, The Coq proof assistant

W. J. Baumol, S. M. Goldfeld-;-kuhn, and H. W. , Preface to Waldegrave's Comments: Excerpt from Montmort's Letter to Nicholas Bernoulli, pp.3-9, 1968.

Y. Berthot and P. Castéran, Interactive Theorem Proving and Program Development Coq'Art: The Calculus of Inductive Constructions, 2004.

D. Blackwell, An analog of the minimax theorem for vector payoffs, Pacific Journal of Mathematics, vol.6, pp.1-8, 1956.

A. A. Cournot, Recherches sur les Principes Mathematiques de la Theorie des Richesses, p.1838

T. Hobbes and . Leviathan, , p.1651

R. J. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, Journal of Economic Theory, vol.36, pp.195-213, 1985.

T. Krieger, On Pareto equilibria in vector-valued extensive form games, Mathematical Methods of Operations Research, vol.58, pp.449-458, 2003.

H. W. Kuhn, Extensive games and the problem of information, Contributions to the Theory of Games II, 1953.

. Stéphane-le-roux, Non-determinism and Nash equilibria for sequential game over partial order, Proceedings Computational Logic and Applications, CLA '05. Discrete Mathematics and Theoretical Computer Science Proceedings, 2006.

. Stéphane-le-roux, Acyclicity and finite linear extendability: a formal and constructive equivalence, 2007.

P. Stéphane-le-roux, R. Lescanne, and . Vestergaard, A discrete Nash theorem with quadratic complexity and dynamic equilibria, 2006.

M. J. Ariel-rubinstein and . Osborne, A Course in Game Theory, 1994.

J. Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, vol.36, pp.48-49, 1950.

O. John-von-neumann and . Morgenstern, Theory of Games and Economic Behavior, 1944.

R. Selten, Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit. Zeitschrift für die desamte Staatswissenschaft, vol.121, 1965.

R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games, International Journal of Game Theory, vol.4, 1975.

H. A. Simon, A behavioral model of rational choice, The Quarterly Journal of Economics, vol.69, issue.1, pp.99-118, 1955.

R. Vestergaard, A constructive approach to sequential Nash equilibria, Information Processing Letter, vol.97, pp.46-51, 2006.

E. Zermelo, Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, Proceedings of the Fifth International Congress of Mathematicians, vol.2, 1912.