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Abstract

In Grids, transfer jobs and network resources need to be gednia a more
deterministic way than in the Internet. New approaches flik& schedul-
ing are proposed and studied as alternatives to traditi@Qo& and reservation
proposals. To enable such flow scheduling approachesjmanrechanisms
controlling flow sending time and rate have to be implemernitethe data
plane. This paper quantify and compares in a range of lateongitions,
such end-host based mechanisms combined with transptotpt® to instan-
tiate different scheduling strategies. We show that, irntggeed network, a
single-rate scheduling strategy implemented by an AIMBeligprotocol with
packet pacing mechanism offers predictable performandesansensitive to
latency. This paper also highlights the limits of other tetgées and rate lim-
itation mechanisms like token bucket which may presentegtiptability and
other drawbacks.

Keywords: Grid networks, flow scheduling, bulk data transfers, ratetition, pacing

Résumé

Les taches de transferts et les ressources réseaux omnt loe&oe gérées de
maniére plus déterministe dans les grilles que dans ItisteDe nouvelles ap-
proches comme I'ordonnancement de flux ont été proposéasigeés comme
alternatives aux approches classiques de QoS et résexvadifin de permettre
'ordonnancement de flux, des mécanismes offrant la pdissildie control-
ler les dates d’émission des flux et leurs débits sont nécessdans le plan
donné. Ce rapport quantifie et compare, sous différenteadas, ces méca-
nismes en présence d’un protocole de transport dans le ndtatiser diffé-
rentes stratégies d’ordonnancement. Nous montrons quidennancement a
débit constant implanté grace a un protocole de transpdiiDA¢t un méca-
nisme de pacing offre dans les réseaux haut débits des parfices prévi-
sibles et indépendantes de la latence. Ce rapport montededagent les limites
des autres stratégies et mécanismes de limitation de d#binetoken bucket
qui rends difficile la prédiction de la durée du transfert.

Mots-clés: Réseaux de grille, ordonnancement de flux, transferts faabsiitation de débit,
pacing
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Figure 1: 200 GB scheduled transfer.

1 Introduction

High end instruments and applications generate huge ambdata which have to be moved between
data centers, computing centers or visualization centegsreliable and time-constrained manner
[21]. Today, data are transferred within packet networks thhowansport services such as GridFTP
based on TCP protocol. TCP enables a fair sharing of the kpgacities among contending flows
by applying a distributed congestion control algorithmci$end to end congestion control approach
do not fill the transfer time predictability and reliabilibeeds of these applications. Mechanism to
control huge movements of data in the time axis seems to liyhigquired in Grids. Indeed, tight
coordination of resource allocation among end points afguires a data mover service to carry out
a giant task in a specified time interval.

Let us consider the following example: 200 GB data produced siteA need to be moved to a
site B for processing. The CPU and disk resources inBiteave been reserved in advance from 200 s
to 400 s, and from O s to 400 s respectively. If transfer cambagly when disk in site3 is allocated,
and there is no pipeline between transfer and computindgcesithe bulk data transfer taskneeds
to move 200 GB data from sité to site B in the time interval0 s, 200 s] (Figure1), to fully use the
CPU resources.

To manage transfer jobs and network resource sharing in a deierministic way, researchers
are studying new approaches all based on some resourceatgserparadigm like dynamic light
path provisioning or flow schedulinglf]. Bandwidth reservation has been studied extensively for
real-time applications 2], which are often approximately modeled as reserving a fex@dunt of
bandwidth from a given start time. In comparison, bulk dasmdfer tasks are specified in terms
of volumeand active window(from arrival time to deadline). The bulk data transfer optation
problem has been formulated in networks in different wa;8][ Given a network model, minimizing
the congestion factor appears to be a powerful objectivetimm [1]. In this situation, allocating
bandwidth to flows in a fair manner, as it is the case in therihgie is no more the main objective.
Indeed, to complete more tasks before their deadlinesinghiistantaneous bandwidth fairly among
all active flows may not be optimal7]. In some cases, it is beneficial to allow a connection with
larger pending volume and earlier deadline to grab more W, similar to the case of Earliest
Deadline First scheduling in real-time systen$)][

Chen and Primet demonstrated ifi] fhat spaghetti schedulingvhich consists of allocating a
single rate over the full time window of each request is amnogitsolution for the bulk data transfer
scheduling (BDTS) problem, when all requests have the sameedonstraints. The allocated rate is
obtained by dividing the volume by the maximal time windowtloé¢ request. Indeed, this solution
gives the minimal congestion factor. The flexibility of clsomy bandwidth allocation profilecan



2 S. Soudan, R. Guillier, P. Primet

also be exploited to improve system performance, when the-tindows are different. The BDTS
problem has an optimal solution with bandwidth reservapoufile in the form of the step function
with O(r) intervals where- is the number of requests. The implementation of the mat#-allocation
strategy is an extension of the single rate allocation ones.

As bulk data transfer scheduling (BDTS) problem has beemdtated and proved to be a valu-
able solution to optimize both user and network providditutiunctions, this paper concentrates on
implementation issues of such approach. Indeed, all pempssheduling algorithms operating at a
session abstraction layer rely on an ideal transport pobtaigle to fully utilize the controlled band-
width. However it is not very clear how current transporttponls have to be combined with time and
rate control mechanisms to approximate the ideal impleatiemt of such approach. The goal of this
paper is then to explore end host based mechanisms whicleassel to better control the bandwidth
sharing in a scalable and simple way. We also study how wirdased transport protocol interact
with these mechanisms. We aim at evaluating the potentaigklsiintroduced at run time. These biases
will have to be integrated in the flow scheduling algorithnugpaoits.

This paper is organized as follow: section 1 presents enis Inoschanisms considered to enforce
allocations. Third section presents the scheduling gfiedeand transport protocol considerations,
section 4 presents the experimental evaluation of thegsegtes and end hosts mechanisms combined.

2 End hosts mechanisms

2.1 Rate limitation mechanisms

In this work, for the sake of scalability, only software emaists rate limitation mechanisms are con-
sidered. We focus on GNU/Linux mechanisms as it is the mgsiogled operating system in grid
environments.

Timescale used to define rates is of great importance. Irpegddet networks, flows are not fluid.
Packets are sent entirely, one after one, at the wire l@t-rélis leads to an on/off sending process.
Then, when considering fixed size packets, the only way toifyndéta rates over a large period of
time is to vary inter-packets intervals.

To calculate these intervals, we have to consider the safitt@e that can be used to enforce the
limitation. In an end-host system four different sources lsa considered:

1. Userland timers;
2. TCP self clocking namely RTT of the transfer’s path;
3. OS’s kernel timers;

4. Packet-level clocking.

2.1.1 Userland timer based mechanisms

Application level timers can provide up to 8192 Hz timersotigh RTC under GNU/Linux. RTC
timers above 64 Hz are normally not accessible to users.h&ngblution, the use of POSIX functions
like nanosl eep() has some limitations as the man-page suggests:

'Real Time Clock
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The current implementation efanosl| eep() is based on the normal kernel timer
mechanism, which has a resolution of 1/HZ s [...] Therefo@nos| eep() pauses
always for at least the specified time, however it can take W ims longer than specified
until the process becomes runnable again.

This scheduling issue also apply for processes that use R$€dtimers.

Trickle proposed inq] is a userland library which “moderataend() andr ecv() calls using
nanosl eep() function in order to limit the rate. UDT§] implementation which is a transport
protocol using rate-based congestion control rely on asdd| eep() function.

These mechanisms provide a coarse grained limitation.

2.1.2 TCP self-clocking based mechanisms

TCP self clocking depends on the round-trip time of the paith ia subject to variations but range
from about 0.01 ms within a LAN to several hundred of millised for worldwide connections.

As TCP is self-clocked by its acknowledgment mechanisfri§. [The TCP congestion windows
based limitation mechanisms is thus clocked on the RTT. T&Pnot send more than its congestion
window over one RTT period of time. We can thus limit the castge window value to control the
rate at the RTT timescale. This solution requires a preaissvledge of the RTT and only provides a
controlled rate at RTT timescale which can slightly vary.

2.1.3 OS kernel timer based mechanisms

OS’s kernel timers depend on the kernel implementation amdbe set up to 1000 Hz under recent
GNU/Linux kernel.

GNU/Linux kernel use an internal time source that rises &riinpt everyHZ. This value can be
set between 100 Hz and 1000 Hz. GNU/Linux provides sewgialk c? to control the rate limitation.
These mechanisms use HZ clocking. We note that HTB (HieleatfToken Bucket) provides a
classful limitation mechanisms. This mechanisms is alstiraplemented as a DRR[5,17] queuing
discipline.

Some transport protocols do also rely on this time source.ekample, DCCP 15| (Datagram
Congestion Control Protocol) GNU/Linux implementationigfhuse TFRC (TCP Friendly Rate Con-
trol) as congestion control mechanism uses HZ timing.

2.1.4 Packet clocking based mechanisms

Packet-level clocking depends on the underlying link. Gig&thernet carries a single 1500 bytes
packet in 12s.

OS based timers cannot afford time sources being precisgyhrio accommodate packet length
because it cannot be continuously handling interrupts.tiBaimost precise solution to enforce band-
width limitation is to increase packets’ departure intégvahis solution is known as pacing. Although
hardware solutions were proposed 1r2]; generic Gigabit Ethernet NICs do not provide pacing.

Software implementations, like PSPacéd)][ also exist for packet pacing. PSPacer introduces
Ethernet PAUSE packets between packets carrying data.eTAEIdSE packets are discarded at the
first switch encountered. They just introduce spacing betweal packets, then limiting the effective
rate. PSPacer is implemented as a GNU/Linux keguklsc but does not use any timers at the cost

2Queue disciplines
3Deficit Round Robin
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Figure 2: Different sending patterns.

of a higher PCI bus bandwidth utilization. PSPacer actuadlys a byte-clock by counting bytes sent
and defines the departure date of a given packets in termytf“time.

These time sources allow to create different sending pati@s shown on figur2 The upper fig-
ure shows a schematic view of an RTT-based rate limitatf@ldwer ones packet-level rate limitation
and in-between timer based rate limitation. These differate limitation patterns generate different
burst types, which impact global performance. Conseqyesikn if the rates of two flows are lim-
ited to insure the sum does not exceed the available bartuwidtsts of packets can lead to losses.
The instantaneous aggregated rate, being larger than thatoate, may overflow the intermediate
buffers. These losses generate retransmissions and T@kjsstion window moderation.

These different time sources can support different ratédiimn mechanisms. In the absence of
any rate limitation mechanisms, packets are sent in burgtsaTCP self-clocking.

2.2 Time control mechanisms

Synchronization mechanisms are often required by scheglaligorithms to enforce transfers start
times. Two main solutions are available to control the tinimme synchronization (real time) or
explicit synchronization through signaling (virtual cksg. They both introduce some synchronization
error. This error has to be much smallerd. less than 10%) than the difference between minimum
and maximum completion time of a transfer. For example, inGbgs real dedicated network, the
difference between minimum and maximum completion timehef15 GB file transfer with a single
flow TCP-based protocol varies from 340 ms at 0.1 ms RTT to at390 ms RTT.

The first solution relies on the time accuracy several mashaan obtain from a time source. As
attaching GPS device to each machine isn't practical, NKé&dynchronization of clock will have to
be considered. Inle] published in 1994, NTP synchronization over a LAN is saitidwe an accuracy
ranging from 50Qus to 2 ms representing 0.14% (resp. 0.59%) of the differeeteden maximum
and minimum completion time of a 15 GB file transfer time withh ths RTT on a 1 Gbps link.

The second solution to provide synchronization is to useadigation. Both direct and indirect
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Figure 3: Signalization scenarii.

signalization can be used. With the direct signalizatiorthoe, the first sender signals an event
to the next sender (for example when the transfer is done @grsin figure3(a)). Using indirect
signalization, each sender exchange signals through avidthdoroker (Figure3(b)).

As a robust signalization mechanism is needed a three-wayshake should be used. For exam-
ple TCP connection establishment ensures packet-logenesi signalization. This basically means
that the cost of the direct signalization will be in the ordér.5 « RTT (due to SYN-SYN/ACK-
ACK) where RT'T is the path round-trip time between two senders plus the tore@oss the local
network stacks and the processing time.

In order to evaluate this cost, we measure the time requir@eéiform two signalizations (one in
each directions) between two machines and then divideithis by two. Figure4 shows the distri-
bution of this duration on a 0.1 ms RTT, 10ms RTT and finally &@30RTT network. As expected,
figure5 shows that the cost grows linearly with a 1.5 rate from 0.384t0.1 ms RTT to 150.4 ms at
100 ms RTT. These durations represent respectively 0.114 &6 of the difference of completion
for the previously considered 15 GB transfer at 0.1 ms andORTT. Thus cost of direct and indi-
rect signalization are still a small part (less than 2%) ef\ariations of transfers’ completion time if
the processing time is assumed to be small.

We can conclude from this section that synchronization b¥did direct or indirect signalization
do notintroduce much overhead and unpredictability to tmepletion time for the file size considered
in this paper. But as the synchronization cost is indepenilem the size of transferred files, when
this size decreases, the relative cost of time control wittease and will not be negligible with
respects to the transfer completion time variability antil mave to be considered.

3 Flow scheduling algorithms

Before evaluating the accuracy and the interaction of frariorotocols with these mechanisms, let
us present the principle of three scheduling strategiesiaes here with a simple example. In this
paper, we compare three flow scheduling strategies, nanspdatively ViFi for Virtual Finish Time
First, IFS for Instantaneous Fair Sharing, MinRate for $gdiiyscheduling. We consider two identical
requests with the same release date, the same deadlinerstimeduest has a volume being twice the
volume of the second request.

3.1 Simple illustrative example

Let us consider a classical dumbbell topology with two sesincodess; andss) and two sink nodes
(51 and S;). The topology is presented in figuB2 The shared link has a capacity 6f (1 Gbps



S. Soudan, R. Guillier, P. Primet

Synchronisation: Direct signalisation Synchronisation: Direct signalisation
200 T T T T T 300 T T T T
Q Q
o (5]
&  200f ]
g 100+ 1 3
o
5 5 100+ 1
* *
0 . .
0.00032 0.00034 0.00036 0.00038 0.0004 0.00042 0.00044 0538 001539 00154 001541 001542  0.01543
duration (s) duration (s)
Empirical CDF Empirical CDF
1 T T T T 1 T T T T
2ol | =
T 05 Fost 1
0 H H H H ; o : : :
0.00032 0.00034 0.00036 0.00038 0.0004 0.00042 0.00044 001538 001539 00154 _ 001541 001542  0.01543
duration (s) duration (s)
(@) 0.1msRTT (b) 1I0ms RTT
Synchronisation: Direct signalisation
300 T T T T
@
g
o 200
=]
(5]
o
2 100
o
H*+

0.105036 0.15037 0.15038 0.15039 0.1504 0.15041
duration (s)
Empirical CDF
1 T T T

0 I ; ;
0.15036 0.15037 0.15038 0.15039 0.1504 0.15041
duration (s)

(c) 100ms RTT

Figure 4: Distribution of direct-signalization time (108petitions).

o
[
N
T
.

o
[
:

.

mean signalisation time (s)
=} [=}
o o
D ©
: :
L L

0 20 40 60 80 100
latency (ms)

Figure 5: Mean direct-signalization time ({0.1 ms, 1 ms, 1} fRTT, 1000 repetitions).



End-host based mechanisms for implementing Flow SchegliniGridNetworks 7

Bandwidth Bandwidth
77
NN/ 7%7222277227777 N
NN/ ~7222277222777 N
N\ §
77
\ N\ & & N\ &
2777
\\\ \\\ NN /////////////// \\\ NN NN NN
\ \\\\\\\\ \\\\\\\\\ ny
005000550550057) iy
172007777777777 Ry
272007727777777 SIS IS IS0 770777777777
270077227777 777 SIS I IS0 7777 )
LIIIIIIIIIII LI I IS I II LI IS0 77777777 SIS I I IS0 7777 )
SII LIS I I 07777 SII LIS IS I 007707
SIS IS I I s s 707 SIS IS I I s s 707
I PII IS I 1177777
PII LTI IS0 70777777 PII IS I I 77777 1)
PIIIII I IS0 7777777 ey
Ry Ay
Ry Ry
Ry Ry
DI IS IS0 777777777 SIII IS0 777777777
SIS I IS0 7777 ) SII LTI I I 70707777
0 tel tc=tc2 Time 0 tc =tcl =tc2Time

(a) IFS scheduling. (b) Spaghetti scheduling.

Bandwidth

777 77 7
10550555054555455545554454)
N 10550555554555455545554550)
\ 2L oy
00000050004000500055005500)
Ty
Iy
Ty
\\\\\\\\ V1022777077777 777772777777|
\\ YIS 7277777777777
YIS 7777777777777
Ry
Iy
Iy
Iy
Iy
Iy
Ay
\\\\\\ V1022770007777 777772777777
\\\\\ Ry
YIS0 7777777 77777
2L 7077777777777
Ry
Ry

tc=tc2 Time

o
a
5N

(c) ViFi scheduling.

Figure 6: Three simple different scheduling strategiedviortransfers (transfer 1 with volume and
transfer 2 with volume, = 2.v1), having the same time window constraint.

Strategy te le2
2.01 201 vy —1 V1 + U2
IFS =
I
ViFi Z1 aTv2
C C
U1 + U2 V1 + U9
C C

Table 1: Theoretical completion time of the two transfers.

Spaghetti scheduling

Ethernet). Each source node has a file of sizéo transfer to the corresponding sink nodg (or

s1 and .S, for so ). We assume that both transfers have the same release.dgatd we define the
completion time of the transfers ; andt. ». Tablel summarizes the theoretical completion time of
each transfer under the different scheduling strategies.

If we consider same size files, IFS and spaghetti scheduleg@g@uivalent. Thus, the two files
transferred will have a size efi = 15000 MB and v, = 30000 MB. For the sake of simplicity, we
will consider that the release dates are, 0= 0).

Figures6(a), 6(b) and6(c) show the different scheduling strategies applied to thetransfers
considered.

The completion time of each transfer might differ from spt to strategy but the global com-
pletion time of the two transfers ie. the makespan — is theoretically the same. We will focus on
this last objective: minimize the makespanwith t. = maxz{t.1,tc2} = (v1 + v2)/C. The link
capacityC' used here is the effective rate of carried data. As the tmhgpotocol provides conges-
tion control mechanisms and reliable transfers, it intaausome overheads and the considered link
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capacity is smaller than the raw capacity of the link. Thigwpwill be detailed in next section. The
three strategies allocate the full capacity (link utilieatratio of 1 is optimal) provided that a single
flow can fill the shared link and we assume an accept rate of fe¢plest accepted) which means that
the specified deadline of each transfer is greater than fitgpkion time.

We consider that IFS can be well approximated by TCP’s disteid congestion control. ViFi
does not require any bandwidth limitation mechanism a®ttsasnly one flow at a time. Bspaghetti
schedulingrequires bandwidth limitation enforcement mechanisms.

3.2 Transport protocol considerations

Our goal is to determine which configuration (schedulingtsfyy combined with end hosts mecha-
nisms) is minimizing . which is actually the time the bandwidth broker will have éserve resources
to complete the two transfers.

All proposed algorithms assume that an ideal transporbpobiwill be used to transfer the files.
However, the achievable bandwidth is not knosvpriori because it depends on the efficiency of the
real transport protocol and the rate limitations mechagisBurrent transport protocols, used in grid
environments, are window-based protocol, like BIC TCP,ahtare quite efficient and fair when two
flows have the same reasonable round-trip tirnel()0 ms) [10]. But such protocols still introduce
some overhead. This overhead is partially due to the pddketsier which size is a linear function
of the data carried. The overhead is also due to the retrasgms induced by losses. Under a
congested situation (which is the case here as we can havpaisatially 1 Gbps sources sending
data in 1 Gbps link at the same time with IFS scheduling), tlegleead introduced by retransmissions
is more difficult to estimate. The arbitration algorithmghin the network equipmente(g. Ethernet
switch) that mixes the two flows infer the losses distribmt@mong flows 18].

This loss-dependent overhead might suggest that spaghk#duling would provide better per-
formance. It avoids congestions by limiting the ssendiagditeach flow. ViFi scheduling insure that
there is no congestion because only one flow is schedulediraea However these two scheduling
strategies imply rate limitation or synchronization anghsilization mechanisms which can’t be cost-
less. Spaghetti scheduling needs rate limitation. ViFdsde start the second transfer just after the
first one finished.

3.3 Goodputvsthroughput

In this section no attention is paid to the timescale useefme rates. Letgng be the Ethernet bit
rate.rgtnhg = 10° bps for Gigabit Ethernet. We defing:{p, as the Ethernet frame rate assuming 1514
bytes frames (without frame checksum (FCS), frame preamrtaenter frame gap (IFG)), see figute
TEth = (1514/(1514 +4 412 4-8)) * rgihg = 984.40 Mbps. We define|p as the rate of IP packets
(Ethernet payload). Under the assumption of a 1500 bytes MTjp = (1500/1514) * TEth =
975.30 Mbps.

In order to compare our measurements we define an ideal tdmsptocol over an 1 Gbps Ether-
net link. We assume this protocol achieve perfectly max-aimess among contending flows, there
is no slow-start and no losses nor retransmissions. We dibéndata rate1p of the ideal transport
protocol. Under assumptions presented abeyg, = ((1500 — 40)/1500) * rjp = 949.29 Mbps.

This is especially important to differentiate goodpui ) and throughputi(g,g) as flows share
links through throughput while completion time of transfelepends on goodput. Thus the capacity
C used in sectio.2is actuallyrtp. We can observe that this rate is a linear functiongf, as each

“Message Transfer Unit
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transport layer payload as its own set of headers, preaf@!8,and IFG. But real transport protocols
are not ideal. More specifically, the effective data ratesrent a linear function of the portion of the
raw link obtained as real transport protocols use congestiodow based congestion control driven
by loss event or latency changes. These events are not imdiemtebetween contending flows. In
order to obtain deterministic completion time, we have tate flows.

4 Experimental evaluation

4.1 Objectives

In order to evaluate some of the rate limitation mechanisomalined with scheduling strategies
introduced above, real experiments have been conducted.

The main goal of these experiments is to compare the diffesgimeduling strategies in term of
completion time predictability and mean performance. €h@g points are important because in a
scheduling perspective, predictability of completiondiia of a central goal and secondly scheduling
was introduced to improve mean performance. More spedifiaaly scheduling algorithms has to be
more efficient than raw TCP sharing.

Next section will present the testbed and scenarii consijevhile two following section present
mean and scheduling related performance results.

4.2 Testbed, scenarii & practical considerations

As stated before, two transfers are used. These transtersalized by usingperf on Sun Fire V20z
workstations of Grid50004] running GNU/Linux 2.6.20.1 kernels. The switch used to liempent
the topology is a ExtremeNetworks BlackDiamond 8810. Leie=share emulated using a GtrcNet-
1 box [13]. Four different experiments were conduced at three l&sn@TT): 0.1 ms, 10 ms and
100 ms. Completion times were measured with a 10 ms preci&ianh experiment consists of hun-
dred repetitions of the two transfers.

The first experiment implements the IFS strategy. The twusteas (15GB and 30GB) have been
started at the same time without bandwidth limitation. lis #xperiment the time measured is the
maximum of the two individual completion time.

Second experiment implements the ViFi strategy. The 15@Bsfter is started first and once it
finishes the second transfer is started. The duration me@surthis experiment is the sum of the
duration of the two transfers.

Third and Fourth experiments implement spaghetti schiegudirategy. Third experiment uses
PSPacer as limitation mechanism while fourth uses HTB. Her&me measured is also the maximum
of the two individual completion time. These two scenare gslisc based rate limitation mechanisms.
First use packet-level rate limitation using PSPacer wdeleond use OS’s timer based approach with
HTB. As they both use qdisc implementation, the rates spekfbr the two flows ar@/3 * rgih =
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— 1Gbps link

Figure 8: Testbed.

656 Mbps andl /3 g, = 328 Mbps for 30 GB and 15 GB transfers as qdisc acts on ready-&ehe
packets (Ethernet packets).

Retransmissions done by the transport protocol during @détiteons of these experiments are also
measured using Web100 kernel patch.

4.3 Mean performance

Figure9 shows the distribution and cumulative distribution fuant{CDF) of the completion times
of the two transfers using different strategies at threenlgies (RTT). CDF of completion time is
important because it shows the dispersion which is a ket pairdefining the time granularity of the
scheduling.

IFS strategy implemented through BIC TCP congestion conexhanism is efficient under low
latencies but as the latency grows, the mean completiongnmes quickly. This is due to the cost of
losses which decrease the congestion wind@ythe sending rate. Loss have more and more impact
as the latency increases as recovering takes longer. AtOHIM, the congestion window is of about
8 packets which is smaller than the buffer size of the swish10 ms RTT, the congestion window
is close to 800 packets and at 100 ms is close to 8000 packetisede situations, the bursts sent by
the two sources are very likely to cause congestion. In ifgias losses do not occur exactly at the
same time from experiment to experiment, the dispersiotstémbe very important especially under
high latencies (figuré&1(b) were losses are more costly.

ViFiis a bit less efficient than IFS at 0.1 ms (figl@€&)) because there is only one flow at a time.
Increasing the number of flows sharing a linle( the multiplexing level) is known to increase the
average utilization rate of this link. Performance decgsaslittle as latency grows but the distribution
remains quite compact.

Spaghetti scheduling’s performance depends on the limitatechanisms used. HTB introduces
some burstiness as it use OS’s timers. Thus the number @slasay be important as observed on
figure 10. While IFS strategy allows flows to recover by momentarilgasing bandwidth to each
others, HTB does not which leads to poor performance. UsBgaeer, for rate limitation leads to
a nearly constant completion time among repetitions. As aveabserve on figurél(a) the mean
completion time of spaghetti scheduling using PSPaceralslestwith respect to the latency. This
combination (spaghetti and packet pacing) offers the mkal implementation of the flow scheduling
approach.

To summarize these results in term of mean, we can compdreampletion time to ideal com-
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0.1msRTT| 10msRTT| 100ms RTT
IFS 3.4% 16.4% 64.3%
ViFi 3.7% 9.2% 9.7%
SS (PSP) 4.0% 4.0% 4.7%
SS(HTB)| 5.3% 17.7% 59.6%

0.1msRTT| 10ms RTT| 100ms RTT
IFS 3.6% 17.5% 78.5%
ViFi 3.8% 9.4% 11.4%
SS (PSP) 4.0% 4.0% 4.7%
SS (HTB) 5.6% 19.6% 67.6%

Table 3: Relative deficiency of 99-quantile of real completiime against ideal one.

pletion time obtained withp which ist. = (vi + v2)/rTp = 388.33 s in table2. We observe a
mean deficiency of spaghetti scheduling using PSPacer ti€towhile IFS reaches more than 64.3%
under 100 ms RTT. These results represent mean performilese section will develop worst case
results in terms of minimizing the maximum completion tinsestated in sectioB.2

4.4 Scheduling perspective

From a scheduling perspective, the main concern is thebikityeof completion times. This is because
when the flow scheduler decides a time slot for a transfes,dhé must have, with a high probability,
enough time to complete. On the other hand, allocating @tdnge window will be wasteful. In this
perspective, mean completion time is of little help. As otsd on figurell(b) variability greatly
depends on the strategy and end hosts mechanisms usediligrisiactually very low when using
PSPacer and can be important (std. dev. greater than 20 srfeaa completion time of about 650 s)
for IFS.

Figure12 shows the 75 and 99-percentiles of the completion time fdifferent strategies as a
function of latency. This value is the duration of the sla #itheduling system would have to allocate
in order to have a probability of completion of 75% (99%) inigeg situation. We can observe that
these two values are quite close except under 100 ms RTT 8hahd HTB. Second observation,
these last two strategies, and to a lesser extend ViFi, wegjdire a scheduling system aware of the
latencies of the links. Indeed, the performance slightisreases as latency increases.

Performance obtained using real mechanisms and protooat®tdbehave as an ideal transport
protocol as seen on figudel(a)and11(b). There are 3 differences. First, the mean completion time
of real transfers is obviously larger than the one of idestgfer (of 3.4% is the best case and 64.3%
in the worst one). Second it increases as the latency iresefas HTB and IFS as packet losses
are introduced. Third, the variance is not null and can bativelly high. To conclude this section,
spaghetti scheduling using PSPacer appears to be theggtmatech provides the best maximum
completion timet. under real experiments. Its 99-quantile completion timiectkacy does not vary
much with latency and is the lowest (except for 0.1 ms RTT)aashe seen in tabl@
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Figure 9: Completion time distribution and CDF for IFS, Viid Spaghetti scheduling using BIC
TCP under different RTT (100 repetitions).
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Figure 10: Mean retransmitted bytes as a function of the RIDIrépetitions).

5 Conclusion

In this paper we have quantified and compared, end-host baseldanisms combined with transport
protocols to instantiate different scheduling strategfesimple scenario has been deeply explored in
a range of latency conditions. We have shown that, in higledpetwork, a single-rate scheduling
strategy implemented by TCP-variant protocol like BIC witiicket pacing mechanism offers pre-
dictable performance and is insensitive to latency (defeyeof mean completion time ranging from
4% at 0.1 ms RTT to 4.7% at 100 ms RTT). This paper also higtditie limits of other strategies
and rate limitation mechanisms like token bucket which m@gent unpredictability and other draw-
backs. Future work will concentrate on larger experimentthe Grid5000 testbed and will examine
the scalability of the flow scheduling approach in real godtext, multirate allocations schemes and
transfers preemption issues.
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