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Abstract
Grid computing has recently emerged as a response to the growing demand for re-
sources (processing power, storage, etc.) exhibited by scientific applications. We ad-
dress the challenge of sharing large amounts of data on such infrastructures, typically
consisting of a federation of node clusters. We claim that storing, accessing, updating
and sharing such data should be considered by applications as anexternal service. We
propose an architecture for such a service, whose goal is to provide transparent ac-
cessto mutabledata, while enhancing data persistence and consistency despite node
disconnections or failures. Our approach leverages on weaving together previous re-
sults in the areas of distributed shared memory systems, peer-to-peer systems, and
fault-tolerant systems.

Keywords: Data sharing, grid computing, transparent access, mutabledata, peer-to-peer systems, fault
tolerance, consistency protocols

Résumé
Le calcul sur les grilles a récemment émergé comme une réponse aux demandes crois-
santes de ressources (puissance de traitement, de stockage, etc.) issues des applications
scientifiques. Nous nous intéressons ici au défi du partage dedonnées dans une telle
infrastructure, qui est constituée classiquement d’une fédération de nœuds provenant
de diverses grappes. Nous souhaitons que le stockage, l’accès et les mises à jour de
ces données soient considérées par les applications comme un service externe. Nous
proposons une architecture qui fournit un tel service, dontl’objectif est d’offrir unac-
cès transparentauxdonnées modifiables, disposant de mécanismes de persistance et
de cohérence de données même en cas de déconnexion ou de pannes. Notre approche
vient fédérer nos précédents résultats dans les domaines des systèmes distribués à mé-
moire partagée, des systèmes pairs à pairs et des systèmes tolérants aux pannes.

Mots-clés: Partage de données, Calcul sur grille, Accès transparent, Données modifiables, Systèmes
pairs à pairs, Tolérance aux pannes, protocoles de cohérence
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1 Introduction

Data management in grid environments Data management in grid environments is currently a topic
of major interest to the grid computing community. However,as of today, no approach has been widely
established fortransparent data sharingon grid infrastructures. Currently, the most widely-used approach
to data management for distributed grid computation relieson explicit data transfersbetween clients and
computing servers: the client has to specify where the inputdata is located and to which server it has to be
transferred. Then, at the end of the computation, the results are eventually transferred back to the client. As
an example, the Globus [16] platform provides data access mechanisms based on the GridFTP protocol [1].
Though this protocol provides authentication, parallel transfers, checkpoint/restart mechanisms, etc., it still
requiresexplicit data localization.

It has been shown that providing data with some degree of persistence may considerably improve the
performance of series of successive computations. Therefore, Globus has proposed to provide so-called
data catalogs[1] on top of GridFTP, which allow multiple copies of the same data to be manually recorded
on various sites. However, the consistency of these replicas remains the burden of the user.

In another direction, a large-scale data storage system is provided by IBP [5], as a set of so-called
buffersdistributed over Internet. The user can “rent” these storage areas and use them as temporary buffers
for optimizing data transfers across a wide-area network. Transfer management still remains the burden
of the user, and no consistency mechanism is provided for managing multiple copies of the same data.
Finally, Stork [18] is another recent example of system providing mechanisms to explicitly locate, move
and replicate data according to the needs of a sequence of computations. It provides the user with an
integrated interface to schedule data movement actions just like computational jobs. Again, data location
and transfer have to be explicitly handled by the user.

Our approach: transparent access to data A growing number of applications make use of larger and
larger amounts of distributed data. We claim thatexplicit management of data locationsby the programmer
arises as a major limitation with respect to the efficient useof modern, large-scale computational grids.
Such a low-level approach makes grid programming extremelyhard to manage. In contrast, the concept
of a data-sharing servicefor grid computing [2] opens an alternative approach to the problem of grid data
management. Its ultimate goal is to provide the user withtransparent access to data. It has been illustrated
by the experimental JUXMEM [2] software platform: the user only accesses data viaglobal handles. The
service takes care of data localization and transfer without any help from the external user. The service also
transparently applies adequate replication strategies and consistency protocols to ensure data persistence
and consistency in spite of node failures. These mechanismstarget a large-scale, dynamic grid architecture,
where nodes may unexpectedly fail and recover.

Required properties The target applications under consideration are scientificsimulations, typically
involving multiple weakly-coupled codes running on different sites, and cooperating via periodic data
exchanges. Transparent access to remote data through an external data-sharing service arises as a major
feature in this context. Such a service should provide the following properties.

Persistence.Since grid applications can handle large masses of data, data transfer among sites can be
costly, in terms of both latency and bandwidth. In order to limit these data exchanges, the data-
sharing service has to provide persistent data storage, so as to save data transfers. It should rely on
strategies able to: 1) reuse previously produced data, by avoiding repeated data transfers between the
different components of the grid; 2) trigger “smart” pre-fetching actions to anticipate future accesses;
and 3) provide useful information on data location to the task scheduler, in order to optimize the
global execution cost.

Fault tolerance. The data-sharing service must match the dynamic character of the grid infrastructure.
In particular, the service has to support events such as storage resources joining and leaving, or
unexpectedly failing. Replication techniques and failuredetection mechanisms are thus necessary.
Based on such mechanisms, sophisticated fault-tolerant distributed data-management algorithms can
be designed, in order to enhance data availability despite disconnections and failures.
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Figure 1: Overview of a data-sharing service.

Data consistency.In the general case, shared data manipulated by grid applications aremutable: they can
be read, but alsoupdatedby the various nodes. When accessed on multiple sites, data are often
replicated to enhance access locality. To ensure the consistency of the different replicas, the service
relies onconsistency models, implemented byconsistency protocols. However, previous work on
this topic (e.g., in the context of Distributed Shared Memory systems, DSM) generally assumes a
small-scaled, stable physical architecture, without failures. It is clear that such assumptions are not
relevant with respect to our context. Therefore, building data-sharing service for the grid requires a
new approach to the design of consistency protocols.

In this paper, we address these issues by proposing an architecture for a data-sharing service providing
grid applications withtransparent access to data. We consider the general case of a distributed environment
in which Clientssubmit jobs to aJob Manager, an entity in charge of selecting theComputing Servers
where job execution shall take place. When the same data are shared by jobs scheduled on different
servers, theData-Sharing Servicecan be used to store and retrieve them in a transparent way. This general
organization scheme is illustrated on Figure1.

The paper is organized as follows. Section2 first describes a few motivating scenarios that illustrate the
three required properties mentioned above. Section3 presents an overview of a particular grid computing
environment called DIET, whose architecture implements the generic organization scheme illustrated on
Figure1. More specifically, we discuss the needs of such an environment with respect to data management.
In Section4, the JUXMEM software data management platform is introduced and we showhow it can be
used as a basis to fulfill these needs. Several aspects related to fault tolerance and consistency are discussed
in detail. Section5 provides an overview of the global architecture. Finally, Section 6 concludes and
discusses future directions.

2 Application scenarios

Our approach can be best motivated by a grid application managing large data sets and needing data per-
sistence. One such project is called Grid-TLSE [11] and is supported by the French ACI GRID Research
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Program. It aims at designing a Web portal exposing the best-level expertise about sparse matrix manipu-
lation. Through this portal, the user may gather actual statistics from runs of various sophisticated sparse
matrix algorithms on his/her specific data. The Web portal provides an easy access to a variety of sparse
solvers, and it assists the comparative analysis of their behavior. The input data are either problems sub-
mitted by the user, or representative examples picked up from the matrix collection available on the site.
These solvers are executed on a grid platform. Since many sparse matrices of interest are very large, avoid-
ing useless data movement is of uttermost importance. A sophisticated data management strategy is thus
needed.

The process for solving a sparse symmetric positive definitelinear system,Ax = b, can be divided
into four stages as follows: ordering, symbolic factorization, numerical factorization and triangular system
solution. We focus on ordering in this scenario. The aim of ordering is to find a suitable permutationP of
matrixA. Because the choice of permutationP will directly determine the number of fill-in elements, the
ordering has a significant impact on the memory and computational requirements for the latter stages.

Let us consider a typical scenario to illustrate the need forthreefold requirement for data persistence,
fault tolerance and consistency. It is concerned with the determination of theordering sensitivityof a
class of solvers such as MUMPS, SuperLU or UMFPACK, that is, how performance is impacted by the
matrix traversal order. It consists of three phases. Phase 1exercises all possible internal orderings in
turn. Phase 2 computes a suitable metric reflecting the performance parameters under study for each run:
effective FLOPS, effective memory usage, overall computation time, etc. Phase 3 collects the metric for
all combinations of solvers/orderings and reports the finalranking to the user.

If Phase 1 requires exercisingn different kinds of orders withm different kinds of solvers, thenm× n

executions are to be performed. Without persistence, the matrix has to be sentm × n times. If the server
provided persistent storage, the data would be sent only once. If the various pairs solvers/orderings are
handled by different servers in Phase 2 and 3, then consistency and data movements between servers should
be provided by the data management service. Finally, as the number of solvers/orderings is potentially
large, many nodes are used. This increases the probability for faults to occur, which makes the use of
sophisticated fault-tolerance algorithms mandatory.

Another class of applications that can benefit from the features provided by a data-sharing service is
code-coupling applications. Such applications are structured as a set of (generally distributed) autonomous
codes which at times need to exchange data. This scheme is illustrated by the EPSN [10] project, also
supported by the French ACI GRID Research Program. This project focuses on steering distributed nu-
merical simulations based on visualization. It relies on a software environment that combines the facilities
of virtual reality with the capabilities of existing high performance simulations. The goal is to make the
typical work-flow (modeling, computing, analyzing) more efficient, thanks to on-line visualization and in-
teractive steering of the intermediate results. Possible errors can thus be detected and the the researcher can
correct them on-the-fly, by tuning the simulation parameters. The application consists in a visualization
code coupled with one or more simulation codes. Each simulation code may be parallel and may manip-
ulate data according to some specific distribution. As in thecase of the Grid-TLSE application described
above, a data-sharing service providingpersistent, transparentaccess to distributed data can simplify the
data movement schemes between the coupled codes. Moreover,in the case of code coupling, the basic
operations consist in extracting and modifying the simulation data. As the data status alternates from con-
sistent to inconsistent during the simulation, it is important for the visualization code to be able to obtain a
consistent view of the data. This can be ensured thanks to theconsistency protocolsprovided by the data
service.

3 Overview of a grid computing environment:
the DIET platform

The GridRPC approach [22] is a good candidate to build Problem Solving Environments (PSE) on the
computational grid. It defines an API and a model to perform remote computation on servers. In such
a paradigm, a client can submit problem to an agent that selects the best server among a large set of
candidates, given information about the performance of theplatform gathered by an information service.
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The goal is to find a suitable (if not the best!) trade-off between the computational power of the selected
server and the cost of moving input data forth and back to thisvery server. The choice is made from static
and dynamic information about software and hardware resources, as well as the location of input data,
which may be stored anywhere within the system because of previous computations. Requests can be then
processed by sequential or parallel servers.

The GridRPC API is the grid form of the classical Unix RPC (Remote Procedure Call) approach. It has
been designed by a team of researchers within the Global GridForum (GGF). It defines a standard client
API to send requests to a Network Enabled Server (NES) system[23], therefore promoting portability and
interoperability between the various NES systems. Requests are sent through synchronous or asynchronous
calls. Asynchronous calls allow a non-blocking execution,thereby providing another level of parallelism
between servers. A function handle represents a binding between a problem name and an instance of such
function available on a given server. Of course several servers can provide the same function (or service)
and load-balancing can be done at the agent level before the binding. A session ID is associated to each
non-blocking request and allows to retrieve information about the status of the request. Wait functions
are also provided for a client to wait for specific request to complete. This API is instantiated by several
middleware such as DIET [7], Ninf [ 20], NetSolve [4], and XtremWeb [15].

The paradigm used in the GridRPC model is thus two-level, mixed parallelism, with different (poten-
tially parallel) requests executed on different servers. However, the server-level parallelism remains hidden
to the client.

3.1 Overall architecture of DIET

In this section, we focus on our GridRPC-based middleware: the DIET platform. The various parts of the
DIET architecture are displayed on Figure2.

The Client is an application which uses DIET to solve problems. Different types of clients should be
able to use DIET, as problems can be submitted from a web page,a specific PSE such as Scilab, or
directly from a compiled program.

The Master Agent (MA) receives computation requests from clients. A request is a generic description
of the problem to be solved. The MA collects the computational capabilities of the available servers,
and selects thebestone according to the given request. Eventually, the reference of the selected
server is returned to the client, which can then directly submit its request to this server.

The Local Agent (LA) transmits requests and information between a given MA and the locally available
servers. Note that, depending on the underlying network architecture, a hierarchy of LAs may be
deployed between a MA and the servers it manages, so that eachLA is the root a of subtree made of
its son LAs and leaf servers. Each LA stores the list of pending requests, together with the number
of servers that can handle a given request in its subtree. Finally, each LA includes information about
the data stored within the nodes of its subtree.

The Server Daemon (SeD)encapsulates a computational server. The SeD stores the list of requests that
its associated computational server can handle. It makes itavailable to its parent LA, and provides
the potential clients with an interface for submitting their requests. A SeD also stores the list of data
(that is in our case, matrices) available on its associated server, together with some meta-information
about them: data distribution, access path, etc. Finally, aSeD periodically probes its associated
server for itsstatus: instantaneous load, free memory, available resources, etc. Based on this status,
a SeD can provide its parent LA with accurate performance prediction for a given request. This uses
FAST [13], a dynamic performance forecasting tool.

When a client wishes to submit a computational request using DIET, it must first obtain a reference
to the server that is best suited for handling its request. Either the client can obtain the name of some
MA through a dedicated name server, or it can find one by browsing a specific Web page which stores the
various MA locations. The client request consists of a generic description of the problem to be solved.
The MA first checks the request for correctness, e.g., all thenecessary parameters are provided. Then, it
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Figure 2: The hierarchical organization of DIET.

broadcasts the request to the neighboring nodes, LAs or MAs,which in turn forward the request to the
connected SeDs. Each server sends back its status to its parent LA. Based on these information, each LA
selects the best server and forwards its name and status to its parent LA or MA. The root MA aggregates all
the best servers found by its LAs or by other MAs. It ranks themby status and availability, and eventually
forwards the result to the client. The client goes through the resulting server list, and successively attempts
to contact each server in turn. As soon as a server can be reached, the client moves the input data of the
request to it. The server executes the request on behalf of the client, and returns the results.

3.2 Managing data in DIET

The first version of the GridRPC API does not include any support for data management, even though
discussions on this aspect have been started. Data movementis left to the user, which is clearly a major
limitation for efficiently programming grids, as discussedin Section1. Introducing atransparent accessto
data and somepersistence modesinto this API would remove a significant burden from the programmer. It
would also contribute to master communication overheads, as it saves unnecessary movements of computed
data between servers and clients.

Transparent accesscan be achieved using a specific ID for each data. It is the responsibility of the data
management infrastructure to localize the data based in this ID, and to perform the necessary data
transfers. Thanks to this approach, the clients can avoid dealing with the physical location of the
data.

Persistence modesallow the clients to specify that data blocks should be stored on the grid infrastructure,
“close” to computational servers, rather than be transferred back to the client at each computation
step. Also, the data generated by some computational request can be simply re-used by other servers
in later requests through the data ID. Thanks to the transparent access scheme, the clients only have
to provide the request server with the ID, not with the physical data.
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Figure 3: Steps of a client request without (left side) and with (right side) a data management infrastructure.

In order to let GridRPC applications express constraints with respect to data transparency and persis-
tence, discussions on extensions of the GridRPC API are in progress within the GridRPC working group
of GGF. These extensions allow GridRPC computing environments to use external data management in-
frastructures, as illustrated on Figure3. In this example, a clientC successively uses two servers (S1 and
S2) for two different computations. We assume that the second computation depends on the first one: the
output dataD2 produced on serverS1 is used as input data for the computation scheduled onS2. We also
assume thatD2 is intermediate data that is not needed by the client. On the left side, we illustrate a typical
scenario using the current GridRPC API, with no support for data management. The clientC needs to
explicitly transfer the output dataD2 from serverS1 to serverS2 (steps 2 and 3). Then, the second com-
putation on serverS2 can take place and returns dataD3 to clientC (step 4). On the right side we show
how these computations would be handled if the GridRPC infrastructure provided support for localization
transparency and persistence. The serverS1 stores the output dataD2 in a data management infrastructure
(step 2). Then, the clientC only needs to transmit the ID of dataD2 to S2 (step 3a). Consequently, the
data transfer betweenS1 andS2 occurs in a transparent manner for the client (step 3b). We assume that
the servers are connected to the storage service using high-performance links, whereas this may not be true
for the links between clients and servers. Using a data management infrastructure clearly avoids unneces-
sary and costly data transfers between the client and servers. Thicker arrows stand for these unnecessary
communications that can be optimized out when using a data management infrastructure.

As a preliminary step, a data management service called DataTree Manager (DTM) has been specif-
ically developed for the DIET platform [14]. This solution uses DIET’s computing servers (SeD) for
persistent data storage and needs no external storage resources. However, a simpler and more flexible ap-
proach is to fully let data management at the charge of anexternaldata-sharing service. As explained in
the previous section, the benefits of such a service consist in its mechanisms for transparent access, persis-
tence, fault tolerance and consistency. This approach is atthe core of the design of the JUXMEM software
platform, as described in the following section.

4 A data management environment:
the JUXM EM platform

The goal of this section is to introduce the JUXMEM data-sharing software platform, designed to serve
as a basis for a grid data-sharing service. We first present JUXMEM’s architecture and then discuss its
mechanisms for handling fault tolerance and data consistency.
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Figure 4: Hierarchy of the entities in the network overlay defined by JUXMEM.

4.1 Overall architecture of JUXM EM

The software architecture of JUXMEM (for Juxtaposed Memory), mirrors a hardware architecture consist-
ing of a federation of distributed clusters and is thereforehierarchical. Figure4 shows the hierarchy of
the entities defined in JUXMEM’s architecture. This architecture is made up of a network ofpeer groups
(|cluster| groupsA, B andC on the figure), which usually correspond to clusters at the physical level.
However, a|cluster| groups could also correspond to a subset of the samephysical cluster, or alternatively
to nodes spread over several physical clusters.

All the groups belong to a wider group, which includes all thepeers which run the service (the
|juxmem| group). Each|cluster| group includes several kinds of nodes. Those whichprovide memory
for data storage are calledproviders. In each|cluster| group, a node is used to make up the backbone of
JUXMEM’s network of peers. This node is calledcluster manager. Finally, a node which simply uses the
service to allocate and/or access data blocks is calledclient. It should be stressed that a node may at the
same time act as a cluster manager, a client, and a provider. However, each node only plays a single role in
the example illustrated on the figure for the sake of clarity.

Each block of data stored in the system is replicated and associated to a group of peers called|data|
group. Note that a|data| group can be made up of providers from different|cluster| groups. Indeed, a data
can be spread over on several clusters (e.g.,A andC on the figure). For this reason, the|data| and|cluster|
groups are at the same level of the group hierarchy. Another important feature is that the architecture of
JUXMEM is dynamic, since|cluster| and|data| groups can be created at run time. For instance, a|data|
group is automatically instantiated for each block of data inserted into the system.

When allocating memory, the client has to specify on how many clusters the data should be replicated,
and on how many nodes in each cluster. This results into the instantiation of a set of data replicas. The
allocation operation returns a global data ID. This ID can beused by other nodes in order to identify
existing data. To obtain read and/or write access to a data block, the clients only need to use this ID. It is
JUXMEM’s responsibility to localize the data, and then perform thenecessary data transfers.

The design of JUXMEM is detailed in [2]. JUXMEM is currently being implemented using the generic
JXTA [25] P2P library. In its 2.0 version, JXTA consists of a specification of six language- and platform-
independent, XML-based protocols that provide basic services common to most P2P applications, such as
peer group organization, resource discovery, and inter-peer communication. To the best of our knowledge,
a lot of on-going efforts for integrating grid services withP2P techniques are based on JXTA.

|
|
|
|
|
|
|
|
|
|
|
|
|
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4.2 Fault tolerance issues in JUXM EM

In grid environments, where thousands of nodes are involved, failures and disconnections are no longer
exceptions. In contrast, they should be considered as plain, ordinary events. The data blocks handled by
JUXMEM should remain available despite such events. This propertyof data availability is achieved in
JUXMEM by replicating each piece of data across the|data| groups, as described above. The management
of these groups in the presence of failures relies on group communication and group management protocols
that have been extensively studied in the field of (most oftentheoretical!) fault-tolerant distributed systems.
This section describes in detail the fault-tolerant building blocks we build on.

4.2.1 Assumptions

Timing model. We rely on the model of partial synchrony proposed by Chandraand Toueg in [8]. This
model stipulates that, for every execution, there exists global bounds on process speeds and on mes-
sage transmission delays. However, these bounds are not known and they only hold after some
unknown time. This assumption seems reasonable within gridcontext.

Failure model. We assume that only two kinds of failure can occur within grids: node failures and link
failures. Node failures are assumed to follow thefail-silent model. The nodes act normally (receive
and send messages according to their specification) until they fail, and then stop performing any fur-
ther action for ever. We also consider link failures. We assume fair-lossycommunication channels.
If Processp repeatedly sends Messagem to Processq through a fair-lossy channel, and if Processq

does not fail, then Processq eventually receives Messagem from Processp. Informally, this means
that network links may lose messages, but not all of them. Note that a single node or link failure may
induce other failures, so that simultaneous failures of anykind have to be taken into account.

4.2.2 Fault tolerance building blocks

Group membership protocols. The group membershipabstraction [9] provides the ability to manage a
set of nodes in a distributed manner, and to provide to the external world with an abstraction of a
single entity. In particular, it is possible to send a message to this virtual entity, which means that
either the message is eventually delivered to all the non-faulty nodes of the group, or to none of
them. The nodes belonging to the group have to maintain the current composition of the group in
some local member list, called theirview. As nodes may join or leave the group, and even crash, the
composition of a group is continuously changing. The role ofthegroup membershipprotocol is thus
to ensure the consistency of the local views with the actual composition of the group. It is achieved by
synchronizing the members’ views of the group. Between two consecutive view synchronizations,
the same set of messages from the external world should be delivered to all the non-faulty nodes
within a group. In the case of JUXMEM, a group membershipprotocol is applied to each|data|
group gathering nodes which store a copy of a same piece of data.

Atomic multicast. Since the nodes members of a|data| group may crash, we use apessimistic replica-
tion mechanism to ensure that an up-to-date copy of the common replicated data remains available.
When the data is accessed by the external world (here, the DIETSeDs), all the members of the corre-
sponding|data| group are concurrently updated. This is achieved by delivering all access messages
from the external world to all non-faulty group members in the same order using anatomic multi-
castmechanism. Therefore, all non-faulty group members have toagree upon an order for message
delivery. This is achieved using aconsensusmechanism.

Consensus protocols.A consensusprotocol allows a set of (possibly fail-prone) nodes to agree on a com-
mon value. Each node proposes a value, and the protocol ensures that (1) eventually all non-faulty
nodes decide on a value; (2) the decided value is the same for all nodes; and (3) the decided value has
been initially proposed by some node. In our case, the decision regards the order in which messages
are delivered to the group members.

|
|
|
|


GDS: an Architecture Proposal for a Grid Data-Sharing Service 9

Failure detectors. The consensus problem infully asynchronous systems can only be solved determinis-
tically thanks tounreliable failure detectors[8]. The role of these detectors is to provide a list of
nodes suspected to be faulty. This list is only approximately accurate, as a non-faulty node may be
suspected, and a faulty node may remain unsuspected for a while. Fortunately, there exists consensus
protocols which can cope with this approximation.

To summarize,failure detectorsare needed in order to performconsensusin the presence of failures; this
provides a way to implementatomic multicast, which is the basis for replication within JUXMEM’s |data|
groups. While classical algorithms can be used for the higherlayers of this stack, special attention needs
to be paid to the design of the low-level, failure detection layer. This layer needs to fit the hierarchical
structure of the grid.

4.2.3 A hierarchical approach to failure detection

A failure detection service often relies on a heartbeat or ping flow between all the nodes involved in the
architecture. This induces a significant traffic overhead, which may grows as large as the square of the
number of nodes. On the other hand, grid architectures gather thousands of nodes, and no steady quality
of service may be expected from the numerous network links. The failure detectors have to take this tough
context into account, in order to provide suspect lists as accurate as possible.

A possible approach is to leverage on the hierarchical organization of most grids, which are made of
a loosely-coupled federation of tightly-coupled clusters. Therefore, we propose to take advantage of this
natural hierarchy: a similar hierarchical organization ofthe detectors [6] enables to reduce the overall
amount of exchanged messages. Failure detection is handledat two different levels. At cluster-level, each
node sends heartbeats to all the other nodes of its own cluster. Each cluster selects a mandatory, which
is in charge of handling failure detection at grid level. Note that this mandatory may fail: in this case, its
failure is detected at cluster-level, and another mandatory is selected. Moreover, it is possible to adapt the
detection quality of service with respect to the application needs and the network load. For instance, the
trade-off between detection accuracy and reactivity may bedifferent for JUXMEM |cluster| managers, and
for JUXMEM |data| providers. A detailed description of the hierarchical detector used in this design can
be found in [6].

4.3 Data consistency issues in JUXM EM

JUXMEM uses replication within|data| groups to keep data available despite failures. Also,as multiple
nodes perform accesses to a same piece of data, replication can be used to enhance locality, and thus perfor-
mance. Consequently, JUXMEM has to manage the consistency of the different copies of a same piece of
data. Consistency protocols have intensively been studiedwithin the context of DSM systems [21]. How-
ever, an overwhelming majority of protocols assume astaticconfiguration where nodes do not disconnect
nor fail. It is clear that these assumptions do not hold any more in the context of alarge-scale, dynamic
grid infrastructure. In such a context, consistency protocols cannot rely any more on entities supposed to
be stable, as traditionally was the case.

4.3.1 Fault tolerant consistency protocols

JUXMEM takes a new approach to this problem by putting scalability and fault-tolerance into the core
of the design. The|data| groups use atomic multicast to perform a pessimistic replication. Therefore,
critical protocol entities can be implemented using these replication groups. For instance, a large number
of protocols associate to each data a node holding the most recent data copy. This is true for the very
first protocols for sequential consistency [19], but also for recenthome-basedprotocols implementing
lazy release consistency [24] or scope consistency [17], where ahome nodeis in charge of maintaining a
reference data copy. It is important to note that these protocols implicitly assume that the home node never
fails. Implementing thehome entityusing a replication group like JUXMEM’s |data| groups allows the
consistency protocol to assume that this entity is stable. Actually, any home-based consistency protocol
can become fault-tolerant using this decoupled architecture (see Figure5).

|
|
|
|
|
|
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Figure 5: JUXMEM’s decoupled architecture for fault tolerance and data consistency.

4.3.2 A scalable consistency protocol

As we are targeting a grid architecture, multiple clients indifferent clusters may share a same piece of data.
In such a situation, it is important to minimize the inter-cluster communications, since they may have a
high latency. Atomic multicast in a flat group spread over multiple physically distributed clusters would
be inefficient. A hierarchical approach to consistency protocol design is then necessary. For each piece of
data, a home entity should be present in every cluster that contains a potential client.

As a proof of concept, we have developed a protocol implementing theentry consistency modelin a
fault-tolerant manner. Starting from a classical home-based,non fault-tolerantprotocol, we use replication
to tolerate failures as described above. Then, in order to limit inter-cluster communications, the home entity
is organized in a hierarchical way:local homes, at cluster level, act as clients of aglobal home, at grid level.
The global home is a logical entity, which is implemented by areplication group, whose members are the
local homes. But note that local homes are logical entities as well, implemented as replication groups of
physical nodes! A detailed description of this protocol canbe found in [3].

5 Putting all elements together

The elements presented in the previous sections allow us to define an architecture for adata-sharing ser-
viceas a hybrid approach combining the DSM and P2P paradigms, while leveraging algorithms and mech-
anisms studied in the field of fault-tolerant distributed systems. Previous results in each of these areas are
obviously very good starting points; however, note that they cannot be directly applied in a grid context.
For instance, DSM systems provide transparent access to data and interesting consistency protocols, but
neglect fault tolerance and scalability. P2P systems provide scalable protocols and cope with volatility,
but generally deal with read-only data and therefore do not address the consistency issue. Finally, fault-
tolerant algorithms have often been subject to theoreticalvalidations, but they have rarely been evaluated
experimentally, on real large-scale testbeds. Our approach builds on these existing efforts, while taking
into accountsimultaneouslyall these constraints inherent to a grid architecture.

The contribution of this paper is namely to propose an approach to transparent access to data, while
adressing three important issues:persistence, fault tolerance, consistency. The proposed architecture (il-
lustrated on Figure6) fits the hierarchical architecture of a grid defined as a federation of SAN-based
clusters interconnected by high-bandwidth WANs. Note thatthis hierarchy is taken at all levels of the ar-
chitecture. The DIET computing infrastructure and the JUXMEM entities are mapped onto the underlying
resources available in the various clusters, each of which may have specific properties and policies. The
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Figure 6: Overall architecture of the grid data-sharing service.

failure detector used by JUXMEM is hierarchical as well, for scalability reasons.
An implementation of this integrated architecture is underway within the GDS [26] project of the

French ACI MD Research Program. The hierarchical failure detector described in Section4.2.3has al-
ready been integrated into the JUXMEM. It is used by JUXMEM’s fault-tolerant components (consensus,
atomic multicast, group membership), on which rely the consistency protocols. The protocol described in
Section4.3.2is fully operational and has been subject to a preliminary evaluation [3].

6 Conclusion

The concept ofgrid computingwas initially proposed by making an analogy with thepower grid, where
the electric power istransparentlymade available to the users. No knowledge is necessary on thedetails of
how and where electric power is produced and transported: the user just plugs in its appliance! In a similar
way, in an ideal vision, using computational grids should betotally transparent: it should not be required
that the user explicitly specify the resources to be used andtheir locations!

An important area where transparency needs to be achieved concerns data management. As opposed
to most of the current approaches, based onexplicit data localization and transfer, in this paper we propose
an architecture for adata-sharing serviceproviding transparent access to data. The user only accesses
data via global identifiers. Data localization and transferare at the charge of the service. The service also
applies adequate replication strategies and consistency protocols to ensure data persistence and consistency
in spite of node failures. These mechanisms target a large-scale, dynamic grid architecture, where nodes



12 G. Antoniu , M. Bertier , L. Bougé , E. Caron , F. Desprez , M. Jan, S. Monnet , P. Sens

may unexpectedly fail and recover.
The modular character of the proposed architecture opens many experimentation possibilities. Various

algorithms can be evaluated and tuned at the level of each layer (failure detection, replication strategies,
consistency protocols, etc.). Different possible interactions between the fault tolerance layer and the con-
sistency layer can also be experimented. The final goal is to be able to put into practiceadaptivestrategies,
able to select the most adequate protocols at each level. This could be done according to some givenper-
formance/guaranteestradeoff transparently reached by matching the application constraints with run-time
information on the characteristics of the available resources.

In order to take into account the efficiency constraints expressed by the applications, one crucial issue
to handle is the efficiency ofdata transfers. In this context, it is important to be able to fully exploit the
potential of high-performance networks available in the grid clusters: System-Area Networks (SANs) and
Wide-Area Networks (WANs). Existing high-performance frameworks for networking and multi-threading
can prove helpful. PadicoTM [12] is an example of such an environment able to automatically select
the adequate communication strategy/protocol in order to best take advantage of the available network
resources (zero-copy communications, parallel streams, etc.). Integrating such features would be another
step forward in the direction of transparency!
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