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Abstract

Sequential game and Nash equilibrium are basic key concepts in game
theory. In 1953, Kuhn showed that every sequential game has a Nash
equilibrium. The two main steps of the proof are as follows: First, a
procedure expecting a sequential game as an input is defined as “back-
ward induction” in game theory. Second, it is proved that the procedure
yields a Nash equilibrium. “Backward induction” actually yields Nash
equilibria that define a proper subclass of Nash equilibria. In 1965, Sel-
ten named this proper subclass subgame perfect equilibria. In game
theory, payoffs are rewards usually granted at the end of a game. Al-
though traditional game theory mainly focuses on real-valued payoffs
that are implicitly ordered by the usual total order over the reals, there
is a demand for results dealing with non totally ordered payoffs. In the
mid 1950’s, works of Simon or Blackwell already involved partially or-
dered payoffs. This paper further explores the matter: it generalises the
notion of sequential game by replacing real-valued payoff functions with
abstract atomic objects, called outcomes, and by replacing the usual to-
tal order over the reals with arbitrary binary relations over outcomes,
called preferences. This introduces a general abstract formalism where
Nash equilibrium, subgame perfect equilibrium, and “backward induc-
tion” can still be defined. Using a lemma on topological sorting, this
paper proves that the following three propositions are equivalent: 1)
Preferences over the outcomes are acyclic. 2) Every sequential game
has a Nash equilibrium. 3) Every sequential game has a subgame per-
fect equilibrium. The result is fully computer-certified using the (highly
reliable) constructive proof assistant called Coq. Beside the additional
guarantee of correctness provided by the proof in Coq, the activity of
formalisation also helps clearly identify the useful definitions and the
main articulations of the proof.

Keywords: Abstract sequential game, Nash equilibrium, subgame perfect equilibrium,
constructivism, induction, proof assistant
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1 Introduction

1.1 Game Theory in Short

Game theory embraces the theoretical study of processes involving (more or less conscious)
possibly interdependent decision makers. Game theory originates in economics, politics, law,
and also games dedicated to entertainment. Instances of game theoretic issues may be traced
back to Babylonian times when the Talmud would prescribe marriage contracts that seem
to be solutions of some relevant games described in [7]. In 1713, a simple card game raised
questions and solutions involving probabilities, as discussed in [2]. During the XVIIth and
XVIIIth centuries, philosophers such as Hobbes [6] adopted an early game theoretical ap-
proach to study political systems. In 1838, Cournot [5] introduced the notion of equilibrium
for pricing in duopoly. It is said that game theory became a major field in 1944, when von
Neumann and Morgenstern [15] published a summary of prior works and a systematic study
of a few classes of games. In 1950, the notion of equilibrium and the corresponding solution
concept discussed by Cournot were generalised by Nash [14] for a class of games called strate-

gic games. In 2006, the notion of Nash equilibrium was abstracted [12] as a situation that
no stakeholder can convert into another situation that he prefers. In addition to economics,
politics and law, modern game theory is consciously involved in many other fields such as
biology, computer science, and sociology.

1.2 Sequential Game Theory

Another class of games is that of sequential games, also called games in extensive form. It
traditionally refers to games where players play in turn till the play ends and payoffs are
granted. For instance, the game of chess is naturally modelled by a sequential game where
payoffs are “win”, “lose” and “draw”. Sequential games are often represented by finite rooted
trees each of whose internal nodes is owned by a player, and each of whose external nodes
encloses one payoff per player. In 1912, Zermelo [20] proved about the game of chess that
either white can win, or black can win, or both sides can force a draw. This is sometimes
considered as the first non-trivial theoretical results in game theory. Although the concept
of Nash equilibrium referred to strategic games in the first place, it is natural and relevant
to extend that concept to sequential games. In 1953, Kuhn [9] showed the existence of Nash
equilibrium for sequential games. For this, he built a specific Nash equilibrium through what
is called “backward induction” in game theory. In 1965, Selten ([16] and [17]) introduced the
concept of subgame perfect equilibrium in sequential games. This is a refinement of Nash
equilibrium that seems to be even more meaningful than Nash equilibrium for sequential
games. The two concepts of “backward induction” and subgame perfect equilibrium happen
to coincide, so Kuhn’s result also guarantees existence of subgame perfect equilibrium in
sequential games. In 2006, Vestergaard [19] formalised part of Kuhn’s result with the proof
assistant Coq, for the subclass of games represented by binary trees and whose payoffs range
over the natural numbers. For this, he defined sequential games and corresponding strategy
profiles inductively.

1.3 Ordering Payoffs

Game theory has mostly studied games with real-valued payoffs, perhaps for the following
reason: In 1944, von Neumann and Morgernstern [15] suggested that the notion of payoff
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in economics could be reduced to real numbers. They argued that more and more physical
phenomena were measurable; therefore, one could reasonably expect that payoffs in economics,
although not yet measurable, would become reducible to real numbers some day. However,
game theory became popular soon thereafter, and its scope grew larger. As a result, several
scientists and philosophers questioned the reducibility of payoffs to real numbers. In 1955,
Simon [18] discussed games where agents are awarded (only partially ordered) vectors of
real-valued payoffs instead of single real-valued payoffs. In 1956, Blackwell [4] proved a result
involving vectors of payoffs. Those vectors model agents that take several non-commensurable
dimensions into consideration; such games are sometimes called multi-criteria games. In 1994,
Osborne and Rubinstein [13] mentioned arbitrary preferences, without any further results. In
2003, Krieger [8] noticed that “backward induction” on sequential multi-criteria games may
not yield Nash equilibria, and yet showed that sequential multi-criteria games have Nash
equilibria. The proof seems to invoke probabilities and Nash’s theorem for strategic games.
In 2006, a paper [10] discussed sequential games with arbitrary partially ordered payoffs and
proved in Coq the existence of non-deterministic Nash equilibria via “backward induction”.

1.4 Contribution

This paper contributes at both the technical and the presentation level.

There are five main technical contributions: First, an inductive formalism is designed
to represent sequential games in the constructive proof assistant Coq ([1] and [3]), and all
the results in this paper are proved in Coq. Second, the new formalism allows the paper
to introduce an abstraction of traditional sequential games and of a few related concepts.
The abstraction preserves the tree structure of the game but replaces the real-valued payoff
functions, enclosed in the leaves of the trees, by arbitrary outcomes. Each agent has a
preference over outcomes, which is given via an explicit and arbitrary binary relation. This
preference replaces the implicit and traditional“usual total order”over the real numbers. Nash
equilibria and subgame perfect equilibria are defined accordingly. Third, Kuhn’s result [9]
is translated into the new formalism when agents’ preferences are totally ordered. Fourth,
the notion of “backward induction” is naturally generalised for arbitrary preferences, but a
simple example shows that total ordering of preferences is needed for “backward induction”
to guarantee subgame perfect equilibrium: the two notions of “backward induction” and
subgame perfect equilibrium coincide for total orders but not in general. Fifth, Kuhn’s result
is substantially generalised as follows. On the one hand, an intermediate result proves that
smaller preferences, i.e., binary relations with less arcs, yield more equilibria than bigger
preferences. On the other hand, a topological sorting result was formally proved in [11].
By both results mentioned above, acyclicity of the preferences proves to be a necessary and
sufficient condition for every game to have a Nash equilibrium/subgame perfect equilibrium.

This paper deals with basic notions of game theory that are all exemplified and defined
before they are used. Most of the time, these notions are explained in three different ways,
with the second one helping make the connection between the two others: First, the notions
are presented in a graphical formalism close to traditional game theory. Second, they are
presented in a graphical formalism suitable for induction. Third, they are presented in a light
Coq formalism close to traditional mathematics, so that only a basic understanding of Coq is
needed. (A quick look at the first ten pages of [11] will introduce the reader to the required
notions.) The proofs are structured along the corresponding Coq proofs but are written in
plain English.
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1.5 Contents

Section 2 gives an intuitive and informal presentation of traditional sequential games through
graphical examples. Section 3 explores further the relevance of non-totally ordered pay-
offs. Section 4 discusses general concepts that are not specially related to game theory but
required in the remainder of the paper. Section 5 presents the above-mentioned abstrac-
tion of sequential games and their new formalism. Section 6 presents the notion of strategy
profile at the same level of abstraction as for sequential games. Section 7 defines convertibil-
ity between strategy profiles. Section 8 discusses the notion of preference, happiness, Nash
equilibrium, and subgame perfect equilibrium. Section 9 generalises “backward induction”,
translates Kuhn’s result into the new formalism, and proves the triple equivalence between
acyclicity of preferences and existence of Nash equilibrium/subgame perfect equilibrium.

2 Traditional Sequential Game Theory

Through graphical examples and explanations in plain English, this section gives an intuitive
and informal presentation of traditional sequential games and of a few related concepts such
as Nash equilibrium.

A traditional sequential game involves finitely many agents and payoffs. Payoffs usually
are real numbers. A payoff function is a function from the agents to the payoffs. A sequential
game is a rooted finite tree with internal nodes labelled with agents and external nodes,
i.e., leaves, labelled with payoff functions. Consider the following graphical example of such
games. It involves the two agents a and b. At every leaf, a payoff function is represented by
two numbers separated by a comma: the payoff function maps agent a to the first number
and agent b to the second number.

a

b 2, 2

1, 0 3, 1

Such game trees are interpreted as follows: A play of a game starts at the root of the game
tree. If the tree is a leaf then agents are rewarded according to the enclosed payoff function.
Otherwise, the agent owning the root chooses the next node among the children of the root.
The subtree rooted at the chosen child is considered and the play continues from there. In
the game above, if a chooses to go right then both agents get 2. If a chooses left then b has to
choose too, etc. Now, a specific play of a game is described and drawn. Double lines represent
choices made during the play. Agent a first chooses to go right, then left, then b chooses to
go right. Eventually, a gets 1, b gets 0, and c gets 2. The stars ∗ represent arbitrary payoff
functions irrelevant to the discussion.

a a a

b c a b c a b c a

∗ ∗ ∗ b ∗ ∗ ∗ ∗ b ∗ ∗ ∗ ∗ b ∗

∗ 1, 0, 2 ∗ 1, 0, 2 ∗ 1, 0, 2

In game theory, the strategy of an agent is an object that accounts for the decisions of the
agent in all situations that the agent might encounter. A strategy profile is a tuple combining
one strategy per agent. So, for sequential games, a strategy profile amounts to choices made at
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all internal nodes of the tree. Below is an example of a strategy profile. Double lines between
nodes represent choices and the stars ∗ represent arbitrary payoff functions irrelevant to the
discussion. The choice of b at the leftmost internal node may seem rather ineffective, but it
can be interpreted as b’s choice if a play ever reach this very node.

a

b c a

∗ ∗ ∗ b ∗

∗ 1, 0, 2

Given a strategy profile, starting from the root and following the agents’ consecutive
choices leads to one leaf. The payoff function enclosed in that specific leaf is called the
induced payoff function. The induced payoff function of the strategy profile above is: a gets
1, b gets 0, and c gets 2.

The (usually implicit) preference of agents for strictly greater payoffs induces a (usually
implicit) preference of an agent for payoff functions that grants him strictly greater payoffs.
This, in turn, yields a (usually implicit) preference of an agent for strategy profiles inducing
preferred payoff functions. Below, agent a prefers the left-hand strategy profile to the right-
hand one since 3 is greater than 2, but it is the opposite for agent b since 1 is less than
2.

a a

b 2, 2 b 2, 2

1, 0 3, 1 1, 0 3, 1

An agent is (usually implicitly) granted the ability to change his choices at all nodes he
owns. For instance, below, the agent b can convert the strategy profile on the left to the one
on the right by changing his choices exactly at the nodes where b is displayed in bold font.
The stars ∗ represent arbitrary payoff functions irrelevant to the discussion.

a a

b b b b b b

∗ a ∗ b ∗ ∗ ∗ a ∗ b ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

An agent is said to be happy with a strategy profile if he cannot convert it to another
strategy profile that he prefers. A Nash equilibrium is a strategy profile that makes all agents
happy. Below, the strategy profile to the left is not a Nash equilibrium since its sole player
gets 0 but can convert it to the right-hand strategy profile and get 1. However, the right-hand
strategy profile is a Nash equilibrium since a cannot convert it and get a payoff strictly greater
than 1.

a a

0 1 1 0 1 1

Here is another example of Nash equilibrium.

a

b 2, 2

1, 0 3, 1
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Indeed, agent a could only convert the strategy profile above to the left-hand strategy
profile below, and would get 2 instead of 3. Therefore a is happy. Agent b could only convert
the strategy profile above to the right-hand strategy profile below, and would get 0 instead of
1. Therefore b is happy too. The strategy profile above makes all players happy; it is a Nash
equilibrium.

a a

b 2, 2 b 2, 2

1, 0 3, 1 1, 0 3, 1

The underlying game of a strategy profile is computed by forgetting all the choices made
at the internal nodes of the strategy profile. The next picture displays a strategy profile, to
the left, and its underlying game, to the right.

a a

b 2, 2 b 2, 2

1, 0 3, 1 1, 0 3, 1

Two Nash equilibria inducing different payoff functions may have the same underlying
game: indeed, consider the previous Nash equilibrium and the following one, where b’s choice
is ineffective in terms of induced payoff function.

a

b 2, 2

1, 0 3, 1

A given game is said to have a Nash equilibrium if there exists a Nash equilibrium whose
underlying game is the given game. In order to prove that every sequential game has a Nash
equilibrium, one can use a construction called“backward induction”in game theory. It consists
in building a strategy profile from a sequential game. Performing “backward induction” on
the following example will help describe and interpret the idea of the construction.

a

b b

a 3, 1 2, 2 4, 1

1, 0 0, 2

If a play starts at the leftmost and lowest node of the game above, then agent a faces the
following game:

a

1, 0 0, 2

So, provided that a is “rational” in some informal sense, he chooses left and get 1 instead
of 0. In the same way, if the play starts at the rightmost node, b chooses left and get 2 instead
of 1. These two remarks correspond to the leftmost picture below. Provided that agent b is
aware of a’s “rational” behaviour, if a play starts at the left node owned by b, then b chooses
right and get 1 instead of 0, as shown on the second picture below. The last picture shows that
when a play starts at the root, as in the usual interpretation of a sequential game, a chooses
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left and gets 3 instead of 2. In such a process, an agent facing several options equivalent in
terms of payoffs may choose either of them.

a a a

b b b b b b

a 3, 1 2, 2 4, 1 a 3, 1 2, 2 4, 1 a 3, 1 2, 2 4, 1

1, 0 0, 2 1, 0 0, 2 1, 0 0, 2

A strategy profile built by “backward induction” is a Nash equilibrium whose underlying
game is the original game. (A formal proof relying on formal definitions is presented in a
later section.) This way, it is proved that all sequential games have Nash equilibria. However,
the next example shows that not all Nash equilibria are obtained by “backward induction”.
Even stronger, a Nash equilibrium may induce a payoff function induced by no “backward
induction” strategy profile. Indeed, the left-hand strategy profile below is a Nash equilibrium
that is not a“backward induction”, and the only“backward induction”on the same underlying
game is shown on the right-hand side.

a a

b 2, 2 b 2, 2

1, 0 3, 1 1, 0 3, 1

Traditional game theory uses the following definition of subtree: all the descendants of a
node of a tree define a subtree. For instance consider the following game.

a

b b

a 3, 1 2, 2 4, 1

1, 0 0, 2

In addition to the leaves, the proper subtrees of the game above are listed below.

b a b

a 3, 1 1, 0 0, 2 2, 2 4, 1

1, 0 0, 2

With this definition of subtree, a subgame perfect equilibrium is defined as a Nash equilib-
rium all of whose substrategy profiles are also Nash equilibria. In traditional game theory, the
notions of subgame perfect equilibrium and “backward induction” strategy profile coincide.

3 Why Total Order?

Section 2 only deals with real-valued, totally ordered payoffs. However, as mentioned in
subsection 1.3, there is a need for game theoretic results involving non totally ordered payoffs.
This section adds simple and informal arguments to the discussion. In particular, it shows that
the class of traditional sequential games naturally induces two classes of games slightly more
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general than itself. For these classes of games, the question whether Nash equilibria/subgame
perfect equilibria exist or not is still relevant, and has yet not been addressed by Kuhn’s
result.

3.1 Selfishness Refinements

An agent that gives priority to his own payoffs without taking other agents into consideration
is called selfish. It is the case in traditional game theory. Now consider a benevolent agent
that takes all agents, including him, into account, e.g., in a Pareto style. More specifically,
consider two payoff functions p and p′. If for each agent, p grants a payoff greater than or
equal to the one granted by p′, and if there exists one agent to whom p grants strictly greater
payoff than p′, then the benevolent agent prefers p to p′. For instance, consider three agents
a, b and c, and three payoff functions (1, 3, 0), (1, 2, 1), and (1, 2, 0). (The first component
corresponds to a, the second to b, and the third to c.) A benevolent agent prefers the first
two to the last one, but has no preference among the first two.

An agent is selfish-benevolent if his preference is the union of selfish and benevolent pref-
erences. Put otherwise, an agent prefers a payoff function to another one if he prefers it either
selfishly or benevolently. For instance, consider the previous example. Assume that all agents
are selfish-benevolent. So, b prefers (1, 3, 0) to (1, 2, 1) since 3 is greater than 2, prefers (1, 2, 1)
to (1, 2, 0) by benevolence, and prefers (1, 3, 0) to (1, 2, 0) by both selfishness and benevolence.
Selfishness-benevolence induces a partial order over real-valued payoff functions.

In the same way, an agent may be selfish-malevolent. More specifically, consider two
payoff functions p and p′. If p grants a selfish-malevolent agent a payoff greater than the
one granted by p′ then the agent prefers p to p′. If p and p′ grant the same payoff to the
selfish-malevolent agent, and if p grants every other agent a payoff lesser than or equal to the
one granted by p′, and if there exists one agent to whom p grants strictly lesser payoff than
p′, then the selfish-malevolent agent prefers p to p′. Selfishness-malevolence induces a partial
order over real-valued payoff functions too.

3.2 Lack of Information

Consider an agent that prefers greater payoffs and that is “rational”, i.e., acts according to
his preferences. Imagine the following 1-player game played by the above-mentioned agent:
when a play starts, the agent has two options, say left and right. If he chooses left then he
gets either 0 or 5, and if he chooses right then he gets either 1 or 2 or 3. After payoffs are
granted, the play ends. This game is represented below.

a

{0, 5} {1, 2, 3}

The wording “either... or...”, in the phrase “either 0 or 5” does not refer to any procedure
whatsoever. Therefore, in each case the agent has no clue how payoffs are going to be granted.
It is worth stressing that, in particular, “either 0 or 5” does not refer to probability half for 0
and probability half for 5. It does not refer to probabilities at all. As a result, the agent cannot
dismiss for sure any of his options in the game above. The two options are not comparable;
the payoffs are not totally ordered. This type of game can even help understand traditional
sequential games better. Indeed, consider the traditional sequential game below, where a and
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b are “rational”, and therefore only care about maximising their own payoffs. Also assume
that a knows b’s being “rational”.

a

b b

0, 0 5, 0 1, 0 2, 0 3, 0

Whatever agent a may choose, b’s options are equivalent since they yield the same payoff.
Therefore a has no clue how b is going to choose: Go left when left and right are equivalent?
Toss a coin? Phone a friend? So, from agent a’s viewpoint, the game above reduces to the
1-player game discussed before. In this subsection, non totally ordered payoffs represents lack
of information without invoking a formalism dedicated to knowledge representation such as
epistemic logic.

When payoffs are non-empty sets of real numbers instead of single real numbers, as in the
first example above, there are several ways to define relevant preferences. For instance, agents
can focus either on the lower bound of the set, which amounts to guaranteeing a minimum,
or on the upper bound of the set, which amounts to letting hope for a maximum, or both at
once. Most of these yield partial orders over non-empty sets of reals.

4 Preliminaries

Prior to the game theoretic development presented in Coq in later sections, a few general
concepts and related results are needed. Part of them are mentioned in [11]: list inclusion,
subrelation, restriction of a relation to the elements of a list, etc. This section completes the
inventory of the required notions, in the Coq formalism.

A first useful result reads as follows: given a binary relation and two lists, one included in
the other, the restriction of the relation to the smaller list is a subrelation of the restriction
of the relation to the bigger list. The proof is a straightforward unfolding of the definitions,
and the result is formally written below.

Lemma sub rel restriction incl : ∀ (B : Set)(l l’ : list B) R,
incl l l’ → sub rel (restriction R l) (restriction R l’ ).

The remainder of this section presents the extension to lists of four concepts usually
pertaining to one or two objects only.

4.1 Extension of Predicates to Lists

Let A be a Set. The function listforall expects a predicate on A, i.e., an object of type A →
Prop, and returns a predicate on lists, i.e., an object of type list A → Prop, stating that all
the elements in the list comply with the original predicate. It is recursively defined along the
inductive structure of the list argument.

Fixpoint listforall (Q : A → Prop)(l : list A){struct l} : Prop :=
match l with

| nil ⇒ True

| x ::l’ ⇒ Q x ∧ listforall Q l’

end.
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In the first line above, Fixpoint starts the recursive definition, listforall is the name of
the defined function, Q is the predicate argument, l is the list argument, {struct l} means
that the recursion involves l, and Prop is the type of the output. The match performs a case
splitting on the structure of l. The line thereafter specifies that the function returns True for
empty list arguments. The last line is the core of the recursion: in order to compute the result
for the list, it refers to the result of the computation involving the tail, which is a strictly
smaller argument. This ensures termination of the computation, therefore the function is well
defined. An example of computation of listforall is given below. The symbol  represents a
computation step.

listforall Q (x ::y ::z ::nil)  Q x ∧ listforall Q (y ::z ::nil)  
Q x ∧ Q y ∧ listforall Q (z ::nil)  Q x ∧ Q y ∧ Q z ∧ listforall Q nil  

Q x ∧ Q y ∧ Q z ∧ True

Note that Q x ∧ Q y ∧ Q z ∧ True is equivalent to Q x ∧ Q y ∧ Q z, which is what the
function listforall is meant for.

The following four lemmas involve the notion of appending (++), also called concatena-
tion, of two lists. It is defined in the Coq Standard Library. The four lemmas express basic
properties of the listforall function. They are all proved by induction on the list l.

Lemma listforall app : ∀ Q l’ l,
listforall Q l → listforall Q l’ → listforall Q (l++l’ ).

Lemma listforall appl : ∀ Q l’ l, listforall Q (l++l’ ) → listforall Q l.

Lemma listforall appr : ∀ Q l’ l, listforall Q (l++l’ ) → listforall Q l’.

Lemma listforall In : ∀ Q x l, In x l → listforall Q l → Q x.

4.2 Extension of Functions to Lists

The Coq Standard Library provides a function map that, given a list and a function f, returns
a list with the images by f of the elements of the original list. It is defined by recursion.

Fixpoint map (A B : Set)(f : A → B)(l : list A) : list B :=
match l with

| nil ⇒ nil

| a::t ⇒ (f a)::(map A B f t)
end.

Consider the simplified computation example below, where domains and codomains of f

are omitted for better readability.

map f (x ::y ::z ::nil)  · · · (f x )::(f y)::(f z )::nil

The next two lemmas state map’s preserving two functions being inverse and commuta-
tivity between map and appending. Both lemmas are proved by induction on the list l. The
second one comes from the Coq Standard Library [1].

Lemma map inverse : ∀ (A B : Set)(f : A → B) g,
(∀ x, g (f x )=x ) → ∀ l, map g (map f l)=l.

Lemma map app : ∀ (A B : Set)l l’ (f : A → B), map f (l++l’ ) = (map f l)++(map f l’ ).
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4.3 Extension of Binary Relations to Lists

Let A be a Set. Given a binary relation P : A → A → Prop, the function rel vector expects
two lists over A and states that they are component-wise related by P. Note that if they are
component-wise related then their lengths are the same.

Fixpoint rel vector (P : A → A → Prop)(l l’ : list A) {struct l}: Prop :=
match l with

| nil ⇒ l’=nil

| x ::l2 ⇒ match l’ with

| nil ⇒ False

| x’ ::l2’ ⇒ P x x’ ∧ rel vector P l2 l2’

end

end.

The following examples describe three typical computations of the rel vector predicate.

rel vector P (x ::y ::nil) (x’ ::y’ ::nil)  P x x’ ∧ rel vector P (y ::nil) (y’ ::nil)  P x x’ ∧ P

y y’ ∧ rel vector P (nil) (nil)  P x x’ ∧ P y y’ ∧ nil=nil

Note that P x x’ ∧ P y y’ ∧ nil=nil is equivalent to P x x’ ∧ P y y’.

rel vector P (x ::y ::nil) (x’ ::nil)  P x x’ ∧ rel vector P (y ::nil) (nil)  
P x x’ ∧ False

Note that P x x’ ∧ False is equivalent to False.

rel vector P (x ::nil) (x’ ::y’nil)  P x x’ ∧ rel vector P (nil) (y’ ::nil)  
P x x’ ∧ y’ ::nil=nil

Note that P x x’ ∧ y’ ::nil=nil is equivalent to False since y’ ::nil=nil is equivalent to
False.

The following lemma states that if two lists are component-wise related, then two elements
occurring at the same place in each list are also related.

Lemma rel vector app cons same length : ∀ P a a’ m m’ l l’,
rel vector P (l++a::m) (l’++a’ ::m’ ) → length l=length l’ → P a a’.

Proof Let P be a binary relation over A, let a and a’ be in A, and let m and m’ be lists
over A. Prove ∀ l l’, rel vector P (l++a::m) (l’++a’ ::m’ ) → length l=length l’ → P a a’

by induction on l. For the inductive case, implying that l’ is non-empty, apply the induction
hypothesis with the tail of l’. �

The next result shows that if two lists are component-wise related, then given one element
in the second list, one can compute an element of the first list such that both elements are
related.

Lemma rel vector app cons exists : ∀ P a q l m,
rel vector P l (m++a::q) → {x : A | In x l ∧ P x a}.

Proof By induction on l and case splitting on m being empty. For the inductive case, if m

is empty then the head of l is a witness, if m is not empty then use the induction hypothesis
with the tail of m; the computable element is a witness. �



Acyclicity of Preferences, Nash Equilibria, and Subgame Perfect Equilibria 11

The following lemma says that if two lists are component-wise related, then given one
element in the first list and one in the second list, but at different places, there is another
element in the first list, either before or after the element mentioned first, that is related to
the element of the second list.

Lemma rel vector app cons different length : ∀ P l a m l’ a’ m’,
rel vector P (l++a::m) (l’++a’ ::m’ ) → length l 6=length l’ → {x : A | (In x l ∨ In x m) ∧
P x a’}.

Proof By induction on l. For the base case, l is empty, if l’ is empty then it is straight-
forward, if l’ is not empty then applying rel vector app cons exists gives a witness. For the
inductive case, l is not empty, case split on l’ being empty and use the induction hypothesis
when l’ is not empty. �

4.4 No Successor

Let A be a Set. Given a binary relation, the predicate is no succ returns a proposition saying
that a given element is the predecessor of no element in a given list.

Definition is no succ (P : A → A → Prop)(x : A)(l : list A) :=
listforall (fun y → ¬P x y) l.

The next two results show a transitivity property and decidability of is no succ when
built on a decidable binary relation. Both are proved by induction on the list l.

Lemma is no succ trans : ∀ P x y l,
transitive A P → P x y → is no succ P x l → is no succ P y l.

Lemma is no succ dec : ∀ P, rel dec P → ∀ x l,
{is no succ P x l}+{¬is no succ P x l}.

The following lemma helps generalise the notion of “backward induction” in section 9.
Assume P a decidable binary relation over A, and x ::l a non-empty list over A. The list x ::l
can be computabily split into a left list, a chosen element, and a right list such that 1) the
chosen element has no P -successor in the right list, 2) the chosen element is the first (from left
to right) element with such a property, and moreover 3) if P is irreflexive and transitive then
the chosen element has no P -successor in the left list either. The form of the statement has
being slightly simplified, as compared to the actual Coq code. The first conjunct corresponds
to the splitting of the list x ::l, and the last three conjuncts correspond to the points 1), 2)
and 3)as mentioned above.

Lemma Choose and split : ∀ P, rel dec P → ∀ (l : list A)(x : A),
{(left,choice,right) : list A × A × list A |

x ::l=(left++(choice::right))
∧
is no succ P choice right

∧
(∀ left’ choice’ right’, left=left’++(choice’ ::right’ ) →
¬is no succ P choice’ (right’++(choice::right)))
∧
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(irreflexive P → transitive P → is no succ P choice left)}.

Proof Assume that P is decidable and proceed by induction on l, the tail of the non-empty
list. For the base case where the tail is empty, nil, x, and nil are witnesses for the required
left list, choice element, and right list. For the step case, l=a::l’, case split on x having a
successor in l. If not, then nil, x, and l are a witness. If x has a successor in l then use the
induction hypothesis with a, which splits the list l into a left list, a choice element, and a
right list. Put x on the top of the left list, here are the three witnesses. �

For example, consider the partial order induced by divisibility of natural numbers by
natural numbers. For the list 2 :: 3 :: 9 :: 4 :: 9 :: 6 :: 2 :: 16 :: nil, the choice is 9, the left list
is 2 :: 3 :: 9 :: 4 :: nil, and the right list is 6 :: 2 :: 16 :: nil.

2 :: 3 :: 9 :: 4 :: 9 :: 6 :: 2 :: 16 :: nil

Choose and split

left list choice right list

2 :: 3 :: 9 :: 4 :: nil 9 6 :: 2 :: 16 :: nil

Indeed, the first 2 can divide 4 written on its right, 3 can divide 9 written on its right,
the first 9 can divide the other 9 written on its right, the 4 can divide 16 written on its right,
but the second 9 cannot divide any number written on its right.

5 Sequential Games

By abstracting over payoff functions, subsection 5.1 generalises the notion of sequential game.
In the remainder of this paper, the expression “sequential game” refers to the new and ab-
stract sequential games, unless stated otherwise. In addition, subsection 5.1 introduces a new
formalism for sequential games. In subsection 5.2, an inductive proof principle is designed for
these sequential games. Last, subsection 5.3 defines a function related to sequential games.

5.1 Definition of Sequential Games

This subsection first presents sequential games informally in the way traditional sequential
games were presented in section 2. Then it describes sequential games in a both inductive
and graphical formalism, and makes a link with the traditional formalism. Last, the inductive
and graphical formalism is naturally translated into a definition of sequential games in Coq.

5.1.1 The Traditional Way:

Informally, consider a collection of outcomes that are the possible end-of-the-game situations,
and a collection of agents that are the possible stake-holders and decision makers. Roughly
speaking, an abstract sequential game is a traditional sequential game where each real-valued
payoff function (enclosed in a leaf) has been replaced by an outcome. Below, the left-hand
picture represents a traditional sequential game, and the right-hand picture represents an
abstract sequential game on the same tree structure.
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a a

b 2, 2 b oc3

1, 0 3, 1 oc1 oc2

5.1.2 The Inductive and Graphical Way:

In what follows, a generic game g will be represented by the left-hand picture below and a
generic (possibly empty) list of games by the right-hand picture.

g l

Sequential games are inductively defined in two steps. First step: If oc is an outcome then
the object below is a game.

oc

Second step: if a is an agent and if the first two objects below are a game and a list of
games, then the rightmost object is also a game.

a

g l g l

The major difference between the traditional formalism and the new formalism is as fol-
lows: In the traditional formalism, an internal node had one or arbitrarily many more children,
which are games. In the new formalism instead, an internal node has one left child, which is a
game, and one right child, which is a list of games. The next two pictures represent the same
game in both formalisms, where for all i between 0 and n, the object g ′

i is the translation of
gi from the traditional formalism into the new formalism.

a a

g0 g1

. . .
gn g′0

g′1 . . . g′n :: nil

For instance, let a, b and c be three agents, and oc1, oc2, oc3 and oc4 be four outcomes.
Consider the following game in the traditional formalism.
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a

b c oc4

oc1 oc2 oc3

The game above is represented by the following game in the new formalism.

a

b c :: oc4 ::
nil

oc1 oc2 ::
nil

oc3

nil

5.1.3 The Inductive and Formal Way:

Formally in Coq, games are defined as follows. First define Outcome and Agent, two arbitrary
objects of type Set.

Variable Outcome : Set.
Variable Agent : Set.

Next, the object Game is defined by induction.

Inductive Game : Set :=
| gL : Outcome → Game

| gN : Agent → Game → list Game → Game.

gL stands for “game leaf” and gN for “game node”. If oc is an Outcome, then gL oc is a
Game. If a is an Agent, g is a Game, and l is a list of objects in Game, then gN a g l is
a Game. The interpretation of such an object is as follows: the agent a “owns” the root of
gN a g l, and g and l represent a’s options, i.e., the subgames a can decide to continue the
play in. The structure ensures that any node of the tree meant to be internal has a non-zero
number of children. The inductive Coq formalism and the inductive graphical formalism are
very close to each other. For instance, compare the game gN a (gN b oc1 oc2 ::nil) oc3 ::nil

with its representation in the inductive graphical formalism below.

a

b oc3 ::
nil

oc1 oc2 ::
nil

Note that the inductive definition of games involves lists, which are already an inductive
structure. Therefore, the game structure is inductive “horizontally and vertically”.



Acyclicity of Preferences, Nash Equilibria, and Subgame Perfect Equilibria 15

5.2 Induction Principle for Sequential Games

This subsection first discusses what would be an inductive proof principle for games in the
traditional formalism. The failure of the former leads to an induction principle in the inductive
graphical formalism. Then, the induction principle is easily translated in Coq formalism.

5.2.1 The Traditional Way:

In the traditional formalism, a so-called induction principle would read as follows. In order
to check that a predicate holds for all games, check two properties: First, check that the
predicate holds for all games that are leaves (enclosing an outcome). Second, check that if
the predicate holds for all the following games,

g0 g1

. . .
gn

then, for any agent a, it holds for the following game.

a

g0 g1

. . .
gn

However, dots, etc’s and so on, very seldom suit formal proofs. While some dots may be
easily formalised, some others cannot. In the new formalism proposed for games, they are
formalised by lists. So, an induction principle for games must take lists into account.

5.2.2 The Inductive and Graphical Way:

In order to prove that the predicate P holds for all games, it suffices to design a predicate Q

expecting a game and a list of games, and then to check that all the properties listed below
hold.

• For all outcome oc, P ( oc ).

• For all game g , if P ( g ) then Q ( g ,
nil

)

• For all game g and g’ and all list of game
l

,
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if P ( g ) and Q ( g’ ,
l

) then Q ( g’ ,
g::l

)

• For all agent a, all game g and all list of game
l

,

if Q ( g ,
l

) then P (
a

g l

)

5.2.3 The Inductive and Formal Way:

The induction principle that Coq automatically associates to the inductively defined structure
of games is not efficient. A convenient principle has to be built (and hereby proved) manually,
via a recursive function and the command fix. That leads to the following induction principle,
which is therefore a theorem in Coq.

Game ind2 : ∀ (P : Game → Prop) (Q : Game → list Game → Prop),
(∀ oc, P (gL oc)) →
(∀ g, P g → Q g nil) →
(∀ g, P g → ∀ g’ l, Q g’ l → Q g’ (g :: l)) →
(∀ g l, Q g l → ∀ a, P (gN a g l)) →
∀ g, Pg

Two facts are worth noting: First, this principle corresponds to the one stated above in
the inductive graphical formalism. Second, in order to prove a property ∀ g : Game, Pg with
the induction principle Game ind2, the user has to imagine a workable predicate Q.

5.3 Outcomes Used in a Sequential Game

This subsection discusses the notion of outcomes used in a sequential game and defines a
function that returns the “left-to-right” list of all the outcomes involved in a given game. Two
lemmas follow the definition of the function in the Coq formalism.

5.3.1 The Traditional Way:

The example below explains what function is intended.

a

b oc3  oc1 :: oc2 :: oc3 :: nil

oc1 oc2

5.3.2 The Inductive and Graphical Way:

To prepare the full formalisation of the idea above, the intended function is defined inductively
with the inductive graphical formalism, in two steps along the structure of games. First step:
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the only outcome used in a leaf is the outcome enclosed in the leaf.

oc
UO
 oc :: nil

Second step: recall that ++ refers to lists appending/concatenation.

a

g0

g1 . . . gn :: nil

UO
 UO(g0) + +UO(g1) + + · · ·+ +UO(gn)

5.3.3 The Inductive and Formal Way:

The intended function, called UsedOutcomes, is inductively and formally defined in Coq.

Fixpoint UsedOutcomes (g : Game) : list Outcome :=
match g with

| gL oc ⇒ oc::nil

| gN g’ l ⇒ ((fix ListUsedOutcomes (l’ : list Game) : list Outcome :=
match l’ with

| nil ⇒ nil

| x ::m ⇒ (UsedOutcomes x )++(ListUsedOutcomes m)
end) (g’ ::l))

end.

The following lemma states that the outcomes used in a game are also used in a structurally
bigger game.

Lemma UsedOutcomes gN : ∀ a g g’ l,
In g (g’ ::l) → incl (UsedOutcomes g) (UsedOutcomes (gN a g’ l)).

Proof By induction on l. For the inductive step case split as follows. If g equals the head
of l then invoke incl appr, incl appl, and incl refl. If g either equals g’ or occurs in the tail
of l then the induction hypothesis says that the outcomes used by g are used by g’ and l

together. The remainder mainly applies in app or and in or app. �

The next result shows that if the outcomes used in a game all occur in a given list, then
so do the outcomes used in any subgame of the original game.

Lemma UsedOutcomes gN listforall : ∀ a g loc l,
incl (UsedOutcomes (gN a g l)) loc → listforall (fun g’ : Game ⇒ incl (UsedOutcomes g’ )
loc) (g ::l).

Proof All the following cases invoke in or app. It is straightforward for g. For elements
of l proceed by induction on l. For the inductive step, it is straightforward for the head of l,
and use the induction hypothesis for elements of the tail of l. �



18 a Formal and Constructive Equivalence

6 Strategy Profiles

Consistent with subsection 5.1, subsection 6.1 generalises the notion of strategy profile by
abstracting over payoff functions, and introduces a new formalism for them. In the remainder
of this paper, the expression“strategy profile” refers to the new and abstract strategy profiles,
unless stated otherwise. In subsection 6.2, an inductive proof principle is designed for these
strategy profiles. Subsection 6.3 defines the underlying game of a strategy profile. Last,
subsection 6.4 defines the induced outcome of a strategy profile.

6.1 Definition of Strategy Profiles

This subsection first presents strategy profiles informally in the way traditional strategy pro-
files were presented in section 2. Then it describes strategy profiles in a both inductive and
graphical formalism consistent with the one used to define sequential games. A correspon-
dence between the traditional formalism and the new one is established. Finally, the inductive
and graphical formalism is naturally translated into a definition of strategy profiles in Coq.

6.1.1 The Traditional Way:

Roughly speaking, an abstract strategy profile is a traditional strategy profile where each
real-valued payoff function (enclosed in a leaf) has been replaced by an outcome. Below,
the left-hand picture represents a traditional strategy profile, and the right-hand picture
represents an abstract strategy profile on the same tree structure.

a a

b 2, 2 b oc3

1, 0 3, 1 oc1 oc2

6.1.2 The Inductive and Graphical Way:

A generic strategy profile s will be represented by the left-hand picture below and a generic
(possibly empty) list of strategy profiles by the right-hand picture.

s l

Strategy profiles are inductively defined in two steps. First step: If oc is an outcome then
the object below is a strategy profile.

oc

Second step: if a is an agent and the first three objects below are a strategy profile and
two lists of strategy profiles, then the rightmost object is also a strategy profile.



Acyclicity of Preferences, Nash Equilibria, and Subgame Perfect Equilibria 19

a

s l l’ l s l’

The major difference between the traditional formalism and the new formalism is as fol-
lows: In the traditional formalism, an internal node has one or arbitrarily many more children,
which are strategy profiles, and in addition an internal node is linked to one and only one of
its children by a double line. In the new formalism, an internal node has one left child, which
is a list of strategy profiles, one central child, which is a strategy profile corresponding to the
double line, and one right child, which is a list of strategy profiles. The next two pictures
represent the same strategy profile in both formalisms, where for all i between 0 and n, the
object s′i is the translation of si from the traditional formalism into the new formalism.

a

s0

. . .
si

. . .
sn

a

s′0 . . . s′i−1
:: nil

s′i

s′i+1
. . . s′n :: nil

For instance, let a and b be two agents, and oc1, oc2 and oc3 be three outcomes. Consider
the following strategy profile in the traditional formalism.

a

b oc3

oc1 oc2

The strategy profile above is represented by the following strategy profile in the new
formalism.
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a

nil

b oc3 ::
nil

oc1 ::
nil

oc2

nil

6.1.3 The Inductive and Formal Way:

Formally in Coq, strategy profiles are defined as follows.

Inductive Strat : Set :=
| sL : Outcome → Strat

| sN : Agent → list Strat → Strat → list Strat → Strat.

sL stands for “strategy profile leaf” and sN for “strategy profile node”. If oc is an Outcome,
then sL oc is a Strat. If a is an Agent, if s is a Strat, and if l and l’ are lists of objects in Strat,
then sN a l s l’ is a Strat. The interpretation of such an object is as follows: as for sequential
games, the agent a “owns” the root of sN a l s l’. Moreover, s is the substrategy profile a

has decided the play shall continue in, and l and l’ represent the options dismissed by a on
the left and on the right of s. The structure ensures that any node of the tree meant to be
internal has a non-zero number of children, and that one and only one child has been chosen.
Like for sequential games, the inductive graphical formalism and the inductive Coq formalism
are very close to each other for strategy profiles. For instance, compare the strategy profile
sN a nil (sN b oc1 ::nil oc2 nil) oc3 ::nil with its representation in the inductive graphical
formalism above.

6.2 Induction Principle for Strategy Profiles

This subsection discusses what would be an inductive proof principle for strategy profiles in
the traditional formalism. The failure of the former leads to an induction principle in the
inductive Coq formalism.

6.2.1 The Traditional Way:

In the traditional formalism, a so-called induction principle would read as follows. In order to
check that a predicate holds for all strategy profiles, check two properties: First, check that
the predicate holds for all strategy profiles that are leaves (enclosing an outcome). Second,
check that if the predicate holds for all the following strategy profiles,

s0

. . .
sn
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then, for any agent a and any i between 0 and n, it holds for the following strategy profile.

a

s0

. . .
si

. . .
sn

However, dots, etc’s and so on, very seldom suit formal proofs. While some dots may
be easily formalised, some others cannot. In the inductive formalism proposed in this paper,
they are formalised by lists. So, an induction principle for games must take lists into account.

6.2.2 The Inductive and Formal Way:

The induction principle that Coq automatically associates to the inductively defined structure
of strategy profiles is not efficient. A convenient principle has to be built (and hereby proved)
manually, via a recursive function and the command fix. That leads to the following induction
principle, which is therefore a theorem in Coq. In order to prove that a predicate P holds for
all strategy profiles, it suffices to design a predicate Q expecting a strategy profile and a list
of strategy profiles, and then to check that several fixed properties hold, as formally stated
below.

Strat ind2 : ∀ (P : Strat → Prop) (Q : list Strat → Strat → list Strat → Prop),
(∀ oc, P (sL oc)) →
(∀ sc, P sc → Q nil sc nil) →
(∀ s, P s → ∀ sc sr, Q nil sc sr → Q nil sc (s :: sr)) →
(∀ s, P s → ∀ sc sl sr, Q sl sc sr → Q (s :: sl) sc sr) →
(∀ sc sl sr, Q sl sc sr → ∀ a, P (sN a sl sc sr)) →
∀ s, P s

6.3 Underlying Game of a Strategy Profile

This subsection discusses the notion of underlying game of a given strategy profile and defines
a function that returns such a game. One lemma follows the definition of the function in the
Coq formalism.

6.3.1 The Traditional Way:

The example below explains what function is intended. It amounts to forgetting all the
choices.

a a

b oc3  b oc3

oc1 oc2 oc1 oc2

6.3.2 The Inductive and Graphical Way:

To prepare the full formalisation of the idea above, the intended function is defined inductively
with the inductive graphical formalism, in two steps along the structure of strategy profiles.
First step: the underlying game of a strategy profile where no choice has been made, i.e., a
leaf strategy profile, is a game where no choice is required, i.e., a leaf game.
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a
s2g
 a

The second step needs case splitting along the structure of the first list, i.e., whether it is
empty or not.

a a

nil s l’

s2g
 

s2g s

map s2g l′

a a

s0 :: l s l’

s2g
 

s2g s0

map s2g (l + +s :: l′)

6.3.3 The Inductive and Formal Way:

The intended function is inductively and formally defined in Coq, and called s2g, which stands
for “strategy profile to game”.

Fixpoint s2g (s : Strat) : Game :=
match s with

| sL oc ⇒ gL oc

| sN a sl sc sr ⇒
match sl with

| nil ⇒ gN a (s2g sc) (map s2g sr)
| s’ ::sl’ ⇒ gN a (s2g s’ ) ((map s2g sl’ )++(s2g sc)::(map s2g sr))
end

end.

The next result states that if the two lists of substrategy profiles of two strategy profiles
have, component-wise, the same underlying games, then the two original strategy profiles also
have the same underlying game.

Lemma map s2g sN s2g : ∀ a sl sc sr sl’ sc’ sr’,
map s2g (sl ++ sc :: sr) = map s2g (sl’ ++ sc’ :: sr’ ) →
s2g (sN a sl sc sr) = s2g (sN a sl’ sc’ sr’ ).

Proof Double case split on sl and sl’ being empty and use map app. �
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6.4 Induced Outcome of a Strategy Profile

This subsection discusses the notion of outcome induced by a strategy profile, and defines a
function that computes such an outcome. Three lemmas follow the definition of the function
in the Coq formalism.

6.4.1 The Traditional Way:

Starting at the root of a strategy profile and following the agents’ consecutive choices leads to
a leaf, and hereby to an outcome. The following example explains what function is intended.

a

b c a  oc5

oc1 oc2 oc3 b oc6

oc4 oc5

6.4.2 The Inductive and Graphical Way:

To prepare the full formalisation of the idea above, the intended function is defined inductively
with the inductive graphical formalism, in two steps along the structure of strategy profiles.
First step: the outcome induced by a leaf strategy profile is the enclosed outcome.

oc
IO
 oc

Second step: follow the choice at the root and consider the chosen substrategy profile.

a

l s l’

IO
 IO( s )

6.4.3 The Inductive and Formal Way:

The intended function, called InducedOutcome, is inductively and formally defined in Coq.

Fixpoint InducedOutcome (s : Strat) : Outcome :=
match s with

| sL oc ⇒ oc

| sN a sl sc sr ⇒ InducedOutcome sc

end.

The following lemma, proved by induction on sl, states that the outcomes used by the
underlying game of a strategy profile are all used by the underlying game of a bigger strategy
profile whose chosen substrategy profile is the original strategy profile.

Lemma UsedOutcomes sN incl : ∀ a sl sc sr,
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incl (UsedOutcomes (s2g sc)) (UsedOutcomes (s2g (sN a sl sc sr))).

The next result says that the outcome induced by a strategy profile is also an outcome
used in the underlying game.

Lemma Used Induced Outcomes : ∀ s : Strat,
In (InducedOutcome s) (UsedOutcomes (s2g s)).

Proof Write the claim as a predicate on s and apply the induction principle Strat ind2

where Q l s l’ is In (InducedOutcome s) (UsedOutcomes (s2g s)). For the last induction case
invoke UsedOutcomes sN incl. �

Note that if the underlying game of a strategy profile is a leaf game enclosing a given
outcome, then the strategy profile is a leaf strategy profile enclosing the same outcome, so
that the outcome induced by the strategy profile is also the same outcome: if s2g s=gL oc

then InducedOutcome s=oc. The following lemma is the list version of the remark above. It
is prove by induction on ls.

Lemma map s2g gL InducedOutcome : ∀ ls loc,
map s2g ls =map (fun y ⇒ gL y) loc → map InducedOutcome ls = loc.

7 Convertibility

The first subsection defines convertibility, which will be used to formally define the notion of
Nash equilibrium in section 8. The second subsection designs an inductive proof principle for
convertibility.

7.1 Definition of Convertibility

This subsection discusses the notion of convertibility, which is the ability of an agent to convert
a strategy profile into another strategy profile, and defines a predicate accounting for it. Four
lemmas follow its definition in Coq.

7.1.1 The Traditional Way:

An agent is (usually implicitly) granted the ability to change his choices at all nodes he owns,
as shown in the following example. Agent b can change his choices at the nodes where b is
displayed in bold font, and only at those nodes.

a a

b b b
Conv b
←→ b b b

oc1 a oc4 b oc7 oc8 oc1 a oc4 b oc7 oc8

oc2 oc3 oc5 oc6 oc2 oc3 oc5 oc6

7.1.2 The Inductive and Graphical Way:

To prepare the full formalisation of the idea above, the intended function is defined inductively
with the inductive graphical formalism, in two steps along the structure of strategy profiles.
Let b be an agent. First step: Let oc be an outcome. Agent b can convert the leaf strategy
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profile enclosing oc into itself by changing some, actually none of his choices since none has
been made.

oc
Conv b
←→ oc

Second step: let
s0 . . . sn :: nil

and
s′0 . . . s′n :: nil

be two lists

of strategy profiles such that for all i between 0 and n, si

Conv b
←→ s′i

The second step involves compound strategy profiles, and needs case splitting on the
“converting agent” owning the roots or not. Also let a be another agent. For all i between 0
and n, agent b can perform the following conversion by combining at once all his conversion
abilities in all the substrategy profiles.

a

s0 . . . si−1 :: nil

si

si+1 . . . sn :: nil

Conv b

a

s′0 . . . s′i−1
:: nil

s′i

s′i+1
. . . s′n :: nil

When a equals b, the agent b can also change his choice at the root owned by a. In that
case, the agent b can perform the following conversion for all i and k between 0 and n.
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b

s0 . . . si−1 :: nil

si

si+1 . . . sn :: nil

Conv b

b

s′0 . . . s′k−1
:: nil

s′k

s′k+1
. . . s′n :: nil

7.1.3 The Inductive and Formal Way:

The following definition accounts for agents being able to unilaterally change part of their
choices. Conv, which means strategy profile convertibility, and ListConv, which means
component-wise convertibility of list of strategy profiles, are defined by mutual induction
via the word with, within the same definition.

Inductive Conv : Agent → Strat → Strat → Prop :=
| convLeaf : ∀ b oc, Conv b (sL oc)(sL oc)
| convNode : ∀ b a sl sl’ sc sc’ sr sr’, (length sl=length sl’ ∨ a = b) →
ListConv b (sl++(sc::sr)) (sl’++(sc’ ::sr’ )) →
Conv b (sN a sl sc sr)(sN a sl’ sc’ sr’ )

with

ListConv : Agent → list Strat → list Strat → Prop :=
| lconvnil : ∀ b, ListConv b nil nil

| lconvcons : ∀ b s s’ tl tl’, Conv b s s’ → ListConv b tl tl’ →
ListConv b (s::tl)(s’ ::tl’ ).

The formula length sl=length sl’ ∨ a = b ensures that only the owner of a node can change
his choice at that node. It corresponds to the case splitting in the inductive and graphical
definition above. ListConv b (sl++(sc::sr)) (sl’++(sc’ ::sr’ )) guarantees that this property
holds also in the substrategy profiles. ListConv corresponds to the dots in the inductive and
graphical definition above. One may think of avoiding a mutual definition for Conv by using
the already defined rel vector instead of ListConv. However, the Coq versions 8.0 and 8.1
do not permit it, presumably because it would require to pass the whole Conv object as an
argument (to rel vector) while not yet fully defined.
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The following two lemmas establish the equivalence between ListConv on the one hand
and rel vector and Conv on the other hand. They are both proved by induction on the list l

and by a case splitting on l’.

Lemma ListConv rel vector : ∀ a l l’,
ListConv a l l’ → rel vector (Conv a) l l’.

Lemma rel vector ListConv : ∀ a l l’,
rel vector (Conv a) l l’ → ListConv a l l’ .

The next two results state reflexivity property of Conv and ListConv.

Lemma Conv refl : ∀ a s , Conv a s s.

Proof Let a be an agent and s a strategy profile. It suffices to prove that P s where P s’

is Conv a s’ s’ by definition. Apply the induction principle Strat ind2 where Q sl sc sr is
ListConv a (sl++sc::sr) (sl++sc::sr) by definition. Checking all cases is straightforward. �

Lemma ListConv refl : ∀ a l, ListConv a l l.

Proof By rel vector ListConv, induction on the list l, and Conv refl. �

7.2 Induction Principle for Convertibility

7.2.1 The Inductive and Formal Way:

A suitable induction principle for convertibility is automatically generated in Coq with the
command Scheme, and hereby is a theorem in Coq. The principle states that under four
conditions, Conv a is a subrelation of the binary relation P a for all agents a. Note that in
order to prove such a property, the user has to imagine a workable predicate P0.

conv lconv ind : ∀ (P : Agent → Strat → Strat → Prop)
(P0 : Agent → list Strat → list Strat → Prop),

(∀ b oc, P b (sL oc) (sL oc)) →

(∀ b a sl sl’ sc sc’ sr sr’, length sl = length sl’ ∨ a = b → ListConv b (sl ++ sc :: sr) (sl’
++ sc’ :: sr’ ) → P0 b (sl ++ sc :: sr) (sl’ ++ sc’ :: sr’ ) → P b (sN a sl sc sr) (sN a sl’

sc’ sr’ )) →

(∀ b, P0 b nil nil) →

(∀ b s s’ tl tl’, Conv b s s’ → P b s s’ → ListConv b tl tl’ → P0 b tl tl’ → P0 b (s :: tl)
(s’ :: tl’ )) →

∀ a s s0, Conv a s s0 → P a s s0

This induction principle is used below to prove that two convertible strategy profiles have
the same underlying game.

Lemma Conv s2g : ∀ (a : Agent)(s s’ : Strat), Conv a s s’ → s2g s = s2g s’.

Proof Assume s and s’ convertible by a. Write s2g s = s2g s’ as P a s s’ for some P and
proceed by the induction principle conv lconv ind where P0 b l l’ is (ListConv b l l’ → map

s2g l=map s2g l’ ) by definition. The remainder invokes map s2g sN s2g. �
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8 Concepts of Equilibrium

This section defines the notions of preference, happiness, Nash equilibrium, and subgame
perfect equilibrium in the new and abstract formalism. Two lemmas follow these definitions.

In traditional game theory, the agents implicitly prefer strictly greater payoffs, and thus
also prefer payoff functions granting them strictly greater payoffs. In the abstract formalism,
the agents’ preferences for outcomes are explicitly represented by binary relations over the
outcomes, one relation per agent. Below, OcPref a is the preference of agent a.

Variable OcPref : Agent → Outcome → Outcome → Prop.

Since every strategy profile induces an outcome, the preferences over outcomes yield pref-
erences over strategy profiles. For instance, if agent a prefers oc1 to oc3, then he prefers the
following right-hand strategy profile to the left-hand one. As to agent b, it could be either
way since no specific property is assumed about preferences.

a a

b oc3 b oc3

oc1 oc2 oc1 oc2

Formally in Coq, preference over strategy profiles is defined as follows.

Definition StratPref (a : Agent)(s s’ : Strat) : Prop :=
OcPref a (InducedOutcome s)(InducedOutcome s’ ).

If an agent cannot convert a given strategy profile to any preferred one, then he is said to
be happy with respect to the given strategy profile. For instance the following strategy profile
makes agent a happy iff agent a does not prefer oc2 to oc3, whatever his other preferences
are.

a

b oc3

oc1 oc2

Formally in Coq, happiness of an agent is defined as follows.

Definition Happy (s : Strat)(a : Agent) : Prop := ∀ s’,
Conv a s s’ → ¬StratPref a s s’.

A strategy profile that makes every agent happy is called a Nash equilibrium.

Definition Eq (s : Strat) : Prop := ∀ a, Happy s a.

A subgame perfect equilibrium is a Nash equilibrium such that all of its substrategy
profiles are subgame perfect equilibria. Compare this definition with the informal and more
complicated one in section 2.

Fixpoint SPE (s : Strat) : Prop := Eq s ∧
match s with

| sL oc ⇒ True

| sN a sl sc sr ⇒ (listforall SPE sl) ∧ SPE sc ∧ (listforall SPE sr)
end.

Therefore, a subgame perfect equilibrium is a Nash equilibrium.
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Lemma SPE is Eq : ∀ s : Strat, SPE s → Eq s.

The following provides a sufficient condition for a strategy profile to be a Nash equilib-
rium: at the root of a compound strategy profile, if the chosen substrategy profile is a Nash
equilibrium, and if the owner of the root cannot convert any of his other options into a sub-
strategy profile that he prefers to his current choice, then the compound strategy profile is
also a Nash equilibrium. This is stated in Coq below.

Lemma Eq subEq choice : ∀ a sl sc sr,
(∀ s s’, In s sl ∨ In s sr → Conv a s s’ → ¬StratPref a sc s’ ) →
Eq sc → Eq (sN a sl sc sr).

Proof Let be a, sl, sc, sr and assume the two premises. Also assume that an agent a’

can convert sN a sl sc sr to s’ that he prefers. Now try to derive a contradiction from
the hypothesis. For this, note that s’ equals sN a sl’ sc’ sr’ for some sl’, sc’, and sr’.
Case split on sl and sl’ having or not the same length. If they have the same length then
use the equilibrium assumption together with rel vector app cons same length and List-

Conv rel vector. If sl and sl’ have different lengths then a’ equals a. The remainder invokes
rel vector app cons different length and ListConv rel vector. �

The converse of this lemma also holds, but it is omitted in this paper.

9 Existence of Equilibria

This section generalises the notion of “backward induction” for abstract sequential games,
and shows that it yields a subgame perfect equilibrium when preferences are totally ordered.
But it also shows that it may not always yield a subgame perfect equilibrium for arbitrary
preferences. However, this section eventually proves that acyclicity of decidable preferences
is a necessary and sufficient condition for guaranteeing computable existence of Nash equilib-
rium/subgame perfect equilibrium.

9.1 “Backward Induction”

This subsection starts with an informal discussion, and continues with definitions in the
inductive graphical formalism. Eventually, a “backward induction” function is defined in Coq,
and one lemma follows.

9.1.1 The Traditional Way:

Informally, the idea is to perform “backward induction” on all subgames first, and then to
let the owner of the root choose one strategy profile that suits him best among the newly
built strategy profiles. When preferences are partially ordered, the agent can choose in order
to maximise his preference; when they are not partially ordered, a procedure slightly more
general may be needed. Lemma Choose and split defined in subsection 4.4 relates to such a
procedure. (More specifically, the proof of the lemma is such a procedure.) For instance, let
oc1 . . . oc6 be six outcomes such that a prefers oc5 to oc2, and b prefers oc2 to oc1 and oc1 to
oc2, and nothing else. A “backward induction” process is detailed below. On the left-hand
picture, b chooses by Choose and split. On the right-hand picture, agent a being “aware” of
b’s choice procedure chooses accordingly, also by Choose and split.
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a a

b oc4 b b oc4 b

oc1 oc2 oc3 oc5 oc6 oc1 oc2 oc3 oc5 oc6

9.1.2 The Inductive and Graphical Way:

To prepare the full formalisation of the idea above, the intended function is defined inductively
with the inductive graphical formalism, in two steps along the structure of strategy profiles.
First step: performing “backward induction” on a leaf game that encloses an outcome yields
a leaf strategy profile that encloses the same outcome.

a
BI
 a

Second step: Assume that “backward induction” is defined for the games g0, . . . , gn. An
agent a can choose one strategy profile among BI g0, . . . , BI gn by Choose and split and his
own preference, as below.

(BI g0) . . . (BI gn) :: nil

Choose and split (StratPref dec a)

left list choice right list

(BI g0) . . . (BI gi−1) :: nil BI gi (BI gi+1) . . . (BI gn) :: nil

Then, “backward induction” can be defined on the following compound game.

a

g0

g1 . . . gn :: nil

↓ BI
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a

(BI g0) . . . (BI gi−1) :: nil

BI gi

(BI gi+1) . . . (BI gn) :: nil

9.1.3 The Inductive and Formal Way:

The definition using the inductive graphical formalism above is translated into Coq formalism.
First, assume that preferences over outcomes are decidable.

Hypothesis OcPref dec : ∀ (a : Agent), rel dec (OcPref a).

Subsequently, preferences over strategy profiles are also decidable.

Lemma StratPref dec : ∀ (a : Agent), rel dec (StratPref a).

Next, the generalisation of “backward induction”, with respect to the preferences above,
is defined by recursion. For the sake of readability, the definition displayed below is a slight
simplification of the actual Coq code.

Fixpoint BI (g : Game) : Strat :=
match g with

| gL oc ⇒ sL oc

| gN a g l ⇒ let (sl,sc,sr):=
Choose and split (StratPref dec a) (map BI l) (BI g) in

sN a sl sc sr

end.

As stated below, the underlying game of the image by BI of a given game is the same
game.

Lemma BI s2g : ∀ g : Game, s2g (BI g)=g.

Proof Rewrite the claim as ∀ g, P g for some P. Apply the induction principle Game ind2

where Q g l is s2g (BI g)=g ∧ map s2g (map BI ) l=l. For the last induction case, invoke
Choose and split and map app. �

9.2 The Total Order Case

In this subsection only, assume transitivity and irreflexivity of preferences over outcomes.
Subsequently, those propertiesalso hold for preferences over strategy profiles.

Hypothesis OcPref irrefl : ∀ (a : Agent), irreflexive (OcPref a).

Hypothesis OcPref trans : ∀ (a : Agent), transitive (OcPref a).

Lemma StratPref irrefl : ∀ (a : Agent), irreflexive (StratPref a).
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Lemma StratPref trans : ∀ (a : Agent), transitive (StratPref a).

Irreflexivity of preferences guarantees that leaf strategy profiles are Nash equilibria.

Lemma Leaf Eq : ∀ oc : Outcome, Eq (sL oc).

If preferences are total over a given list of outcomes, then for any sequential game using
only outcomes from the list, “backward Induction” yields subgame perfect equilibrium. This
is the translation of Kuhn’s result into abstract sequential game formalism.

Lemma BI SPE : ∀ loc, (∀ (a : Agent), total (OcPref a) loc) →
∀ g : Game, incl (UsedOutcomes g) loc → SPE (BI g).

Proof Assume loc, a list of outcomes, and the totality property. Write incl (UsedOutcomes

g) loc → SPE (BI g) as P g and proceed by the induction principle Game ind2 where Q

g l is listforall (fun g’ ⇒ incl (UsedOutcomes g’ ) loc) (g ::l) → SPE (BI g) ∧ listforall

SPE (map BI l). The first three cases are straightforward. For the fourth and last case
assume g, l, and the other premises, such as an agent a. In order to prove that the “backward
induction” of the compound game gN a g l is a subgame perfect equilibrium, first note that
all substrategy profiles of this “backward induction” are subgame perfect equilibria, by the
induction hypotheses, listforall appr and listforall appr. Then, the main difficulty is to prove
that it is a Nash equilibrium. For this, invoke Eq subEq choice after proving its two premises:
The induction hypothesis and lemma SPE is Eq shows that the substrategy profile chosen by
a is a Nash equilibrium. For the other premise required for invoking Eq subEq choice, assume
a substrategy profile not chosen by a. The induction hypothesis and lemma SPE is Eq show
that it is a Nash equilibrium. Next, assume that this Nash equilibrium is convertible by a into
another strategy profile, and show that a does not prefer this new strategy profile to his current
choice. For this, invoke decidability, irreflexivity, transitivity, and totality of preferences, as
well as lemmas listforall In, UsedOutcomes gN, map inverse, Used Induced Outcomes and
Conv s2g. �

9.3 Limitation

Now, no property is assumed about the preferences. Consider the three outcomes oc1, oc2

and oc3, and an agent a that prefers oc2 to oc3, and nothing else. The strategy profile below
is obtained by the “backward induction” function define in subsection 9.1. However, it is not
a Nash equilibrium since the current induced outcome is oc3, but it can be converted by a

into the preferred oc2.

a

a oc3

oc1 oc2

Informally, when dealing with totally ordered preferences, the notions of “backward in-
duction” and subgame perfect equilibrium coincide although their definitions differ; they are
the same in extension, but are different in intension. This difference in intension is critical
when dealing with partially ordered preferences: as shown by the example above, “backward
induction” no longer yields Nash equilibrium, let alone subgame perfect equilibrium.
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9.4 General Case

Until this subsection, equilibrium concepts and related notions have been defined with respect
to given preferences: a preference binary relation was associated with an agent once for all.
In the following, equilibrium concepts and related notions are abstracted over preferences.
It means that preferences become a parameter of the definitions and lemmas. For instance,
instead of writing Eq s to say that s is a Nash equilibrium, one shall write Eq OcPref s to
say that s is a Nash equilibrium with respect to the family of preferences defined by OcPref.

As formally stated in the two lemmas below, given two families of preferences and given a
strategy profile, if for every agent the restriction of his first preference to the outcomes used
by the strategy profile is a subrelation of his second preference, and if the strategy profile is a
Nash equilibrium/subgame perfect equilibrium with respect to the second preferences then it
is also a Nash equilibrium/subgame perfect equilibrium with respect to the first preferences.
Informally, the less arcs an agent’s preference has, the more strategy profiles make the agent
happy.

Lemma Eq order inclusion : ∀ OcPref OcPref’ s,
(∀ a : Agent,
sub rel (restriction (OcPref a) (UsedOutcomes (s2g s))) (OcPref’ a)) →
Eq OcPref’ s → Eq OcPref s.

Proof Invoke Used Induced Outcomes and Conv s2g. �

Lemma SPE order inclusion : ∀ OcPref OcPref’ s,
(∀ a : Agent,
sub rel (restriction (OcPref a) (UsedOutcomes (s2g s))) (OcPref’ a)) →
SPE OcPref’ s → SPE OcPref s.

Proof Assume two families of preferences and rewrite the claim as ∀ s, P s for some P. Then
apply Strat ind2 where Q sl sc sr is (∀ a, sub rel (restriction (OcPref a) (UsedOutcomes

(s2g (sN a sl sc sr)))) (OcPref’ a)) → listforall (SPE OcPref’ ) sl → SPE OcPref’ sc

→ listforall (SPE OcPref’ ) sr → listforall (SPE OcPref ) sl ∧ SPE OcPref sc ∧ listforall

(SPE OcPref ) sr. For the first and fifth induction steps, apply Eq order inclusion. For the
third and fourth induction step, invoke lemmas transitive sub rel, sub rel restriction incl,
incl appr, incl appl, and incl refl. �

The following lemma generalises Kuhn’s result to acyclic preferences (instead of totally
ordered). It invokes a result related to topological sorting proved in [11].

Theorem acyclic SPE : ∀ OcPref,
(∀ a, rel dec (OcPref a)) →
(∀ a, irreflexive (clos trans Outcome (OcPref a))) →
∀ g, {s : Strat | s2g s=g ∧ SPE OcPref s}.

Proof Assume a family of decidable acyclic preferences. Let g be a game. According
to [11], by topological sorting there exists a family of decidable acyclic preferences that are
strict total orders including the original preferences on the outcomes used by g. A subgame
perfect equilibrium can be computed by BI SPE. Conclude by SPE order inclusion. �

The following property relates to SPE is Eq.

Theorem SPE Eq : ∀ OcPref,
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(∀ a, rel dec (OcPref a)) →
(∀ g : Game, {s : Strat | s2g s=g ∧ SPE OcPref s}) →
∀ g : Game, {s : Strat | s2g s=g ∧ Eq OcPref s}.

The next result says that if all games have Nash equilibria with respect to a given family
of preferences, then these preferences are acyclic.

9.4.1 The Traditional Way

Informally, let an agent a prefer x1 to x0, x2 to x1, and so on, and x0 to xn. The game
displayed below has no Nash equilibrium, as suggested graphically. The symbol s −→a s’

means that agent a both prefers s’ to s and can convert s to s’. So, the formula s −→a s’

witnesses the agent’s non-happiness.

a

x0 x1 . . . xn

a a

−→a

x0 x1 . . . xn x0 x1 . . . xn

a a

−→a

. . . xi xi+1 . . . . . . xi xi+1 . . .

9.4.2 The Formal Way

Now, the corresponding formal statement and its proof.

Theorem Eq acyclic : ∀ OcPref,
(∀ a, rel dec (OcPref a)) →
(∀ g : Game, {s : Strat | s2g s=g ∧ Eq OcPref s}) →
∀ a : Agent, irreflexive (clos trans Outcome (OcPref a)).

Proof Assume all premises. In particular, let a be an agent and oc be an outcome related
to itself by the transitive closure of the agent’s preference. Prove a contradiction by building
a game such that every strategy profile for the game can be improved upon, as follows. By
lemma clos trans path, get an actual path loc from oc to itself with respect to the preference.
If loc is empty then invoke lemma Conv refl. If loc is not empty then, thanks to the assump-
tion, compute a Nash equilibrium for the game with root owned by agent a and the children
being leaves enclosing oc for the first and the elements of loc for the others. Case split on the
right-hand substrategy profile list of the Nash equilibrium being empty. If it is empty, and the
left-hand substrategy profile list of the Nash equilibrium as well, then the root of the game has
two or more children and the strategy profile has one only, hence a contradiction. If the left-
hand substrategy profile list is not empty then ListConv refl, map s2g gL InducedOutcome,
path app elim right, and map app may be needed. If the right-hand substrategy profile list
of the Nash equilibrium is not empty then invoke associativity of list appending as well as the
lemmas mentioned just above, and a case splitting on the left-hand substrategy profile list
again. �
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9.5 Examples

9.5.1 Partial Order and Subgame Perfect Equilibrium

As in section 9.3, consider three outcomes oc1, oc2 and oc3, and an agent a that only prefers
oc2 to oc3. Each of the three possible linear extensions of a’s preference, prior to “backward
induction”, leads to a subgame perfect equilibrium as shown below, where the symbol <

represents the different linear extensions. Compare with the “backward induction” without
prior linear extension of subsection 9.3.

oc2 < oc3 < oc1 oc3 < oc2 < oc1 oc3 < oc1 < oc2

a a a

a oc3 a oc3 a oc3

oc1 oc2 oc1 oc2 oc1 oc2

In the same way, the results obtained in this section show that subgame perfect equilibrium
exists for games with preferences discussed in section 3.

9.5.2 Benevolent and Malevolent Selfishness

In subsection 3.1 were defined benevolent and malevolent selfishnesses. It is not surprising
that, sometimes, benevolent selfishness yields better payoffs for all agents than malevolent
selfishness. For instance compare the induced payoff functions below. The lefthand “back-
ward induction” corresponds to benevolent selfishness, and the righthand one to malevolent
selfishness.

a a

b 1, 1 b 1, 1

0, 2 2, 2 0, 2 2, 2

On the contrary, malevolent selfishness may yield better payoffs for all agents than benevo-
lent selfishness, as shown below. The lefthand“backward induction”corresponds to benevolent
selfishness, and the righthand one to malevolent selfishness.

a a

b 1, 1 b 1, 1

a 2, 2 a 2, 2

0, 0 0, 3 0, 0 0, 3

10 Conclusion

This paper introduces a new inductive formalism for sequential games. it also replaces real-
valued payoff functions with atomic objects called outcomes, and the usual total order over
the reals with arbitrary preferences. This way, it also defines an abstract version of sequential
games, with similar tree structure and notion of convertibility as for traditional sequential
games. The notions of Nash equilibrium, subgame perfect equilibrium, and “backward induc-
tion” are translated into the new formalism. When preferences are totally ordered, “backward
induction”guarantees existence of subgame perfect equilibrium for all sequential games, thus
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translating Kuhn’s result in the new formalism. However, an example shows that “backward
induction” fails to provide equilibrium for non-totally ordered preferences, e.g., partial orders.
But when preferences are acyclic, it is still possible to perform “backward induction” on a
game whose preferences have been linearly extended. This yields a subgame perfect equi-
librium of the game with respect to the acyclic preferences, because removing arcs from a
preference relation amounts to removing reasons for being unhappy. So, given a collection of
outcomes, the following three propositions are equivalent:

• The agents’ preferences over the given outcomes are acyclic.

• Every game built over the given outcomes has a Nash equilibrium.

• Every game built over the given outcomes has a subgame perfect equilibrium.

The formalism introduced in this paper is suitable for proofs in Coq, which is a (highly
reliable) constructive proof assistant. This way, the above-mentioned equivalence is fully
computer-certified using Coq. Beside the additional guarantee of correctness provided by the
Coq proof, the activity of formalisation also helps clearly identify the useful definitions and
the main articulations of the proof.

Informally, a result due to Aumann states that, when dealing with traditional sequential
games, “common knowledge of rationality among agents” is equivalent to “backward induc-
tion” (where “rationality” means playing in order to maximise one’s payoff). This is arguable
in abstract sequential games if one expects “common knowledge of rationality among agents”
to imply Nash equilibrium. Indeed, “backward induction” may not imply Nash equilibrium,
as seen in this paper. Therefore, “backward induction” may not imply “common knowledge
of rationality among agents”. Instead, one may wonder whether “common knowledge of ra-
tionality among agents” is equivalent to subgame perfect equilibrium, whatever it may mean,
when preferences are acyclic, i.e. rational in some sense. In this case, the difference between
“backward induction” and subgame perfect equilibrium seems critical again.
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