
HAL Id: hal-02102604
https://hal-lara.archives-ouvertes.fr/hal-02102604v1

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing latency and reliability of pipeline workflow
applications

Anne Benoit, Veronika Rehn-Sonigo, Yves Robert

To cite this version:
Anne Benoit, Veronika Rehn-Sonigo, Yves Robert. Optimizing latency and reliability of pipeline work-
flow applications. [Research Report] LIp RR-2007-43, Laboratoire de l’informatique du parallélisme.
2007, 2+11p. �hal-02102604�

https://hal-lara.archives-ouvertes.fr/hal-02102604v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Optimizing Latency and Reliability of

Pipeline Workflow Applications

Anne Benoit ,

Veronika Rehn-Sonigo ,

Yves Robert

November 2007

Research Report No RR2007-43

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique :lip@ens-lyon.fr

Optimizing Latency and Reliability of Pipeline Workflow

Applications

Anne Benoit , Veronika Rehn-Sonigo , Yves Robert

November 2007

Abstract
Mapping applications onto heterogeneous platforms is a difficult chal-
lenge, even for simple application patterns such as pipeline graphs. The
problem is even more complex when processors are subject to failure
during the execution of the application. In this paper, we study the
complexity of a bi-criteria mapping which aims at optimizing the la-
tency (i.e., the response time) and the reliability (i.e., the probability
that the computation will be successful) of the application. Latency is
minimized by using faster processors, while reliability is increased by
replicating computations on a set of processors. However, replication
increases latency (additional communications, slower processors). The
application fails to be executed only if all the processors fail during
execution. While simple polynomial algorithms can be found for fully
homogeneous platforms, the problem becomes NP-hard when tackling
heterogeneous platforms. This is yet another illustration of the addi-
tional complexity added by heterogeneity.

Keywords: Heterogeneity, scheduling, complexity results, reliability, response time.

Résumé
L’ordonnancement et l’allocation des applications sur plates-formes hété-
rogènes sont des problèmes cruciaux, même pour des applications simples
comme des graphes en pipeline. Le problème devient même encore plus
complexe quand les processeurs peuvent tomber en panne pendant l’exé-
cution de l’application. Dans cet article, nous étudions la complexité
d’une allocation bi-critère qui vise à optimiser la latence (i.e., le temps
de réponse) et la fiabilité (i.e., la probabilité que le calcul réussisse)
de l’application. La latence est minimisée en utilisant des processeurs
rapides, tandis que la fiabilité est augmentée en répliquant les calculs
sur un ensemble de processeurs. Toutefois, la réplication augmente la
latence (communications additionnelles et processeurs moins rapides).
L’application échoue à être exécutée seulement si tout les processeurs
échouent pendant l’exécution. Des algorithmes simples en temps polyno-
mial peuvent être trouvés pour plates-formes complètement homogènes,
tandis que le problème devient NP-dur quand on s’attaque aux plates-
formes hétérogènes. C’est encore une autre illustration de la complexité
additionelle due à l’hétérogénéité.

Mots-clés: Hétérogénéité, ordonnancement, résultats de complexité, fiabilité, temps de
réponse.

Optimizing Latency and Reliability of Pipeline Workflow Applications 1

1 Introduction

Mapping applications onto parallel platforms is a difficult challenge. Several scheduling and
load-balancing techniques have been developed for homogeneous architectures (see [13] for a
survey) but the advent of heterogeneous clusters has rendered the mapping problem even more
difficult. Moreover, in a distributed computing architecture, some processors may suddenly
become unavailable and we are confronted to the problem of failure [1, 2]. In this context of
dynamic heterogeneous platforms with failures, a structured programming approach rules out
many of the problems which the low-level parallel application developer is usually confronted
to, such as deadlocks or process starvation. In this paper, we consider application workflows
that can be expressed as pipeline graphs. A series of data sets (tasks) enter the input stage
and progress from stage to stage until the final result is computed. Each stage has its own
communication and computation requirements: it reads an input file from the previous stage,
processes the data and outputs a result to the next stage. For each data set, initial data is
input to the first stage, and final results are output from the last stage.

Each processor has a failure probability, which expresses the chance that the processor fails
during execution. Key metrics for a given workflow are the latency and the failure probability.
The latency is the time elapsed between the beginning and the end of the execution of a given
data set, hence it measures the response time of the system to process the data set entirely.
Intuitively, we minimize the latency by assigning all stages to the fastest processor, but this
may lead to an unreliable execution of the application. Therefore, we need to find trade-offs
between two antagonistic objectives, namely latency and failure probability. Informally, the
application will be reliable for a given mapping if the corresponding global failure probability
is small. In this paper, we focus on bi-criteria approaches, i.e., minimizing the latency under
failure probability constraints, or the converse. Indeed, such bi-criteria approaches seem more
natural than the minimization of a linear combination of both criteria. Users may have latency
constraints or reliability constraints, but it makes little sense for them to minimize the sum
of the latency and of the failure probability.

In this paper, we focus on pipeline skeletons and thus we enforce the rule that a given
stage is mapped onto a single processor. In other words, a processor that is assigned a stage
will execute the operations required by this stage (input, computation and output) for all
the tasks fed into the pipeline. However, in order to improve reliability, we can replicate
the computations for a given stage on several processors, i.e., a set of processors performs
identical computations on every data set. Thus, in case of failure, we can take the result
from a processor which is still working. The optimization problem can be stated informally
as follows: which stage to assign to which (set of) processors? We require the mapping to be
interval-based, i.e., a set of processors is assigned an interval of consecutive stages. The main
objective of this paper is to assess the complexity of this bi-criteria mapping problem. The
rest of the paper is organized as follows. Section 2 is devoted to the presentation of the target
optimization problems. Next in Section 3 we proceed to the complexity results. Finally, we
briefly review related work and state some concluding remarks in Section 4.

2 Framework and optimization problems

The application is expressed as a pipeline graph of n stages Sk, 1 ≤ k ≤ n, as illustrated on
Figure 1. Consecutive data sets are fed into the pipeline and processed from stage to stage,

2 A. Benoit , V. Rehn-Sonigo , Y. Robert

until they exit the pipeline after the last stage. Each stage executes a task. More precisely,
the k-th stage Sk receives an input from the previous stage, of size δk−1, performs a number of
wk computations, and outputs data of size δk to the next stage. This operation corresponds
to the k-th task and is repeated periodically on each data set. The first stage S1 receives an
input of size δ0 from the outside world, while the last stage Sn returns the result, of size δn,
to the outside world.

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

Figure 1: The application pipeline.

We target a platform with m processors Pu, 1 ≤ u ≤ m, fully interconnected as a (virtual)
clique. We associate to each processor a failure probability 0 ≤ fpu ≤ 1, 1 ≤ u ≤ m, which is
the probability that the processor breaks down during the execution of the application. There
is a bidirectional link linku,v : Pu → Pv between any processor pair Pu and Pv, of bandwidth
bu,v. The speed of processor Pu is denoted as su, and it takes X/su time-units for Pu to
execute X floating point operations. We also enforce a linear cost model for communications,
hence it takes X/bu,v time-units to send (or receive) a message of size X from Pu to Pv.
Communication contention is taken care of by enforcing the one-port model [5, 6]. In this
model, a given processor can be involved in a single communication at any time-step, either
a send or a receive. However, independent communications between distinct processor pairs
can take place simultaneously. The one-port model seems to fit the performance of some
current MPI implementations, which serialize asynchronous MPI sends as soon as message
sizes exceed a few megabytes [12].

We consider three types of platforms: Fully Homogeneous platforms have identical pro-
cessors (su = s for 1 ≤ u ≤ m) and interconnection links (bu,v = b for 1 ≤ u, v ≤ m);
Communication Homogeneous platforms, with identical links but different speed processors,
introduce a first degree of heterogeneity; Fully Heterogeneous platforms constitute the most
difficult instance, with different speed processors and different capacity links.

The general mapping problem consists in assigning application stages to platform pro-
cessors. For simplicity, we could assume that each stage Si of the application pipeline is
mapped onto a distinct processor (which is possible only if n ≤ m). However, such one-to-
one mappings may be unduly restrictive, and a natural extension is to search for interval
mappings, i.e., allocation functions where each participating processor is assigned an interval
of consecutive stages. Intuitively, assigning several consecutive tasks to the same processors
will increase their computational load, but may well dramatically decrease communication
requirements. Interval mappings constitute a natural and useful generalization of one-to-one
mappings (not to speak of situations where m < n, where interval mappings are mandatory),
and such mappings have been studied by Subhlock et al. [14, 15]. Formally, we search for a
partition of [1..n] into p ≤ m intervals Ij = [dj , ej] such that dj ≤ ej for 1 ≤ j ≤ p, d1 = 1,
dj+1 = ej + 1 for 1 ≤ j ≤ p − 1 and ep = n.

The function alloc(j) returns the indices of the processors on which interval Ij is mapped.
There are kj = |alloc(j)| processors executing Ij , and obviously kj ≥ 1. Increasing kj increases
the reliability of the execution of interval Ij . The optimization problem is to determine the
best mapping, over all possible partitions into intervals, and over all processor assignments.

Optimizing Latency and Reliability of Pipeline Workflow Applications 3

The objective can be to minimize either the latency or the failure probability, or a combination:
given a threshold latency, what is the minimum failure probability that can be achieved? vs.
given a threshold failure probability, what is the minimum latency that can be achieved?

The failure probability can be computed given the number p of intervals and the set of
processors assigned to each interval: FP = 1 −

∏

1≤j≤p(1 −
∏

u∈alloc(j) fpu).
We assume that alloc(0) = {in} and alloc(m + 1) = {out}, where Pin is a special processor

holding the initial data, and Pout is receiving the results. Dealing with Fully Homogeneous
and Communication Homogeneous platforms, the latency is obtained as

Tlatency =
∑

1≤j≤p

{

kj ×
δdj−1

b
+

∑ej

i=dj
wi

minu∈alloc(j)(su)

}

+
δn

b
. (1)

In equation (1), we consider the longest path required to compute a given data set. The
worst case is when the first processors involved in the replication fail during execution. A
communication to interval j must then be paid kj times since these are serialized (one-port
model). For computations, we consider the total computation time required by the slowest
processor assigned to the interval. For the final output, only one communication is required,
hence the δn/b. Note that in order to achieve this latency, we need a standard consensus pro-
tocol to determine which of the surviving processors performs the outgoing communications
[16].

A similar mechanism is used for Fully Heterogeneous platforms:

Tlatency =
∑

u∈alloc(1)

δ0

bin,u
+

∑

1≤j≤p

max
u∈alloc(j)

∑ej

i=dj
wi

su
+

∑

v∈alloc(j+1)

δej

bu,v

(2)

3 Complexity results

In this section, we expose the complexity results for both mono-criterion and bi-criteria prob-
lems.

3.1 Mono-criterion problems

Theorem 1. Minimizing the failure probability can be done in polynomial time.

This can be seen easily from the formula computing the global failure probability: the
minimum is reached by replicating the whole pipeline as a single interval on all processors.
This is true for all platform types.

Theorem 2. Minimizing the latency can be done in polynomial time.

Proof. (Theorem 2)
We consider Fully Heterogeneous platforms and we want to minimize the latency. Repli-

cation can only decrease latency so we do not consider any replication. However, we need to
find the best partition into intervals.

Let us consider a directed graph with n + m + 2 vertices, and (n − 1)m2 + 2m edges,
as illustrated in Figure 2. Vi,u corresponds to the mapping of stage Si onto processor Pu.
V0,in and V(n+1),out represent the initial and final processors, and data must flow from V0,in

to V(n+1),out. Edges represent the flow of data from one stage to another, thus we have m2

4 A. Benoit , V. Rehn-Sonigo , Y. Robert

edges for i = 0..n, connecting vertex Vi,u to Vi+1,v for u, v = 1..m (except for the first and
last stages where there are only m edges).

V1,1 V2,1

e1,1,1

V0,in

e0,in,1

en,1,out

...

...
..
.

..
.

..
.

V1,2

V1,m

Vn+1,out

Vn,1

Vn,2

Vn,m

V2,1

V2,m

e0,in,m

e2,u,v en−1,u,v

Figure 2: Minimizing the latency.

Thus, a mapping can be represented by a path from V0,in to V(n+1),out: if Vi,u is in the path
then stage Si is mapped onto Pu. We assign weights to the edges to ensure that the weight
of a path is the latency of the corresponding mapping. Computation cost of stage Si on Pu is
added on the m edges exiting Vi,u, and thus ei,u,v = wi

su
. Communication costs are added on

all edges: ei,u,v+ = δi

bu,v
if Pu 6= Pv. Edges ei,u,u correspond to intra-interval communications,

and thus there is no communication cost to pay.
The mapping which realizes the minimum latency can be obtained by finding a shortest

path in this graph going from V0,in to V(n+1),out. The graph has polynomial size and the
shortest path can be computed in polynomial time [7], thus we have the result in polynomial
time, which concludes the proof.

3.2 Bi-criteria problems on Fully Homogeneous platforms

For Fully Homogeneous platforms, we consider that all failure probabilities are identical,
since the platform is made of identical processors. However, results can easily be extended for
different failure probabilities. We prove that the optimal solution for a bi-criteria mapping on
such platforms always consists in mapping the whole pipeline as a single interval. Otherwise,
both latency and failure probability would be increased.

We start with a preliminary lemma which proves that the optimal solution consists of
a single interval for Fully Homogeneous platforms, and for Communication Homogeneous
platforms with identical failure probabilities.

Lemma 1. On Fully Homogeneous and Communication Homogeneous-Failure Homogeneous
platforms, there is a mapping of the pipeline as a single interval which minimizes the failure
probability under a fixed latency threshold.

Proof. (Lemma 1)
If the stages are split into m intervals, the failure probability is expressed as

1 −
∏

1≤j≤m

(1 −
∏

u∈alloc(j)

fpu)

Let us start with the Fully Homogeneous case, and with Failure Heterogeneous for a most
general setting. We can transform the solution into a new one using a single interval, which

Optimizing Latency and Reliability of Pipeline Workflow Applications 5

improves both latency and failure probability. Let k0 be the number of times that the first
interval is replicated in the original solution. Then a solution which replicates the whole
interval on the k0 most reliable processors realizes: (i) a latency which is smaller since we
remove the communications between intervals; (ii) a smaller failure probability since for the
new solution (1 −

∏

u∈alloc(1) fpu) is greater than the same expression in the original solution
(the most reliable processors are used in the new one), and moreover the old solution even
decreases this value by multiplying it by other terms smaller than 1. Thus the new solution
is better for both criteria.

In the case with Communication Homogeneous and Failure Homogeneous, we use a sim-
ilar reasoning to transform the solution. We select the interval with the fewest number of
processors, denoted k. In the failure probability expression, there is a term in (1 − fpk), and
thus the global failure probability is greater than 1−(1− fpk) which is obtained by replicating
the whole interval onto k processors. Since we do not want to increase the latency, we use the
fastest k processors, and it is easy to check that this scheme cannot increase latency (k ≤ k0

and the slowest processor is not slower than the slowest processor of any intervals of the initial
solution). Thus the new solution is better for both criteria, which ends the proof.

We point out that Lemma 1 cannot be extended to Communication Homogeneous and
Failure Heterogeneous : instead, we can build counter examples in which this property is not
true.

Theorem 3. On Fully Homogeneous platforms, the solution to the bi-criteria problem can be
found in polynomial time using Algorithm 1 or Algorithm 2.

Informally, the algorithm finds the maximum number of processors that can be used in
the replication set, and the whole interval is mapped on this set of processors. With different
failure probabilities, the more reliable processors are used.

begin
Find k maximum, such that

k ×
δ0

b
+

∑

1≤j≤n wj

s
+

δn

b
≤ L

Replicate the whole pipeline as a single interval onto the k (most reliable)
processors;

end
Algorithm 1: Fully Homogeneous platforms: Minimizing FP for a fixed L

Proof. (Theorem 3)
The proof of this theorem is based on Lemma 1. We prove it in the general setting

of heterogeneous failure probabilities. An optimal solution can be obtained by mapping
the pipeline as a single interval, thus we need to decide the set of processors alloc used for
replication. |alloc| is the number of processors used.

The first problem can be formally expressed as follows:

6 A. Benoit , V. Rehn-Sonigo , Y. Robert

Minimize 1 − (1 −
∏

u∈alloc fpu),
under the constraint

(3)

|alloc|
δ0

b
+

∑

1≤i≤n wi

s
+

δn

b
≤ L

This leads to maximize
∏

u∈alloc fpu, and the constraint on the latency determines the
maximum number k of processors which can be used:

k =

⌊

b

δ0

(

L −
δn

b
−

∑

1≤i≤n wi

s

)⌋

In order to maximize
∏

u∈alloc fpu, we need to use as many processors as possible since fpu ≤ 1
for 1 ≤ u ≤ m.

If one of the most reliable processors is not used, we can exchange it with a less reliable
one, and thus increase the value of the product, so the formula is maximized when using the
k most reliable processors, which is represented in Algorithm 1.

The second problem is expressed below:

Minimize |alloc| δ0

b
+

P

1≤i≤n wi

s
+ δn

b
,

under the constraint
(4)

1 − (1 −
∏

u∈alloc

fpu) ≤ FP

Latency increases when |alloc| is large, thus we need to find the smallest number of proces-
sors which satisfies constraint (4). As before, if one of the most reliable processors is not used,
we can exchange it and improve the reliability without increasing the latency, which might
lead to add fewer processors to the replication set for an identical reliability. Algorithm 2
thus returns the optimal solution.

begin
Find k minimum, such that

1 − (1 − fpk) ≤ FP

Replicate the whole pipeline as a single interval onto k processors.
end

Algorithm 2: Fully Homogeneous platforms: Minimizing L for a fixed FP

Remark Algorithm 2 is optimal as well in the case of heterogeneous failure probabilities.
We add the most reliable processors to the replication scheme (thus increasing latency and
decreasing the failure probability) while FP is not reached.

Optimizing Latency and Reliability of Pipeline Workflow Applications 7

3.3 Bi-criteria problems on Com. Homogeneous platforms

For Communication Homogeneous platforms, we first consider the simpler case where all
failure probabilities are identical, denoted by Failure Homogeneous. In this case, the optimal
bi-criteria solution still consists of the mapping of the pipeline as a single interval.

Theorem 4. On Communication Homogeneous platforms with Failure Homogeneous, the
solution to the bi-criteria problem can be found in polynomial time using Algorithm 3 or 4.

Informally, we add the fastest processors to the replication set while the latency is not
exceeded (or until FP is reached), thus reducing the failure probability and increasing the
latency.

begin
Order processors in non-decreasing order of sj ;
Find k maximum, such that

k ×
δ0

b
+

∑

1≤j≤n

wj

sk
+

δn

b
≤ L

Replicate the whole pipeline as a single interval onto the fastest k processors;
// Note that at any time sk is the speed of the slowest processor used
// in the replication scheme.

end
Algorithm 3: Communication Homogeneous platforms - Failure Homogeneous : Minimiz-
ing FP for a fixed L

begin
Find k minimum, such that

1 − (1 − fpk) ≤ FP

Replicate the whole pipeline as a single interval onto the fastest k processors;
end

Algorithm 4: Communication Homogeneous platforms - Failure Homogeneous : Minimiz-
ing L for a fixed FP

Proof. (Theorem 4)

In this particular setting, Lemma 1 still applies, so we restrict to mappings as a single
interval, and search for the optimal set of processors alloc which should be used.

The first problem is expressed as:

Minimize 1 − (1 − fp|alloc|),
under the constraint

(5)

|alloc|
δ0

b
+

∑

1≤i≤n wi

minu∈alloc su
+

δn

b
≤ L

8 A. Benoit , V. Rehn-Sonigo , Y. Robert

The failure probability is smaller when |alloc| is large, thus we need to add as many
processors as we can while satisfying the constraint. The latency increases when adding
more processors, and it depends of the speed of the slowest processors. Thus, if the |alloc|
fastest processors are not used, we can exchange a fastest processor with a used one without
increasing latency. Algorithm 3 thus returns an optimal mapping.

The other problem is similar, with the following expression:

Minimize |alloc| δ0

b
+

P

1≤i≤n wi

minu∈alloc su
+ δn

b
,

under the constraint
(6)

1 − (1 − fp|alloc|) ≤ FP

We can thus find the smallest number of processors that should be used in order to satisfy
FP, and then use the fastest processors to optimize latency, which is done by Algorithm 4.

However, the problem is more complex when we consider different failure probabilities
(Failure Heterogeneous). It is also more natural since we have different processors and there
is no reason why they would have the same failure probability. Unfortunately for Failure
Heterogeneous, we can exhibit for some instances of the problem an optimal solution in which
the pipeline stages must be divided in several intervals. The complexity of the problem
remains open, but we conjecture it is NP-hard.

3.4 Bi-criteria problems on Fully Heterogeneous platforms

For Fully Heterogeneous platforms, we restrict to heterogeneous failure probabilities, which
is the most natural case. While both mono-criterion problems have a polynomial complexity,
we prove that the bi-criteria problems are NP-hard.

Theorem 5. On Fully Heterogeneous platforms, the bi-criteria (decision problems associated
to the) optimization problems are NP-hard.

Proof. (Theorem 5)
We consider the following decision problem on Fully Heterogeneous platforms: given a

failure probability threshold FP and a latency threshold L, is there a mapping of failure
probability less than FP and of latency less than L? The problem is obviously in NP: given
a mapping, it is easy to check in polynomial time that it is valid by computing its failure
probability and latency.

To establish the completeness, we use a reduction from 2-PARTITION [10]. We consider
an instance I1 of 2-PARTITION: given m positive integers a1, a2, . . . , am, does there exist a
subset I ⊂ {1, . . . , m} such that

∑

i∈I ai =
∑

i/∈I ai? Let S =
∑m

i=1 ai.
We build the following instance I2 of our problem: the pipeline is composed of a single

stage with w = 1, and the input and output communication costs are δ0 = δ1 = 1. The
platform consists in m processors with speeds sj = 1 and failure probability fpj = e−aj , for
1 ≤ j ≤ m (thus 0 ≤ fpj ≤ 1). Bandwidth are defined as bin,j = 1/aj and bj,out = 1 for
1 ≤ j ≤ m.

We ask whether it is possible to realize a latency of S/2 + 2 and a failure probability of
e−S/2. Clearly, the size of I2 is polynomial (and even linear) in the size of I1. We now show
that instance I1 has a solution if and only if instance I2 does.

Optimizing Latency and Reliability of Pipeline Workflow Applications 9

Suppose first that I1 has a solution. The solution to I2 which replicates the stage on the
set of processors I has a latency of S/2 + 2, since the first communication requires to sum
δ0/bin,j for all processor Pj included in the replication scheme, and then both computation and
the final output require a time 1. The failure probability of this solution is 1−(1−

∏

j∈I fpj) =

e−
P

j∈I ai = e−S/2. Thus we have solved I2.
On the other hand, if I2 has a solution, let I be the set of processors on which the stage

is replicated. Because of the latency constraint,

∑

j∈I

1

bin,j
+ 1 + 1 ≤

S

2
+ 2

Since bin,j = 1/aj , this implies that
∑

j∈I aj ≤ S/2. Next we consider the failure probability
constraint. We must have

1 − (1 −
∏

j∈I

fpj) ≤ e−
S
2

and thus e−
P

j∈I aj ≤ e−S/2, which forces
∑

j∈I aj ≥ S/2. Thus
∑

j∈I aj = S/2 and we have
a solution to the instance of 2-PARTITION I1, which concludes the proof.

4 Related work and conclusion

In this paper, we have assessed the complexity of trading between response time and reliability,
which are among the most important criteria for a typical user. Indeed, in the context of
large scale distributed platforms such as clusters or grids, failure probability becomes a major
concern [9, 11, 8], and the bi-criteria approach tackled in this paper enables to provide robust
solutions while fulfilling user demands (minimizing latency under some reliability threshold,
or the converse). We have shown that the more heterogeneity in the target platforms, the
more difficult the problems. In particular, the bi-criteria optimization problem is polynomial
for Fully Homogeneous, NP-hard for Fully Heterogeneous and remains an open problem for
Communication Homogeneous.

Several other bi-criteria optimization problems have been considered in the literature. For
instance optimizing both latency and throughput is quite natural, as these objectives represent
trade-offs between user expectations and the whole system performance. See [15, 3, 4] for
pipeline graphs and [17] for general application DAGs. In the context of embedded systems,
energy consumption is another important objective to minimize. Three-criteria optimization
(energy, latency and throughput) is discussed in [18].

For large scale distributed platforms such as production grids, throughput is a very im-
portant criterion as it measures the aggregate rate of processing of data, hence the global rate
at which execution progresses. We can envision two types of replication: the first type is to
replicate the same computation on different processors, as in this paper, to increase reliability.
The second type is to allocate the processing of different data sets to different processors (say
in a round-robin fashion), in order to increase the throughput. Both replication types can be
conducted simultaneously, at the price of more resource consumption. Our future work will
be devoted to the study of the interplay between throughput, latency and reliability, a very
challenging algorithmic problem.

10 A. Benoit , V. Rehn-Sonigo , Y. Robert

References

[1] J. Abawajy. Fault-tolerant scheduling policy for grid computing systems. In International
Parallel and Distributed Processing Symposium IPDPS’2004. IEEE Computer Society
Press, 2004.

[2] S. Albers and G. Schmidt. Scheduling with unexpected machine breakdowns. Discrete
Applied Mathematics, 110(2-3):85–99, 2001.

[3] A. Benoit, V. Rehn, and Y. Robert. Complexity results for throughput and latency
optimization of replicated and data-parallel workflows. In HeteroPar’2007: Interna-
tional Conference on Heterogeneous Computing, jointly published with Cluster’2007.
IEEE Computer Society Press, 2007.

[4] A. Benoit, V. Rehn-Sonigo, and Y. Robert. Multi-criteria scheduling of pipeline work-
flows. In HeteroPar’2007: International Conference on Heterogeneous Computing, jointly
published with Cluster’2007. IEEE Computer Society Press, 2007.

[5] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient collective communication in dis-
tributed heterogeneous systems. In ICDCS’99 19th International Conference on Dis-
tributed Computing Systems, pages 15–24. IEEE Computer Society Press, 1999.

[6] P. Bhat, C. Raghavendra, and V. Prasanna. Efficient collective communication in dis-
tributed heterogeneous systems. Journal of Parallel and Distributed Computing, 63:251–
263, 2003.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

[8] A. Duarte, D. Rexachs, and E. Luque. A distributed scheme for fault-tolerance in large
clusters of workstations. In NIC Series, Vol. 33, pages 473–480. John von Neumann
Institute for Computing, Julich, 2006.

[9] A. H. Frey and G. Fox. Problems and approaches for a teraflop processor. In Proceedings
of the Third Conference on Hypercube Concurrent Computers and Applications, pages
21–25. ACM Press, 1988.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[11] A. Geist and C. Engelmann. Development of naturally
fault tolerant algorithms for computing on 100,000 processors.
http://www.csm.ornl.gov/~geist/Lyon2002-geist.pdf, 2002.

[12] T. Saif and M. Parashar. Understanding the behavior and performance of non-blocking
communications in MPI. In Proceedings of Euro-Par 2004: Parallel Processing, LNCS
3149, pages 173–182. Springer, 2004.

[13] B. A. Shirazi, A. R. Hurson, and K. M. Kavi. Scheduling and load balancing in parallel
and distributed systems. IEEE Computer Science Press, 1995.

http://www.csm.ornl.gov/~geist/Lyon2002-geist.pdf

Optimizing Latency and Reliability of Pipeline Workflow Applications 11

[14] J. Subhlok and G. Vondran. Optimal mapping of sequences of data parallel tasks. In Proc.
5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP’95, pages 134–143. ACM Press, 1995.

[15] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel
pipelines. In ACM Symposium on Parallel Algorithms and Architectures SPAA’96, pages
62–71. ACM Press, 1996.

[16] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2000.

[17] N. Vydyanathan, U. Catalyurek, T. Kurc, P. Saddayappan, and J. Saltz. An approach for
optimizing latency under throughput constraints for application workflows on clusters.
Research Report OSU-CISRC-1/07-TR03, Ohio State University, Columbus, OH, Jan.
2007. Available at ftp://ftp.cse.ohio-state.edu/pub/tech-report/2007.

[18] R. Xu, R. Melhem, and D. Mosse. Energy-aware scheduling for streaming applications
on chip multiprocessors. In the 28th IEEE Real-Time System Symposium (RTSS’07),
Tucson, Arizona, December 2007.

ftp://ftp.cse.ohio-state.edu/pub/tech-report/2007

	1 Introduction
	2 Framework and optimization problems
	3 Complexity results
	3.1 Mono-criterion problems
	3.2 Bi-criteria problems on Fully Homogeneous platforms
	3.3 Bi-criteria problems on Com. Homogeneous platforms
	3.4 Bi-criteria problems on Fully Heterogeneous platforms

	4 Related work and conclusion

