited data-management algorithms can
be designed, in order to enhance data availability desgt®dnections and failures.
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Figure 1: Overview of a data-sharing service.

Data consistency.In the general case, shared data manipulated by grid applisaaremutable they can
be read, but alsapdatedby the various nodes. When accessed on multiple sites, dataften
replicated to enhance access locality. To ensure the ¢ensisof the different replicas, the service
relies onconsistency modelsmplemented byconsistency protocolsHowever, previous work on
this topic (e.qg., in the context of Distributed Shared Meyngystems, DSM) generally assumes a
small-scaled, stable physical architecture, withoutfai. It is clear that such assumptions are not
relevant with respect to our context. Therefore, buildiagaesharing service for the grid requires a
new approach to the design of consistency protocols.

In this paper, we address these issues by proposing aneattiné for a data-sharing service providing
grid applications witlransparent access to datslVe consider the general case of a distributed environment
in which Clients submit jobs to alob Manager an entity in charge of selecting tl@mputing Servers
where job execution shall take place. When the same data aredsby jobs scheduled on different
servers, th®ata-Sharing Servicean be used to store and retrieve them in a transparent wasygéheral
organization scheme is illustrated on Figadre

The paper is organized as follows. Sectithiirst describes a few motivating scenarios that illustriage t
three required properties mentioned above. Se@ipresents an overview of a particular grid computing
environment called DIET, whose architecture implemenésglneric organization scheme illustrated on
Figurel. More specifically, we discuss the needs of such an envirahwi¢h respect to data management.
In Section4, the UXMEM software data management platform is introduced and we $loawit can be
used as a basis to fulfill these needs. Several aspectareddtrilt tolerance and consistency are discussed
in detail. Sectiorb provides an overview of the global architecture. Finallgct®n 6 concludes and
discusses future directions.

2 Application scenarios

Our approach can be best motivated by a grid application giagdarge data sets and needing data per-
sistence. One such project is called Grid-TLSE][and is supported by the French ACI GRID Research
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Program. It aims at designing a Web portal exposing the legst-expertise about sparse matrix manipu-
lation. Through this portal, the user may gather actuaissies from runs of various sophisticated sparse
matrix algorithms on his/her specific data. The Web portal/jgles an easy access to a variety of sparse
solvers, and it assists the comparative analysis of théiawer. The input data are either problems sub-
mitted by the user, or representative examples picked up the matrix collection available on the site.
These solvers are executed on a grid platform. Since mamgespeatrices of interest are very large, avoid-
ing useless data movement is of uttermost importance. Aistigited data management strategy is thus
needed.

The process for solving a sparse symmetric positive defiiméar system Az = b, can be divided
into four stages as follows: ordering, symbolic factoii@af numerical factorization and triangular system
solution. We focus on ordering in this scenario. The aim deoing is to find a suitable permutatighof
matrix A. Because the choice of permutatigrwill directly determine the number of fill-in elements, the
ordering has a significant impact on the memory and compuutaitrequirements for the latter stages.

Let us consider a typical scenario to illustrate the needhaefold requirement for data persistence,
fault tolerance and consistency. It is concerned with thierd@nation of theordering sensitivityof a
class of solvers such as MUMPS, SuperLU or UMFPACK, that @y performance is impacted by the
matrix traversal order. It consists of three phases. Phaseefcises all possible internal orderings in
turn. Phase 2 computes a suitable metric reflecting the ipegioce parameters under study for each run:
effective FLOPS, effective memory usage, overall companatime, etc. Phase 3 collects the metric for
all combinations of solvers/orderings and reports the fiaaking to the user.

If Phase 1 requires exercisimgdifferent kinds of orders withn different kinds of solvers, them x n
executions are to be performed. Without persistence, thexnas to be sentr x n times. If the server
provided persistent storage, the data would be sent onlg.oliche various pairs solvers/orderings are
handled by different servers in Phase 2 and 3, then consjséerd data movements between servers should
be provided by the data management service. Finally, asuh®er of solvers/orderings is potentially
large, many nodes are used. This increases the probalaiitiadilts to occur, which makes the use of
sophisticated fault-tolerance algorithms mandatory.

Another class of applications that can benefit from the festprovided by a data-sharing service is
code-coupling applicationsSuch applications are structured as a set of (generatiytised) autonomous
codes which at times need to exchange data. This schemassalled by the EPSNL{] project, also
supported by the French ACI GRID Research Program. Thigprdpcuses on steering distributed nu-
merical simulations based on visualization. It relies onfavgare environment that combines the facilities
of virtual reality with the capabilities of existing high fiermance simulations. The goal is to make the
typical work-flow (modeling, computing, analyzing) mordi@ént, thanks to on-line visualization and in-
teractive steering of the intermediate results. Possibtesecan thus be detected and the the researcher can
correct them on-the-fly, by tuning the simulation parangetérhe application consists in a visualization
code coupled with one or more simulation codes. Each siinlabde may be parallel and may manip-
ulate data according to some specific distribution. As incdee of the Grid-TLSE application described
above, a data-sharing service providpersistent, transparergccess to distributed data can simplify the
data movement schemes between the coupled codes. Moreotee, case of code coupling, the basic
operations consist in extracting and modifying the simofatiata. As the data status alternates from con-
sistent to inconsistent during the simulation, it is impaitfor the visualization code to be able to obtain a
consistent view of the data. This can be ensured thanks toath&stency protocolgrovided by the data
service.

3 Overview of a grid computing environment:
the DIET platform

The GridRPC approach?p] is a good candidate to build Problem Solving Environme®SHK) on the

computational grid. It defines an APl and a model to performat® computation on servers. In such
a paradigm, a client can submit problem to an agent thattselee best server among a large set of
candidates, given information about the performance optagorm gathered by an information service.
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The goal is to find a suitable (if not the best!) trade-off betw the computational power of the selected
server and the cost of moving input data forth and back tovig server. The choice is made from static

and dynamic information about software and hardware ressuras well as the location of input data,

which may be stored anywhere within the system because wbpiecomputations. Requests can be then
processed by sequential or parallel servers.

The GridRPC APl is the grid form of the classical Unix RAReMote Procedure Calhpproach. It has
been designed by a team of researchers within the GlobalFsram (GGF). It defines a standard client
API to send requests to a Network Enabled Server (NES) syjsigjptherefore promoting portability and
interoperability between the various NES systems. Reqaestsent through synchronous or asynchronous
calls. Asynchronous calls allow a non-blocking executitvereby providing another level of parallelism
between servers. A function handle represents a bindingdaegt a problem name and an instance of such
function available on a given server. Of course severaleservan provide the same function (or service)
and load-balancing can be done at the agent level beforeirdag. A session ID is associated to each
non-blocking request and allows to retrieve informatioowhthe status of the request. Wait functions
are also provided for a client to wait for specific requestdmplete. This API is instantiated by several
middleware such as DIET/], Ninf [ 20], NetSolve ], and XtremWeb 15].

The paradigm used in the GridRPC model is thus two-levelgthparallelism, with different (poten-
tially parallel) requests executed on different serveimwelver, the server-level parallelism remains hidden
to the client.

3.1 Overall architecture of DIET

In this section, we focus on our GridRPC-based middlewdre XIET platform. The various parts of the
DIET architecture are displayed on Figite

The Client is an application which uses DIET to solve problems. Differgpes of clients should be
able to use DIET, as problems can be submitted from a web pagpecific PSE such as Scilab, or
directly from a compiled program.

The Master Agent (MA) receives computation requests from clients. A request Bn&Iigc description
of the problem to be solved. The MA collects the computatficapabilities of the available servers,
and selects théestone according to the given request. Eventually, the reterarf the selected
server is returned to the client, which can then directlynsitiiis request to this server.

The Local Agent (LA) transmits requests and information between a given MA aadaitally available
servers. Note that, depending on the underlying networkitature, a hierarchy of LAs may be
deployed between a MA and the servers it manages, so that daistthe root a of subtree made of
its son LAs and leaf servers. Each LA stores the list of pemdaguests, together with the number
of servers that can handle a given request in its subtreallfsirach LA includes information about
the data stored within the nodes of its subtree.

The Server Daemon (SeD)encapsulates a computational server. The SeD stores tloé fequests that
its associated computational server can handle. It makesiltable to its parent LA, and provides
the potential clients with an interface for submitting tiveiquests. A SeD also stores the list of data
(thatis in our case, matrices) available on its associaees together with some meta-information
about them: data distribution, access path, etc. FinallyeB periodically probes its associated
server for itsstatus instantaneous load, free memory, available resourcesBased on this status,
a SeD can provide its parent LA with accurate performancdigtien for a given request. This uses
FAST [13], a dynamic performance forecasting tool.

When a client wishes to submit a computational request usitgTDit must first obtain a reference
to the server that is best suited for handling its requestheEithe client can obtain the name of some
MA through a dedicated name server, or it can find one by brayvaispecific Web page which stores the
various MA locations. The client request consists of a gendgscription of the problem to be solved.
The MA first checks the request for correctness, e.g., alh#eessary parameters are provided. Then, it
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Figure 2: The hierarchical organization of DIET.

broadcasts the request to the neighboring nodes, LAs or MA&h in turn forward the request to the
connected SeDs. Each server sends back its status to itg pareBased on these information, each LA
selects the best server and forwards its name and statggiarént LA or MA. The root MA aggregates all
the best servers found by its LAs or by other MAs. It ranks thiynstatus and availability, and eventually
forwards the result to the client. The client goes throughrésulting server list, and successively attempts
to contact each server in turn. As soon as a server can beeatie client moves the input data of the
request to it. The server executes the request on behalke alignt, and returns the results.

3.2 Managing data in DIET

The first version of the GridRPC API does not include any supfoy data management, even though
discussions on this aspect have been started. Data movésiefitto the user, which is clearly a major
limitation for efficiently programming grids, as discusse&ectionl. Introducing d@ransparent acces®
data and sompersistence modésto this APl would remove a significant burden from the peogmer. It
would also contribute to master communication overheagi$ saves unnecessary movements of computed
data between servers and clients.

Transparent accesscan be achieved using a specific ID for each data. It is theoressipility of the data
management infrastructure to localize the data basedsnhiand to perform the necessary data
transfers. Thanks to this approach, the clients can avatirdgwith the physical location of the
data.

Persistence modesllow the clients to specify that data blocks should be storethe grid infrastructure,
“close” to computational servers, rather than be transtebrack to the client at each computation
step. Also, the data generated by some computational recarebe simply re-used by other servers
in later requests through the data ID. Thanks to the traespaccess scheme, the clients only have
to provide the request server with the ID, not with the phgisitata.
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Figure 3: Steps of a client request without (left side) anith\fright side) a data management infrastructure.

In order to let GridRPC applications express constrainth vaspect to data transparency and persis-
tence, discussions on extensions of the GridRPC API areogress within the GridRPC working group
of GGF. These extensions allow GridRPC computing enviranimto use external data management in-
frastructures, as illustrated on FiguBeln this example, a client’ successively uses two servefsl (and
S2) for two different computations. We assume that the seconapaitation depends on the first one: the
output dataD2 produced on serve¥1 is used as input data for the computation schedule82iWe also
assume thab2 is intermediate data that is not needed by the client. Oretitside, we illustrate a typical
scenario using the current GridRPC API, with no support fatadnanagement. The clie6t needs to
explicitly transfer the output datB2 from serverS1 to serverS2 (steps 2 and 3). Then, the second com-
putation on servef2 can take place and returns dd®a to clientC (step 4). On the right side we show
how these computations would be handled if the GridRPC strfuature provided support for localization
transparency and persistence. The sef\lestores the output data2 in a data management infrastructure
(step 2). Then, the clier® only needs to transmit the ID of dafa2 to S2 (step 3a). Consequently, the
data transfer betwee$il and.S2 occurs in a transparent manner for the client (step 3b). \8enas that
the servers are connected to the storage service usingbigibrmance links, whereas this may not be true
for the links between clients and servers. Using a data neanagt infrastructure clearly avoids unneces-
sary and costly data transfers between the client and serViicker arrows stand for these unnecessary
communications that can be optimized out when using a dategement infrastructure.

As a preliminary step, a data management service called Dat&aManager (DTM) has been specif-
ically developed for the DIET platformlf]. This solution uses DIET's computing servers (SeD) for
persistent data storage and needs no external storageaesoblowever, a simpler and more flexible ap-
proach is to fully let data management at the charge abdernaldata-sharing service. As explained in
the previous section, the benefits of such a service consistinechanisms for transparent access, persis-
tence, fault tolerance and consistency. This approachtieatore of the design of theyMEM software
platform, as described in the following section.

4 A data management environment:
the JuUXMEM platform
The goal of this section is to introduce thexXMEM data-sharing software platform, designed to serve

as a basis for a grid data-sharing service. We first presexiiEm’s architecture and then discuss its
mechanisms for handling fault tolerance and data congigten
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4.1 Overall architecture of JuxMEM

The software architecture obXMEM (for Juxtaposed Memoyymirrors a hardware architecture consist-
ing of a federation of distributed clusters and is therefdezarchical Figure4 shows the hierarchy of
the entities defined inukMEM'’s architecture. This architecture is made up of a networgesr groups

(] cluster| groups4, B andC' on the figure), which usually correspond to clusters at thesighl level.
However, g cluster| groups could also correspond to a subset of the ghysécal cluster, or alternatively
to nodes spread over several physical clusters.

All the groups belong to a wider group, which includes all fieers which run the service (the
| juxmem| group). Eachcluster| group includes several kinds of nodes. Those whiokide memory
for data storage are callgmoviders In each| cluster| group, a node is used to make up the backbone of
JuxMEM'’s network of peers. This node is calletlister managerFinally, a node which simply uses the
service to allocate and/or access data blocks is calledt It should be stressed that a node may at the
same time act as a cluster manager, a client, and a providere¥é¢r, each node only plays a single role in
the example illustrated on the figure for the sake of clarity.

Each block of data stored in the system is replicated ancciged to a group of peers call¢datal
group. Note that 4 data| group can be made up of providers from diffefarttister| groups. Indeed, a data
can be spread over on several clusters (elgndC on the figure). For this reason, thdata| and cluster|
groups are at the same level of the group hierarchy. Anothpoitant feature is that the architecture of
JuxMEM is dynamic, sincé¢ cluster| and data| groups can be created at run time. For instancdata|
group is automatically instantiated for each block of daterted into the system.

When allocating memory, the client has to specify on how méumsters the data should be replicated,
and on how many nodes in each cluster. This results into gtantiation of a set of data replicas. The
allocation operation returns a global data ID. This ID canubed by other nodes in order to identify
existing data. To obtain read and/or write access to a datkpihe clients only need to use this ID. It is
JuxMEM'’s responsibility to localize the data, and then performribeessary data transfers.

The design of UXMEM is detailed in P]. JuXMEM is currently being implemented using the generic
JXTA [25] P2P library. In its 2.0 version, JXTA consists of a spectima of six language- and platform-
independent, XML-based protocols that provide basic see/common to most P2P applications, such as
peer group organization, resource discovery, and inter-pgmmunication. To the best of our knowledge,
a lot of on-going efforts for integrating grid services WRRP techniques are based on JXTA.
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4.2 Fault tolerance issues in UXMEM

In grid environments, where thousands of nodes are involfggldres and disconnections are no longer
exceptions. In contrast, they should be considered as, madimary events. The data blocks handled by
JuxMEM should remain available despite such events. This propértiata availabilityis achieved in
JuxMEM by replicating each piece of data across|thlata| groups, as described above. The management
of these groups in the presence of failures relies on groopraanication and group management protocols
that have been extensively studied in the field of (most dfienretical!) fault-tolerant distributed systems.
This section describes in detail the fault-tolerant buiggblocks we build on.

4.2.1 Assumptions

Timing model. We rely on the model of partial synchrony proposed by ChaadchToueg in§]. This
model stipulates that, for every execution, there exigib@lbounds on process speeds and on mes-
sage transmission delays. However, these bounds are nainkaiod they only hold after some
unknown time. This assumption seems reasonable withincgritext.

Failure model. We assume that only two kinds of failure can occur within gridode failures and link
failures. Node failures are assumed to follow thig-silent model. The nodes act normally (receive
and send messages according to their specification) ueyilfil, and then stop performing any fur-
ther action for ever. We also consider link failures. We assfair-lossycommunication channels.
If Processp repeatedly sends Messageto Procesg through a fair-lossy channel, and if Process
does not fail, then Procegseventually receives Messagefrom Proces®. Informally, this means
that network links may lose messages, but not all of theme @it a single node or link failure may
induce other failures, so that simultaneous failures oflangt have to be taken into account.

4.2.2 Fault tolerance building blocks

Group membership protocols. The group membershipbstraction 9] provides the ability to manage a
set of nodes in a distributed manner, and to provide to thereat world with an abstraction of a
single entity. In particular, it is possible to send a messagthis virtual entity, which means that
either the message is eventually delivered to all the natiyfanodes of the group, or to none of
them. The nodes belonging to the group have to maintain themucomposition of the group in
some local member list, called theiew. As nodes may join or leave the group, and even crash, the
composition of a group is continuously changing. The rolthefyroup membershiprotocol is thus
to ensure the consistency of the local views with the actomlposition of the group. Itis achieved by
synchronizing the members’ views of the group. Between tamsecutive view synchronizations,
the same set of messages from the external world should bemel to all the non-faulty nodes
within a group. In the case ofuXMEM, a group membershiprotocol is applied to eachdata|
group gathering nodes which store a copy of a same piece af dat

Atomic multicast. Since the nodes members of data] group may crash, we us@eassimistic replica-
tion mechanism to ensure that an up-to-date copy of the commdinatel data remains available.
When the data is accessed by the external world (here, the BHDE), all the members of the corre-
sponding| data| group are concurrently updated. This is achieved ledeg all access messages
from the external world to all non-faulty group members ia 8ame order using atomic multi-
castmechanism. Therefore, all non-faulty group members haagtee upon an order for message
delivery. This is achieved usingcmnsensumechanism.

Consensus protocols A consensuprotocol allows a set of (possibly fail-prone) nodes to agre a com-
mon value. Each node proposes a value, and the protocolesnthat (1) eventually all non-faulty
nodes decide on a value; (2) the decided value is the sami fades; and (3) the decided value has
been initially proposed by some node. In our case, the aecisigards the order in which messages
are delivered to the group members.
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Failure detectors. The consensus problem fually asynchronous systems can only be solved determinis-
tically thanks tounreliable failure detector§8]. The role of these detectors is to provide a list of
nodes suspected to be faulty. This list is only approxinyadeturate, as a non-faulty node may be
suspected, and a faulty node may remain unsuspected fote Whrtunately, there exists consensus
protocols which can cope with this approximation.

To summarizefailure detectorsare needed in order to perforronsensus the presence of failures; this
provides a way to implememtomic multicastwhich is the basis for replication withiruXMEeM'’s | data|
groups. While classical algorithms can be used for the higtyars of this stack, special attention needs
to be paid to the design of the low-level, failure detectiapelr. This layer needs to fit the hierarchical
structure of the grid.

4.2.3 A hierarchical approach to failure detection

A failure detection service often relies on a heartbeat ng ffiow between all the nodes involved in the
architecture. This induces a significant traffic overheakictv may grows as large as the square of the
number of nodes. On the other hand, grid architectures gtbhasands of nodes, and no steady quality
of service may be expected from the numerous network links. f@ilure detectors have to take this tough
context into account, in order to provide suspect lists asi@te as possible.

A possible approach is to leverage on the hierarchical @gtan of most grids, which are made of
a loosely-coupled federation of tightly-coupled clustefaerefore, we propose to take advantage of this
natural hierarchy: a similar hierarchical organizationtloé detectorsq] enables to reduce the overall
amount of exchanged messages. Failure detection is haaidted different levels. At cluster-level, each
node sends heartbeats to all the other nodes of its own cluséeh cluster selects a mandatory, which
is in charge of handling failure detection at grid level. &lthat this mandatory may fail: in this case, its
failure is detected at cluster-level, and another mangasoselected. Moreover, it is possible to adapt the
detection quality of service with respect to the applicati@eds and the network load. For instance, the
trade-off between detection accuracy and reactivity magitierent for UXMEM | cluster| managers, and
for JUuXMEM | data| providers. A detailed description of the hierardriegector used in this design can
be found in f].

4.3 Data consistency issues inuKM EM

JuxMEM uses replication withih data| groups to keep data available despite failures. Asoultiple
nodes perform accesses to a same piece of data, replicatidreassed to enhance locality, and thus perfor-
mance. ConsequentlyyZMEM has to manage the consistency of the different copies of & géeae of
data. Consistency protocols have intensively been studihih the context of DSM system&]]. How-
ever, an overwhelming majority of protocols assunsadic configuration where nodes do not disconnect
nor fail. It is clear that these assumptions do not hold anyenio the context of darge-scale dynamic
grid infrastructure. In such a context, consistency prali®cannot rely any more on entities supposed to
be stable, as traditionally was the case.

4.3.1 Fault tolerant consistency protocols

JuxMEM takes a new approach to this problem by putting scalability fault-tolerance into the core
of the design. The data| groups use atomic multicast to perform a pessimisgiication. Therefore,
critical protocol entities can be implemented using thepdication groups. For instance, a large number
of protocols associate to each data a node holding the moshtrelata copy. This is true for the very
first protocols for sequential consistencyd], but also for recenhome-basegrotocols implementing
lazy release consistencg4] or scope consistencyLf], where ahome nodes in charge of maintaining a
reference data copy. It is important to note that these paddamplicitly assume that the home node never
fails. Implementing thdhome entityusing a replication group likeukMEM'’s | data| groups allows the
consistency protocol to assume that this entity is stabletudly, any home-based consistency protocol
can become fault-tolerant using this decoupled architedsee Figuré®).
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Figure 5: WXMEM’s decoupled architecture for fault tolerance and dataistergy.

4.3.2 A scalable consistency protocol

As we are targeting a grid architecture, multiple clientdifferent clusters may share a same piece of data.
In such a situation, it is important to minimize the inteaster communications, since they may have a
high latency. Atomic multicast in a flat group spread overtipld physically distributed clusters would
be inefficient. A hierarchical approach to consistencygeol design is then necessary. For each piece of
data, a home entity should be present in every cluster thats a potential client.

As a proof of concept, we have developed a protocol impleimgrhe entry consistency modei a
fault-tolerant manner. Starting from a classical homestason fault-tolerantprotocol, we use replication
to tolerate failures as described above. Then, in ordemtidiinter-cluster communications, the home entity
is organized in a hierarchical walgcal homesat cluster level, act as clients offobal homeat grid level.
The global home is a logical entity, which is implemented beplication group, whose members are the
local homes. But note that local homes are logical entittewell, implemented as replication groups of
physical nodes! A detailed description of this protocol barfound in B].

5 Putting all elements together

The elements presented in the previous sections allow usfilmedan architecture for data-sharing ser-
viceas a hybrid approach combining the DSM and P2P paradigmé {elhieraging algorithms and mech-
anisms studied in the field of fault-tolerant distributedtsyns. Previous results in each of these areas are
obviously very good starting points; however, note thay tb@nnot be directly applied in a grid context.
For instance, DSM systems provide transparent accessdoaddtinteresting consistency protocols, but
neglect fault tolerance and scalability. P2P systems geostalable protocols and cope with volatility,
but generally deal with read-only data and therefore do ddtess the consistency issue. Finally, fault-
tolerant algorithms have often been subject to theoretigidiations, but they have rarely been evaluated
experimentally, on real large-scale testbeds. Our apprbaidds on these existing efforts, while taking
into accounsimultaneouslhall these constraints inherent to a grid architecture.

The contribution of this paper is namely to propose an agtréatransparent access to datavhile
adressing three important issu@&rsistencefault tolerance consistency The proposed architecture (il-
lustrated on Figuré) fits the hierarchical architecture of a grid defined as arfitn of SAN-based
clusters interconnected by high-bandwidth WANSs. Note that hierarchy is taken at all levels of the ar-
chitecture. The DIET computing infrastructure and tbex MEM entities are mapped onto the underlying
resources available in the various clusters, each of whiap Inave specific properties and policies. The
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Figure 6: Overall architecture of the grid data-sharingiser

failure detector used byuXxMEM is hierarchical as well, for scalability reasons.

An implementation of this integrated architecture is undey within the GDS P6] project of the
French ACI MD Research Program. The hierarchical failurecter described in Sectioh2.3has al-
ready been integrated into thexXIMeEM. It is used by IxMEM'’s fault-tolerant components (consensus,
atomic multicast, group membership), on which rely the @iaacy protocols. The protocol described in
Sectiond.3.2is fully operational and has been subject to a preliminagfuation [3].

6 Conclusion

The concept ofyrid computingwas initially proposed by making an analogy with th@wer grid where
the electric power igransparentlymade available to the users. No knowledge is necessary aletais of
how and where electric power is produced and transportedigbr just plugs in its appliance! In a similar
way, in an ideal vision, using computational grids shoulddielly transparent: it should not be required
that the user explicitly specify the resources to be usedtzeidlocations!

An important area where transparency needs to be achieveices data management. As opposed
to most of the current approaches, baseéxplicit data localization and transfer, in this paper we propose
an architecture for @ata-sharing servic@roviding transparent access to datarhe user only accesses
data via global identifiers. Data localization and transier at the charge of the service. The service also
applies adequate replication strategies and consistentygols to ensure data persistence and consistency
in spite of node failures. These mechanisms target a largle;sdynamic grid architecture, where nodes
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may unexpectedly fail and recover.

The modular character of the proposed architecture openg exg@erimentation possibilities. Various
algorithms can be evaluated and tuned at the level of eaeh (&jilure detection, replication strategies,
consistency protocols, etc.). Different possible intdoms between the fault tolerance layer and the con-
sistency layer can also be experimented. The final goal ie ttbke to put into practicadaptivestrategies,
able to select the most adequate protocols at each leved.cbhid be done according to some giyean-
formance/guaranteesadeoff transparently reached by matching the applinatanstraints with run-time
information on the characteristics of the available resesir

In order to take into account the efficiency constraints egped by the applications, one crucial issue
to handle is the efficiency afata transfers In this context, it is important to be able to fully explditet
potential of high-performance networks available in the gtusters: System-Area Networks (SANs) and
Wide-Area Networks (WANS). Existing high-performancenfraworks for networking and multi-threading
can prove helpful. PadicoTMLP] is an example of such an environment able to automaticalgcs
the adequate communication strategy/protocol in orderetsi take advantage of the available network
resources (zero-copy communications, parallel streatog, éntegrating such features would be another
step forward in the direction of transparency!
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