
HAL Id: hal-02102653
https://hal-lara.archives-ouvertes.fr/hal-02102653

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realistic models and efficient algorithms for
fault-tolerant scheduling on heterogeneous platforms

Anne Benoit, Mourad Hakem, Yves Robert

To cite this version:
Anne Benoit, Mourad Hakem, Yves Robert. Realistic models and efficient algorithms for fault-
tolerant scheduling on heterogeneous platforms. [Research Report] LIP RR-2008-09, Laboratoire de
l’informatique du parallélisme. 2008, 2+21p. �hal-02102653�

https://hal-lara.archives-ouvertes.fr/hal-02102653
https://hal.archives-ouvertes.fr


Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Realistic Models and Efficient Algorithms
for Fault Tolerant Scheduling on

Heterogeneous Platforms

Anne Benoit,
Mourad Hakem,
Yves Robert

February 2008

Research Report No 2008-09

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr



Realistic Models and Efficient Algorithms for Fault Tolerant

Scheduling on Heterogeneous Platforms

Anne Benoit, Mourad Hakem, Yves Robert

February 2008

Abstract
Most list scheduling heuristics rely on a simple platform model where
communication contention is not taken into account. In addition, it is
generally assumed that processors in the systems are completely safe. To
schedule precedence graphs in a more realistic framework, we introduce
an efficient fault tolerant scheduling algorithm that is both contention-
aware and capable of supporting ε arbitrary fail-silent (fail-stop) pro-
cessor failures. We focus on a bi-criteria approach, where we aim at
minimizing the total execution time, or latency, given a fixed number of
failures supported in the system. Our algorithm has a low time com-
plexity, and drastically reduces the number of additional communica-
tions induced by the replication mechanism. Experimental results fully
demonstrate the usefulness of the proposed algorithm, which leads to
efficient execution schemes while guaranteeing a prescribed level of fault
tolerance.

Keywords: Communication contention, fault tolerance, multi-criteria scheduling,
heterogeneous systems.



Realistic Models and Fault Tolerance Scheduling 1

1 Introduction

The efficient scheduling of application tasks is critical in order to achieve high performance
in parallel and distributed systems. The objective of scheduling is to find a mapping of the
tasks onto the processors, and to order the execution of the tasks so that: (i) task precedence
constraints are satisfied; and (ii) a minimum schedule length is provided.

Task graph scheduling is usually studied using the so-called macro-dataflow model, which
is widely used in the scheduling literature: see the survey papers [20, 23, 7, 8] and the
references therein. This model was introduced for homogeneous processors, and has been
(straightforwardly) extended for heterogeneous computing resources. In a word, there is a
limited number of computing resources, or processors, to execute the tasks. Communication
delays are taken into account as follows: let task t be a predecessor of task t′ in the task
graph; if both tasks are assigned to the same processor, no communication overhead is paid,
the execution of t′ can start right at the end of the execution of t; on the contrary, if t and
t′ are assigned to two different processors P and P ′, a communication delay is paid. More
precisely, if P finishes the execution of t at time-step x, then P ′ cannot start the execution of
t′ before time-step x + comm(t, t′, P, P ′), where comm(t, t′, P, P ′) is the communication delay
(which depends upon both tasks t and t′ and both processors P and P ′). Because memory
accesses are typically one order of magnitude cheaper than inter-processor communications,
it makes good sense to neglect them when t and t′ are assigned to the same processor.

However, the major flaw of the macro-dataflow model is that communication resources
are not limited. First, a processor can send (or receive) an arbitrary number of messages in
parallel, hence an unlimited number of communication ports is assumed (this explains the
name macro-dataflow for the model). Second, the number of messages that can simultaneously
circulate between processors is not bounded, hence an unlimited number of communications
can simultaneously take place on a given link. In other words, the communication network is
assumed to be contention-free, which of course is not realistic as soon as the processor number
exceeds a few units.

We strongly believe that the macro-dataflow task graph scheduling model should be mod-
ified to take communication resources into account. Recent papers [13, 15, 24, 25] made a
similar statement and introduced variants of the model (see the discussion of related work in
Section 3). In this paper, we suggest to use the bi-directional one-port architectural model,
where each processor can communicate (send and/or receive) with at most one other processor
at a given time-step. In other words, a given processor can simultaneously send a message,
receive another message, and perform some (independent) computation.

There is yet another reason to revisit traditional list scheduling techniques. With the
advent of large-scale heterogeneous platforms such as clusters and grids, resource failures
(processors/links) are more likely to occur and have an adverse effect on the applications.
Consequently, there is an increasing need for developing techniques to achieve fault tolerance,
i.e., to tolerate an arbitrary number of failures during execution. Scheduling for heteroge-
neous platforms and fault tolerance are difficult problems in their own, and aiming at solving
them together makes the problem even harder. For instance, the latency of the application
will increase if we want to tolerate several failures, even if no actual failure happens during
execution.

In this paper, we introduce a Contention-Aware Fault Tolerant (CAFT) scheduling al-
gorithm that aims at tolerating multiple processor failures without sacrificing the latency.
CAFT is based on an active replication scheme to mask failures, so that there is no need



2 A. Benoit, M. Hakem, Y. Robert

for detecting and handling such failures. Major achievements include a low complexity, and
a drastic reduction of the number of additional communications induced by the replication
mechanism. Experimental results demonstrate that our algorithm outperforms other algo-
rithms that were initially designed for the macro-dataflow model, such as FTSA [4], a fault
tolerant extension of HEFT [27], and FTBAR [10].

The rest of the paper is organized as follows: Section 2 presents basic definitions and
assumptions. We overview related work in Section 3. Then we outline the principle of
FTSA [4] and FTBAR [10] as well as their adaptation to the one-port model in Section 4.
Section 5 describes the new CAFT algorithm. We experimentally compare CAFT with FTSA
and FTBAR in Section 6; the results assess the very good behavior of our algorithm. Finally,
we conclude in Section 7.

2 Framework

The execution model for a task graph is represented as a weighted Directed Acyclic Graph
(DAG) G = (V,E), where V is the set of nodes corresponding to the tasks, and E is the set
of edges corresponding to the precedence relations between the tasks. In the following we
use the term node or task indifferently; v = |V | is the number of nodes, and e = |E| is the
number of edges. In a DAG, a node without any predecessor is called an entry node, while a
node without any successor is an exit node. For a task t in G, Γ−(t) is the set of immediate
predecessors and Γ+(t) denotes its immediate successors. We let V be the edge cost function:
V(ti, tj) represents the volume of data that task ti needs to send to task tj .

A target parallel heterogeneous system consists of a finite number of processors P =
{P1, P2, . . . , Pm} connected by a dedicated communication network. The processors are fully
connected, i.e, every processor can communicate with every other processor in the system.
The link between processors Pk and Ph is denoted by lPkPh

. As stated above, in the traditional
macro-dataflow model, there is no contention for communications ressources, and an unlimited
number of communications can be executed concurrently. The bi-directional one-port model
considered in this work deals with communication contention as follows:

• At a given time-step, any processor can send a message to, and receive a message
from, at most one other processor. Network interfaces are assumed full-duplex in this
bidirectional model.

• Communication and (independent) computation may fully overlap. As in the traditional
model, a processor can execute at most one task at each time-step.

• Communications that involve disjoint pairs of sending/receiving processors can occur in
parallel.

Several variants could be considered, such as uni-directional communications, or no com-
munication/computation overlap. But the bi-directional one-port model seems closer to the
actual capabilities of modern networks (see the discussion in Section 3).

The computational heterogeneity of tasks is modeled by a function E : V ×P → R+, which
represents the execution time of each task on each processor in the system: E(t, Pk) denotes
the execution time of t on Pk, 1 ≤ k ≤ m. The heterogeneity in terms of communications
is expressed by W (ti, tj) = V(ti, tj).d(Pk, Ph), where task ti is mapped on processor Pk, task



Realistic Models and Fault Tolerance Scheduling 3

tj is mapped on processor Ph, and d(Pk, Ph) is the time required to send a unit length data
from Pk to Ph. The communication has no cost if two tasks in precedence are mapped on the
same processor: d(Pk, Pk) = 0.

For a given graph G and processor set P, g(G,P) is the granularity, i.e., the ratio of the
sum of slowest computation times of each task, to the sum of slowest communication times
along each edge. If g(G,P) ≥ 1, the task graph is said to be coarse grain, otherwise it is fine
grain. For coarse grain DAGs, each task receives or sends a small amount of communication
compared to the computation of its adjacent tasks. During the scheduling process, the graph
consists of two parts, the already examined (scheduled) tasks S and the unscheduled tasks
U . Initially U = V .

Our goal is to find a task mapping of the DAG G on the platform P obeying the one-port
model. The objective is to minimize the latency L(G), while tolerating an arbitrary number
ε of processor failures. Our approach is based on an active replication scheme, capable
of supporting ε arbitrary fail-silent (fail-stop) processor failures, hence valid results will be
provided even if ε processors fail.

3 Related work

Contention-aware task scheduling is considered only in a few papers from the literature [13,
15, 24, 25]. In particular, Sinnen and Sousa [24, 25] show through simulations that taking
contention into account is essential for the generation of accurate schedules. They investigate
both end-point and network contention. Here end-point contention refers to the bounded
multi-port model [14]: the volume of messages that can be sent/received by a given processor
is bounded by the limited capacity of its network card. Network contention refers to the one-
port model, which has been advocated by [5, 6] because“current hardware and software do not
easily enable multiple messages to be transmitted simultaneously.” Even if non-blocking multi-
threaded communication libraries allow for initiating multiple send and receive operations,
all these operations “are eventually serialized by the single hardware port to the network.”
Experimental evidence of this fact has recently been reported by Saif and Parashar [22],
who report that asynchronous sends become serialized as soon as message sizes exceed a few
megabytes. Their results hold for two popular implementations of the MPI message-passing
standard, MPICH on Linux clusters and IBM MPI on the SP2. The one-port model fully
accounts for the heterogeneity of the platform, as each link has a different bandwidth. It
generalizes a simpler model studied by Banikazemi [3], Liu [17], and Khuller and Kim [16]. In
this simpler model, the communication time only depends on the sender, not on the receiver:
in other words, the communication speed from a processor to all its neighbors is the same.

All previous scheduling heuristics were developed for minimizing latency on realistic par-
allel platform models, assuming that processors in the system are completely safe. i.e, they
do not deal with fault tolerance.

In multiprocessor systems, fault tolerance can be provided by scheduling multiples copies
(replicas) of tasks on different processors. A large number of techniques for supporting fault-
tolerant systems have been proposed [2, 9, 10, 11, 12, 18, 19, 21, 28]. There are two main
approaches, as described below.

(i) Primary/Backup (passive replication): this is the traditional fault-tolerant approach where
both time and space exclusions are used. The main idea of this technique is that the backup



4 A. Benoit, M. Hakem, Y. Robert

task is activated only if the fault occurs while executing the primary task [19, 28]. To achieve
high schedulability while providing fault-tolerance, the heuristics presented in [2, 9, 18, 21]
apply two techniques while scheduling the primary and backup copies of the tasks:
- backup overloading: scheduling backups for multiple primary tasks during the same time
slot in order to make efficient utilization of available processor time, and
- de-allocation of resources reserved for backup tasks when the corresponding primaries com-
plete successfully.
Note that this technique can be applied only under the assumption that only one processor
may fail at a time.

All algorithms belonging to this class [2, 9, 18, 19, 21, 28] share two common points: (i)
only one processor can fail at any time, and a second processor cannot fail before the system
recovers from the first failure; and (ii) they are designed for the macro-dataflow model.

(ii) Active replication (N-Modular redundancy): this technique is based on space redundancy,
i.e., multiple copies of each task are mapped on different processors, which are run in par-
allel to tolerate a fixed number of failures. For instance, Hashimoto et al. [11, 12] propose
an algorithm that tolerates one processor failure on homogeneous system. This algorithm
exploits implicit redundancy (originally introduced by task duplication in order to minimize
the schedule length) and assumes that some processors are reserved only for realizing fault
tolerance, i.e., the reserved processors are not used for the original scheduling. Girault et
al. present FTBAR, a static real-time and fault-tolerant scheduling algorithm where multiple
processor failures are considered [10]. Recently, we have proposed the FTSA algorithm [4], a
fault tolerant extension of HEFT [27]. We showed that FTSA outperforms FTBAR in terms
of time complexity and solution quality. Here again, FTSA and FTBAR have been designed
for the macro-dataflow model. A brief description of FTSA and FTBAR, as well as their
adaptation to the one-port model, is given in Section 4.

To summarize, all previous fault-tolerant algorithms assume no restriction on communi-
cation ressources, which makes them impractical for real life applications. To the best of our
knowledge, the work presented in this paper is the first to tackle the combination of contention
awareness and fault tolerance scheduling.

4 Fault-tolerant heuristics

In this section, we briefly outline the the main features of FTBAR [10] and FTSA [4], that
both were originally designed for the macro-datflow model. Next we show how to modify
them for an execution under the one-port model.

4.1 FTBAR

FTBAR [10] (Fault Tolerance Based Active Replication) is based on an existing list schedul-
ing algorithm presented in [26]. Using the original notations of [10], at each step n in the
scheduling process, one free task is selected from the list based on the cost function σ(n)(ti, pj),
called schedule pressure. It is computed as follows: σ(n)(ti, pj) = S(n)(ti, pj) + s(ti)−R(n−1).
S(n)(ti, pj) is the earliest start-time (top-down) of ti on pj , similarly, s(ti) is the latest start-
time (bottom-up) of ti and R(n−1) is the schedule length at step n − 1. The selected task-
processor pair is obtained as follows:
i) select for each free task ti, the Npf + 1 processor having the minimum schedule pressure



Realistic Models and Fault Tolerance Scheduling 5

∪l=Npf+1
l=1 σ

(n)
best(ti, pil)← minNpf+1

pj∈P σ(n)(ti, pj).
ii) select the best pair among the previous set, i.e., the one having the maximum schedule
pressure (the most urgent pair) σ

(n)
urgent(t)← maxti∈freelist ∪l=Npf+1

l=1 σ
(n)
best(ti, pil).

The task t is then scheduled on the Npf +1 processors computed at step 1. Ties are bro-
ken randomly. A recursive Minimize-Start-Time procedure proposed by Ahmad and Kwok [1]
is used in attempting to reduce the start time of the selected task t. The time complexity
of the algorithm is O(PN3), where P is the number of processors in the system and N the
number of tasks in G.

4.2 FTSA

FTSA (Fault Tolerant Scheduling Algorithm) has been introduced in [4] as a fault-tolerant
extension of HEFT [27]. At each step of the mapping process, FTSA selects a free task t (a
task is free if it is unscheduled and if all of its predecessors are scheduled) with the highest
priority and simulates its mapping on all processors. The first ε + 1 processors that allow the
minimum finish time of t are kept. The finish time of a task t on processor P depends on the
time when at least one replica of each predecessor of task t has sent its results to P (and, of
course, processor P must be ready). Once this set of processors is determined, the task t is
scheduled on these ε+1 distinct processors (replicas). The latency of the schedule is the latest
time at which at least one replica of each task has been computed, thus it represents a lower
bound (this latency can be achieved if no processor permanently fails during execution). The
upper bound, always achieved even with ε failures, is computed using as a finish time the
completion time of the last replica of a task (instead of the first one for the lower bound). A
formal definition can be found in [4]. The time complexity of the algorithm is O(em2+v log ω),
where ω is the width of the task graph (the maximum number of tasks that are independent
in G). Recall that v is the number of tasks, and e the number of edges in G.

Note that with FTSA, each task of the task graph G is replicated ε + 1 times, because
duplicating each task ε + 1 times is an absolute requirement to resist to ε failures. Therefore
each communication between two tasks in precedence is replicated at most (ε + 1)2 times.
Since there are e edges in G, the total number of messages in the fault tolerant schedule is at
most e(ε+1)2. In some cases, we may have an intra-processor communication, when two tasks
in precedence are mapped on the same processor, so the latter quantity is in fact an upper
bound. Still, the total number of communications induced by the fault-tolerant mechanism is
very large. The same comment applies to FTBAR, where each replica of a task communicates
data to each replica of its successors.

4.3 Adaptation to the one-port model

In order to adapt both FTSA and FTBAR algorithms to the one-port model, we have to take
constraints related to communication resources into account. The idea consists in serializing
incoming and outgoing communications on the links.

A communication c on link l is characterized by its start time S(c, l) and its finish
time F(c, l). Also, we define R(l) as the ready time of a communication link l: R(l) =
max
ck on l

(
F(ck, l)

)
. In the following, we formalize all the one-port constraints:



6 A. Benoit, M. Hakem, Y. Robert

i) Link constraint: For any two communications c, c′ scheduled on link l,

F(c, l) ≤ S(c′, l) ∨ F(c′, l) ≤ S(c, l) (1)

Inequality (1) states that any two communications c and c′ do not overlap on a link.

ii) Sending constraint: For any two communications cij , cij′ sent from a given processor Pi

to two processors Pj , Pj′ ,

F(cij , lij) ≤ S(cij′ , lij′) ∨ F(cij′ , lij′) ≤ S(cij , lij) (2)

iii) Receiving constraint: For any two communications cji, cj′i sent from processors Pj and
Pj′ to the same processor Pi,

S(cji, lji) ≥ F(cj′i, lj′i) ∨ S(cj′i, lj′i) ≥ F(cji, lji) (3)

Inequalities (2) and (3) ensure that any two incoming/outgoing communications c and c′ must
be serialized at their reception/emission site.

Let ti be a task scheduled on processor P . Let SF (P ) be the sending free time of P , i.e,
the time on which the communication cij , 1 ≤ j ≤ |Γ+(ti)|, can start from processor P . The
earliest start time of the communication cij scheduled to the link l and its finish time are
defined by the following equations:

S(cij , l) = max
(
SF (P ),F

(
ti, P

)
,R(l)

)
,

F(cij , l) = S(cij , l) + W (cij , l)
(4)

Thus, communication cij is constrained by both SF (P ), R(l) and the finish time of its source
task ti on P . It can start as soon as the processing of the task is finished only if we have
F(ti, P ) ≥ SF (P ) and F(ti, P ) ≥ R(l).

The start time of task ti on processor P is constrained by communications incoming from
its predecessors that are assigned on other processors. Thus, S(ti, P ) satisfies the following
conditions: it is later than the time when all messages from ti’s predecessors arrive on pro-
cessor P , and it is later than the ready time of processor P , defined as the maximum of finish
time of all tasks already scheduled on P . Let A(c, P ) be the time when communication c
arrives on processor P, and r(P ) be the ready time of P . The start time of ti on P is defined
as follows:

S(ti, P ) = max
(

max
tj∈Γ−(ti)

{
A(cji, P )

}
, r
(
P
))

(5)

where cji is the communication from tj to ti.
The arrival time A(cji, P ) is computed for each predecessor as follows. Let lj be the

communication link that connects the processor on which tj is mapped to P . Let RF (P )
be the receiving free time of P , i.e, the time when P is ready to receive data. We sort
predecessors tj ∈ Γ−(ti) by non-decreasing order of their communication finish time F(cji, lj),
and renumber them from 1 to |Γ−(ti)|.

∀ 1 ≤ j ≤ |Γ−(t)|, A(cji, P )←W (cji, lj)+
max

(
RF (P ),F(c(j−1)i, lj−1),F(cji, lj)−W (cji, lj)

)
with F(c0i, l0) = 0

(6)



Realistic Models and Fault Tolerance Scheduling 7

Equation (6) shows that the arrival time A(c, P ) is constrained by the receiving free time
RF (P ) of P . In addition, it complies with the inequality (3), i.e, concurrent communications
are serialized at the reception site.

5 CAFT scheduling algorithm

The one-port model enforces to serialize communications. But as pointed out above, the
duplication mechanism induces a large number of additional communications. Therefore, we
expect execution time to dramatically increase together with the number of supported fail-
ures. This calls for the design of a variant of FTSA where the number of communications
induced by the replication scheme is drastically reduced. The main idea of the new CAFT
(Contention-Aware Fault Tolerant) scheduling algorithm is to have each replica of a task
communicate to a unique replica of its successors whenever possible, while preserving the
fault tolerance capability (guaranteeing success if at most ε processors fail during execution).
Communicating to a single replica is only possible in special cases, typically for tasks hav-
ing a unique predecessor, or when every replica of the several predecessors are all mapped
onto distinct processors. When these constraints are not satisfied, we greedily add extra
communications to guarantee failure tolerance, as illustrated below through a small example.

In the following, we denote by B(t) the set of ε+1 replicas of a task t. Also, we denote by
t(k) those replicas, for 1 ≤ k ≤ ε + 1. Thus, B(t) = {t(1), ..., t(ε+1)}. P (t(k)) is the processor
on which this replica is scheduled.

Let ti be the current task to be scheduled by CAFT. Consider a predecessor tj of ti,
j ∈ Γ−(ti), that has been replicated on ε + 1 distinct processors. We aim at orchestrating
communications incoming from predecessors tj to ti so that each replica in B(tj) communicates
to only one replica in B(ti) when possible, rather than communicating to all of them as in the
FTSA and FTBAR algorithms.

If ti has only one predecessor t1, then a one-to-one communication scheme resists to ε

failures, as it was proved in [4]. We find the best mapping in which each t
(k)
1 sends data

to exactly one of the t
(ki)
i . The problem becomes more complex when ti has more than one

predecessor, for instance t1, t2 and t3, and replicas of different instances are mapped on a same
processor. For instance, let us have ε = 1, t

(1)
1 and t

(1)
2 mapped on P1, t

(2)
1 and t

(1)
3 mapped

on P2, t
(2)
2 and t

(2)
3 mapped on P3. In all possible schedulings for ti, both t

(1)
i and t

(2)
i need

to receive data from two distinct processors. One processor between P1, P2 and P3 must thus
communicate with both replicas. If this particular processor crashes, both replicas will miss
data to continue execution, and thus the application cannot tolerate this single failure. In such
cases in which a processor is processing several replicas of predecessors and communicating
with different replicas of ti, we need to add extra communications to ensure failure tolerance.

Algorithm 5.1 is the main CAFT algorithm. Tasks are scheduled in an order defined by
the priority of the task: the priority of a free task t is determined by t`(t) + b`(t), where t`(t)
and b`(t) are respectively the top level and the bottom level of task t. The top level t`(t) is
the length of the longest path from an entry (top) node to t (excluding the execution time of
t) in the current partially clustered DAG. The top level of an entry node is zero. Top levels
are computed according to a traversal of the graph in topological order. The bottom level
b`(t) is the length of the longest path starting at t to an exit node in the graph. The bottom
level of an exit node is equal to its execution time. Bottom levels are computed according
to a traversal of the graph in reverse topological order. Note that path lengths are defined



8 A. Benoit, M. Hakem, Y. Robert

as the average sum of edge weights and node weights (see [27, 4]). H(`) is the head function
which returns the first replica/task from a sorted list `, where the list is sorted according to
replicas/tasks priorities (ties are broken randomly). The difficult point consists in deciding
where to place current task t in order to minimize the amount of communications. Also,
communications should be orchestrated to avoid useless data transfer between replicas.

Let us define a singleton processor, as a processor with only one instance/replica t
(k)
j ,

1 ≤ j ≤ |Γ−(ti)|, 1 ≤ k ≤ ε + 1 and X ⊆
⋃j=|Γ−(ti)|

j=1

{
P
(
B(tj)

)}
be the set of such singleton

processors. Let B(tj) be the subset of replicas of each predecessor tj scheduled in X and
λj = |B(tj)|. Let T be a subset of replicas selected from the set

⋃j=|Γ−(ti)|
j=1

{
B(tj)

}
.

Algorithm 5.1 The CAFT Algorithm
1: P = {P1, P2, . . . Pm}; (*Set of processors*)
2: ε← maximum number of supported failures
3: P = ∅;
4: Compute b`(t) for each task t in G and set t`(t) = 0 for each entry task t;
5: S = ∅ ; U = V ; (*Mark all tasks as unscheduled*)
6: α = ∅ ; (*list of free tasks*)
7: Put entry tasks in α;
8: while U 6= ∅ do
9: t← H(α) ; (*Select task with highest priority *)

10: ∀ 1 ≤ j ≤ |Γ−(ti)|, compute λj ;
11: θ ← min

j
(λj); i = 0;

12: while i < θ do
13: One-To-One-Mapping(t);
14: i = i + 1;
15: end while
16: while θ < ε + 1 do
17: Compute F(t, Pk) for 1 ≤ k ≤ m and Pk /∈ P using equation (6);
18: Keep the (task,processor) pair that allows the minimum finish time of t;
19: θ = θ + 1;
20: end while
21: Put t in S and update priority values of t’s successors;
22: Put t’s free successors in α;
23: U ← U\{t};
24: end while

When there are enough singleton processors with replicas of predecessor tasks, we use the
one-to-one mapping procedure described in Algorithm 5.2. This name stems from the fact
that each replica in

⋃j=|Γ−(ti)|
j=1 B(tj) should communicate to exactly one replica in B(ti). The

number of times the one-to-one-mapping procedure can be called for scheduling the ε + 1
replicas of the current task is determined by θ ← min

j
(λj). In this procedure, we denote by

P ⊆ P the subset of “locked” processors which are already either involved in a communication
with a replica of ti, or processing it (i.e., the execution of a replica of B(ti) has been scheduled
on such a processor).

The computation of the finish time of ti is simulated m times, once for every processor.



Realistic Models and Fault Tolerance Scheduling 9

Algorithm 5.2 One-To-One-Mapping(ti)
1: k = 0;
2: while k ≤ m and Pk /∈ P do
3: ∀ 1 ≤ j ≤ |Γ−(ti)|, sort the set B(tj) by non decreasing order of their communication

finish time F(c, l) on the links;
4: T ←

⋃
1≤j ≤|Γ−(ti)|H

(
B(tj)

)
;

5: Simulate the mapping of ti on processor Pk as well as the communications induced by
the replicas of the set T to the links;

6: k = k + 1;
7: end while
8: Select the (task, processor) pair that allows the earliest finish time of ti as computed by

equation (6);
9: Schedule ti onto the corresponding processor (let’s call it P ∗) and the incoming commu-

nications to the corresponding links;
10: Update the set P

P← P
⋃

P ∗
⋃{

j=|Γ−(ti)|⋃
j=1

P

(
H
(
B(tj)

))}
(7)

11: Update each sorted list B(t);
∀ 1 ≤ j ≤ |Γ−(ti)|, B(tj)← B(tj) \ H

(
B(tj)

)

Hence the mapping of each incoming communications onto the links is also simulated m times.
To obtain an accurate view of the communications finish time on their respective links and the
contention, the incoming communications are removed from the links before the procedure is
repeated on the next processor.

In general, we cannot give an analytical expression of the actual number of communications
induced by the CAFT algorithm. Still, we can bound the number of communications induced
by CAFT for special graphs:

Proposition 5.1 The total number of messages generated by CAFT for Fork/Outforest graphs
is at most e(ε + 1).

Proof: An outforest graph is a directed graph in which the indegree of every task t in G is at
most one |Γ−(t)| = 1. To resist to ε failures, each task t ∈ G should be replicated ε+1 times.
Therefore, at each step of the mapping process we have ∩P

(
B(t∗ ≺ t)

)
= ∅ and |X | = θ = ε+1.

Thus, the one-to-one mapping procedure is performed θ = ε+1 times. This ensures that each
replica t

(k)
∗ , 1 ≤ k ≤ ε + 1 sends its data results to one and only one replica of each successor

task. Therefore, each task t ∈ G will receive its input data |Γ−(t)| = 1 times. However, in
some cases, we may have an intra-processor communication, when two replicas of two tasks
in precedence are mapped onto the same processor. Thus, summing up for all the v tasks in
G, the total number of messages is at most

∑v
i=1 |Γ−(t)|(ε+1) = (v− 1)(ε+1) = e(ε+1). �

For general graphs, the number of communications will also be bounded by e(ε + 1) if at
each step replicas are assigned to different processors (same proof as above). This condition
is not guaranteed to hold, and we will have to greedily add some additional communications
to guarantee the robustness of CAFT. However, practical experiments (see Section 6) show



10 A. Benoit, M. Hakem, Y. Robert

that CAFT always drastically reduces the total number of messages as compared to FTBAR
or FTSA, thereby achieving much better performance.

Proposition 5.2 The schedule generated by the CAFT algorithm is valid and resists to ε
failures.

When a current task t to be mapped has more than one predecessor and θ = 0, the one-to-one
mapping procedure is not executed and therefore CAFT algorithm performs more than e(ε+1)
communications. In this case we can resist to ε failures as it was proved in [4]. Therefore,
we just need to check if the mapping of the θ replicas performed by the one-to-one mapping
procedure resists to θ − 1 failures.

Proof: The proof is composed of two parts:
i) Deadlock/Mutual exclusion: First we prove that we never fall into a deadlock trap as

described by the example below. Consider a simple task graph composed of two tasks in prece-
dence t1 ≺ t2. Assume that ε = 1, B(t1) = {t(1)1 , t

(2)
1 } whith P

(
B(t1)

)
= {P1, P2} and B(t2) =

{t(1)
2 , t

(2)
2 } whith P

(
B(t2)

)
= {P1, P3}. If we retain the communications P1(t

(1)
1 ) → P3(t

(2)
2 ) and

P2(t
(2)
1 ) → P1(t

(1)
2 ), then the algorithm is blocked by the failure of P1. But if we enforce that

the only edge from P1 goes to itself, then we resist to 1 failure.
Mutual exclusion is guaranteed by equation (7)(Algorithm 5.2, line 10). Indeed, by simu-

lating the mapping of t2 on P1, P2 and P3, we have two possible scenarios:
1) - The first replica t

(1)
2 is mapped either on P1 or on P2, and in either cases the one assigned

to the replica will be locked by equation (7). Suppose for instance that P1 was chosen/locked,
thus, to resist to 1 failure, the second replica t

(2)
2 should be mapped on P2∨P3. If P2 is selected,

in this case we have two internal communications. If P3 is selected, we have one internal com-
munication P1(t

(1)
1 )→ P1(t

(1)
2 ) and an inter-processor communication P2(t

(2)
1 )→ P3(t

(2)
2 ).

2) - The first replica t
(1)
2 is mapped on P3, then both P3 and P1∨P2 are locked by equation (7).

Suppose that P1 is locked, then second replica t
(2)
2 should be mapped on P2. So we have an

internal communication between P2(t
(2)
1 ) → P2(t

(1)
2 ) and an inter-processor communication

P1(t
(1)
1 )→ P3(t

(2)
2 ).

In both scenarios, we resist to 1 failure.
All processors in P remain locked during the mapping process of the ε + 1 replicas of a

task. They are unlocked only before the next step, i.e, before the CAFT algorithm is repeated
for the next critical free task.

ii) Space exclusion: The one-to-one mapping procedure is based on an active replication
scheme with space exclusion. Thus, each task is replicated θ times onto θ distinct processors.
We have at most θ − 1 processor failures at the same time. So at least one copy of each task
is executed on a fault free processor. �

Theorem 5.1 The time complexity of CAFT is:

O
(
em(ε + 1)2 log(ε + 1) + v log ω

)
Proof: The proof is composed of two parts:

i) One-To-One Mapping Procedure (Algorithm 5.2): The main computational cost of this
procedure is spent in the while loop (Lines 2 to 7). Line 5 costs O(|Γ−(ti)|m), since all
the instances/replicas in T of the immediate predecessors tj of task ti need to be examined



Realistic Models and Fault Tolerance Scheduling 11

on each processor Pk, k = 1 . . .m. Line 3 costs O
(
|Γ−(ti)|(ε + 1) log(ε + 1)

)
for sorting the

lists B(tj), 1 ≤ j ≤ |Γ−(ti)|. Line 7 costs O
(
|Γ−(ti)| log(ε + 1)

)
for finding the head of

the lists B(tj), 1 ≤ j ≤ |Γ−(ti)|. Thus, the cost of this procedure for the whole m loops is
O
(
|Γ−(ti)|(ε + 1)m log(ε + 1)

)
.

ii) CAFT (Algorithm 5.1): Computing b`(t) (line 4) takes O(e + v). Insertion or deletion
from α costs O(log |α|) where |α| ≤ ω, the width of the task graph, i.e., the maximum number
of tasks that are independent in G. Since each task in a DAG is inserted into α once and
only once and is removed once and only once during the entire execution of CAFT, the time
complexity for α management is in O(v log ω). The main computational cost of CAFT is
spent in the while loop (Lines 8 to 24). This loop is executed v times. Line 9 costs O(log ω)
for finding the head of α. Line 10 costs |Γ−(ti)|m to determine λj . The two loops (12 to
15) and (16 to 20) are excuted ε + 1 times. Line 17 costs O(|Γ−(ti)|(ε + 1)m), since all
the instances/replicas of the immediate predecessors tj of task ti need to be examined on
each processor Pk, k = 1 . . .m. Line 21 costs O(|Γ+(t)|) to update the priority values of the
immediate successors of t, and similarly, the cost for the v loops of this line is O(e). Thus,
the total cost of CAFT for the v tasks in G is

v∑
i=1

O(|Γ−(ti)|m(ε + 1)2 log(ε + 1) + e + v log ω)

= O
(
em(ε + 1)2 log(ε + 1) + v log ω

)
Because ε < m, we derive the upper bound:

O
(
em3 log m + v log ω

)
�

6 Experimental results

We assess the practical significance and usefulness of the CAFT algorithm through simulation
studies. We compare the performance of CAFT with the two most relevant fault tolerant
scheduling algorithms, namely FTSA and FTBAR. We use randomly generated graphs, whose
parameters are consistent with those used in the literature [10, 21]. We characterize these
random graphs with three parameters: (i) the number of tasks, chosen uniformly from the
range [80, 120]; (ii) the number of incoming/outgoing edges per task, which is set in [1, 3];
and (iii) the granularity of the task graph g(G). The granularity indicates the ratio of the
average computation time of the tasks to that of communication time. We consider two types
of graphs, with a granularity (A) in [0.2, 2.0] and increments of 0.2, and (B) in [1, 10] and
increments of 1. Two types of platforms are considered, first with 10 processors and ε = 1 or
ε = 3, and then with 20 processors and ε = 5. To account for communication heterogeneity in
the system, the unit message delay of the links and the message volume between two tasks are
chosen uniformly from the ranges [0.5, 1] and [50, 150] respectively. Each point in the figures
represents the mean of executions on 60 random graphs. The metrics which characterize the
performance of the algorithms are the latency and the overhead due to the active replication
scheme. The fault free schedule is defined as the schedule generated by each algorithm without
replication, assuming that the system is completely safe. For each algorithm, we compare the
fault free version (without replication) and the fault tolerant algorithm. Note that the fault-
free version of CAFT reduces to an implementation of HEFT, the reference heuristic in the
literature [27]. Also recall that the upper bounds of the schedules are computed as explained
in Section 4.2 or [4]. Each algorithm is evaluated in terms of achieved latency and fault



12 A. Benoit, M. Hakem, Y. Robert

tolerance overhead, given by the following formula:
Overhead =

CAFT0|FTSA0|FTBAR0|CAFTc|FTSAc|FTBARc − CAFT∗

CAFT∗

where the superscripts ∗, c and 0 respectively denote the latency achieved by the fault free
schedule, the latency achieved by the schedule when processors effectively fail (crash) and the
latency achieved with 0 crash.

Note that for each algorithm, if a replica of task t and a replica tz∗ of its predecessor t∗
are mapped on the same processor P, then there is no need for other copies of t∗ to send
data to processor P. Indeed, if P is operational, then the copy of t on P will receive the data
from tz∗ (intra-processor communication). Otherwise, P is down and does not need to receive
anything.

Figures 1(a), 2(a) and 3(a) clearly show that CAFT outperforms both FTSA and FTBAR.
These results indicate that network contention has a significant impact on the latency achieved
by FTSA and FTBAR. This is because allocating many copies of each task will severely
increase the total number of communications required by the algorithm: we move from e
communications (one per edge) in a mapping with no replication, to e(ε + 1)2 in FTSA and
FTBAR, a quadratic increase. In contrast, the CAFT algorithm is not really sensitive to the
contention since it uses the one-to-one mapping procedure to reduce this overhead down to,
in the most favorable cases, a linear number e(ε+1) of communications. In addition, we find
that CAFT achieves a really good latency (with 0 crash), which is quite close to the fault free
version. As expected, its upper bound is close to the latency with 0 crash since we keep only
the best communication edges in the schedule.

We have also compared the behavior of each algorithm when processors crash down by
computing the real execution time for a given schedule rather than just bounds (upper bound
and latency with 0 crash). Processors that fail during the schedule process are chosen uni-
formly from the range [1, 10]. The first observation from Figures 1(b) and 2(b) is that even
when crash occurs, CAFTc behaves always better than FTSAc and FTBARc. This is because
CAFT accounts for communication overhead during the mapping process by removing some
of the communications. The second interesting observation is that the latency achieved by
both FTSA and FTBAR compared to the schedule length generated with 0 crash sometimes
increases (see 1(b)) and other times decreases (2(b)). To explain this phenomenon, consider
the example of a simple task graph composed of three tasks in precedence (t1 ≺ t3) ∧ (t2 ≺ t3)
and P = {Pm, 1 ≤ m ≤ 6}. Assume that ε = 1, B(t1) = {t(1)1 , t

(2)
1 }, B(t2) = {t(1)2 , t

(2)
2 } and

B(t3) = {t(1)3 , t
(2)
3 } with P

(
B(t1)

)
= {P1, P2}, P

(
B(t2)

)
= {P3, P4} and P

(
B(t3)

)
= {P5, P6} re-

spectively. Assume that the latency achieved with 0 crash is determined by the replica of
t
(1)
3 .

For the sake of simplicity, assume that the sorted list of the instances/replicas of both B(t1) and
B(t2) (sorting is done by non decreasing order of their communication finish time F(c, l) on the links)
are in this order {t(1)1 , t

(2)
1 , t

(1)
2 , t

(2)
2 }. t

(1)
3 will receive its input data 4 times. But as soon as it receives its

input data from t
(1)
2 , the task is executed and ignores the later incoming data from t

(2)
2 . So, without

failures and since communications are serialized at the reception, 3 communications are taken into
account so that t

(1)
3 can run earlier. But, in the presence of 1 failure, two scenarios are possible:

i) if P2 fails, the finish time of the replica t
(1)
3 will be sooner than its estimated finish time; ii) if P2 and

P3 fail, the start time of the replica is delayed until the arrival of its input data from t
(2)
2 . This leads

to an increase of its finish time and consequently to an increase of the latency achieved with crash.
Applying this reasoning to all tasks of G, the impact of processors crash are spread throughout

the execution of the application, which may lead either to a reduction or to an increase of the schedule
length.



Realistic Models and Fault Tolerance Scheduling 13

This behavior is identical when we consider larger platforms, as illustrated in Figure 3.

We also evaluated the impact of the granularity on performance of each algorithm. Thus, Figures 4,
5 and 6 reveal that when the g(G) value is small, the latency of CAFT is significantly better than that
of FTSA and FTBAR. This is explained by the fact that for small g(G) values, i.e. high communica-
tion costs, contention plays quite a significant role. However, the impact of contention becomes less
important as the granularity g(G) increases, since larger g(G) values result in smaller communication
times. Consequently, the fault tolerance overhead of FTSA diminishes gradually and becomes closer to
that of CAFT as the g(G) value goes up. However, the fault tolerance overhead of FTBAR increases
with the increasing values of the granularity. The reason of the poorer performance of FTBAR can be
explained by the inconvenience of the schedule pressure function adopted for the processor selection.
Processors are selected in such a way that the schedule pressure value is minimized. Doing so, tasks
are not really mapped on those processors which would allow them to finish earlier.

Finally, we readily observe from all figures that we deal with two conflicting objectives. Indeed,
the fault tolerance overhead increases together with the number of supported failures. We also see
that latency increases together with granularity, as expected. In addition, it is interesting to note that
when the number of failures increases, there is not really much difference in the increase of the latency
achieved by CAFT, compared to the schedule length generated with 0 crash. This is explained by the
fact that the increase in the schedule length is already absorbed by the replication done previously, in
order to resist to eventual failures.

To summarize, the simulation results show that CAFT is considerably superior to the other two
algorithms in all the cases tested (0.2 ≤ g(G) ≤ 10,m = {10, 20}). They also indicate that network
contention has a significant impact on the latency achieved by FTSA and FTBAR. Thus, this ex-
perimental study validates the usefulness of our algorithm CAFT, and confirms that when dealing
with realistic model platforms, contention should absolutely be considered in order to obtain improved
schedules. To the best of our knowledge, the proposed algorithm is the first to address both problems
of network contention and fault-tolerance scheduling.

7 Conclusion

In this paper we have presented CAFT, an efficient fault-tolerant scheduling algorithm for hetero-
geneous systems based on an active replication scheme. CAFT is able to dramatically reduce the
communication overhead induced by task replication, which turns out a key factor in improving per-
formance when dealing with realistic, communication contention aware, platform models.

To assess the performance of CAFT, simulation studies were conducted to compare it with (the
one-port adaptation of) FTBAR and FTSA, which seem to be its main direct competitors from the
literature. We have shown that CAFT is very efficient both in terms of computational complexity and
quality of the resulting schedule.

An easy extension of CAFT would be to adapt it to sparse interconnection graphs (while we had a
clique in this paper). On such platforms, each processor is provided with a routing table which indicates
the route to be used to communicate with another processor. To achieve contention awareness, at most
one message can circulate on a given link at a given time-step, so we need to schedule long-distance
communications carefully.

Further work will be devoted to implementing more complex heuristics that depart from the main
principle of list scheduling heuristics. Instead of considering a single task (the one with highest priority)
and assigning all its replicas to the currently best available resources, why not consider say, 10 ready
tasks, and assign all their replicas in the same decision making procedure? The idea would be to
design an extension of the one-to-one mapping procedure to a set of independent tasks, in order to
better load balance processor and link usage.



14 A. Benoit, M. Hakem, Y. Robert

 5

 10

 15

 20

 25

 30

 35

 40

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 5

 10

 15

 20

 25

 30

 35

 40

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA With 1 Crash

FTBAR With 0 Crash

FTBAR With 1 Crash
CAFT With 0 Crash
CAFT With 1 Crash (b)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Av
er

ag
e 

O
ve

rH
ea

d 
(%

)

Granularity

FTSA With 0 Crash
FTSA With 1 Crash

FTBAR With 0 Crash

FTBAR With 1 Crash
CAFT With 0 Crash
CAFT With 1 Crash (c)

Figure 1: Average normalized latency and overhead comparison between CAFT, FTSA and
FTBAR (Bound and Crash cases, ε = 1)



Realistic Models and Fault Tolerance Scheduling 15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA With 2 Crash

FTBAR With 0 Crash

FTBAR With 2 Crash
CAFT With 0 Crash
CAFT With 2 Crash (b)

 200

 300

 400

 500

 600

 700

 800

 900

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Av
er

ag
e 

O
ve

rH
ea

d 
(%

)

Granularity

FTSA With 0 Crash
FTSA With 2 Crash

FTBAR With 0 Crash

FTBAR With 2 Crash
CAFT With 0 Crash
CAFT With 2 Crash (c)

Figure 2: Average normalized latency and overhead comparison between CAFT, FTSA and
FTBAR (Bound and Crash cases, ε = 3)



16 A. Benoit, M. Hakem, Y. Robert

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA With 3 Crash

FTBAR With 0 Crash

FTBAR With 3 Crash
CAFT With 0 Crash
CAFT With 3 Crash (b)

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

Av
er

ag
e 

O
ve

rH
ea

d 
(%

)

Granularity

FTSA With 0 Crash
FTSA With 3 Crash

FTBAR With 0 Crash

FTBAR With 3 Crash
CAFT With 0 Crash
CAFT With 3 Crash (c)

Figure 3: Average normalized latency and overhead comparison between CAFT, FTSA and
FTBAR (Bound and Crash cases, ε = 5,m = 20)



Realistic Models and Fault Tolerance Scheduling 17

 0

 5

 10

 15

 20

 25

 30

 35

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 0

 5

 10

 15

 20

 25

 30

 35

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA With 1 Crash

FTBAR With 0 Crash

FTBAR With 1 Crash
CAFT With 0 Crash
CAFT With 1 Crash (b)

 50

 100

 150

 200

 250

 300

 350

 1  2  3  4  5  6  7  8  9  10

Av
er

ag
e 

O
ve

rH
ea

d 
(%

)

Granularity

FTSA With 0 Crash
FTSA With 1 Crash

FTBAR With 0 Crash

FTBAR With 1 Crash
CAFT With 0 Crash
CAFT With 1 Crash (c)

Figure 4: Average normalized latency and overhead comparison between CAFT, FTSA and
FTBAR (Bound and Crash cases, ε = 1)



18 A. Benoit, M. Hakem, Y. Robert

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA With 2 Crash

FTBAR With 0 Crash

FTBAR With 2 Crash
CAFT With 0 Crash
CAFT With 2 Crash (b)

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 1  2  3  4  5  6  7  8  9  10

Av
er

ag
e 

O
ve

rH
ea

d 
(%

)

Granularity

FTSA With 0 Crash
FTSA With 2 Crash

FTBAR With 0 Crash

FTBAR With 2 Crash
CAFT With 0 Crash
CAFT With 2 Crash (c)

Figure 5: Average normalized latency and overhead comparison between CAFT, FTSA and
FTBAR (Bound and Crash cases, ε = 3)



Realistic Models and Fault Tolerance Scheduling 19

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA-UpperBound

FTBAR With 0 Crash
FTBAR-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT
FaultFree-FTBAR (a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  2  3  4  5  6  7  8  9  10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

FTSA With 0 Crash
FTSA With 3 Crash

FTBAR With 0 Crash

FTBAR With 3 Crash
CAFT With 0 Crash
CAFT With 3 Crash (b)

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1  2  3  4  5  6  7  8  9  10

Av
er

ag
e 

O
ve

rH
ea

d 
(%

)

Granularity

FTSA With 0 Crash
FTSA With 3 Crash

FTBAR With 0 Crash

FTBAR With 3 Crash
CAFT With 0 Crash
CAFT With 3 Crash (c)

Figure 6: Average normalized latency and overhead comparison between CAFT, FTSA and
FTBAR (Bound and Crash cases, ε = 5,m = 20)



20 A. Benoit, M. Hakem, Y. Robert

References

[1] Ishfaq Ahmad and Yu-Kwong Kwok. On exploiting task duplication in parallel program schedul-
ing. IEEE Transactions on Parallel and Distributed Systems, 1998.

[2] R. Al-Omari, Arun K. Somani, and G. Manimaran. Efficient overloading techniques for primary-
backup scheduling in real-time systems. Journal of Parallel and Distributed Computing, 64(5):629–
648, 2004.

[3] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient collective communication on heteroge-
neous networks of workstations. In Proceedings of the 27th International Conference on Parallel
Processing (ICPP’98). IEEE Computer Society Press, 1998.

[4] Anne Benoit, Mourad Hakem, and Yves Robert. Fault Tolerant Scheduling of Precedence Task
Graphs on Heterogeneous Platforms. Research Report 2008-03, LIP, ENS Lyon, France, January
2008. Available at graal.ens-lyon.fr/~abenoit/.

[5] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication in dis-
tributed heterogeneous systems. In ICDCS’99 19th International Conference on Distributed Com-
puting Systems, pages 15–24. IEEE Computer Society Press, 1999.

[6] P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communication in dis-
tributed heterogeneous systems. Journal of Parallel and Distributed Computing, 63:251–263,
2003.

[7] P. Chrétienne, E. G. Coffman Jr., J. K. Lenstra, and Z. Liu, editors. Scheduling Theory and its
Applications. John Wiley and Sons, 1995.

[8] H. El-Rewini, H. H. Ali, and T. G. Lewis. Task scheduling in multiprocessing systems. Computer,
28(12):27–37, 1995.

[9] Sunondo Ghosh, Rami Melhem, and Daniel Mosse. Fault-tolerance through scheduling of aperiodic
tasks in hard real-time multiprocessor systems. IEEE Transactions on Parallel and Distributed
Systems, 8(3):272–284, 1997.

[10] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel. An algorithm for automatically obtaining
distributed and fault-tolerant static schedules. In International Conference on Dependable Systems
and Networks, DSN’03, 2003.

[11] K. Hashimito, T. Tsuchiya, and T. Kikuno. A new approach to realizing fault-tolerant multipro-
cessor scheduling by exploiting implicit redundancy. In Proc. of the 27th International Symposium
on Fault-Tolerant Computing (FTCS ’97), page 174, 1997.

[12] K. Hashimito, T. Tsuchiya, and T. Kikuno. Effective scheduling of duplicated tasks for fault-
tolerance in multiprocessor systems. IEICE Transactions on Information and Systems, E85-
D(3):525–534, 2002.

[13] L. Hollermann, T. S. Hsu, D. R. Lopez, and K. Vertanen. Scheduling problems in a practical
allocation model. J. Combinatorial Optimization, 1(2):129–149, 1997.

[14] B. Hong and V.K. Prasanna. Distributed adaptive task allocation in heterogeneous comput-
ing environments to maximize throughput. In International Parallel and Distributed Processing
Symposium IPDPS’2004. IEEE Computer Society Press, 2004.

[15] T. S. Hsu, J. C. Lee, D. R. Lopez, and W. A. Royce. Task allocation on a network of processors.
IEEE Trans. Computers, 49(12):1339–1353, 2000.

[16] S. Khuller and Y.A. Kim. On broadcasting in heterogenous networks. In Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1011–1020. Society for
Industrial and Applied Mathematics, 2004.

graal.ens-lyon.fr/~abenoit/


Realistic Models and Fault Tolerance Scheduling 21

[17] P. Liu. Broadcast scheduling optimization for heterogeneous cluster systems. Journal of Algo-
rithms, 42(1):135–152, 2002.

[18] G. Manimaran and C. Siva Ram Murthy. A fault-tolerant dynamic scheduling algorithm for
multiprocessor real-time systems and its analysis. IEEE Transactions on Parallel and Distributed
Systems, 9(11):1137–1152, 1998.

[19] Martin Naedele. Fault-tolerant real-time scheduling under execution time constraints. In Proc.
of the Sixth International Conference on Real-Time Computing Systems and Applications, page
392, 1999.

[20] M. G. Norman and P. Thanisch. Models of machines and computation for mapping in multicom-
puters. ACM Computing Surveys, 25(3):103–117, 1993.

[21] Xiao Qin and Hong Jiang. A novel fault-tolerant scheduling algorithm for precedence constrained
tasks in real-time heterogeneous systems. Parallel Computing, 32(5):331–346, 2006.

[22] T. Saif and M. Parashar. Understanding the behavior and performance of non-blocking com-
munications in MPI. In Proceedings of Euro-Par 2004: Parallel Processing, LNCS 3149, pages
173–182. Springer, 2004.

[23] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in parallel and
distributed systems. IEEE Computer Science Press, 1995.

[24] O. Sinnen and L. Sousa. Experimental evaluation of task scheduling accuracy: Implications for
the scheduling model. IEICE Transactions on Information and Systems, E86-D(9):1620–1627,
2003.

[25] O. Sinnen and L. Sousa. Communication contention in task scheduling. IEEE Transactions on
Parallel and Distributed Systems, 16(6):503–515, 2005.

[26] Yves Sorel. Massively parallel computing systems with real-time constraints: the ”algorithm
architecture adequation”. In Proc. of Massively Parallel Comput. Syst., MPCS, 1994.

[27] H. Topcuoglu, S. Hariri, and M. Y. Wu. Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans. Parallel Distributed Systems, 13(3):260–274, 2002.

[28] Y.Oh and S.H.Son. Scheduling real-time tasks for dependability. Journal of Operational Research
Society, 48(6):629–639, 1997.


	1 Introduction
	2 Framework
	3 Related work
	4 Fault-tolerant heuristics
	4.1 FTBAR
	4.2 FTSA
	4.3 Adaptation to the one-port model

	5 CAFT scheduling algorithm
	6 Experimental results
	7 Conclusion

